
Journal of the Mathematical Society of Japan Vol. 11, No. 2, April, 1959

Factor sets in a number field and the
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Let $\Omega$ be an algebraic number field of finite degree and $K$ be an abelian
extension over $\Omega$ with Galois group $A=g(K/\Omega)^{1)}$ Then, in the multiplicative
group $\Omega^{\times}$ of non-zero elements of $l2$ as a trivial A-module, we can consider
a factor set $\zeta$ of $A$ consisting of roots of unity. The first problem treated
in this paper is an explicit determination of the p-invariants $\nu_{\mathfrak{p}}(\zeta)$ of $\zeta$ as a
factor set of $A$ in $ K/\Omega$ , where $\mathfrak{p}$ is a place of $\Omega$ . We obtain the following
result. Let $\alpha,$ $\beta$ be two non-zero elements of the p-adic completion $J2_{\mathfrak{p}}$ of $\Omega$

and $\sigma,$
$\tau$ be elements of $A$ canonically corresponding to $\alpha,$ $\beta$ , respectively, by

the reciprocity mapping of the local class field theory. Then, using the norm
residue symbol of certain degree $e$ we can determine the p-invariant $\nu_{\mathfrak{p}}(\zeta)$

$(mod 1)$ by

$(\frac{\alpha,\beta}{\mathfrak{p}})_{e}^{e\cdot\nu,(\zeta)}=\frac{\zeta_{\sigma.\tau}}{\zeta_{\tau,\sigma}}$

whenever $\mathfrak{p}$ is a prime ideal of $\Omega$ prime to the order of $A$ and $\Omega_{\mathfrak{p}}$ contains
sufficiently many roots of unity (\S 1).

Now, let $G$ be a finite group containing in the center a cyclic group $Z$

such that $G/z\cong A$ . If $\Omega$ contains sufficiently many roots of unity and $Z$ is
identified with a subgroup of $\Omega^{\times}$ , then the factor set $\xi$ determined by $A$ in
$Z$ is identified with a factor set $\zeta$ of $A$ in $ K/\Omega$ and it is easily seen that $K$

is the subfield corresponding to $Z$ in the sence of Galois theory of a normal
extension $\overline{K}$ over $\Omega$ with Galois group $G$ if and only if $\zeta$ splits as a factor
set of $A$ in $K/\Omega,$ $i$ . $e.$ , all the p-invariants of $\zeta$ are equal to $0$ . This fact,
composed with the formula above, is naturally applicable to the problem of
determining whether an abelian extension $K/Q$ with Galois group $A$ is embed-
dable in a normal extension $\overline{K}/\Omega$ with Galois group $G$ . In fact, we see in
\S 2 that a necessary and sufficient condition for certain types of $K$ to be
embeddable is expressed by some bilinear congruences concerning a homomor-
phism $\kappa$ , attached to $K$ by means of class field theory, of the id\‘ele class
group of $\Omega$ into $A$ .

1) Galois groups will be denoted by this notation.



130 T. KUBOTA

In the last \S 3, we consider as examples dihedral and quaternion exten-
sions over the rational number field $P$ and we have, among others, the
following result. Let $A$ be an abelian group of the type $(2, 2)$ and $p_{1},\cdots,p_{t}$

be prime numbers congruent to 1 $mod 4$ . Suppose an extension $K$ over $P$

with Galois group $A$ to be unramified at every rational prime number except
$p_{1},\cdots,p_{t}$ . Then $K$ is determined in a definite way by rational integers $x_{1},$ $y_{1}$ ,
$x_{2},$ $y\underline{\circ},\cdots,$ $x_{t},$ $y_{t}$ , and $K$ is embeddable in a dihedral (and equivalently in a
quaternion) extension over $P$ if and only if $x,$ $y$ satisfy the simultaneous
bilinear congruences $f_{i}(x, y)\equiv 0(mod 2)$ , where $f_{i}(i=1,\cdots, t)$ is defined by

$f_{i}(x, y)=j\subset 1\nabla_{\lrcorner}^{t}\angle-21-\{1-(\frac{p_{i}}{p_{j}})\}(x_{j}y_{j}+x_{j}y_{i})$

and we set $(\frac{p_{i}}{p_{i}})=1$ . From this fact we see also that the number of the

dihedral or the quaternion extensions over $P$ unramified at every rational
prime number except $p_{1},\cdots,p_{t}$ is determined by $t$ and by the number of solu-
tions of $f_{i}(x, y)\equiv 0(mod 2)$ .

\S 1. Determination of $\mathfrak{p}$-invariants.

1. At the beginning we introduce the notion of G-extension over a field.
Let $\Omega^{2)}$ be an algebraic number field of finite degree and $G$ be a finite group.
Then we understand by a G-extension over $\Omega$ a homomorphism rc into $G$ of
the Galois group of the algebraic closure over $\Omega$ . Of course a quite similar
definition is possible for an arbitrary basic field. A G-extension $\kappa$ over 2
determines by Galois theory an algebraic extension $K_{\kappa}$ of finite degree over
$\Omega$ . We call $K_{\kappa}$ the corresponding field of $\kappa$ . For the sake of convenience we
regard properties of $K_{\kappa}$ as those of $\kappa,$ $e$ . $g.$ , we say $\kappa$ is ramified at a prime
ideal $\mathfrak{p}$ of $\Omega$ whenever K. is ramified at $\mathfrak{p}$ . In the case where $G=A$ is an
abelian group, the class field theory implies that rc may be considered a
homomorphism into $A$ of the id\‘ele class (or id\‘ele) group of $\Omega$ . Furthermore,
restricting in this case rc to the $\mathfrak{p}$ -components of id\‘eles for a place $\mathfrak{p}$ of $I2$ ,
we get in a natural way an A-extension $\kappa_{\mathfrak{p}}$ over the $\mathfrak{p}$ -adic field $\Omega_{\mathfrak{p}}$ , which we
call the $\mathfrak{p}$ -component of $\kappa$ .

Now, in the multiplicative group 2’, under trivial operation of $A$ , of
non-zero elements of $f2$ , we consider a factor set $\zeta$ of $A$ consisting of roots
of unity. For such a $\zeta$ , the factor set relation $\xi_{\sigma,\tau\rho}\xi_{\tau,0}=\xi_{\sigma\tau,\rho}\xi_{\sigma,\tau}^{\rho}$ turns out
$\zeta_{\sigma,\tau\rho}\zeta_{\tau,\rho}=\zeta_{\sigma\tau,\rho}\zeta_{\sigma,\tau}$ . Let $\kappa$ be an A-extension over $\Omega$ with its corresponding
field $K_{\kappa}$ . Since then rc maps the Galois group $g_{\kappa}=g(K_{\kappa}/\Omega)$ into $A$ , we can

2) We observe in the sequel one and the same number field $\Omega$ .
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attach to every $\kappa$ a factor set $\zeta^{\kappa}$ of $g_{\kappa}$ in $ K_{\kappa}/\Omega$ by setting $\zeta_{\sigma,r}^{\kappa}=\zeta_{\kappa(\sigma),\kappa(\tau)}$ for
every $\sigma,$ $\tau\in g_{\kappa}$ . We call $\zeta^{\kappa}$ the induced factor set. We now propose to observe
the $\mathfrak{p}$ -invariant $\nu_{\mathfrak{p}}(\zeta, \kappa)$ of $\zeta^{\kappa}$. Since the $\mathfrak{p}$ -component $\kappa_{\mathfrak{p}}$ of $\kappa$ determines in a
maximal abelian extension over $\Omega_{\mathfrak{p}}$ the corresponding field $K_{\kappa^{l}}$ with the Galois
group $g_{\kappa}^{\mathfrak{p}}=g(K_{\kappa}^{\mathfrak{p}}/\Omega_{\mathfrak{p}})$ and with the induced factor set $\zeta^{\kappa}\mathfrak{p}$ it suffices for us
only to determine the $\mathfrak{p}$-invariant of $\zeta^{\kappa}\mathfrak{p}$ . Furthermore, we may assume
without any loss of generality that the order of $A$ is a power of a prime
number $l$ and $\zeta$ consists of roots of unity whose orders are powers of $l$.

From now on, if no confusion is possible, we write $K^{\mathfrak{p}}$ for $K_{\kappa}^{\mathfrak{p}},$ $g^{\mathfrak{p}}$ for
$g_{\kappa}^{\mathfrak{p}}=g(K_{\kappa}^{\mathfrak{p}}/\Omega_{\mathfrak{p}})$ and $\zeta_{\sigma,\tau}$ for $\zeta_{\kappa \mathfrak{p}^{(\sigma),\kappa}\mathfrak{p}^{(\tau)}}=\zeta_{\sigma.\tau}^{\kappa_{\phi}}$ , where $\sigma,$

$\tau$ mean elements of $g^{\mathfrak{p}}$ .
Besides, we settle the assumption that $\mathfrak{p}$ is prime to 1 and $\Omega_{\mathfrak{p}}$ contains a
primitive ec-th root of unity, where $e$ is the ramification order of $\kappa$ at $\mathfrak{p}$ and
$c$ is determined by roots of unity appearing in $\zeta$ as the highest of their
orders.

Under the assumption, if $T^{\mathfrak{p}}$ is the inertia field of $K^{\mathfrak{p}}/\Omega_{\mathfrak{p}}$ , then $g(T^{\mathfrak{p}}/\Omega_{\mathfrak{p}})$ is
cyclic of order $f=(T^{\mathfrak{p}} : \Omega_{\mathfrak{p}})$ and $g(K^{\mathfrak{p}}/T^{\mathfrak{p}})$ is cyclic of order $e$ . Now, denoting
by $\pi_{\mathfrak{p}}$ a definite generator of the prime ideal of $\Omega_{\mathfrak{p}}$ , we fix a Frobenius auto-

morphism $\varphi=(\frac{\pi_{\mathfrak{p}},K^{\mathfrak{p}}/\Omega_{\mathfrak{p}}}{p})$ of $K^{\mathfrak{p}}/\Omega_{\mathfrak{p}}$ . Next, setting $\tilde{K}^{\mathfrak{p}}=K^{\mathfrak{p}}(\sqrt[e]{\pi_{\mathfrak{p}}})$ and denoting

by $\zeta_{\mathfrak{p}}$ a definite root of unity in $\Omega_{\mathfrak{p}}$ such that the order of $\zeta_{\mathfrak{p}}$ is the highest

possible power of 1, we fix another automorphism $\tilde{\omega}=(\frac{\zeta_{\mathfrak{p}},\tilde{K}^{\mathfrak{p}}/\Omega_{\mathfrak{p}}}{\mathfrak{p}})$ of $\tilde{K}^{\mathfrak{p}}/\Omega_{\mathfrak{p}}$ .
The restriction $\omega$ to $K^{\mathfrak{p}}$ of $\tilde{\omega}$ is a generator of $g(K^{\mathfrak{p}}/T^{\mathfrak{p}})$ and we have $\sqrt[e]{\pi_{\mathfrak{p}}}^{\tilde{\omega}}$

$=\zeta_{e^{\sqrt[e]{\pi}}\mathfrak{p}}$ with a definite primitive e-th root $\zeta_{e}$ of unity. We have also for
every $\sigma\in g^{\mathfrak{p}}$ a unique decomposition $\sigma=\sigma_{\varphi}\sigma_{\omega}$ with $\sigma_{\varphi}=\varphi^{i}(0\leqq i<f)$ and $\sigma_{\omega}\in$

$\{\omega\}.3)$

2. After these preliminaries, we can arrive at an exposition of the $\mathfrak{p}-$

invariant $\nu_{\mathfrak{p}}(\zeta)=\nu_{\mathfrak{p}}(\zeta, \kappa)$ of $\zeta^{\kappa}\mathfrak{p}$ . We proceed quite similarly to Artin [1, Chap.
6, 4]. Set $\zeta_{\omega}=\zeta_{\omega,1}\zeta_{\omega,\omega}\cdots\zeta_{a)\omega^{e-1}}$ . Then, under the assumption in 1, there is
$\overline{\zeta}_{\omega}\in\Omega_{\mathfrak{p}}$ such that $\zeta_{\omega}=\overline{\zeta}_{\omega}^{e}$ . Hence, if we set $a_{1}=\zeta_{\overline{\omega}^{1}1},$ $a_{\omega^{i}}=\zeta_{\omega,\omega}\cdots\zeta_{\omega,\omega^{i-1}}$ for

$i>1$ and $a_{\sigma}=1$ for $\sigma\not\in\{\omega\}$ , then the factor set $\zeta_{\sigma,\tau}^{(1)}=\zeta_{\sigma}$ .. $\frac{a_{\sigma}^{\tau}a_{\tau}}{a_{\sigma\tau}}$ fills

$\zeta_{\omega^{i},\omega l}^{(1)}=\{$ $1\zeta_{\omega}$ for
$i+j<e$

$(0\leqq i, j<e)$ ,
$i+j\geqq e$

and, if further we set $b_{\omega^{i}}=\overline{\zeta}1+\omega+\cdots+\omega^{i-1}=$ and $b_{\sigma}=1$ for $oe\{\omega\}$ , then, for

the factor set $\zeta_{\sigma,\tau}^{(2)}=\zeta_{\sigma.\tau}^{(1)}\cdot\frac{b_{\sigma}^{\tau}b_{\tau}}{b_{\sigma\tau}}$ , we have $\zeta_{\omega^{i},\omega 1}^{(2)}=1$ . Moreover, if we, using the

decomposition $\sigma=\sigma_{\varphi}\sigma_{\omega}$ for $\sigma\in g^{\mathfrak{p}}$ at the last part of 1, set $c_{\sigma}=\zeta_{\sigma_{\omega},\sigma_{\varphi}}^{(2)}$ and

3) The symbol $\{$ $\}$ stands for the group generated by the element in it.
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$\zeta_{\sigma,\tau}^{(3)}=\zeta_{\sigma,\tau}^{(2)}\cdot\frac{c_{\sigma}^{\tau}c_{\tau}}{c_{\sigma\tau}}$ , then we have $\zeta_{\sigma_{\omega},\sigma_{\varphi}}^{(3)}=\zeta_{\sigma_{\omega},\sigma_{\varphi}}^{(2)}\zeta_{\sigma_{\omega},1}^{(2)}\zeta_{1,\sigma_{\varphi}}^{(2)}\zeta_{\sigma_{\omega},\sigma_{\varphi}}^{(2)-1}=1,$
$\zeta_{\omega^{i-}}^{(3)}=\zeta_{\omega^{i},\tau_{\omega}\tau_{\varphi}}^{(3)}=$

$\zeta_{\omega^{i}\tau_{\omega},\tau_{\varphi}}^{(3)}\zeta_{\omega^{i},\tau_{\omega}}^{(3)}\zeta_{\tau_{\omega},\overline{\tau}_{\varphi}}^{(3)1}=1,$ $C_{\sigma\omega^{i},\tau}^{t3)}=\zeta_{\sigma.\tau}^{(3)}\zeta_{\omega^{i},\sigma\tau}^{(3)}\zeta_{\omega^{\dot{t}},\sigma}^{(3)-1}=\zeta_{\sigma,\tau}^{(3)}$ , and $\zeta_{\sigma.\omega_{1}\omega_{2}}^{(3)}=\zeta_{\sigma,\omega_{1}}^{(3)}\zeta_{\sigma,\omega_{2}}^{(3)}$ for $\omega_{1}$ ,
$\omega_{2}\in\{\omega\}$ . Therefore we see that $\zeta_{\sigma,\omega}^{(3)}$ is an e-th root of unity and that there
is $\Phi_{\sigma}\in K^{\mathfrak{p}}$ such that we have $\zeta_{\sigma,\omega}^{(3)}=\Phi_{\sigma}^{1-\omega}$ . Moreover, we may assume that $\Phi_{\sigma}$

depends only on $\sigma_{\varphi}$ and that we have $\Phi_{1}=1$ . If we set here $\beta_{\sigma,\tau}=\zeta_{\sigma.\tau}^{(3)}\cdot\underline{\Phi}_{\sigma,\Phi_{\sigma\tau}}^{\tau}\underline{\Phi_{\tau}}$ ,

then $\beta_{\sigma,\tau}$ is the lift to $K^{\mathfrak{p}}/\Omega_{\mathfrak{p}}$ of a factor set of $T^{\mathfrak{p}}/\Omega_{\mathfrak{h}}$ and its p-invariant is
determined whenever the p-exponent $n(\beta_{\varphi})$ of $\beta_{\varphi}=\beta_{\varphi,1}\beta_{\varphi,\varphi}\cdots\beta_{\varphi\varphi J-1}$ is known.
Denoting by a parenthesis a principal ideal, we have

$(\beta_{\varphi})=\prod_{i=0}^{f-1}(\zeta_{\varphi,\varphi^{i}}^{(3)}\cdot\underline{\Phi}_{\Phi^{\varphi}}^{\varphi}\frac{i\Phi_{\varphi^{i}}}{\varphi^{i+1}})=\prod_{i=0}^{f-1}(\Phi_{\varphi}\cdot\frac{\Phi_{\varphi}\iota}{\Phi_{\varphi^{i+1}}})=(\Phi_{\varphi})^{f}$ .

On the other hand, since $K^{\mathfrak{p}}$ is obtained by adjunction to $T^{\mathfrak{p}}$ of an element
of the form $\sqrt[e]{\pi}\mathfrak{p}\zeta_{0}$ , where $\zeta_{0}$ is a root of unity in $\tilde{K}^{\mathfrak{p}}$ such that the order
of $\zeta_{0}$ is a power of $l$, and since $\tilde{\omega}$ operates trivially on such a root of unity,
we may take as $\Phi_{\varphi}$ the element $(\sqrt[e]{\pi}\mathfrak{p}\zeta_{0})^{m}$ , where $m$ is determined by $\zeta_{\varphi\omega}^{(3)}=$

$\zeta_{e}^{-m}$ . Therefore we have finally

$\nu_{\mathfrak{p}}(\zeta)\equiv\frac{n(\beta_{\varphi})}{f}\equiv\frac{m}{e}$ $(mod 1)$ .

Since, from the definition, $\zeta^{(3)}$ and $\zeta$ are mutually cohomologous as cocycles
of $g^{\mathfrak{p}}$ in the multiplicative group $\Omega_{\mathfrak{p}^{\times}}$ of non-zero elements of $42_{\mathfrak{p}}$ and since

we have $\zeta_{\varphi,\omega}^{(3)}=\frac{\zeta_{\varphi,\omega}^{(3)}}{\zeta_{\omega,\varphi}^{(3)}}$ , we have $\zeta_{\varphi.\omega}^{(3)}=\frac{\zeta_{\varphi_{\omega}}}{\zeta_{\omega}’,\varphi}$ . Thus $m$ is directly computed by

$\zeta_{e}^{m}=\frac{\zeta_{0)\varphi}}{\zeta_{\varphi_{\omega}}’}$ .
3. Let us continue the observation of the same subject. The norm

residue symbol $(\frac{\zeta_{\mathfrak{p}},\pi_{\mathfrak{p}}}{\mathfrak{p}})_{e}$ is defined as Hasse [2, \S 11], by $\sqrt[\rho]{\pi_{\mathfrak{p}}}^{\tilde{\omega}}=(\frac{\zeta_{\mathfrak{p}},\pi_{\mathfrak{p}}}{\mathfrak{p}})_{e}\cdot\sqrt[e]{\pi_{\mathfrak{p}}}$ .

This, compared with the definition of $\zeta_{e}$ in 1, yields $\zeta_{e}=(\frac{\zeta_{\mathfrak{p}},\pi_{\mathfrak{p}}}{\mathfrak{p}})_{e}$ and there-

fore we have $(\frac{\zeta_{\mathfrak{p}},\pi_{\mathfrak{p}}}{\mathfrak{p}})_{e}^{m}=\frac{\zeta_{0\prime,\varphi}}{\zeta_{\varphi_{\omega}}}$ . Thus we obtain

THEOREM 1. Let $A$ be an abelian group whose order is a power of a prime
number $l,$ $\kappa$ be an A-extension over $\Omega,$ $\zeta$ be a factor set of $A$ in the mulliplicative
group $\Omega^{\times}$ , as a trivial A-group, of non-zero elements of $\Omega$ and $\zeta^{\kappa}$ be the induced
factor set. Assume that, for a prime ideal $\mathfrak{p}$ of 2 prime to $l$, the $\mathfrak{p}$ -completion

$\Omega_{\mathfrak{p}}$ contains a primitive ec-th root of unity, where $e$ is the ramification order of
$\kappa$ at $\mathfrak{p}$ and $c$ is the highest order of roots of unity appearing in $\zeta$ . Let further
$\kappa_{\mathfrak{p}}$ be the $\mathfrak{p}$ -component of $\kappa,$ $\pi_{\mathfrak{p}}$ be a generator of the prime ideal of $\Omega_{\mathfrak{p}}$ and $\zeta_{\mathfrak{p}}$ be
a root of unity in $\Omega_{\mathfrak{p}}$ such that the order of $\zeta_{\mathfrak{p}}$ is the highest possible power of 1.
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Then $(\frac{\zeta_{\mathfrak{p}},\pi_{\mathfrak{p}}}{\mathfrak{p}})_{e}$ is a primitive e-th root of unity in $\Omega_{\mathfrak{p}}$ and the $\mathfrak{p}$-invariant $\nu_{\mathfrak{p}}(\zeta, \kappa)$

of $\zeta^{\kappa}$ is determined by

$\nu_{\mathfrak{p}}(\zeta, \kappa)\equiv\frac{m}{e}$ $(mod 1)$ ,

whenever $m$ is chosen so that we have

$(\frac{\zeta_{\mathfrak{p}},\pi_{\mathfrak{p}}}{\mathfrak{p}})_{e}^{m}=\frac{\zeta_{a)\varphi}}{\zeta_{\varphi_{\omega}}’}$

with $\varphi=\kappa_{\mathfrak{p}}(\pi_{\mathfrak{p}}),$ $\omega=\kappa_{\mathfrak{p}}(\zeta_{\mathfrak{p}})$ .
If we define for every pair $\sigma,$

$\tau$ of elements of $A$ a function $\lambda(\sigma, \tau)=\frac{\zeta_{\sigma,\tau}}{\zeta_{\tau,\sigma}}$ ,

then we have $\lambda(\sigma\sigma^{\prime}, \tau)=\lambda(\sigma, \tau)\lambda(\sigma^{\prime}, \tau),$ $\lambda(\sigma, \tau\tau^{\prime})=\lambda(\sigma, \tau)\lambda(\sigma, \tau^{\prime})$ . We call the func-
tion $\lambda$ the bi-character attached to $\zeta$ .

Since $\zeta_{\mathfrak{p}},$

$\pi_{\mathfrak{p}}$ in theorem 1, together‘ with the kernel of $\kappa_{\mathfrak{p}}$ , generates the
whole multiplicative group $\Omega_{\mathfrak{p}^{\times}}$ of non-zero elements of $Q_{\mathfrak{p}}$ it follows from
the property of $\lambda(\sigma, \tau)$ as a bi-character that we have

$C_{oROLLARY}$ . Notations and assumptions being as in theorem 1, let $\alpha,$ $\beta$ be
any two of non-zero element of $\Omega_{\mathfrak{p}}$ and write $\zeta_{\alpha}^{\kappa_{\mathfrak{p}_{\beta}}}$ for $\zeta_{\kappa_{\mathfrak{p}^{(\alpha),\kappa}\mathfrak{p}^{(\beta)}}}$ . Then we have

$(\frac{\alpha,\beta}{\mathfrak{p}})_{e}^{m}=\frac{\zeta}{\zeta}\beta^{\mathfrak{p}}a\alpha_{\mathfrak{p}}\underline{\beta}\kappa\kappa$
’

where $m$ is a rational integer with $\nu_{\mathfrak{p}}(\zeta, \kappa)\equiv\frac{m}{e}(mod 1)$ .

\S 2. Applications to certain non-abelian extensions.

4. Let $Z$ be a finite cyclic group,4) $A$ be a finite abelian group and $G$

be an extension of $Z$ by $A$ such that $Z$ is in the center of $G$ . Then, a G-
extension $\overline{\kappa}$ over $\Omega$ corresponds by the mapping $G\rightarrow G/Z=A$ to an A-extension
$\kappa$ over $\Omega$ , which we call the A-part of $\overline{\kappa}$ . The corresponding field $K_{\kappa}$ of the
A-part $\kappa$ of a G-extension $\overline{\kappa}$ over $\Omega$ is a subfield of the corresponding field
$K_{\overline{\kappa}}$ of $\overline{\kappa}$ . If two G-extensions $\overline{\kappa}_{1},\overline{\kappa}_{2}$ over $\Omega$ have the same A-part $\kappa_{1}=\kappa_{2}$ ,
then, setting $\overline{\kappa}_{1}^{-1}\overline{\kappa}_{2}(\sigma)=\overline{\kappa}_{1}(\sigma)^{-1}\overline{\kappa}_{2}(\sigma)$ for every element $\sigma$ of the Galois group of
the algebraic closure $\Omega$ over 2, $\overline{\kappa}_{1}^{-1_{\overline{\mathcal{K}}_{2}}}$ is a Z-extension over $\Omega$ . Conversely,
if $\overline{\kappa}$ is a G-extension over $\Omega$ and if we set $\overline{\kappa}\kappa_{0}(\sigma)=\overline{\kappa}(\sigma)\kappa_{0}(\sigma)$ with any Z-exten-
sion $\kappa_{0}$ over $\Omega$ , then $\overline{\kappa}\kappa_{0}$ is a G-extension over $\Omega$ which has the same A-part
as $\overline{\kappa}$ .

Let, for a moment, $G$ be an arbitrary finite group and consider any G-

4) That $Z$ is cyclic is not necessary here, but added for the sake of later obser-
vations.
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extension $\kappa$ over $\Omega$ and any finitely algebraic extension $L$ over $\Omega$ . Then the
restriction $\kappa/L$ of $\kappa$ to the Galois group $g(\Omega/L)$ is a G-extension over $\Omega$ and
the corresponding field of $\kappa/L$ is the composite field $K_{\kappa}L$ . In particular, if
$G=A$ is abelian, then, by a theorem of class field theory, we have $\kappa/L(a)=$

$\kappa(N_{L/\Omega}a)$ for any id\‘ele $a$ of $L$ , where we regard A-extensions as homomor-
phisms of id\‘ele groups.

Now, taking again a special type of group $G$ with $G/z\cong A$ as above,
consider two G-extensions $\overline{\kappa}_{1},\overline{\kappa}_{2}$ over $\Omega$ with the same A-part $\kappa$ and set
$\overline{\kappa}_{1}^{-1_{\overline{\mathcal{K}}_{2}}}=\kappa_{0}$ . Then, we have $\overline{\kappa}_{2}/K_{\kappa}=\overline{\kappa}_{1}/K_{\kappa}\cdot\kappa_{0}/K_{\kappa}$ and therefore, regarding $\overline{\kappa}_{1}/K_{\kappa}$,
$\overline{K}_{2}/K_{\kappa}$ as homomorphisms of the id\‘ele group of $K_{\kappa}$ and $\kappa_{0}$ a homomorphism
of the id\‘ele group of 2, we have $\overline{\kappa}_{2}/K_{\kappa}(a)=\overline{\kappa}_{1}/K_{\kappa}(a)\cdot\kappa_{0}(N_{K_{\mathcal{K}}/\Omega}a)$ .

5. Let $A,$ $G$ and $Z$ be as in 4, $\xi$ be the factor set of $A=G/Z$ in $Z$ and
assume that there is a definite isomorphism $\theta$ of $Z$ into the group of roots
of unity in $\Omega$ . Then we can formulate as follows an elementary result con-
cerning existence of certain meta-abelian extensions over $\Omega$ .

LEMMA 1. In order that an A-extension $\kappa$ over $\Omega$ is the A-part of a G-
extension $\overline{\kappa}$ over J2, it is necessary $ar_{l}d$ su.fficienf that the induced factor set $\xi^{\theta^{\kappa}}$

of $ K_{\kappa}/\Omega$ splits as a factor set of $g(K_{\kappa}/\Omega)$ in the multiplicative $g(K_{\kappa}/\Omega)$ -group
$K_{\kappa^{x}}$ of non-zero elements of $K_{\kappa}$ .

PROOF. Suppose that $\xi^{\theta\kappa}$ splits. Then we have $\xi^{\theta\kappa}=\frac{\beta_{\sigma}^{-}\beta_{\tau}}{\beta_{\sigma\tau}}$ with $\beta\in K_{\kappa}$,

$\sigma,$
$\tau\in g(K_{\kappa}/\Omega)$ . Denoting by $c$ the order of $Z$, we have $(\xi^{\theta\kappa})^{c}=1$ , whence

$\beta_{\sigma^{-c}}=\gamma^{1-\sigma}$ with $\gamma\in K_{\kappa}$ . Now, consider the field $K_{\kappa}(c\sqrt{}\overline{\gamma})$ , set $\overline{\kappa}(\rho)=\zeta_{\rho}^{\theta^{-}}‘$ for
the automorphism $\rho$ with $\sqrt[C]{\gamma}\rho=\zeta_{\rho^{\sqrt{}}}^{c}\overline{\gamma}$ of $K_{\kappa}(c\sqrt{}\overline{\gamma})/K_{\kappa}$ and set $\overline{\kappa}(\overline{\sigma})=u_{\mathcal{K}(\sigma)}$ for
the prolongation $\overline{\sigma}$ , with $\sqrt[C]{\gamma}^{\overline{\sigma}}=\beta_{\sigma}\sqrt[C]{\gamma}$, of $\sigma\in g(K_{\kappa}/\Omega)$ to $ K_{\kappa}(\sqrt[C]{\gamma})/\Omega$ , where $u$

means a system of representatives of $G/Z$ corresponding to the factor set $\xi$.
Then we have

$(\sqrt{\gamma}^{c})^{\overline{\sigma}\overline{\tau}^{-1}\overline{\sigma}\overline{\tau}}=\frac{\beta}{\beta}\sigma_{\sigma\tau}\underline{\beta_{\tau}}.C\sqrt{\gamma}\tau=\xi_{\sigma^{\kappa}\tau}^{\theta}\cdot c\sqrt{\gamma}=\xi_{\kappa(\sigma),\kappa(\tau)}^{\theta}\cdot\sqrt[C]{\gamma}$

and consequently $\overline{\kappa}(\overline{\sigma}\overline{\tau}^{-1}\overline{\sigma}\overline{\tau})=\xi_{\kappa(\sigma).\kappa(\tau)}$ for $\sigma,$
$\tau\in g(K_{\kappa}/\Omega)$ . Therefore, if we set

generally $\overline{\kappa}(\overline{\sigma}\rho)=\overline{\kappa}(\overline{\sigma})\overline{\kappa}(\rho)$ for every $\sigma\in g(K_{\kappa}/\Omega)$ and for every $\rho\in g(K_{\kappa}(c\sqrt{}\overline{\gamma})/K_{\kappa})$ ,
then rc is a G-extension over $\Omega$ with the A-part $\kappa$ and with the corresponding
field $K_{\overline{\kappa}}=K_{\kappa}(c\sqrt{}\overline{\gamma})$ . Conversely, if $\overline{\kappa}$ is a G-extension over $\Omega$ with A-part $\kappa$

and with the corresponding field $K_{\overline{\kappa}}$ , then we have $K_{\overline{\kappa}}=K_{\kappa}(\sqrt[C]{\gamma})$ with $\gamma\in K_{\kappa}$ .
We may assume that we have $\sqrt[C]{\gamma}^{\rho}=\overline{\kappa}(\rho)^{\theta.\sqrt[C]{\gamma}}$ for every automorphism $\rho$ of
$K_{\kappa}(c\sqrt{}\overline{\gamma})/K_{\kappa}$ . We can also find an element $\beta_{\sigma}\in K_{\kappa}$ such that we have $\beta_{\sigma^{-c}}=\gamma^{1-\sigma}$.
Denoting by $\overline{\sigma}$ a prolongation, with $\sqrt[C]{\gamma}^{\overline{\sigma}}=\beta_{\sigma^{\sqrt{}}}^{c}\overline{\gamma}$, of any $\sigma\in g(K_{\kappa}/\Omega)$ to $ K_{\overline{\kappa}}/\Omega$,
we have

$(\sqrt[C]{\gamma})^{\overline{\sigma}\overline{\tau}^{-1}\overline{\sigma}\overline{\tau}}=\frac{\beta}{\beta}\frac{\sigma\tau\beta_{\tau}}{\sigma\tau}\cdot\sqrt{\gamma}^{c}=(\overline{\kappa}(\overline{\sigma}\overline{\tau})^{-1}\overline{\kappa}(\overline{\sigma})\overline{\kappa}(\overline{\tau}))^{\theta}\cdot c\sqrt{}\overline{\gamma}$
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for $\sigma,$
$\tau\in g(K_{\kappa}/\Omega)$ . Since the set of elements $\overline{\kappa}(\overline{\sigma}\overline{\tau})^{-1}\overline{\kappa}(\overline{\sigma})\overline{\kappa}(\overline{\tau})$ is a factor set of

$\kappa(g(K_{\kappa}/\Omega))$ in $Z$ equivalent with the restriction of $\xi$ to $\kappa(g(K_{\kappa}/\Omega)),$ $\xi^{\theta\kappa}$ splits
as a factor set of $g(K_{\kappa}/\Omega)$ in the $g(K_{\kappa}/\Omega)$-group $K_{\kappa}’$ .

6. Now we deal arithmetically with the existence of G-extensions $\overline{\kappa}$ over
$f2$ such that $\overline{\kappa}$ has an A-extension $\kappa$ as the A-part. Since $A$ is nilpotent, it
suffices to consider the case where the order of $G$ is a power of a prime
number $l$. We assume that there is a definite isomorphism of $Z$ into the
group of roots of unity in J2 and that $\Omega$ contains a primitive $n_{0}$ -th root of
unity, where $n_{0}$ is the exponent, $i$ . $e.$ , the largest element order of $A$ . Further-
more, denoting by $S=\{\mathfrak{p}_{1}, \mathfrak{p}_{2},\cdots\}$ the set of all ramification places of $\kappa$ , we
assume that every $\mathfrak{p}_{i}$ is a principal prime ideal of $\Omega$ prime to $l$ and that the
$\mathfrak{p}_{i}$ -completion $\Omega_{\mathfrak{p}_{i}}$ contains a primitive $n{}_{0}C$-th root of unity, where $c$ is the
order of $Z$.

Let now $\zeta_{no}$ be a definite primitive $n_{0}$-th root of unity and, denoting by
$\pi_{i}$ an element of $\Omega$ which generates the prime ideal $\mathfrak{p}_{i}$ , fix a root $\zeta_{i}$ of unity

in $\Omega_{\mathfrak{p}_{i}}$ such that we have $(\frac{\zeta_{i},\pi_{i}}{\mathfrak{p}_{i}})_{n_{0}}=\zeta_{n_{0}}$ and that the order of $\zeta_{i}$ is a power

of $l$. Such a $\zeta_{i}$ is then a root of unity in $l2_{\mathfrak{p}_{i}}$ whose order is the largest
possible power of $l$. Since $\pi_{i}$ is a unit in $\Omega_{\mathfrak{p}_{j}}(i\neq j)$ , we can choose $m_{ij}$ such
that $\pi_{i}$ is the product of the power $\zeta_{i^{-m_{ij}}}$ by a unit of $\Omega_{\mathfrak{p}j}$ which is a $n_{0}$-th
power residue $mod \mathfrak{p}_{j}$ . We set formally $m_{ii}=0$. The congruence class $m_{ij}$

$mod n_{0}$ is thus uniquely determined. Next, decomposing $A$ into a direct
product $\{\sigma_{1}\}\times\{\sigma_{2}\}\times\cdots$ of cyclic groups, we define $x_{x\iota}$ by setting $\kappa_{\dot{t}}(\zeta_{i})=\sigma_{1}^{x_{iI}}\sigma^{x_{i2}}\cdots$ ,

where $\kappa_{i}$ is the $\mathfrak{p}_{i}$ -component of $\kappa$ . Moreover, denoting by $\zeta$ the image by
the definite isomorphism of a factor set of $A=G/Z$ in $Z$, we set $\lambda(\sigma_{\iota}, \sigma_{v})=$

$\frac{\zeta_{\sigma_{\iota}\sigma},)}{\zeta_{\sigma_{U}’\sigma_{\iota}}}=\zeta_{no}^{c_{\iota U}}$ . This $c_{\iota U}$ is unique $mod n_{0}$ .
Let now $\nu_{i}$ be the $\mathfrak{p}_{i}$ -invariant of the induced factor set $\zeta^{\kappa}$. Then, since

the ramification order of $\kappa$ at $\mathfrak{p}_{i}$ divides $n_{0}$ , it follows from Theorem 1 and
from a property of the norm residue symbol that we have $\zeta_{n_{0}}^{n_{0}^{\nu_{i}}}=\lambda(\kappa_{i}(\zeta_{i})$ ,
$\kappa_{i}(\pi_{i}))$ . Hence, by the product relation $\prod_{j}\kappa_{j}(\pi_{i})=1$ and by the property of $\lambda$

as a bi-character, we have

$\lambda(\kappa_{i}(\zeta_{i}), \kappa_{i}(\pi_{i}))=\lambda(\kappa_{i}(\zeta_{i}),\prod_{j(\neq i)}\kappa_{j}(\pi_{i})^{-1})=\prod_{j}\lambda(\kappa_{i}(\zeta_{i}), \kappa_{j}(\zeta_{j}))^{m_{ij}}$

$=\prod_{j.\iota.\mathfrak{u}}\lambda(\sigma_{\iota}, \sigma_{U})^{m_{ij}x_{i\iota}x_{jU}}=\zeta_{n_{0}}^{\Sigma m_{ij}c_{\iota_{0}}x_{i\iota}x_{j0}}$ .

Therefore it is necessary and sufficient for the induced factor set $\zeta^{\kappa}$ to spiit
that we have

$F(x)=\sum_{j,\iota.U}m_{if}c_{\iota_{U}}x_{i\iota}x_{jv}\equiv 0$
$(mod n_{0})$

for every $i$.
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Thus the existence of a G-extension rc which has $\kappa$ as its A-part rests
upon the restriction $\kappa_{U}$ of $\kappa$ to the unit id\‘ele group $U$ of J2. Moreover the
condition for the existence does not depend on the factor set $\zeta$ itself, but
only on the bi-character $\lambda$ .

\S 3. Examples.

7. We now propose to observe, as examples, normal extensions of degree
8 over the rational number field $P$. There are two non-abelian groups of
order 8: the dihedral group $G_{1}$ and the quaternion group $G_{2}$ . These two
groups are extensions of a cyclic group $Z$ of order 2 by the group $A$ con-
sisting of 1, $\sigma_{I},$ $\sigma_{2}$ and $\sigma_{3}=\sigma_{1}\sigma_{2}$ . Identifying $Z$ with the group of $\pm 1$ , factor
set $\xi^{(1)},$ $\xi^{(2)}$ of $G_{1}/Z,$ $G_{2}/Z$ are as follows.

The dihedral group The quaternion group

$\backslash _{\sigma}^{\tau}$

1
$\xi_{\sigma,\tau}^{(1)}$ :

$\sigma_{1}$

$\sigma_{2}$

$\sigma_{3}$

$11111-1-1\sigma_{1^{1}}1$
$\sigma_{2}\sigma 111-1111-1^{3}$

$\xi_{\sigma.\tau}^{(2)}$ :
$\underline{\backslash _{1}\sigma_{\sigma_{2}^{1}}}\sigma_{3}\sigma\tau|11111-1-1\sigma_{1^{1}}1-1-1-11\sigma_{2}\sigma 11^{3}1-1$

These two factor sets have one and the same bi-character

$\lambda(\sigma, \tau)=\frac{\xi_{\sigma}^{(}}{\xi_{\tau}^{(}}i_{2)}^{\frac{\tau}{)\sigma}=\frac{\xi_{\sigma}^{(}}{\xi_{\tau}^{(}’}}1)2)_{\frac{\tau}{\sigma}}$ : $\underline{\backslash _{3}\sigma_{1}}\sigma_{2}\sigma^{1}\sigma\tau|11111-1-1\sigma_{1}1^{1}-1-1-11^{3}\sigma_{2}\sigma 111-1$

Now, let $S=\{p_{1},\cdots,p_{t}\}$ be a set of positive rational prime numbers with
$p_{i}\equiv 1(mod 4)$ . Denote by $\zeta_{i}$ a root of unity in the $p_{i}$-completion $P_{pl}$ such
that the order of $\zeta_{\dot{t}}$ is the largest possible power of 2. Since the rational
number field $P$ is of class number 1, a homomorphism $\kappa$ of the id\‘ele class



Factor sets in a number field and the norm residue s.vmbol. 137

group of $P$ is determined by its restriction $\kappa_{U}$ to the unit id\‘ele group $U$ of
$P$. On the other hand, since $-1$ is a square in $P_{pi}$ , it is easily seen that
every mapping $\kappa_{\sigma}$ of $U$ into the cyclic group $Z$ of order 2 is the restriction
to $U$ of a Z-extension over $P$ whenever the $p$-component of $\kappa_{U}$ is trivial for
every place $q\not\in S$ of $P$. Taking $A_{1}=\{1, \sigma_{1}\}$ or $A_{2}=\{1, \sigma_{2}\}$ instead of $Z$, we
come to a similar conclusion. Therefore we have

LEMMA 2. Let $S=\{p_{1},\cdots, p_{t}\}$ be a set of prime nzmtbers with $p_{i}\equiv 1(mod 4)$ ,
$Z$ be a cyclic group of order 2 and $A$ be a non-cyclic group of order 4. Then
the number of all Z-resp. A-extensions over $P$ unramified at every place $q\not\in S$ is
equal to $2^{t}$ resp. $4^{t}$ .

Now, $p_{i}$ is a generator of the prime ideal of $P_{pi}$ and we have $(\frac{\zeta_{i},p_{i}}{p_{i}})=-1$ .

Furthermore, setting $m_{ij}=\frac{1}{2}\{1-(\frac{p_{i}}{p_{j}})\},$ $p_{i}$ is a square in $I2_{p_{j}}(i\neq j)$ if and

only if $m_{if}=0$ . On the other hand we set formally $(\frac{p_{i}}{p_{i}})=1$ and, if $\kappa$ is an

A-extension with $p_{i}$-component $\kappa_{i}$ , we set $\kappa_{i}(\zeta_{i})=\sigma_{1}^{x_{i}}\sigma_{2}^{x_{i}}$ . Moreover, setting
$\lambda(\sigma_{\iota}, \sigma_{U})=(-1)^{c_{\iota_{U}}}$ , we have $c_{11}=c_{22}=0,$ $c_{12}=c_{21}=1$ . Therefore, if we denote
by $\nu_{i}(\kappa)$ the $p_{i}$-invariant of the induced factor set $\xi^{(1)^{\kappa}}$, then it follows from
6 that $\nu_{i}(\kappa)$ is also equal to the $p_{i}$-invariant of $\xi^{(2)^{\kappa}}$ and that we have

2. $\nu_{i}(\kappa)\equiv f_{i}(x, y)=\sum_{j-1}^{t}\frac{1}{2}\{1-(\frac{p_{i}}{p_{j}})\}(x_{i}y_{j}+x_{j}y_{i})$ $(mod 2)$ .

Suppose now that $\kappa$ is an A-extension unramified at every place $q\not\in S$.
Then $\xi^{(1)^{\mathcal{K}}}$ splits if and only if we have $2\cdot\nu_{i}(\kappa)\equiv f_{i}(x, y)\equiv 0(mod 2)$ for every
$i$ . If this is the case, then we can find a $G_{1}$ -extension $\overline{\kappa}^{(1)}$ over $P$ such that
$\kappa$ is the A-part of rc(1). Let $K_{\overline{\kappa}^{(1)}}$ be the corresponding field of $\overline{\kappa}^{(1)}$ and take
$\gamma\in K_{\kappa}$ such that $K_{\overline{\kappa}^{(1)}}=K_{\kappa}(\sqrt{\gamma})$ . Then, since $\gamma^{1-\sigma}$ is a square in $K$ for every
$\sigma\in g(K_{\kappa}/P)$ , we see that the $\mathfrak{P}$-exponent of the principal ideal $(\gamma)$ is congruent
$mod$ . $2$ to the $\mathfrak{P}^{\sigma}$-exponent of $(\gamma)$ for every prime ideal $\mathfrak{P}$ of $K_{\kappa}$ and therefore
there is a rational number such that the $\mathfrak{P}$-exponent of $(\gamma_{0}\gamma)$ is even when-
ever $\mathfrak{P}$ is prime to all the $p_{i}$ . Consider the Z-extension $\kappa_{0}$ over $P$ whose
corresponding field is $P(\sqrt{\gamma_{0}})$ . Then, since the product of rc(1) $/K_{\kappa}$ by $\kappa_{0}/K_{\kappa}$

has the corresponding field $K_{\kappa}(\sqrt{\gamma\gamma_{0}})$ , it follows from 4 that rc $($ 1
$)_{\mathcal{K}_{0}}$ is a $G_{1}-$

extension over $P$ with the A-part rc and with the corresponding field $K_{\overline{\kappa}^{(1)}\kappa_{0}}=$

$K_{\kappa}(\sqrt{\gamma\gamma_{0}})$ . We see also that the ramification prime ideals of $K_{\overline{\kappa}^{(1)}\kappa_{0}}/K_{\kappa}$ must
divide either $p_{i}$ or 2. If in particular all $p_{i}$ are $\equiv 1(mod 8)$ , then 2 decom-
poses completely in $K_{\kappa}$ and therefore either $K_{\kappa}(\sqrt{\gamma_{0}\gamma})/K_{\kappa}$ or $K_{\kappa}(\sqrt{-\gamma_{0}\gamma})/K_{\kappa}$

is unramified at prime factors of 2. Thus, in this case we can choose a
$G_{1}$-extension over $P$ which has A-part $\kappa$ and is unramified at every prime
number $q\not\in S$. At the same time, it follows from 4, especially from the last
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formula in 4, that the number of all such $G_{1}$ -extensions over $P$ is equal to
the number of all Z-extensions over $P$ unramified at every place $q\not\in S$. The
number of these Z-extensions is, by Lemma 2, equal to $2^{t}$ . Since the situation
is exactly the same for $G_{2}$-extensions over $P$, we have

THEOREM 2. Let $S=\{p_{f},\cdots,p_{t}\}$ be a set of positive rational prime numbers
with $p_{i}\equiv 1(mod 8)$ . Consider $t$ bilinear forms

$f_{i}(x,y)=^{\nabla_{\lrcorner}^{t}\frac{1}{2}\{1-}j=1\angle(\frac{p_{i}}{p_{j}})\}(x_{i}y_{f}+x_{j}y_{i})$

of variables $x_{i},$ $y_{j}(1\leqq i\leqq t)$ , where we set $(\frac{p_{i}}{p_{i}})=1$ . Denote by $G_{1},$ $G_{2}$ the dihedral
and the quaternion group respectively. Then the number of all $G_{1}$ -extensions over
the rational number field $P$ which are unramified at every prime number $q\not\in S$ is
equal to the number of all $G_{2}$-extensions over $P$ with the same property, and the
number is equal to $2^{t}$-times the number of solutions mod. 2 of the simultaneous
bi-linear congruences $f_{i}(x, y)\equiv 0(mod 2)(1\leqq i\leqq t)$ .

If we have $(\frac{p_{i}}{p_{j}})=1$ for every $i,$ $j$, then all the forms $f_{i}(x, y)$ in theorem
2 vanish identically $mod$ . $2$ and, again by Lemma 2, there are $4^{t}$ A-extensions
over $P$ unramified at every place $ q\not\in$ S. Therefore we have

$CoROLLARY$ . Using same notations as in theorem 2, suppose that we have
$(\frac{p_{i}}{p_{j}})=1$ for every $i,$ $j$. Then, there are $8^{t}G_{1}$ -extensions over $P$ which are un-
ramified at every prime number $q\not\in S$, and there are the same number of $G_{2^{-}}$

extensions over $P$ with the same property.
Considering from a slightly different point of view, we have
THEOREM 3. Let $K$ be a non-cyclic abelian biquadratic field over the rational

number $tieldP$ and let $S=\{p_{1},\cdots,p_{t}\}$ be the set of prime numbers at which $K$ is
$ rami.\hslash$ed. Assume that we have $p_{i}\equiv 1(mod 4)$ for every $p_{i}$ . Then the existence
of an overfield of $K$ which is a dihedral extension over $P$ implies the existence
of an overfield of $K$ which is a quaternion extension over $P$, and vice versa.
Furthermore, the existence is certainly the case whenever we have additionally

$(\frac{p_{i}}{p_{j}})=1$ for every $i,$ $j$.
Mathematical Institute,

Nagoya University.
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