Factor sets in a number field and the norm residue symbol.

By Tomio Kubota

(Received Nov. 13, 1958)

Let Ω be an algebraic number field of finite degree and K be an abelian extension over Ω with Galois group $A=g(K / \Omega) .{ }^{1)} \quad$ Then, in the multiplicative group Ω^{\times}of non-zero elements of Ω as a trivial A-module, we can consider a factor set ζ of A consisting of roots of unity. The first problem treated in this paper is an explicit determination of the \mathfrak{p}-invariants $\nu_{p}(\zeta)$ of ζ as a factor set of A in K / Ω, where \mathfrak{p} is a place of Ω. We obtain the following result. Let α, β be two non-zero elements of the \mathfrak{p}-adic completion Ω_{p} of Ω and σ, τ be elements of A canonically corresponding to α, β, respectively, by the reciprocity mapping of the local class field theory. Then, using the norm residue symbol of certain degree e we can determine the \mathfrak{p}-invariant $\nu_{p}(\zeta)$ $(\bmod 1)$ by

$$
\left(\frac{\alpha, \beta}{\mathfrak{p}}\right)_{e}^{e \cdot \nu_{p}(\zeta)}=\frac{\zeta_{\sigma, \tau}}{\zeta_{\tau, \sigma}}
$$

whenever \mathfrak{p} is a prime ideal of Ω prime to the order of A and Ω_{p} contains sufficiently many roots of unity (§1).

Now, let G be a finite group containing in the center a cyclic group Z such that $G / Z \cong A$. If Ω contains sufficiently many roots of unity and Z is identified with a subgroup of Ω^{\times}, then the factor set ξ determined by A in Z is identified with a factor set ζ of A in K / Ω and it is easily seen that K is the subfield corresponding to Z in the sence of Galois theory of a normal extension \bar{K} over Ω with Galois group G if and only if ζ splits as a factor set of A in K / Ω, i. e., all the \mathfrak{p}-invariants of ζ are equal to 0 . This fact, composed with the formula above, is naturally applicable to the problem of determining whether an abelian extension K / Ω with Galois group A is embeddable in a normal extension \bar{K} / Ω with Galois group G. In fact, we see in $\S 2$ that a necessary and sufficient condition for certain types of K to be embeddable is expressed by some bilinear congruences concerning a homomorphism κ, attached to K by means of class field theory, of the idèle class group of Ω into A.

1) Galois groups will be denoted by this notation.

In the last $\S 3$, we consider as examples dihedral and quaternion extensions over the rational number field P and we have, among others, the following result. Let A be an abelian group of the type $(2,2)$ and p_{1}, \cdots, p_{t} be prime numbers congruent to 1 mod 4 . Suppose an extension K over P with Galois group A to be unramified at every rational prime number except p_{1}, \cdots, p_{t}. Then K is determined in a definite way by rational integers x_{1}, y_{1}, $x_{2}, y_{2}, \cdots, x_{t}, y_{t}$, and K is embeddable in a dihedral (and equivalently in a quaternion) extension over P if and only if x, y satisfy the simultaneous bilinear congruences $f_{i}(x, y) \equiv 0(\bmod 2)$, where $f_{i}(i=1, \cdots, t)$ is defined by

$$
f_{i}(x, y)=\sum_{j=1}^{t}-\frac{1}{2}\left\{1-\left(\frac{p_{i}}{p_{j}}\right)\right\}\left(x_{i} y_{j}+x_{j} y_{i}\right)
$$

and we set $\left(\frac{p_{i}}{p_{i}}\right)=1$. From this fact we see also that the number of the dihedral or the quaternion extensions over P unramified at every rational prime number except p_{1}, \cdots, p_{t} is determined by t and by the number of solutions of $f_{i}(x, y) \equiv 0(\bmod 2)$.

§ 1. Determination of \mathfrak{p}-invariants.

1. At the beginning we introduce the notion of G-extension over a field. Let $\Omega^{2)}$ be an algebraic number field of finite degree and G be a finite group. Then we understand by a G-extension over Ω a homomorphism κ into G of the Galois group of the algebraic closure over Ω. Of course a quite similar definition is possible for an arbitrary basic field. A G-extension κ over Ω determines by Galois theory an algebraic extension K_{κ} of finite degree over Ω. We call K_{κ} the corresponding field of κ. For the sake of convenience we regard properties of K_{κ} as those of κ, e. g., we say κ is ramified at a prime ideal \mathfrak{p} of Ω whenever K_{κ} is ramified at \mathfrak{p}. In the case where $G=A$ is an abelian group, the class field theory implies that κ may be considered a homomorphism into A of the idèle class (or idèle) group of Ω. Furthermore, restricting in this case κ to the \mathfrak{p}-components of idèles for a place \mathfrak{p} of Ω, we get in a natural way an A-extension $\kappa_{\mathfrak{p}}$ over the \mathfrak{p}-adic field Ω_{p}, which we call the \mathfrak{p}-component of κ.

Now, in the multiplicative group Ω^{\times}, under trivial operation of A, of non-zero elements of Ω, we consider a factor set ζ of A consisting of roots of unity. For such a ζ, the factor set relation $\xi_{\sigma, \tau \rho} \xi_{\tau, \rho}=\xi_{\sigma \tau, \rho} \xi_{\sigma, \tau}^{\rho}$ turns out $\zeta_{\sigma, \tau \rho} \zeta_{\tau, \rho}=\zeta_{\sigma \tau, \rho} \zeta_{\sigma, \tau v}$. Let κ be an A-extension over Ω with its corresponding field K_{κ}. Since then κ maps the Galois group $g_{\kappa}=g\left(K_{\kappa} / \Omega\right)$ into A, we can
2) We observe in the sequel one and the same number field Ω.
attach to every κ a factor set ζ^{κ} of g_{κ} in K_{κ} / Ω by setting $\zeta_{\sigma, \tau}^{\kappa}=\zeta_{\kappa(\sigma), \kappa(\tau)}$ for every $\sigma, \tau \in g_{k}$. We call ζ^{κ} the induced factor set. We now propose to observe the \mathfrak{p}-invariant $\nu_{p}(\zeta, \kappa)$ of ζ^{κ}. Since the \mathfrak{p}-component $\kappa_{\mathfrak{p}}$ of κ determines in a maximal abelian extension over Ω_{p} the corresponding field $K_{\kappa}{ }^{p}$ with the Galois group $g_{\kappa}^{p}=g\left(K_{\kappa}^{p} / \Omega_{p}\right)$ and with the induced factor set $\zeta^{\kappa_{p}}$, it suffices for us only to determine the \mathfrak{p}-invariant of $\zeta^{\kappa_{p}}$. Furthermore, we may assume without any loss of generality that the order of A is a power of a prime number l and ζ consists of roots of unity whose orders are powers of l.

From now on, if no confusion is possible, we write K^{p} for K_{κ}^{p}, g^{p} for $g_{\kappa}^{p}=g\left(K_{\kappa}^{p} / \Omega_{p}\right)$ and $\zeta_{\sigma, \tau}$ for $\zeta_{\kappa_{p}(\sigma), \kappa_{p}(\tau)}=\zeta_{\sigma, \tau}^{k_{p}}$, where σ, τ mean elements of g^{η}. Besides, we settle the assumption that \mathfrak{p} is prime to l and Ω_{p} contains a primitive $e c$-th root of unity, where e is the ramification order of κ at p and c is determined by roots of unity appearing in ζ as the highest of their orders.

Under the assumption, if T^{p} is the inertia field of K^{p} / Ω_{p}, then $g\left(T^{p} / \Omega_{p}\right)$ is cyclic of order $f=\left(T^{p}: \Omega_{p}\right)$ and $g\left(K^{p} / T^{p}\right)$ is cyclic of order e. Now, denoting by π_{p} a definite generator of the prime ideal of Ω_{p}, we fix a Frobenius automorphism $\varphi=\left(\frac{\pi_{\mathfrak{p}}, K^{\natural} / \Omega_{p}}{p}\right)$ of $K^{\natural} / \Omega_{p}$. Next, setting $\tilde{K}^{p}=K^{\natural}\left(\sqrt[\vee]{\pi_{\mathfrak{p}}}\right)$ and denoting by ζ_{p} a definite root of unity in Ω_{p} such that the order of ζ_{η} is the highest possible power of l, we fix another automorphism $\widetilde{\omega}=\left(\frac{\zeta_{\mathfrak{p}}, \widetilde{K}^{\natural} / \Omega_{p}}{\mathfrak{p}}\right)$ of $\tilde{K}^{\mathfrak{p}} / \Omega_{p}$. The restriction ω to K^{p} of $\tilde{\omega}$ is a generator of $g\left(K^{\natural} / T^{p}\right)$ and we have $\sqrt{\circ} \bar{\pi}_{p}^{\tilde{\omega}}$ $=\zeta_{e}{ }^{\circ} \bar{\pi}_{\mathfrak{p}}$ with a definite primitive e-th root ζ_{e} of unity. We have also for every $\sigma \in g^{\varphi}$ a unique decomposition $\sigma=\sigma_{\varphi} \sigma_{\omega}$ with $\sigma_{\varphi}=\varphi^{i}(0 \leqq i<f)$ and $\sigma_{\omega} \in$ $\left.\{\omega\} .{ }^{3}\right)$
2. After these preliminaries, we can arrive at an exposition of the \mathfrak{p} invariant $\nu_{p}(\zeta)=\nu_{p}(\zeta, \kappa)$ of $\zeta_{p}^{\kappa_{p}}$. We proceed quite similarly to Artin [1, Chap. 6, 4]. Set $\zeta_{\omega}=\zeta_{\omega, 1} \zeta_{\omega, \omega} \cdots \zeta_{\omega, \omega}{ }^{\epsilon-1}$. Then, under the assumption in $\mathbf{1}$, there is $\bar{\zeta}_{\omega} \in \Omega_{\mathrm{p}}$ such that $\zeta_{\omega}=\bar{\zeta}_{\omega}{ }_{\omega}$. Hence, if we set $a_{1}=\zeta_{\omega, 1}^{-1}, a_{\omega}{ }^{i}=\zeta_{\omega, \omega} \cdots \zeta_{\omega, \omega^{i-1}}$ for $i>1$ and $a_{\sigma}=1$ for $\sigma \notin\{\omega\}$, then the factor set $\zeta_{\sigma, \tau}^{(1)}=\zeta_{\sigma, \tau} \cdot \frac{a_{\sigma}^{\tau} \alpha_{\tau}}{a_{\sigma \tau}}$ fills

$$
\zeta_{\omega^{i}, \omega j}^{(1)}=\left\{\begin{array}{l}
1 \\
\zeta_{\omega}
\end{array} \quad \text { for } \quad \begin{array}{l}
i+j<e \\
i+j \geqq e
\end{array} \quad(0 \leqq i, j<e),\right.
$$

and, if further we set $b_{\omega^{i}}=\bar{\zeta}^{-\left(1+\omega+\cdots+\omega^{i-1}\right)}=\bar{\zeta}_{\omega}^{-i}$ and $b_{\sigma}=1$ for $\sigma \oplus\{\omega\}$, then, for the factor set $\zeta_{\sigma, \tau}^{(2)}=\zeta_{\sigma, \tau}^{(1)} \cdot \frac{b_{\sigma}^{\tau} b_{\tau}}{b_{\sigma \tau}}$, we have $\zeta_{\omega i, \omega j}^{(2)}=1$. Moreover, if we, using the decomposition $\sigma=\sigma_{\varphi} \sigma_{\omega}$ for $\sigma \in g^{\mathfrak{p}}$ at the last part of $\mathbf{1}$, set $c_{\sigma}=\zeta_{\sigma_{\omega}, \sigma_{\varphi}}^{(2)}$ and

[^0]$\zeta_{\sigma, \tau}^{(3)}=\zeta_{\sigma_{\sigma} \tau}^{(2)} \cdot \frac{C_{\sigma}^{\tau} c_{\tau}}{c_{\sigma \tau}}$, then we have $\zeta_{\sigma_{\omega}, \sigma_{\varphi}}^{(3)}=\zeta_{\sigma_{\omega}, \sigma_{\varphi}}^{(2)} \zeta_{\sigma_{\omega}, 1}^{(2)} \zeta_{1, \sigma_{\varphi}}^{(2)} \zeta_{\sigma_{\omega}, \sigma_{\varphi}}^{(2)}=1, \zeta_{\omega^{2},=}^{(3)}=\zeta_{\omega^{2}, \tau_{\omega} \tau_{\varphi}}^{(3)}=$
 $\omega_{2} \in\{\omega\}$. Therefore we see that $\zeta_{\sigma, \omega)}^{(3)}$ is an e-th root of unity and that there is $\Phi_{\sigma} \in K^{\natural}$ such that we have $\zeta_{\sigma, \omega}^{(3)}=\Phi_{\sigma}^{1-\omega}$. Moreover, we may assume that Φ_{σ} depends only on σ_{φ} and that we have $\Phi_{1}=1$. If we set here $\beta_{\sigma, \tau}=\zeta_{\sigma, \tau}^{(3)} \cdot \frac{\Phi_{\sigma}^{\tau} \Phi_{\tau}}{\Phi_{\sigma \tau}}$, then $\beta_{\sigma, \tau}$ is the lift to $K^{\mathfrak{p}} / \Omega_{p}$ of a factor set of $T^{\mathfrak{p}} / \Omega_{\mathfrak{p}}$ and its \mathfrak{p}-invariant is determined whenever the \mathfrak{p}-exponent $n\left(\beta_{\varphi}\right)$ of $\beta_{\varphi}=\beta_{\varphi, 1} \beta_{\varphi, \varphi} \cdots \beta_{\varphi, \varphi} f-1$ is known. Denoting by a parenthesis a principal ideal, we have
$$
\left(\beta_{\varphi}\right)=\prod_{i=0}^{f-1}\left(\zeta_{\varphi, \varphi^{i}}^{(3)} \cdot \frac{\Phi_{\varphi}^{\varphi^{i}} \Phi_{\varphi i}}{\Phi_{\varphi^{i+1}}}\right)=\prod_{i=0}^{f-1}\left(\Phi_{\varphi} \cdot \frac{\Phi_{\varphi i}}{\Phi_{\varphi \varphi^{i+1}}}\right)=\left(\Phi_{\varphi}\right)^{f} .
$$

On the other hand, since K^{p} is obtained by adjunction to T^{p} of an element of the form $\sqrt[\rho]{\pi_{p}} \cdot \zeta_{0}$, where ζ_{0} is a root of unity in \tilde{K}^{p} such that the order of ζ_{0} is a power of l, and since $\widetilde{\omega}$ operates trivially on such a root of unity, we may take as Φ_{φ} the element $\left(\sqrt[\rho]{\pi_{p}} \cdot \zeta_{0}\right)^{m}$, where m is determined by $\zeta_{\varphi_{, \omega}}^{(3)}=$ ζ_{e}^{-m}. Therefore we have finally

$$
\nu_{p}(\zeta) \equiv \frac{n\left(\beta_{\varphi}\right)}{f} \equiv \frac{m}{e} \quad(\bmod 1) .
$$

Since, from the definition, $\zeta^{(3)}$ and ζ are mutually cohomologous as cocycles of g^{p} in the multiplicative group $\Omega_{p}{ }^{\times}$of non-zero elements of Ω_{p} and since we have $\zeta_{\varphi, \omega)}^{(3)}=\frac{\zeta_{\varphi, \omega}^{(3)}}{\zeta_{\omega, \varphi}^{(3), \varphi}}$, we have $\zeta_{\varphi, \omega}^{(3)}=\frac{\zeta_{\varphi, \omega}}{\zeta_{\omega, \varphi}}$. Thus m is directly computed by $\zeta_{e}^{m}=\frac{\zeta_{\omega, \varphi}}{\zeta_{\varphi, \omega}}$.
3. Let us continue the observation of the same subject. The norm residue symbol $\left(\frac{\zeta_{\mathfrak{p}}, \pi_{\mathfrak{p}}}{\mathfrak{p}}\right)_{e}$ is defined as Hasse [2, §11], by $\sqrt[\mathscr{~}]{\pi_{\mathfrak{p}} \tilde{\tilde{\omega}}}=\left(\frac{\zeta_{p}, \pi_{\mathfrak{p}}}{\mathfrak{p}}\right)_{e} \cdot \stackrel{\odot}{\pi_{\mathfrak{p}}}$. This, compared with the definition of ζ_{e} in $\mathbf{1}$, yields $\zeta_{e}=\left(\frac{\zeta_{\mathfrak{p}}, \pi_{\mathfrak{p}}}{\mathfrak{p}}\right)_{e}$ and therefore we have $\left(\frac{\zeta_{\mathfrak{p}}, \pi_{\mathfrak{p}}}{\mathfrak{p}}\right)_{e}^{m}=\frac{\zeta_{\odot, \varphi}}{\zeta_{\varphi, \omega}}$. Thus we obtain

Theorem 1. Let A be an abelian group whose order is a power of a prime number l, κ be an A-extension over Ω, ζ be a factor set of A in the multiplicative group Ω^{\times}, as a trivial A-group, of non-zero elements of Ω and ζ^{κ} be the induced factor set. Assume that, for a prime ideal \mathfrak{p} of Ω prime to l, the \mathfrak{p}-completion Ω_{p} contains a primitive ec-th root of unity, where e is the ramification order of κ at \mathfrak{p} and c is the highest order of roots of unity appearing in ζ. Let further $\kappa_{\mathfrak{p}}$ be the \mathfrak{p}-component of $\kappa, \pi_{\mathfrak{p}}$ be a generator of the prime ideal of Ω_{p} and ζ_{p} be a root of unity in Ω_{p} such that the order of ζ_{p} is the highest possible power of l.

Then $\left(\frac{\zeta_{p}, \pi_{\mathfrak{p}}}{\mathfrak{p}}\right)_{e}$ is a primitive e-th root of unity in $\Omega_{\mathfrak{p}}$ and the \mathfrak{p}-invariant $\nu_{p}(\zeta, \kappa)$ of ζ^{*} is determined by

$$
\nu_{p}(\zeta, \kappa) \equiv \frac{m}{e} \quad(\bmod 1),
$$

whenever m is chosen so that we have

$$
\left(\frac{\zeta_{\mathfrak{p}}, \pi_{\mathfrak{p}}}{\mathfrak{p}}\right)_{e}^{m}=\frac{\zeta_{\omega, \varphi}}{\zeta_{\varphi, \omega}}
$$

with $\varphi=\kappa_{p}\left(\pi_{p}\right), \omega=\kappa_{p}\left(\zeta_{p}\right)$.
If we define for every pair σ, τ of elements of A a function $\lambda(\sigma, \tau)=\frac{\zeta_{\sigma, \tau}}{\zeta_{\tau, \sigma}}$, then we have $\lambda\left(\sigma \sigma^{\prime}, \tau\right)=\lambda(\sigma, \tau) \lambda\left(\sigma^{\prime}, \tau\right), \lambda\left(\sigma, \tau \tau^{\prime}\right)=\lambda(\sigma, \tau) \lambda\left(\sigma, \tau^{\prime}\right)$. We call the function λ the bi-character attached to ζ.

Since $\zeta_{\mathrm{p}}, \pi_{\mathrm{p}}$ in theorem 1, together with the kernel of $\kappa_{\mathfrak{p}}$, generates the whole multiplicative group $\Omega_{p}{ }^{\times}$of non-zero elements of Ω_{p}, it follows from the property of $\lambda(\sigma, \tau)$ as a bi-character that we have

Corollary. Notations and assumptions being as in theorem 1, let α, β be any two of non-zero element of Ω_{p} and write $\zeta_{\alpha, \beta}^{\kappa_{p}}$ for $\zeta_{\kappa_{p}(\alpha), \kappa_{p}(\beta)}$. Then we have

$$
\left(\frac{\alpha, \beta}{\mathfrak{p}}\right)_{e}^{m}=\frac{\zeta_{\alpha, \beta}^{\kappa_{p}}}{\zeta_{\beta, \alpha}^{k_{p}}}
$$

where m is a rational integer with $\nu_{p}(\zeta, \kappa) \equiv \frac{m}{e}(\bmod 1)$.

§ 2. Applications to certain non-abelian extensions.

4. Let Z be a finite cyclic group, ${ }^{4)} A$ be a finite abelian group and G be an extension of Z by A such that Z is in the center of G. Then, a G extension $\bar{\kappa}$ over Ω corresponds by the mapping $G \rightarrow G / Z=A$ to an A-extension κ over Ω, which we call the A-part of $\bar{\kappa}$. The corresponding field K_{κ} of the A-part κ of a G-extension $\bar{\kappa}$ over Ω is a subfield of the corresponding field $K_{\bar{\kappa}}$ of $\bar{\kappa}$. If two G-extensions $\bar{\kappa}_{1}, \bar{\kappa}_{2}$ over Ω have the same A-part $\kappa_{1}=\kappa_{2}$, then, setting $\bar{\kappa}_{1}^{-1} \bar{\kappa}_{2}(\sigma)=\bar{\kappa}_{1}(\sigma)^{-1} \bar{\kappa}_{2}(\sigma)$ for every element σ of the Galois group of the algebraic closure Ω over $\Omega, \bar{\kappa}_{1}{ }^{-1} \bar{\kappa}_{2}$ is a Z-extension over Ω. Conversely, if $\bar{\kappa}$ is a G-extension over Ω and if we set $\bar{\kappa} \kappa_{0}(\sigma)=\bar{\kappa}(\sigma) \kappa_{0}(\sigma)$ with any Z-extension κ_{0} over Ω, then $\bar{\kappa} \kappa_{0}$ is a G-extension over Ω which has the same A-part as $\bar{\kappa}$.

Let, for a moment, G be an arbitrary finite group and consider any G -
4) That Z is cyclic is not necessary here, but added for the sake of later observations.
extension κ over Ω and any finitely algebraic extension L over Ω. Then the restriction κ / L of κ to the Galois group $g(\Omega / L)$ is a G-extension over Ω and the corresponding field of κ / L is the composite field $K_{\kappa} L$. In particular, if $G=A$ is abelian, then, by a theorem of class field theory, we have $\kappa / L(\boldsymbol{a})=$ $\kappa\left(N_{L / \Omega} \boldsymbol{a}\right)$ for any idèle \boldsymbol{a} of L, where we regard A-extensions as homomorphisms of idèle groups.

Now, taking again a special type of group G with $G / Z \cong A$ as above, consider two G-extensions $\bar{\kappa}_{1}, \bar{\kappa}_{2}$ over Ω with the same A-part κ and set $\bar{\kappa}_{1}{ }^{-1} \bar{\kappa}_{2}=\kappa_{0}$. Then, we have $\bar{\kappa}_{2} / K_{\kappa}=\bar{\kappa}_{1} / K_{\kappa} \cdot \kappa_{0} / K_{\kappa}$ and therefore, regarding $\bar{\kappa}_{1} / K_{\kappa}$, $\bar{\kappa}_{2} / K_{\kappa}$ as homomorphisms of the idèle group of K_{κ} and κ_{0} a homomorphism of the idèle group of Ω, we have $\bar{\kappa}_{2} / K_{\kappa}(\boldsymbol{a})=\bar{\kappa}_{1} / K_{\kappa}(\boldsymbol{a}) \cdot \kappa_{0}\left(N_{K_{\kappa} / \Omega} \boldsymbol{a}\right)$.
5. Let A, G and Z be as in $4, \xi$ be the factor set of $A=G / Z$ in Z and assume that there is a definite isomorphism θ of Z into the group of roots of unity in Ω. Then we can formulate as follows an elementary result concerning existence of certain meta-abelian extensions over Ω.

Lemma 1. In order that an A-extension κ over Ω is the A-part of a G extension $\bar{\kappa}$ over Ω, it is necessary and sufficient that the induced factor set $\xi^{\theta^{\kappa}}$ of K_{κ} / Ω splits as a factor set of $g\left(K_{\kappa} / \Omega\right)$ in the multiplicative $g\left(K_{\kappa} / \Omega\right)$-group $K_{\kappa}{ }^{\times}$of non-zero elements of K_{κ}.

Proof. Suppose that $\xi^{\theta \kappa}$ splits. Then we have $\xi^{\theta \kappa}=\frac{\beta_{\sigma}^{\tau} \beta_{\tau}}{\beta_{\sigma \tau}}$ with $\beta \in K_{\kappa}$, $\sigma, \tau \in g\left(K_{\kappa} / \Omega\right)$. Denoting by c the order of Z, we have $\left(\xi^{\theta \kappa}\right)^{c}=1$, whence $\beta_{\sigma}{ }^{-c}=\gamma^{1-\sigma}$ with $\gamma \in K_{\kappa}$. Now, consider the field $K_{\kappa}(\sqrt[6]{\gamma})$, set $\bar{\kappa}(\rho)=\zeta_{\rho^{-1}}$ for the automorphism ρ with $\sqrt[c]{\gamma} \bar{\gamma}^{\rho}=\zeta_{\rho} \sqrt[c]{\gamma}$ of $K_{\kappa}(\sqrt[c]{\gamma}) / K_{\kappa}$ and set $\bar{\kappa}(\bar{\sigma})=u_{\kappa(\sigma)}$ for the prolongation $\bar{\sigma}$, with $\sqrt[c]{\gamma} \bar{\sigma}=\beta_{\sigma} \sqrt[c]{\gamma}$, of $\sigma \in g\left(K_{\kappa} / \Omega\right)$ to $K_{\kappa}(\sqrt[c]{\gamma}) / \Omega$, where u means a system of representatives of G / Z corresponding to the factor set ξ. Then we have

$$
(\sqrt[c]{\gamma})^{\overline{\bar{\tau}}-1 \bar{\sigma} \bar{\tau}}=\frac{\beta_{\sigma}^{\tau} \beta_{\tau}}{\beta_{\sigma \tau}} \cdot \sqrt[c]{\gamma}=\xi_{\sigma, \tau}^{\theta \kappa} \cdot \sqrt[c]{\gamma}=\xi_{\kappa(\sigma), \kappa(\tau)}^{\theta} \cdot \sqrt[c]{\gamma}
$$

and consequently $\bar{\kappa}\left(\bar{\sigma} \bar{\tau}^{-1} \bar{\sigma} \bar{\tau}\right)=\xi_{\kappa(\sigma), \kappa(\tau)}$ for $\sigma, \tau \in g\left(K_{\kappa} / \Omega\right)$. Therefore, if we set generally $\bar{\kappa}(\bar{\sigma} \rho)=\bar{\kappa}(\bar{\sigma}) \bar{\kappa}(\rho)$ for every $\sigma \in g\left(K_{\kappa} / \Omega\right)$ and for every $\rho \in g\left(K_{\kappa}(\sqrt[c]{\gamma}) / K_{\kappa}\right)$, then $\bar{\kappa}$ is a G-extension over Ω with the A-part κ and with the corresponding field $K_{\bar{\kappa}}=K_{\kappa}(\sqrt[c]{\gamma})$. Conversely, if $\bar{\kappa}$ is a G-extension over Ω with A-part κ and with the corresponding field $K_{\bar{\kappa}}$, then we have $K_{\bar{\kappa}}=K_{\kappa}(\sqrt[c]{\gamma})$ with $\gamma \in K_{\kappa}$. We may assume that we have $\sqrt[f]{\gamma^{\rho}}=\bar{\kappa}(\rho)^{\theta} \cdot \sqrt[c]{\gamma}$ for every automorphism ρ of $K_{\kappa}(\sqrt[f]{\gamma}) / K_{\kappa}$. We can also find an element $\beta_{\sigma} \in K_{\kappa}$ such that we have $\beta_{\sigma}{ }^{c}=\gamma^{1-\sigma}$. Denoting by $\bar{\sigma}$ a prolongation, with $\sqrt[c]{\gamma} \bar{\sigma}=\beta_{\sigma} \sqrt[i]{\gamma}$, of any $\sigma \in g\left(K_{\kappa} / \Omega\right)$ to $K_{\bar{\kappa}} / \Omega$, we have

$$
(\sqrt[c]{\gamma})^{\bar{\sigma} \bar{\tau}-1 \bar{\sigma} \bar{\tau}}=\frac{\beta_{\sigma}^{\tau} \beta_{\tau}}{\beta_{\sigma \tau}} \cdot \sqrt[c]{\gamma}=\left(\bar{\kappa}(\bar{\sigma} \bar{\tau})^{-1} \bar{\kappa}(\bar{\sigma}) \bar{\kappa}(\bar{\tau})\right)^{\theta} \cdot \sqrt[c]{\gamma}
$$

for $\sigma, \tau \in g\left(K_{\kappa} / \Omega\right)$. Since the set of elements $\bar{\kappa}(\bar{\sigma} \bar{\tau})^{-1} \bar{\kappa}(\bar{\sigma}) \bar{\kappa}(\bar{\tau})$ is a factor set of $\kappa\left(g\left(K_{\kappa} / \Omega\right)\right)$ in Z equivalent with the restriction of ξ to $\kappa\left(g\left(K_{\kappa} / \Omega\right)\right)$, $\xi^{\theta \kappa}$ splits as a factor set of $g\left(K_{\kappa} / \Omega\right)$ in the $g\left(K_{\kappa} / \Omega\right)$-group $K_{\kappa}{ }^{\times}$.
6. Now we deal arithmetically with the existence of G-extensions $\bar{\kappa}$ over Ω such that $\bar{\kappa}$ has an A-extension κ as the A-part. Since A is nilpotent, it suffices to consider the case where the order of G is a power of a prime number l. We assume that there is a definite isomorphism of Z into the group of roots of unity in Ω and that Ω contains a primitive n_{0}-th root of unity, where n_{0} is the exponent, i. e., the largest element order of A. Furthermore, denoting by $S=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots\right\}$ the set of all ramification places of κ, we assume that every \mathfrak{p}_{i} is a principal prime ideal of Ω prime to l and that the \mathfrak{p}_{i}-completion $\Omega_{\mathfrak{p}_{i}}$ contains a primitive $n_{0} c$-th root of unity, where c is the order of Z.

Let now $\zeta_{n_{0}}$ be a definite primitive n_{0}-th root of unity and, denoting by π_{i} an element of Ω which generates the prime ideal \mathfrak{p}_{i}, fix a root ζ_{i} of unity in $\Omega_{p_{i}}$ such that we have $\left(\frac{\zeta_{i}, \pi_{i}}{\mathfrak{p}_{i}}\right)_{n_{0}}=\zeta_{n_{0}}$ and that the order of ζ_{i} is a power of l. Such a ζ_{i} is then a root of unity in $\Omega_{p_{i}}$ whose order is the largest possible power of l. Since π_{i} is a unit in $\Omega_{p_{j}}(i \neq j)$, we can choose $m_{i j}$ such that π_{i} is the product of the power $\zeta_{i}^{-m_{i j}}$ by a unit of $\Omega_{p_{j}}$ which is a n_{0}-th power residue $\bmod \mathfrak{p}_{j}$. We set formally $m_{i i}=0$. The congruence class $m_{i j}$ $\bmod n_{0}$ is thus uniquely determined. Next, decomposing A into a direct product $\left\{\sigma_{1}\right\} \times\left\{\sigma_{2}\right\} \times \cdots$ of cyclic groups, we define $x_{i c}$ by setting $\kappa_{i}\left(\zeta_{i}\right)=\sigma_{1}{ }^{x_{i 1}} \sigma^{x_{i 2}} \cdots$, where κ_{i} is the p_{i}-component of κ. Moreover, denoting by ζ the image by the definite isomorphism of a factor set of $A=G / Z$ in Z, we set $\lambda\left(\sigma_{\iota}, \sigma_{v}\right)=$ $\frac{\zeta_{\sigma_{l}, \sigma_{l}}}{\zeta_{\sigma_{v}, \sigma_{\imath}}}=\zeta_{n_{0}}^{c_{i v}}$. This $c_{\iota v}$ is unique $\bmod n_{0}$.

Let now ν_{i} be the \mathfrak{p}_{i}-invariant of the induced factor set ζ^{k}. Then, since the ramification order of κ at \mathfrak{p}_{i} divides n_{0}, it follows from Theorem 1 and from a property of the norm residue symbol that we have $\zeta_{n o}^{n_{0}^{n \nu} i} i=\lambda\left(\kappa_{i}\left(\zeta_{i}\right)\right.$, $\left.\kappa_{i}\left(\pi_{i}\right)\right)$. Hence, by the product relation $\prod_{j} \kappa_{j}\left(\pi_{i}\right)=1$ and by the property of λ as a bi-character, we have

$$
\begin{aligned}
\lambda\left(\kappa_{i}\left(\zeta_{i}\right), \kappa_{i}\left(\pi_{i}\right)\right) & =\lambda\left(\kappa_{i}\left(\zeta_{i}\right), \prod_{j(\neq i)} \kappa_{j}\left(\pi_{i}\right)^{-1}\right)=\prod_{j} \lambda\left(\kappa_{i}\left(\zeta_{i}\right), \kappa_{j}\left(\zeta_{j}\right)\right)^{m_{i j}} \\
& =\prod_{j, \iota, \nu} \lambda\left(\sigma_{\iota}, \sigma_{v}\right)^{m_{i j} x_{i u} x_{j v}=\zeta_{n_{0}} \sum_{i j} c_{i v} x_{i u} x_{j \nu}} .
\end{aligned}
$$

Therefore it is necessary and sufficient for the induced factor set ζ^{κ} to spiit that we have

$$
F(x)=\sum_{j, c, v} m_{i j} c_{\iota v} x_{i \iota} x_{j v} \equiv 0 \quad\left(\bmod n_{0}\right)
$$

for every i.

Thus the existence of a G-extension $\vec{\kappa}$ which has κ as its A-part rests upon the restriction κ_{U} of κ to the unit idèle group \boldsymbol{U} of Ω. Moreover the condition for the existence does not depend on the factor set ζ itself, but only on the bi-character λ.

§ 3. Examples.

7. We now propose to observe, as examples, normal extensions of degree 8 over the rational number field P. There are two non-abelian groups of order 8: the dihedral group G_{1} and the quaternion group G_{2}. These two groups are extensions of a cyclic group Z of order 2 by the group A consisting of $1, \sigma_{1}, \sigma_{2}$ and $\sigma_{3}=\sigma_{1} \sigma_{2}$. Identifying Z with the group of ± 1, factor set $\xi^{(1)}, \xi^{(2)}$ of $G_{1} / Z, G_{2} / Z$ are as follows.

	The dihedral group					The quaternion group				
	γ_{σ}^{τ}			$\sigma_{2} \quad \sigma_{3}$			1		1	
$\xi_{\text {¢ }, \tau}^{(1)}$:	1	1	1	11		1		1	1	1
	σ_{1}		-1	$1-1$		σ_{1}		-1		$1-$
	σ_{2}		-1	$1-1$		σ_{2}		-1	-	1
	σ_{3}	1	1	11		σ_{3}		1	-	1

These two factor sets have one and the same bi-character

Now, let $S=\left\{p_{1}, \cdots, p_{t}\right\}$ be a set of positive rational prime numbers with $p_{i} \equiv 1(\bmod 4)$. Denote by ζ_{i} a root of unity in the p_{i}-completion $P_{p_{i}}$ such that the order of ζ_{i} is the largest possible power of 2 . Since the rational number field P is of class number 1 , a homomorphism κ of the idèle class
group of P is determined by its restriction $\kappa_{\boldsymbol{U}}$ to the unit idèle group \boldsymbol{U} of P. On the other hand, since -1 is a square in $P_{p_{i}}$, it is easily seen that every mapping $\kappa_{\boldsymbol{U}}$ of \boldsymbol{U} into the cyclic group Z of order 2 is the restriction to \boldsymbol{U} of a Z-extension over P whenever the p-component of $\kappa_{\boldsymbol{U}}$ is trivial for every place $q \notin S$ of P. Taking $A_{1}=\left\{1, \sigma_{1}\right\}$ or $A_{2}=\left\{1, \sigma_{2}\right\}$ instead of Z, we come to a similar conclusion. Therefore we have

Lemma 2. Let $S=\left\{p_{1}, \cdots, p_{t}\right\}$ be a set of prime numbers with $p_{i} \equiv 1(\bmod 4)$, Z be a cyclic group of order 2 and A be a non-cyclic group of order 4. Then the number of all Z-resp. A-extensions over P unramified at every place $q \notin S$ is equal to 2^{t} resp. 4^{t}.

Now, p_{i} is a generator of the prime ideal of $P_{p_{i}}$ and we have $\left(\frac{\zeta_{i}, p_{i}}{p_{i}}\right)=-1$. Furthermore, setting $m_{i j}=\frac{1}{2}\left\{1-\left(\frac{p_{i}}{p_{j}}\right)\right\}, p_{i}$ is a square in $\Omega_{p_{j}}(i \neq j)$ if and only if $m_{i j}=0$. On the other hand we set formally $\left(\frac{p_{i}}{p_{i}}\right)=1$ and, if κ is an A-extension with p_{i}-component κ_{i}, we set $\kappa_{i}\left(\zeta_{i}\right)=\sigma_{1}{ }^{x_{i} \sigma_{2}{ }^{x_{i}} \text {. Moreover, setting }}$ $\lambda\left(\sigma_{l}, \sigma_{v}\right)=(-1)^{c_{v 0}}$, we have $c_{11}=c_{22}=0, c_{12}=c_{21}=1$. Therefore, if we denote by $\nu_{i}(\kappa)$ the p_{i}-invariant of the induced factor set $\xi^{(1) \kappa}$, then it follows from 6 that $\nu_{i}(\kappa)$ is also equal to the p_{i}-invariant of $\xi^{(2)^{\kappa}}$ and that we have

$$
2 \cdot \nu_{i}(\kappa) \equiv f_{i}(x, y)=\sum_{j=1}^{t} \frac{1}{2}\left\{1-\left(\frac{p_{i}}{p_{j}}\right)\right\}\left(x_{i} y_{j}+x_{j} y_{i}\right) \quad(\bmod 2) .
$$

Suppose now that κ is an A-extension unramified at every place $q \ddagger S$. Then $\xi^{(1) \kappa}$ splits if and only if we have $2 \cdot \nu_{i}(\kappa) \equiv f_{i}(x, y) \equiv 0(\bmod 2)$ for every i. If this is the case, then we can find a G_{1}-extension $\bar{\kappa}^{(1)}$ over P such that κ is the A-part of $\bar{\kappa}^{(1)}$. Let $K_{\bar{\kappa}^{(1)}}$ be the corresponding field of $\bar{\kappa}^{(1)}$ and take $\gamma \in K_{\kappa}$ such that $K_{\bar{\kappa}(1)}=K_{\kappa}(\sqrt{\gamma})$. Then, since $\gamma^{1-\sigma}$ is a square in K for every $\sigma \in g\left(K_{\kappa} / P\right)$, we see that the \mathfrak{P}-exponent of the principal ideal (γ) is congruent mod. 2 to the \mathfrak{P}^{σ}-exponent of (γ) for every prime ideal \mathfrak{P} of K_{κ} and therefore there is a rational number such that the \mathfrak{P}-exponent of $\left(r_{0} \gamma\right)$ is even whenever \mathfrak{F} is prime to all the p_{i}. Consider the Z-extension κ_{0} over P whose corresponding field is $P\left(\sqrt{\gamma_{0}}\right)$. Then, since the product of $\bar{\kappa}^{(1)} / K_{\kappa}$ by κ_{0} / K_{κ} has the corresponding field $K_{k}\left(\sqrt{\gamma \gamma_{0}}\right)$, it follows from 4 that $\bar{\kappa}^{(1)} \kappa_{0}$ is a $G_{1}-$ extension over P with the A-part κ and with the corresponding field $K_{\bar{\kappa}}(1)_{\kappa_{0}}=$ $K_{\kappa}\left(\sqrt{\gamma r_{0}}\right)$. We see also that the ramification prime ideals of $K_{\bar{\kappa}}\left({ }^{(1)}\right)_{0} / K_{\kappa}$ must divide either p_{i} or 2. If in particular all p_{i} are $\equiv 1(\bmod 8)$, then 2 decomposes completely in K_{κ} and therefore either $K_{\kappa}\left(\sqrt{\gamma_{0} \gamma}\right) / K_{\kappa}$ or $K_{\kappa}\left(\sqrt{-\gamma_{0} \gamma}\right) / K_{\kappa}$ is unramified at prime factors of 2 . Thus, in this case we can choose a G_{1}-extension over P which has A-part κ and is unramified at every prime number $q \notin S$. At the same time, it follows from 4, especially from the last
formula in 4, that the number of all such G_{1}-extensions over P is equal to the number of all Z-extensions over P unramified at every place $q \notin S$. The number of these Z-extensions is, by Lemma 2, equal to 2^{t}. Since the situation is exactly the same for G_{2}-extensions over P, we have

Theorem 2. Let $S=\left\{p_{1}, \cdots, p_{t}\right\}$ be a set of positive rational prime numbers with $p_{i} \equiv 1(\bmod 8)$. Consider t bilinear forms

$$
f_{i}(x, y)=\sum_{j=1}^{t} \frac{1}{2}\left\{1-\left(\frac{p_{i}}{p_{j}}\right)\right\}\left(x_{i} y_{j}+x_{j} y_{i}\right)
$$

of variables $x_{i}, y_{j}(1 \leqq i \leqq t)$, where we set $\left(\frac{p_{i}}{p_{i}}\right)=1$. Denote by G_{1}, G_{2} the dihedral and the quaternion group respectively. Then the number of all G_{1}-extensions over the rational number field P which are unramified at every prime number $q \notin S$ is equal to the number of all G_{2}-extensions over P with the same property, and the number is equal to 2^{t}-times the number of solutions mod. 2 of the simultaneous bi-linear congruences $f_{i}(x, y) \equiv 0(\bmod 2)(1 \leqq i \leqq t)$.

If we have $\left(\frac{p_{i}}{p_{j}}\right)=1$ for every i, j, then all the forms $f_{i}(x, y)$ in theorem 2 vanish identically mod. 2 and, again by Lemma 2, there are $4^{t} A$-extensions over P unramified at every place $q \notin S$. Therefore we have

Corollary. Using same notations as in theorem 2, suppose that we have $\left(\frac{p_{i}}{p_{j}}\right)=1$ for every i, j. Then, there are $8^{t} G_{1}$-extensions over P which are unramified at every prime number $q \ddagger S$, and there are the same number of $G_{2}{ }^{-}$ extensions over P with the same property.

Considering from a slightly different point of view, we have
Theorem 3. Let K be a non-cyclic abelian biquadratic field over the rational number field P and let $S=\left\{p_{1}, \cdots, p_{t}\right\}$ be the set of prime numbers at which K is ramified. Assume that we have $p_{i} \equiv 1(\bmod 4)$ for every p_{i}. Then the existence of an overfield of K which is a dihedral extension over P implies the existence of an overfield of K which is a quaternion extension over P, and vice versa. Furthermore, the existence is certainly the case whenever we have additionally $\left(\frac{p_{i}}{p_{j}}\right)=1$ for every i, j.

Mathematical Institute, Nagoya University.

References

[1] E. Artin, Algebraic numbers and algebraic functions I, Princeton, 1951.
[2] H. Hasse, Bericht II, 1930.
[3] A. Scholz, Konstruktion algebraischer Zahlkörper mit beliebiger Gruppe von Primzahlpotenzordnung I, Math. Zeitschr., 42 (1936), 161-188.
[4] E. Witt, Konstruktion von galoisschen Körpern der Charakteristik puuvorgegebener Gruppe der Ordung p^{f}, J. Reine Angew. Math., 174 (1936), 337-245.

[^0]: 3) The symbol \{ \} stands for the group generated by the element in it.
