On a problem of Alexandroff concerning the dimension of product spaces II.

By Yukihiro Kodama

(Received Oct. 1, 1958)

§ 1. Introduction.

Let Q be a class of topological spaces. A topological space X is called a dimensionally full-valued space for Q, if, whenever Y is a space of Q, the following equality holds:

$$
\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y
$$

Here $\operatorname{dim} X \leqq n$ means that every finite open covering of X has a refinement of order not greater than n.

A sequence $\mathfrak{a}=\left(q_{1}, q_{2}, \cdots, q_{i}, \cdots\right)$ of positive integers is called a k-sequence ${ }^{1)}$ if q_{i} is a divisor of $q_{i+1}, i=1,2, \cdots$, and $q_{i}>1$ for some i. There exists a natural homomorphism $h(\mathfrak{a}, i)$ from $Z_{q_{i+1}}$ onto $Z_{q_{i}}, i=1,2, \cdots$, where Z_{q} means the factor group $Z / q Z$ and Z means the additive group of all integers. Let us denote by $Z(\mathrm{a})$ the inverse limit group of the inverse system $\left\{Z_{q_{i}}: h(\mathrm{a}, i)\right\}$. Let (X, A) be a pair of topological spaces. We shall denote by $H_{n}(X, A: G)$ the n-dimensional Cech homology group of (X, A) with G as a coefficient group based on all open coverings of X. Consider the following property \boldsymbol{P} of an n-dimensional topological space X.
\boldsymbol{P}. $\left\{\begin{array}{l}\text { For every } k \text {-sequence a there exists a closed subset } A_{\mathrm{a}} \text { of } X \text { such that } \\ H_{n}\left(X, A_{a}: Z(\mathfrak{a})\right) \neq 0 .\end{array}\right.$
In the first paper under the same title [10] we have proved the following theorem.

Theorem. Let Q be a class of all compact metric spaces. In order that an n-dimensional compact metric space X be a dimensionally full-valued space for Q, it is necessary and sufficient that X have the property \boldsymbol{P}.

In the proof of this theorem (cf. [10, pp. 391-393]) the compactness of X played an essential role. By making use of the unrestricted Čech homology groups we can remove the compactness condition of X from the sufficient condition of the theorem. Throughout this paper we shall denote by Q the class of all locally compact fully normal spaces. We shall prove the following theorem.

[^0]Theorem 1. An n-dimensional fully normal space X is a dimensionally fullvalued space for Q if X has the property \boldsymbol{P}.

By Theorem 1 we can prove the following main theorem of this paper.
Theorem 2. In order that an n-dimensional locally compact fully normal space X be a dimensionally full-valued space for Q, it is necessary and sufficient that X has the property \boldsymbol{P}.

Our Theorem 2 is a generalization of the theorem [10] refered to above in two respects. Firstly, Theorem 2 does not assume the metrizability of spaces. Secondly, the compactness condition of spaces is weakened to the local-compactness condition; this generalization seems not to be trivial since in the formulation of property \boldsymbol{P} we do not assume the compactness of the closed subset A_{a} of X. By the proof of Theorem 1 we can prove the following K. Morita's theorem.

Theorem 3. (K. Morita [13, Theorem 6]). A 1-dimensional fully normal space X is a dimensionally full-valued space for Q.

Finally, as a consequence of Theorem 1, we have the following corollary.
Corollary. An n-dimensional fully normal space X which contains a closed subset A such that $H_{n}(X, A: Z) \neq 0$ is a dimensionally full-valued space for Q.

In Addendum of the previous paper [10] we have proved that our property \boldsymbol{P} is equivalent to Boltyanskii's property in compact metric spaces (cf. $\S 3$, Remark). But, in case X is non-compact, we do not know whether our property \boldsymbol{P} is equivalent to Boltyanskii's property even for locally compact fully normal spaces. In $\S 2$ we shall prove several lemmas and introduce the notations used later on. The theorems mentioned above are proved in $\S 3$. In $\S 4$ we shall show that the converse of the corollary is not true even for the case where X is a two-dimensional compact metric space.

§ 2. Lemmas and notations.

A system \mathfrak{W} of subsets in a topological space X is called to be locally finite if for each point x of X there exists a neighborhood $U(x)$ such that $U(x)$ intersects a finite number of sets of \mathfrak{B}. A normal space is called fully normal if every open covering has a locally finite open refinement (cf. [14] and [15]). Throughout this paper we mean by a covering a locally finite open covering. Let X be a fully normal space. A system $\boldsymbol{U}=\left\{\mathfrak{H}_{\alpha} \mid \alpha \in \Omega\right\}$ of coverings of X is called a cofinial system of coverings of X if for each open covering \mathfrak{H} of X there exists a member \mathfrak{u}_{α} of \boldsymbol{U} such that $\mathfrak{H}<\mathfrak{u}_{\alpha} \quad \mathfrak{l}_{\alpha}$ is a refinement of \mathfrak{H}). If $\mathfrak{u}_{\alpha}<\mathfrak{H}_{\beta}$ for $\alpha \in \Omega$ and $\beta \in \Omega$, we denote it simply by $\alpha<\beta$. The order of a covering is the largest integer n such that there exist $n+1$ members of the covering which has a non-empty intersection. By the
dimension of X (we denote it by $\operatorname{dim} X$) we mean the least integer n such that every (finite or infinite) open covering has a locally finite refinement of the order n. By [3, Theorem 3.5] or [12, Theorem 2.1], this dimension is equivalent to the usual Lebesgue dimension. By the nerve of a covering we mean the nerve with the Whitehead weak topology (cf. [16] or [5]). Let K be the nerve of a covering \mathfrak{l}. We shall denote the vertex of K corresponding to an element U of \mathfrak{u} by the same notation U. Since X is a normal space, for each covering \mathfrak{U} there exists a canonical mapping ${ }^{2}$) of X into the nerve K of the covering \mathfrak{H}. Let A be a closed subset of X. Let \mathfrak{U} and \mathfrak{V} be coverings of X such that $\mathfrak{H}>\mathfrak{B}$, and let (K, L) and (M, N) be the pairs of the nerves of \mathfrak{l} and \mathfrak{B} corresponding to (X, A) respectively. A projection of (K, L) into (M, N) defined as usual is continuous (cf. $[\mathbf{5}, \S 4]$). Let $\left\{\mathfrak{H}_{\alpha} \mid \alpha \in \Omega\right\}$ be a cofinal system of coverings of X, and let us denote by (K_{α}, L_{α}) the pair of the nerves of \mathfrak{u}_{α} corresponding to (X, A) for $\alpha \in \Omega$ and by $\pi_{\alpha^{\beta}}{ }^{\beta}$ a projection of (K_{β}, L_{β}) into (K_{α}, L_{α}) for $\beta>\alpha$. We mean by $H_{n}\left(K_{\alpha}, L_{\alpha}: G\right)$ the n-dimensional homology group of finite cycles of (K_{α}, L_{α}) with coefficients in G. For each pair $\beta>\alpha$ a projection $\pi_{\alpha}^{\beta}:\left(K_{\beta}, L_{\beta}\right) \rightarrow\left(K_{\alpha}, L_{\alpha}\right)$ induces the homomorphism $\left(\pi_{\alpha}\right)_{*}: H_{n}\left(K_{\beta}, L_{\beta}: G\right) \rightarrow H_{n}\left(K_{\alpha}, L_{\alpha}: G\right)$. The limit group $H_{n}(X, A: G)$ of the inverse system $\left\{H_{n}\left(K_{\alpha}, L_{\alpha}: G\right):\left(\pi_{\alpha}\right)^{\beta}\right) \mid \alpha<\beta: \alpha \in \Omega$ and $\left.\beta \in \Omega\right\}$ is called the n dimensional unrestricted Čech homology group of (X, A) with coefficients in G (cf. [3] or [4]). In compact spaces unrestricted Čech homology groups are equal to usual Čech homology groups based on all finite coverings. Let R_{1} be the additive group of rational numbers mod 1. The following lemmas are well known (cf. [11, § 2] and [12, Theorem 3.2]).

Lemma 1. (Hopf's extension theorem). Let A be a closed subset of an ($n+1$)-dimensional compact space X. In order that a mapping f of A into the n-dimensional sphere S^{n} be extensible to a mapping of X into S^{n}, it is necessary and sufficient that the condition $f_{*} \partial H_{n+1}\left(X, A: R_{1}\right)=0$ hold, where f_{*} is the homomorphism of $H_{n}\left(A: R_{1}\right)$ into $H_{n}\left(S^{n}: R_{1}\right)$ induced by the mapping f and ∂ is the boundary homomorphism ${ }^{3}$) of $H_{n+1}\left(X, A: R_{1}\right)$ into $H_{n}\left(A: R_{1}\right)$.

Lemma 2. Let X be a locally compact fully normal space. In order that $\operatorname{dim} X=n$ it is necessary and sufficient that
(1) there exists a closed subset A of X such that $H_{n}\left(X, A: R_{1}\right) \neq 0$,
(2) for every closed subset A of X and every integer $j>n$ we have $H_{j}\left(X, A: R_{1}\right)=0$.

Lemma 3. Let X be a locally compact fully normal space. In order that

[^1]$\operatorname{dim} X \leqq n$ it is necessary and sufficient that for every compact subset A of X we have $\operatorname{dim} A \leqq n$.

Let X be a topological space and let \mathfrak{H} be a covering of X. Let K be a simplicial complex with the Whitehead weak topology and let \mathfrak{F} be the covering of K consisting of its open stars. By an (\mathfrak{U}, K)-mapping of X into K we mean a mapping f of X into K such that $\mathfrak{H}<f^{-1}(\mathfrak{B})^{4)}$. The following lemma is well known (cf. [9, Chap. V, § 8]).

Lemma 4. Let X be a normal space. In order that $\operatorname{dim} X \leqq n$ it is necessary and sufficient that for every covering \mathfrak{H} of X there exist an n-dimensional simplicial complex K and an (\mathfrak{l}, K)-mapping of X into K.

The following lemma was proved by K. Morita (cf. [13, Theorem 4]).
Lemma 5. Let X be a fully normal space and Y a locally compact fully normal space. Then the topological product of X and Y is fully normal, and we have $\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y$.

A topological group G is called to satisfy the minimal condition if, whenever $\left\{G_{i} \mid i=1,2, \cdots\right\}$ is a decreasing sequence of closed subgroups of G, there exists some integer n such that $G_{n}=G_{n+1}=\cdots$. The following lemma is easily proved and we omit the proof.

Lemma 6. Let $\left\{G_{\alpha}: \pi_{\alpha}{ }^{\beta}\right\}$ be an inverse system of compact topological groups over a directed set $\Omega=\{\alpha\}^{5)}$ such that each G_{α} satisfies the minimal condition. Let G be the limit group of $\left\{G_{\alpha}\right\}$. For each $\alpha \in \Omega$ there exists an element β of Ω such that $\alpha<\beta$ and $\pi_{\alpha} G=\pi_{\alpha}^{\beta} G_{\beta}$, where π_{α} is the projection of G into G_{α}.

Let q be a positive integer such that $q>1$ and iet us denote the k sequence $\left(q, q^{2}, \cdots, q^{i}, \cdots\right)$ by a_{q}. There is a natural homomorphism ρ_{q} from $Z\left(a_{q}\right)$ onto Z_{q} defined by $\rho_{q}(c)=c_{1}$, where c_{1} is the first coordinate of an element $c=\left\{c_{i} \mid i=1,2,\right\}$ of $Z\left(\mathfrak{a}_{q}\right)$.

Lemma 7. Let (X, A) be a pair of n-dimensional fully normal spaces. If $H_{n}\left(X, A: Z\left(\mathfrak{a}_{q}\right)\right) \neq 0$, then the homomorphism $\left(\rho_{q}\right)_{*}: H_{n}\left(X, A: Z\left(\mathfrak{a}_{q}\right)\right) \rightarrow H_{n}\left(X, A: Z_{q}\right)$ induced by the homomorphism $\rho_{q}: Z\left(\mathfrak{a}_{q}\right) \rightarrow Z_{q}$ is non-trivial.

Proof. Let $\left\{\mathfrak{l}_{\alpha} \mid \alpha \in \Omega\right\}$ be a cofinal system of coverings of X each member of which has the order n; let us denote by (K_{α}, L_{α}) the pair of the nerves of \mathfrak{u}_{α} corresponding to (X, A) for $\alpha \in \Omega$ and by $\pi_{\alpha}{ }^{\beta}$ a projection of (K_{β}, L_{β}) into $\left(K_{\alpha}, L_{\alpha}\right)$ for $\beta>\alpha$. Let $a=\left\{a_{\alpha} \mid \alpha \in \Omega\right\}$ be a non-zero element of $H_{n}(X, A$: $\left.Z\left(\mathfrak{a}_{q}\right)\right)$, where $a_{\alpha} \in H_{n}\left(K_{\alpha}, L_{\alpha}: Z\left(\mathfrak{a}_{q}\right)\right)$ for $\alpha \in \Omega$. Since $\operatorname{dim} K_{\alpha}=n$, we can consider a_{α} as a cycle of (K_{α}, L_{α}) with coefficients in $Z\left(\mathfrak{a}_{q}\right)$ for each $\alpha \in \Omega$. Let $a_{\alpha}=\sum_{i} \boldsymbol{t}_{\alpha i} \sigma_{\alpha i}, \alpha \in \Omega$, where $\boldsymbol{t}_{\alpha i} \in Z\left(\alpha_{q}\right)$ and $\sigma_{\alpha i}$'s are n-simplexes of K_{α} for each i. Put $\alpha_{\alpha j}=\Sigma t_{\alpha}{ }^{j}{ }_{i} \sigma_{\alpha i}, j=1,2, \cdots$ and $\alpha \in \Omega$, where $t_{\alpha}{ }^{j}{ }_{i}$ is the j-th coordinate of
4) Let $\mathfrak{B}=\{V\}$ be a covering of a topological space Y and let f be a mapping of X into Y. By $f^{-1}(\mathfrak{B})$ we mean the covering $\left\{f^{-1}(V)\right\}$ of X.
5) Cf. [6, Chap. VIII].
the element $\boldsymbol{t}_{\boldsymbol{\alpha} i}$ of the inverse limit group $Z\left(\mathfrak{a}_{q}\right)$. Then $a_{\alpha j}$ is a cycle of $\left(K_{\alpha}, L_{\alpha}\right) \bmod q^{j 6}$ for $j=1,2, \cdots$ and $\alpha \in \Omega$. If $\left(\rho_{q}\right)_{*} a^{6 \mathrm{a})}=0,\left(\rho_{q}\right)_{*} a_{\alpha}{ }^{6 \mathrm{a})}=0$ for each $\alpha \in \Omega$. Accordingly we have $a_{\alpha j} \equiv 0 \bmod q^{7)}$ for $j=1,2, \cdots$ and $\alpha \in \Omega$. Therefore, since $\frac{1}{q} a_{\alpha j}{ }^{8}$) is a cycle of $\left(K_{\alpha}, L_{\alpha}\right) \bmod q^{j-1}$ for $j=2,3 \cdots, \frac{1}{q} a_{\alpha}$ is a cycle of $\left(K_{\alpha}, L_{\alpha}\right)$ with coefficients in $Z\left(a_{q}\right)$. Since $\left(\pi_{\alpha}{ }^{\beta}\right) *\left(\frac{1}{q} a_{\beta}\right)=\frac{1}{q} a_{\alpha}$ for $\beta>\alpha,\left\{\left.\frac{1}{q} a_{\alpha} \right\rvert\, \alpha \in \Omega\right\}$ determines a non-zero element $a(1)$ of $H_{n}\left(X, A: Z\left(a_{q}\right)\right)$. If $\left(\rho_{q}\right)_{*} \alpha(1)=0$, by the same argument as above, we can see that $\left\{\left.\frac{1}{q^{2}} \alpha_{\alpha} \right\rvert\, \alpha \in \Omega\right\}$ determines a non-zero element $\alpha(2)$ of $H_{n}\left(X, A: Z\left(a_{q}\right)\right)$. If we could repeat infinitely this process, we should have $a_{\alpha j} \equiv 0 \bmod q^{i}$ for $i, j=1,2, \cdots$ and $\alpha \in \Omega$. This contradicts $a \neq 0$. Thus there exists an integer i such that the element $\alpha(i)=\left\{\left.\frac{1}{q^{i}} a_{\alpha} \right\rvert\, \alpha \in \Omega\right\}$ of $H_{n}\left(X, A: Z\left(a_{q}\right)\right)$ has a non-zero image under the homomorphism $\left(\rho_{q}\right)_{*}$.

Lemma 8. Let (X, A) be a pair of n-dimensional fully normal spaces such that $H_{n}\left(X, A: R_{1}\right) \neq 0$. Then there exist a prime number p and an element $\left\{a_{\alpha} \mid \alpha \in \Omega\right\}$ of $H_{n}\left(X, A: R_{1}\right)=\underset{\rightleftarrows}{\lim \left\{H_{n}\left(K_{\alpha}, L_{\alpha}: R_{1}\right):\left(\pi_{\alpha}\right)_{*}\right\} \text { such that for each } \alpha \in \Omega}$ the order of a_{a} is a power of p.

Proof. We may assume that $\operatorname{dim} K_{\alpha}=n$ for each $\alpha \in \Omega$. Let $\left\{b_{\alpha} \mid \alpha \in \Omega\right\}$ be a non-zero element of $H_{n}\left(X, A: R_{1}\right)$. Let q_{α} be the order of b_{α}. Let $b_{\alpha_{0}} \neq 0$ for some $\alpha_{0} \in \Omega$. Then $q_{\alpha_{0}} \neq 0$. Let p be a prime number which is a divisor of $q_{\alpha_{0}}$. For each $\beta>\alpha_{0}$, put $q_{\beta}=p^{\lambda_{\beta}} \cdot r_{\beta}$, where λ_{β} is a positive integer, p and r_{β} are coprime numbers. If $\alpha_{0}<\alpha<\beta$, we have $\lambda_{\alpha} \leqq \lambda_{\beta}$ and r_{α} is a divisor of r_{β}. Put $c_{\beta}=r_{\beta} \cdot b_{\beta}$ for $\beta>\alpha$. Since r_{β} and p are coprime numbers, c_{β} is a non-zero element of $H_{n}\left(K_{\beta}, L_{\beta}: R_{1}\right)$. Let us denote by G_{β} the subgroup of $H_{n}\left(K_{\beta}, L_{\beta}: R_{1}\right)$ generated by the element c_{β}. Then G_{β} is a finite group of the order p^{λ}. If $\alpha_{0}<\alpha<\beta$, since r_{α} is a divisor of r_{β}, we have $\left(\pi_{\alpha}{ }^{\beta}\right)_{*} c_{\beta}=\left(\pi_{\alpha}^{\beta}\right)_{*} r_{\beta} \cdot b_{\beta}$ $=r_{\beta} \cdot\left(\pi_{\alpha}^{\beta}\right)_{*} b_{\beta}=\left(r_{\beta} / r_{\alpha}\right) \cdot r_{\alpha} \cdot b_{\alpha}=\left(r_{\beta} / r_{\alpha}\right) \cdot c_{\alpha}$. Thus we have $\left.\left(\pi_{\alpha}\right)_{*}\right)_{\beta} \subset G_{\alpha}$. Therefore the system $\left\{G_{\alpha}:\left(\pi_{\alpha}^{\beta}\right)_{*}\right\}$ forms an inverse system. Put $\left.G=\underset{\longleftrightarrow}{\lim \left\{G_{\alpha}\right.}:\left(\pi_{\alpha}{ }^{\beta}\right)_{*}\right\}$.
6) Let q be a positive integer such that $q>1$. By a cycle $\bmod q$ we mean a cycle with coefficients in Z_{q}. By a cycle mod 1 we mean a cycle with coefficients in R_{1}.

6a) These $\left(\rho_{q}\right)_{*}$ mean the homomorphisms induced by the homomorphism ρ_{q} between the coefficient groups $Z\left(\mathfrak{a}_{q}\right)$ and Z_{q}.
7) Let $c=\sum_{i} t_{i} \sigma_{i}$ be an integral chain of (K, L). By $c \equiv 0 \bmod q$, where q is an positive integer, we mean that $t_{i} \equiv 0 \bmod q$ for each i.
8) $c=\sum_{i} g_{i} \sigma_{i}$ be a chain of (K, L), where $g_{i} \in R_{1}$ or $g_{i} \in Z$ for each i. Let q be an integer. By $\frac{1}{q} c$ we mean the chain $\sum \frac{1}{q} g_{i} \sigma_{i}$ of (K, L).

Assume that $G=0$. Since each G_{α} is a finite group, there exists $\alpha>\alpha_{0}$ such that $\left(\pi_{\alpha_{0}}{ }^{\alpha}\right)^{*} G_{\alpha}=0$ by Lemma 6, On the other hand, we have $\left(\pi_{\alpha_{0}}{ }^{\alpha}\right)_{*} c_{\alpha}=r_{\alpha} \cdot b_{\alpha_{0}}$. Since r_{α} and p are coprime numbers and the order of $b_{\alpha_{0}}$ is $p^{\alpha_{\alpha} \gamma_{\alpha_{0}}}$, we have $\left(\pi_{\alpha_{0}}{ }^{\alpha}\right)_{*} c_{\alpha}=r_{\alpha} \cdot b_{\alpha_{0}} \neq 0$. This contradicts $\left(\pi_{\alpha_{0}}{ }^{\alpha}\right)_{*} G_{\alpha}=0$. Therefore $G \neq 0$. Since an order of every element of G_{α} is a power of p for each $\alpha \in \Omega$, we can find an element required in the lemma. This completes the proof.

§ 3. Theorems.

Theorem 1. An n-dimensional fully normal space X is a dimensionally full-valued space for Q if X has the property \boldsymbol{P}.

Proof. Let Y be an m-dimensional locally compact fully normal space. By Lemmas 3 and 2, there exists a pair (A, B) of compact subsets of Y such that $H_{m}\left(A, B: R_{1}\right) \neq 0$. Let $\boldsymbol{W}=\left\{\mathfrak{W}_{\alpha} \mid \alpha \in \Omega\right\}$ be a cofinal system of finite coverings of A each member of which has the order m. Let us denote by (M_{α}, N_{α}) the pair of the nerves of \mathfrak{W}_{α} corresponding to (A, B) and by $\pi_{\alpha}{ }^{\beta}$ a projection of (M_{β}, N_{β}) into (M_{α}, N_{α}) for $\alpha, \beta \in \Omega$ and $\beta>\alpha$. By Lemma 8 there exist a prime number p and a non-zero element $\left\{a_{\alpha} \mid \alpha \in \Omega\right\}$ of $H_{m}\left(A, B: R_{1}\right)=$

Since X has the property \boldsymbol{P}, there exists a closed subset X_{0} such that $H_{n}\left(X, X_{0}: Z\left(\mathfrak{a}_{p}\right)\right) \neq 0$, where \mathfrak{a}_{p} is the k-sequence $\left(p, p^{2}, \cdots, p^{i}, \cdots\right)$. Let $\boldsymbol{U}=\left\{\mathfrak{H}_{\mu} \mid \mu \in \Gamma\right\}$ be a cofinal system of coverings of X each member of which has the order n. Let us denote by $\left(K_{\mu}, L_{\mu}\right)$ the pair of the nerves of \mathfrak{u}_{μ} corresponding to (X, X_{0}) and by $\delta_{\mu}{ }^{\nu}$ a projection of (K_{ν}, L_{ν}) into (K_{μ}, L_{μ}) for $\nu, \mu \in \Gamma$ and $\nu>\mu$. By Lemma 7, there exists an element $\left\{c_{\mu} \mid \mu \in \Gamma\right\}$ of $H_{n}\left(X, X_{0}: Z\left(a_{p}\right)\right)$ $=\lim _{\leftrightarrows}\left\{H_{n}\left(K_{\mu}, L_{\mu}: Z\left(\mathfrak{a}_{p}\right)\right):\left(\delta_{\mu}{ }^{\nu}\right)_{*}\right\}$ such that $\left(\delta_{p}\right)_{*}\left\{c_{\mu}\right\} \neq 0$. Since $\operatorname{dim} K_{\mu}=n$, we may consider c_{μ} as a cycle of (K_{μ}, L_{μ}) with coefficients in $Z\left(a_{p}\right)$ for each $\mu \in \Gamma$. Take an element μ_{0} of Γ such that $\left(\rho_{p}\right)_{*} c_{\mu_{0}} \neq 0$. This means that, if $c_{\mu_{0}}=\left\{c_{\mu_{0}}(i) \mid i=1,2, \cdots\right\}$, where $c_{\mu_{0}}(i)$ is a cycle of $\left(K_{\mu_{0}}, L_{\mu_{0}}\right) \bmod p^{i 9)}$, there exists some positive integer j_{0} such that $c_{\mu_{0}}(j) \equiv 0 \bmod p^{10)}$ for each $j \geqq j_{0}$. Take an element α_{0} of Ω such that $\alpha_{\alpha_{0}} \neq 0$. We shall prove that the covering $\mathfrak{H}_{\mu_{0}} \times \mathfrak{M}_{\alpha_{0}}=\left\{U \in \mathfrak{H}_{\mu_{0}}\right.$ and $\left.W \in \mathfrak{M}_{\alpha_{0}}\right\}$ of $X \times A$ has no refinement whose order $<m+n$. Let \mathfrak{W} be a refinement of $\mathfrak{H}_{\mu_{0}} \times \mathfrak{B}_{\alpha_{0}}$. Since A is compact, there exist a covering $\mathfrak{H}_{\mu}=\left\{U_{k}{ }^{\mu} \mid k \in \kappa_{\mu}\right\}$ of \boldsymbol{U} and coverings $\mathfrak{B}_{\alpha_{k}}=\left\{W_{l}\right\}, k \in \kappa_{\mu}$, of \boldsymbol{W} such that the covering $\left\{U_{k}{ }^{\mu} \times W_{l} \mid k \in \kappa_{\mu}\right.$ and $\left.W_{l} \in \mathfrak{B}_{\alpha_{k}}\right\}$ is a refinement of \mathfrak{W}. Obviously, \mathfrak{u}_{μ} is a refinement of $\mathfrak{u}_{\mu \cdot}$. Let S_{μ} be the subcomplex of K_{μ} consisting of all closed n-simplexes with a non-zero coefficient in the cycle c_{μ} of (K_{μ}, L_{μ}) with coefficients in $Z\left(\mathfrak{a}_{p}\right)$. Since c_{μ} is a finite chain, S_{μ} is a
9) Cf. the proof of Lemma 7
10) See footnote 7).
finite subcomplex of K_{μ}. Let $\left\{U_{k_{i}}{ }^{\prime \prime} \mid i=1,2, \cdots, t\right\}$ be all vertexes of S_{μ}. Take a covering \mathfrak{W}_{α} of \boldsymbol{W} which is a common refinement of coverings $\mathfrak{W}_{\alpha_{0}}$ and $\mathfrak{W}_{\alpha_{k i}}, i=1,2, \cdots, t$. Put $\mathfrak{M}=\left\{U_{k i}^{\mu} \times W_{l} \mid i=1,2, \cdots, t\right.$ and $\left.W_{l} \in \mathfrak{B}_{\alpha}\right\}$. Let M^{*} be the nerve of \mathfrak{W} and let N^{*} be the nerve of $\mathfrak{W} \cap\left(X \times B \cup X_{0} \times A\right)^{11)}$. By [$\mathbf{1}$, Theorem 12.42], there exists a homomorphism into, $\theta:\left(S_{\mu}, S_{\mu} \cap L_{\mu}\right) \times\left(M_{\alpha}, N_{\alpha}\right)^{12)}$ $\rightarrow\left(M^{*}, N^{*}\right)$, whose image is a deformation retract ${ }^{133}$ of (M^{*}, N^{*}). Let ($M_{0}{ }^{*}, N_{0}{ }^{*}$) be the pair of the nerves of the coverings $\mathfrak{H}_{\mu_{0}} \times \mathfrak{W}_{\alpha_{0}}$ corresponding to (X, X_{0}) $\times(A, B)$. By [1, Theorem 12.42], there exists a homeomorphism into, $\theta_{0}:\left(K_{\mu_{0}}\right.$, $\left.L_{\mu_{0}}\right) \times\left(M_{\alpha_{0}}, N_{\omega_{0}}\right) \rightarrow\left(M_{0}{ }^{*}, N_{0}{ }^{*}\right)$, whose image is a deformation retract of $\left(M_{0}{ }^{*}, N_{0}{ }^{*}\right)$. Define a simplicial mapping π of $\left(M^{*}, N^{*}\right)$ into $\left(M_{0}{ }^{*}, N_{0}{ }^{*}\right)$ by $\pi(U, W)=\left(\delta_{\mu_{0}}^{\mu}(U)\right.$, $\pi_{\alpha_{0}}^{\alpha}(W)$), where U and W are vertexes of S_{μ} and M_{α} respectively. Define a cellular mapping ${ }^{14)} \pi_{0}$ of ($\left.S_{\mu,} S_{\mu} \cap L_{\mu}\right) \times\left(M_{\alpha}, N_{\alpha}\right.$) into ($\left.K_{\mu_{0}}, L_{\mu_{0}}\right) \times\left(M_{\alpha_{0}}, N_{\alpha_{0}}\right)$ by $\pi_{0}(x, y)=\left(\delta \mu_{0}(x), \pi_{\alpha_{0}}^{\alpha}(y)\right),(x, y) \in S_{\mu} \times M_{\alpha}$. By the definition of θ and θ_{0} (cf. [1, p. 317]), we have $\pi \theta \cong \theta_{0} \pi_{0}:\left(S_{\mu}, S_{\mu} \cap L_{\mu}\right) \times\left(M_{\alpha}, N_{\alpha}\right) \rightarrow\left(M_{0}{ }^{*}, N_{0}{ }^{*}\right)^{15)}$. Let i be a positive integer such that the order of the element $a_{\alpha}=p^{i}$. Put $i_{0}=\max \left(i, j_{0}\right)$. Consider the product chain $c_{\mu}\left(i_{0}\right) \times a_{\alpha}{ }^{16)}$ of the chain group $C_{m+n}\left(S_{\mu} \times M_{\alpha}: R_{1}\right)$. Since $c_{\mu}\left(i_{0}\right)$ is a cycle of $\left(S_{\mu}, S_{\mu} \wedge L_{\mu}\right) \bmod p^{i_{0}}, a_{\alpha}$ is a cycle of $\left(M_{\alpha}, N_{\alpha}\right) \bmod 1$ and the order of a_{α} is a divisor of $p^{i_{0}}$, we see that the chain $c_{\mu}\left(i_{0}\right) \times a_{\alpha}$ is a cycle of $\left(S_{\mu}, S_{\mu} \cap L_{\mu}\right) \times\left(M_{\alpha}, N_{\alpha}\right) \bmod 1$. Since $c_{\mu}\left(i_{0}\right) \equiv 0 \bmod p$, we have $c_{\mu \mu}\left(i_{0}\right) \times$ $a_{\alpha} \equiv 0 \bmod 1 .{ }^{\left.16_{\mathrm{a}}\right)} \quad$ Since $\left(\delta_{\mu_{0}}^{\mu}\right)_{*} c_{\mu}\left(i_{0}\right) \equiv c_{\mu_{0}}\left(i_{0}\right) \bmod p^{i_{0}},\left(\pi_{\alpha_{0}}^{\alpha}\right)_{*} a_{\alpha} \equiv \alpha_{\alpha_{0}} \bmod 1$ and the order of a_{α} is a divisor of $p^{i^{i}}$, we have
11) Let $\mathbb{M}=\left\{W_{i}\right\}$ be a collection of subsets of X and let A be a subset of X. By $\mathfrak{B} \cap A$ we mean the collection $\left\{W_{i} \cap A\right\}$ of subsets of A.
12) Let (X, A) and (Y, B) be pairs of topological spaces. By $(X, A) \times(Y, B)$ we mean the pair ($X \times Y, X \times B \cup A \times Y$) of spaces.
13) Let (X, A) and (Y, B) be pairs of topological spaces such that $X \subset Y, A \subset B, X$ and A are closed subsets of Y. It is called that (X, A) is a deformation retract of (Y, B) if there exists a homotopy $F:(Y \times I, B \times I) \rightarrow(Y, B)$ such that $F \mid X \times I=$ the identity, $F \mid Y \times 0=$ the identity, $F(Y \times 1) \subset X$ and $F(B \times 1) \subset A$, where I is the closed interval [0,1].
14) A mapping f of a cell complex K into a cell complex M is called a cellular mapping if $f\left(K^{i}\right) \subset M^{i}$, where K^{i} means the i-section of K.
15) Let (X, A) and (Y, B) be pairs of topological spaces and let f_{0} and f_{1} be two mappings of (X, A) to (Y, B). By $f_{0} \cong f_{1}:(X, A) \rightarrow(Y, B)$ we mean that there exists a homotopy $H: X \times I \rightarrow Y$ such that $H\left|X \times 0=f_{0}, H\right| X \times 1=f_{1}$ and $H(A \times I) \subset B$.
16) Let G_{1} and G_{2} be two abelian groups paired to a third group G, that is, there exist a function $\phi\left(g_{1}, g_{2}\right)$ of $G_{1} \times G_{2}$ into G which is distributive in both variable and whose values are in G. Let $c=\sum t_{j}{ }^{i}{ }_{i} \sigma_{j}{ }^{i}{ }_{i}$ be a chain of (K_{i}, L_{i}) with coefficients in $G_{i}, i=1,2$, where $\sigma_{j}{ }_{j}{ }_{i}$'s are simplexes of $K_{i}, i=1,2$. By the product chain $c_{1} \times c_{2}$ of c_{1} and c_{2} we understand the chain $\sum \phi\left(t_{j_{1}}{ }^{1}, t_{j_{2}}{ }^{2}\right)\left(\sigma_{j_{1}}{ }^{1} \times \sigma_{j_{2}}{ }^{2}\right)$ of the cell complex $\left(K_{1}, L_{1}\right) \times\left(K_{2}, L_{2}\right)$ with coefficients in G.

16a) Let $c=\sum_{i} t_{i} \sigma_{i}$ be a chain of (K, L) with coefficients in R_{1}. By $c \equiv 0 \bmod 1$ we mean that each t_{i} is an integer.

$$
\begin{aligned}
\left(\pi_{0}\right)_{*}\left(c_{\mu}\left(i_{0}\right) \times \alpha_{\alpha}\right) & \equiv\left(\delta_{\mu_{0}}^{\mu} \times \pi_{\alpha_{0}}^{\alpha}\right)_{*}\left(c_{\mu}\left(i_{0}\right) \times a_{\alpha}\right) \\
& \equiv\left(\delta_{\mu_{0}}^{\mu}\right)_{*} c_{\mu}\left(i_{0}\right) \times\left(\pi_{\alpha_{0}}^{\alpha}\right)_{*} \alpha_{\alpha} \\
& \equiv c_{\mu_{0}}\left(i_{0}\right) \times \alpha_{\alpha_{0}} \quad \bmod 1
\end{aligned}
$$

Since $\left(\rho_{p}\right)_{*} c_{\mu_{0}}\left(i_{0}\right) \neq 0, a_{\alpha_{0}} \neq 0$ and $\operatorname{dim}\left(K_{\mu_{0}} \times M_{\alpha_{0}}\right)=m+n, c_{\mu_{0}}\left(i_{0}\right) \times a_{\alpha_{0}}$ is a non-zero cycle of $\left(K_{\mu_{0}}, L_{\mu_{0}}\right) \times\left(M_{\alpha_{0}}, N_{\alpha_{0}}\right) \bmod 1$. Since $\theta_{0}\left(\left(K_{\mu_{0}}, L_{\mu_{0}}\right) \times\left(M_{\alpha_{0}}, N_{\alpha_{0}}\right)\right)$ is a deformation retract of $\left(M_{0}^{*}, N_{0}^{*}\right),\left(\theta_{0}\right)_{*}\left(c_{\mu_{0}}\left(i_{0}\right) \times \alpha_{\alpha_{0}}\right)$ is a non-zero element of $H_{m+n}\left(M_{0}^{*}, N_{0}^{*}: R_{1}\right)$. Assume that the covering \mathfrak{W} has the order $<m+n$. Let (C, D) be the pair of the nerves of \mathfrak{W} corresponding to $\left(X, X_{0}\right) \times(A, B)$ and let π_{1} and π_{2} be projections of $\left(M^{*}, N^{*}\right)$ and (C, D) into (C, D) and ($M_{0}^{*}, N_{0}{ }^{*}$) respectively. Then we have $\pi \cong \pi_{2} \pi_{1}:\left(M^{*}, N^{*}\right) \rightarrow\left(M_{0}^{*}, N_{0}^{*}\right)$. Since $\operatorname{dim} C<m+n$, we have $\left(\theta_{0}\right)_{*}\left(c_{\mu_{0}}\left(i_{0}\right) \times a_{\alpha_{0}}\right)=\left(\theta_{0}\right)_{*}\left(\pi_{0}\right)_{*}\left(c_{\mu}\left(i_{0}\right) \times a_{\alpha}\right)=\left(\theta_{0} \pi_{0}\right)_{*}\left(c_{\mu}\left(i_{0}\right) \times a_{\alpha}\right)=(\pi \theta)_{*}\left(c_{\mu}\left(i_{0}\right) \times\right.$ $\left.a_{\alpha}\right)=\left(\pi_{2}\right)_{*}\left(\pi_{1} \theta\right)_{*}\left(c_{\mu}\left(i_{0}\right) \times a_{\alpha}\right)=0$. This contradicts $\left(\theta_{0}\right)_{*}\left(c_{\mu_{0}}\left(i_{0}\right) \times a_{\alpha_{0}}\right) \neq 0$. Therefore the covering \mathfrak{W} has the order $\geqq m+n$. Since \mathfrak{W} is any refinement of the covering $\mathfrak{H}_{\mu_{0}} \times \mathfrak{W}_{\alpha_{0}}$ of $X \times A$, we have $\operatorname{dim}(X \times A) \geqq \operatorname{dim} X+\operatorname{dim} A$. Since $\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y$ by Lemma 5 and $X \times A$ is a closed subset of $X \times Y$, we have $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$. This completes the proof.

Theorem 2. Let X be an n-dimensional locally compact fully normal space. In order that X is a dimensionally full-valued space for Q, it is necessary and sufficient that X has the property \boldsymbol{P}.

Before proving Theorem 2 we state the following lemma which is proved easily (cf. [7, Theorem 5.1]).

Lemma 9. Let (X, A) be a pair of compact spaces. Let G be the limit group of an inverse system $\left\{G_{\alpha} \mid h_{\alpha^{\beta}}\right\}$ of abelian groups. Then we have an isomorphism

$$
H_{n}(X, A: G) \approx \lim _{\longleftarrow}\left\{H_{n}\left(X, A: G_{\alpha}\right):\left(h_{\alpha^{\beta}}^{\beta}\right)_{*}\right\},
$$

where $\left(h_{\alpha}{ }^{\beta}\right)_{*}$ is the homomorphism of $H_{n}\left(X, A: G_{\beta}\right)$ into $H_{n}\left(X, A: G_{\alpha}\right)$ induced by the homomorphism $h_{\alpha}{ }^{\beta}: G_{\beta} \rightarrow G_{\alpha}$.

Proof of Theorem 2. The sufficiency of Theorem 2 is a consequence of Theorem 1. To prove the necessity of Theorem 2, it is sufficient to prove the following lemma.

Lemma 10. If an n-dimensional locally compact fully normal space X has not the property \boldsymbol{P}, there exists a 2-dimensional compactum Y such that $\operatorname{dim}(X \times Y)=n+1$.

This lemma is proved by a similar way as [10, Lemma 18], but for completness we shall give the proof.

Proof of Lemma 10. Since X has not the property \boldsymbol{P}, there exists a k-sequence $\mathfrak{a}=\left(q_{1}, q_{2}, \cdots\right)$ such that for each pair (A, B) of closed subsets of X. $H_{n}(A, B: Z(\mathfrak{a}))=0$ by [10, Lemma 7]. Let $Q(\mathfrak{a})$ be the 2 -dimensional compactum constructed in $[\mathbf{1 0}, \S 3,3]$. We shall prove that $\operatorname{dim}(X \times Q(\mathfrak{a}))=n+1$. It is sufficient to prove that $\operatorname{dim}(A \times Q(\mathfrak{a}))=n+1$ for each compact subset A of X
by Lemma 3. Take an n-dimensional compact subset X_{0} of X. Let $\boldsymbol{W}=$ $\left\{\mathfrak{W}_{\alpha} \in \Omega\right\}$ be a cofinal system of coverings of X_{0} each member of which has the order n. Let us denote by ϕ_{x} a canonical mapping of $X_{\text {, into the nerve }}$ M_{α} of $\mathfrak{W}_{\alpha}, \alpha \in \Omega$, and by $\pi_{\alpha}{ }^{\beta}$ a projection of M_{β} into M_{α} for $\beta>\alpha$. We shall use the same notations as in the proof of [10, Lemma 18]. Let \mathfrak{H} be a covering of $X_{0} \times Q(a)$. Since X_{0} and $Q(a)$ are compact spaces, there exist an element α_{0} of Ω and a positive integer i_{0} such that, if \mathfrak{V}_{i} is the covering of the simplicial polytope $Q\left(q_{1}, \cdots, q_{i_{0}}\right)$ consisting of the open stars and $\theta_{i_{0}}$ is the projection from $\mathrm{Q}(\mathfrak{a})$ onto $Q\left(q_{1}, \cdots, q_{i_{0}}\right)$ (cf. $[\mathbf{1 0}, \S 3,3]$), the covering $\mathfrak{W}_{\alpha_{0}} \times$ $\left(\theta_{i_{0}}\right)^{-1} \mathfrak{i}_{i_{0}}$ of $X_{0} \times Q(\mathfrak{a})$ is a star refinement ${ }^{17)}$ of \mathfrak{H}. Let σ be an n-dimensional simplex of $M_{\alpha_{0}}$ and let μ be a 2 -dimensional simplex of $Q\left(q_{1}, \cdots, q_{i_{0}}\right)$. Put $A(\sigma)=\phi_{\alpha_{0}}^{-1}(\sigma), B(\sigma)=\phi_{\alpha_{0}}^{-1}(\dot{\sigma}), C(\mu)=\theta_{i_{0}}^{-1}(\mu)$ and $D(\mu)=\theta_{i_{0}}^{-1}(\dot{\mu})$. For each $\alpha>\alpha_{0}$, let us denote by $\left(A_{\alpha}, B_{\alpha}\right)$ the pair of the subcomplexes of M_{α} corresponding to ($A(\sigma), B(\sigma)$). For each $j>i_{0}$, let us denote by $\left(C_{j}, D_{j}\right)$ the pair of the subcomplexes of $Q\left(q_{1}, \cdots, q_{j}\right)$ which is the image of $(C(\mu), D(\mu))$ under the projection $\theta_{j}: Q(\mathfrak{a}) \rightarrow Q\left(q_{1}, \cdots, q_{j}\right)$. Since $A(\sigma)$ and $C(\mu)$ are compact sets, we have an isomorphism $H_{n+2}\left((A(\sigma), B(\sigma)) \times(C(\mu), D(\mu)): R_{1}\right) \approx \lim \left\{H_{n+2}\left(\left(A_{\alpha}, B_{\alpha}\right) \times\left(C_{i}, D_{i}\right):\left(\pi_{\alpha}^{\beta}\right.\right.\right.$ $\left.\times \theta_{i}{ }^{j}\right)_{*} \mid \alpha_{0}<\alpha<\beta$ and $\left.i_{0}<i<j\right\}$ by [10, Lemma 5], where $\pi_{\alpha{ }^{\beta}}$ and $\theta_{i}{ }^{j}$ are the restricted projections $\pi_{\alpha^{\beta}} \mid A_{\beta}:\left(A_{\beta}, B_{\beta}\right) \rightarrow\left(A_{\alpha}, B_{\alpha}\right)$ and $\theta_{i}{ }^{j} \mid C_{j}:\left(C_{j}, D_{j}\right) \rightarrow\left(C_{i}, D_{i}\right)$ respectively. Take an element $a=\left\{a_{\alpha, i} \mid \alpha>\alpha_{0}\right.$ and $\left.i=i_{0}+1, i_{0}+2, \cdots\right\}$ of $\left.H_{n+2}(A(\sigma), B(\sigma)) \times(C(\mu), D(\mu)): R_{1}\right)$, where $\alpha_{\alpha, i} \in H_{n+2}\left(\left(A_{\alpha}, B_{\alpha}\right) \times\left(C_{i}, D_{i}\right): R_{1}\right)$. By a similar way as in the proof of [10, Lemma 18], we have

$$
\begin{aligned}
& a_{\alpha, i_{0}+1}=u_{\alpha} \times \frac{1}{q_{i_{0}+1}} \delta\left(i_{0}+1\right), \\
& a_{\alpha, i_{0}+2}=\sum_{h_{1}=1}^{l_{1}}\left(u_{\alpha, h_{1}} \times \frac{1}{q_{i_{0}+2}} \delta_{h_{1}}\left(i_{0}+2\right)\right), \\
& \vdots \\
& \vdots \\
& a_{\alpha, i_{0}+k}=\sum_{n_{1}=1}^{l_{1}} \cdots \sum_{n_{k-1}=1}^{l_{k-1}}\left(u_{\alpha, h_{2} \cdots h_{k-1}} \times \frac{1}{q_{i_{0}+k}} \delta_{h_{1} \cdots h_{k-1}}\left(i_{0}+k\right)\right), \\
& \vdots
\end{aligned}
$$

where $u_{\alpha, h_{2} \cdots h_{k-1}}$ is a cycle of $\left(A_{\alpha}, B_{\alpha}\right) \bmod q_{i_{\bullet}+k}$ and $\delta_{h_{1 \cdots} \cdots h_{k-1}}\left(i_{0}+k\right)$ is the fundamental chain with the value ± 1 on each 2 -simplex of the Möbius band $M_{h_{1} \cdots h_{k-1}}\left(q_{i_{\circ}+k} / q_{i_{0}+k-1}, q_{i_{0}+k}\right), h_{1}=1, \cdots, l_{1}, \cdots, h_{k-1}=1, \cdots, l_{k-1}$, of which the complex $C_{i_{\bullet}+k}$ consists (cf. [10, pp. 390 and 396]). Since $\left(\pi_{\alpha}^{\alpha} \times \theta_{i_{\bullet}+k}^{i_{0}+k+1}\right)_{*} a_{\alpha, i_{\bullet}+k+1}=a_{\alpha, i_{\bullet}+k}$,
17) Let $\mathfrak{a}=\left\{U_{\alpha} \mid \alpha \in \Omega\right\}$ and \mathfrak{B} be coverings of topological space. It is called that \mathfrak{H} is a star refinement of \mathfrak{B} if the covering $\left\{\bigcup_{U_{\alpha} \cap U_{\mathcal{\beta}} \neq \phi} U_{\beta} \mid \alpha \in \Omega\right\}$ is a refinement of V (Cf. [15, Chap. V]).
if we denote by $h_{i}{ }^{j}$ a natural homomorphism from $Z_{q_{j}}$ onto $Z_{q_{i}}$ for $j>i$, we have $\left(h_{i_{0}+k}^{i i_{k}+k+1}\right) * u_{\alpha, h_{1} \cdots h_{k}}=u_{\alpha, h_{1} \cdots h_{k}-1}$. Let $\alpha_{0}<\alpha<\beta$. Since $\left(\pi_{\alpha}^{\beta} \times \theta_{i_{0}+k}^{i_{0}+k}\right) * a_{\beta, i_{0}+k}=$ $a_{\alpha, i_{0}+k}$, we have $\left(\pi_{\alpha}^{\beta}\right)_{*} u_{\beta, n_{3} \cdots h_{k-1}} \equiv u_{\alpha, h_{1} \cdots h_{k}-1} \bmod q_{i_{0}+k}$. Let $\alpha_{0}<\alpha<\beta$ and $i_{0}<i<j$. Define a homomorphism $\mathfrak{P}_{\left(\alpha, \alpha_{i}\right)}^{(\beta, j)}: H_{n}\left(A_{\beta}, B_{\beta}: Z_{q_{j}}\right) \rightarrow H_{n}\left(A_{\alpha}, B_{\alpha}: Z_{q_{i}}\right)$ by a composition of homomorphisms $\left(h_{i}{ }^{j}\right)_{*}: H_{n}\left(A_{\beta}, B_{\beta}: Z_{q_{j}}\right) \rightarrow H_{n}\left(A_{\beta}, B_{\beta}: Z_{q_{i}}\right)$ and $\left(\pi_{\alpha}^{\beta}\right)_{*}: H_{n}\left(A_{\beta}, B_{\beta}: Z_{q i}\right) \rightarrow H_{n}\left(A_{\alpha}, B_{\alpha}: Z_{q_{i}}\right)$. Since $(A(\sigma), B(\sigma))$ is a pair of compact spaces, we have an isomorphism $H_{n}(A(\sigma), B(\sigma): Z(\mathfrak{a})) \approx \lim \left\{H_{n}\left(A_{\alpha}, B_{\alpha}: Z_{q_{i}}\right)\right.$: $\mathfrak{P}_{(\alpha, i)}^{(\beta, j)} \mid \alpha_{0}<\alpha<\beta$ and $\left.i_{0}<i<j\right\}$ by Lemma 9, Let $\alpha_{0}<\alpha<\beta$. We have $\mathfrak{P}_{\left(\alpha, i i_{0}+k+1\right)}^{\left(\beta, i_{1}+1\right)}\left(u_{\beta, h_{1} \cdots l_{k}}\right)=\left(\pi_{\alpha}^{\beta}\right)_{*}\left(h_{i_{\circ}+k}^{i_{0}+k+1}\right) * u_{\beta, h_{1} \cdots h_{k}}=\left(\pi_{\alpha}^{\beta}\right)_{*} u_{\beta, h_{2} \cdots h_{k-1}}=u_{\alpha, h_{1} \cdots h_{k}-1}$. Therefore, a collection $\left\{u_{\alpha, h_{1} \cdots h_{k}} \mid \alpha_{0}<\alpha\right.$ and $\left.k=1,2, \cdots\right\}$ determines an element of the group $\lim _{\leftarrow}\left\{H_{n}\left(A_{\alpha}, B_{\alpha}: Z_{q_{i}}\right)\right\}$. Since $H_{n}(A(\sigma), B(\sigma): Z(\mathfrak{a}))=0$, each $u_{\alpha, h_{2} \cdots h_{k}}$ must be zero. This means that $u_{\alpha, h_{1} \cdots h_{k}} \equiv 0 \bmod q_{i_{0}+k+1}$ for $\alpha>\alpha_{0}, h_{1}=1, \cdots, l_{1}, h_{2}=$ $1, \cdots, l_{2}, \cdots, h_{k}=1, \cdots, l_{k}$ and $k=1,2, \cdots$. Hence, we have $\alpha_{\alpha, i}=0$ for $\alpha>\alpha_{0}$ and $i=i_{0}+1, i_{0}+2, \cdots$. Thus we can conclude $H_{n+2}\left((A(\sigma), B(\sigma)) \times(C(\mu), D(\mu)): R_{1}\right)=0$. By Lemma 1, the restricted mapping ($\left.\phi_{\alpha_{0}} \times \theta_{i_{0}}\right) \mid(A(\sigma) \times D(\mu) \cup B(\sigma) \times C(\mu))$ is extended to a mapping $\psi(\sigma, \mu)$ of $A(\sigma) \times C(\mu)$ into $(\sigma \times \mu) \cup(\sigma \times \mu)$. Define a mapping ψ of $X_{0} \times Q(a)$ into $\left(M_{\alpha_{0}} \times Q\left(q_{1}, \cdots, q_{i o}\right)\right)^{n+1}$ by $\psi(x, y)=\psi(\sigma, \mu)(x, y)$ for $(x, y) \in A(\sigma) \times C(\mu)$, where L^{k} means the k-section of the cell complex L. Since the covering $\mathfrak{B}_{\alpha_{0}} \times\left(\theta_{i_{0}}\right)^{-1} \mathfrak{B}_{i_{0}}$ is a star refinement of \mathfrak{U}, the mapping ψ is a (\mathfrak{l}, K)-mapping, where K means the k-section of the cell complex $M_{\alpha_{0}} \times Q(q, \cdots$, $\left.q_{i_{0}}\right)$. Since \mathfrak{U} is any covering of $X_{0} \times Q(\mathfrak{a})$, we have $\operatorname{dim}\left(X_{0} \times Q(\mathfrak{a})\right) \leqq n+1$ by Lemma 4. Since $\operatorname{dim}\left(X_{0} \times Q(\mathfrak{a})\right) \geqq n+1$ by [8], we can conclude that $\operatorname{dim}\left(X_{0} \times\right.$ $Q(a))=n+1$. Since X_{0} is any n-dimensional compact subset of X, this completes the proof.

By a slight modification of the proof of Theorem 1 we can prove the following lemma.

Lemma 11. An n-dimensional fully normal space X is a dimensionally fullvalued space for Q if X has the following property (*):

There exist a cofinal system $\boldsymbol{U}=\left\{\mathfrak{H}_{\mu} \mid \mu \in \Gamma\right\}$ of coverings of X and a covering $\mathfrak{H}_{\mu_{0}}$ of \boldsymbol{U} which satisfy the following condition; for each prime number p there exists a closed subset A_{p} of X such that, if $\mu>\mu_{0}$, $0 \neq\left(\rho_{p}\right)_{*}\left(\delta_{\mu_{0}}^{\mu}\right)_{*}: H_{n}\left(K_{\mu}, L_{\mu}: Z\left(a_{p}\right)\right) \rightarrow H_{n}\left(K_{\mu_{0}}, L_{\mu_{0}}: Z_{p}\right)$, where $\left(K_{\mu}, L_{\mu}\right)$ is the pair of the nerves of \mathfrak{H}_{μ} corresponding to $\left(X, A_{p}\right), \delta_{\mu_{0}}^{\mu}$ is a projection of $\left(K_{\mu}, L_{\mu}\right)$ into ($K_{\mu_{0}}, L_{\mu_{0}}$) and ρ_{p} is a natural homomorphism from $Z(\mathfrak{a})$ onto Z_{p}.
Lemma 12. A 1-dimensional fully normal space has the property (*) mentioned in Lemma 11.

Proof. Let X be a 1 -dimensional fully normal space. Since Ind $X^{18)} \geqq 1$

[^2]by [2, 1.7], there exists a closed subset A such that, whenever U is an open set of X containing A, we have $\bar{U}-U \neq \phi$, where \bar{U} is the closure of U in X. Let x be a point of X. Let \mathfrak{l} be a covering of X. By $A \sim x$ in \mathfrak{H} we shall mean that there exists a finite number of elements U_{i} of $\mathfrak{u}, i=1,2, \cdots, n$, such that $U_{1} \cap A \neq \phi, x \in U_{n}$ and $U_{i} \cap U_{i+1} \neq \phi, i=1,2, \cdots, n-1$. Since the set $\cup\{x \mid A \sim x$ in $\mathfrak{H}\}$ is a closed and open set containing A, we have $A \sim x$ for each $x \in X$. Take a point x_{0} of $X-A$. Let $\left\{\mathfrak{u}_{\mu} \mid \mu \in \Gamma\right\}$ be a cofinal system of coverings of X each member of which has the order 1. Let $\mathfrak{u}_{\mu}{ }^{\prime}=\left\{U_{\mu k^{\prime}} \mid k \in \kappa_{\mu}\right\}, \mu \in \Gamma$. We may assume that there exists an open set $U_{\mu k_{0}}{ }^{\prime}$ of $\mathfrak{H}_{\mu \mu}{ }^{\prime}$ such that $U_{\mu k_{0}}{ }^{\prime} \cap A$ $=\phi, x_{0} \in U_{\mu k_{0}}{ }^{\prime}$ and $x_{0} \notin U_{\mu k^{\prime}}$ for $k \neq k_{0}$. By [12, Theorem 1.1], there exists a covering $\mathfrak{B}_{\mu}=\left\{V_{\mu k} \mid k \in \kappa_{\mu}\right\}$ such that $\bar{V}_{\mu k} \subset U_{\mu k}^{\prime}$ for each $k \in \kappa_{\mu}$. Put $U_{\mu_{0}}=$ $X-\bigcup_{k \neq k_{0}} \bar{V}_{\mu k}, U_{\mu k_{0}}=V_{\mu k_{0}}-x_{0}$ and $U_{\mu k}=V_{\mu k}$ for $k \neq k_{0}$. Then $\left\{\mathfrak{U}_{\mu}=\left\{U_{\mu 0}, U_{\mu k_{0}}, U_{\mu k}\right.\right.$ for $\left.\left.k \in \kappa_{\mu}\right\} \mid \mu \in \Gamma\right\}$ forms a cofinal system \boldsymbol{U} of coverings of X each member of which has the order 1 . Let $\left(K_{\mu}, L_{\mu} \cup U_{\mu_{0}}\right)$ be the pair of the nerves of \mathfrak{H}_{μ} corresponding to ($X, A \cup x_{0}$), $\mu \in \Gamma$, where $U_{\mu 0}$ means the vertex corresponding to the open set $U_{\mu 0}$ containing x_{0}. Since $A \sim x_{0}$ in \mathfrak{H}_{μ} for each $\mu \in \Gamma$, the group $H_{1}\left(K_{\mu}, L_{\mu} \cup U_{\mu 0}: Z\right)$ contains a non-zero cycle z_{μ} such that the 1 -simplex ($U_{\mu 0}, U_{\mu k_{0}}$) of K_{μ} appears in z_{μ} with the coefficient $\pm 1, \mu \in \Gamma$. Let ρ be the homomorphism of Z into $Z\left(\mathfrak{a}_{p}\right)$ defined by $\rho(1)=\left\{h_{i}(1) \mid i=1,2, \cdots\right\}$, where h_{i} is a natural projection of Z into $Z_{p^{i}}=Z / p^{i} Z, i=1,2, \cdots$. The image \tilde{z}_{μ} of z_{μ} under the induced homomorphism $(\rho)_{*}$ is a non-zero element of $H_{1}\left(K_{\mu}, L_{\mu} \cup\right.$ $U_{\mu 0}: Z\left(\mathfrak{a}_{p}\right)$). Let \mathfrak{H}_{ν} be a refinement of \mathfrak{H}_{μ} and let $\delta_{\mu}{ }^{\nu}$ be a projection of $\left(K_{\nu}, L_{\nu} \cup U_{\nu 0}\right)$ into ($\left.K_{\mu}, L_{\mu} \cup U_{\mu 0}\right)$. By the construction of the coverings $\left\{\mathfrak{H}_{\mu}\right\}$, the image of z_{ν} under the induced homomorphism $\left(\delta_{\mu}{ }^{\nu}\right)_{*}: H_{1}\left(K_{\nu}, L_{\nu} \cup U_{\nu_{0}}: Z\right) \rightarrow$ $H_{1}\left(K_{\mu}, L_{\mu} \cup U_{\mu 0}: Z\right)$ is a cycle which has the coefficient ± 1 on the 1-dimensional simplex $\left(U_{\mu 0}, U_{\mu k_{0}}\right)$ of K_{μ}. Therefore we have $\left(\rho_{p}\right)_{*}\left(\delta_{\mu}{ }^{\nu}\right)_{*} \tilde{z}_{\nu} \neq 0$, where $\left(\delta_{\mu}{ }^{\nu}\right)_{*}$: $H_{1}\left(K_{\nu}, L_{\nu} \cup U_{\nu 0}: Z\left(\mathfrak{a}_{p}\right)\right) \rightarrow H_{1}\left(K_{\mu}, L_{\mu} \cup U_{\mu 0}: Z\left(\mathfrak{a}_{p}\right)\right)$ and $\left(\rho_{p}\right)_{*}: H_{1}\left(K_{\mu}, L_{\mu} \cup U_{\mu 0}: Z\left(\mathfrak{a}_{p}\right)\right)$ $\rightarrow H_{1}\left(K_{\mu}, L_{\mu} \cup U_{\mu 0}: Z_{p}\right)$. This shows that, if we put $A_{p}=A \cup x$ for each prime number p and $\mathfrak{H}_{\mu 0}=$ any covering of \boldsymbol{U}, X has the property (*). This completes the proof.

By making use of Lemma 9 the proof of Lemma 12 shows that the following lemma holds.

Lemma 13. A 1-dimensional locally compact fully normal space has the property \boldsymbol{P}.

The following theorem is a consequence of Lemmas 11 and 12 .
Theorem 3. A 1-dimensional fully normal space is a dimensionally fullvalued space for Q.

The following lemma is proved by a similar way as in the proof of [10, Lemma 20] and we omit the proof.

Lemma 14. If an n-dimensional fully normal space contains a closed subset
A such that $H_{n}(X, A: Z) \neq 0$, then X has the property \boldsymbol{P}^{19}.
By Lemma 14 and Theorem 1 we have the following corollary.
Corollary 1. If an n-dimensional fully normal space X contains a closed subset A such that $H_{n}(X, A: Z) \neq 0$, then X is a dimensionally full-valued space for Q.

The following corollary which is a generalization of [10, Corollary 2] is a consequence of Corollary 1 and [10, Lemmas 21-23].

Corollary 2. The following spaces are dimensionally full-valued spaces for Q.

1) Finite or infinite polytopes with the Whitehead weak topology.
2) Two dimensional locally compact ANR's. ${ }^{20)}$
3) M-dimensional ANR's containing points which are HL^{m-1} and ($m-1$)-HS ${ }^{21)}$.
4) Finite dimensional and locally compact ANR's which have the property Δ in the sense of Borsuk ${ }^{22}$.

Remark. Consider the following properties of an n-dimensional fully normal space X.
$\boldsymbol{P}_{1} . \quad\left\{\begin{array}{l}\text { For every prime number } p \text { and every } k \text {-sequence a each member of which } \\ \text { is a power of } p \text { there exists a closed subset } A_{a} \text { of } X \text { such that } H_{n}\left(X, A_{a} \text { : }\right.\end{array}\right.$ $Z(\mathfrak{a})) \neq 0$.
$\boldsymbol{P}_{2} . \quad\left\{\begin{array}{l}\text { For every prime number } p \text { there exists a closed subset } A_{p} \text { of } X \text { such }\end{array}\right.$ By a similar way as [10, Lemmas 2 and 3 in Addendum], we can prove that the three properties $\boldsymbol{P}, \boldsymbol{P}_{1}$ and \boldsymbol{P}_{2} of an n-dimensional fully normal space are equivalent. Therefore we have

Theorem 2^{\prime}. In order that an n-dimensional locally compact fully normal
19) In this case we can prove easily that X has the property (*) mentioned in Lemma 11, too.
20) A metric space X is called an ANR if, whenever X is a closed subset of a metric space Y, there exists a mapping from some neighborhood of X in Y into X which keeps X point-wise fixed.
21) Let E^{j+1} be a $(j+1)$-cell whose boundary is a j-sphere S^{j}. A point x_{0} of a topological space is called HL^{k} if for each neighborhood U of x_{0} there exists a neighborhood V of x_{0} such that any mapping $f: S_{j}^{j} \rightarrow V-x_{0}$ is extensible to a mapping $F: E^{j+1} \rightarrow U-x_{0}$ for $j=0,1, \ldots, k$. A point x_{0} of a topological space is called k-HS if there exists a neighborhood U of x_{0} such that for any neighborhood V of x_{0} there exists a mapping $f: S^{k} \rightarrow V-x_{0}$ which has no extension $F: E^{k+1} \rightarrow U-x_{0}$. (Cf. Y. Kodama, On homotopically stable points and product spaces, Fund. Math., 44 (1957), 171-185.)
22) A topological space X is said to have the property Δ if for each point x of X and each neighborhood U of x there exists a neighborhood V of x such that every compact subset A of V is contractible in a subset of U of the $\operatorname{dimension} \leqq \operatorname{dim} A+1$. (Cf. K. Borsuk, Ensembles dont les dimensions modulaires de Alexandroff coincident avec la dimension de Menger-Urysohn, Fund. Math., 27 (1936), 77-93.)
space X be a dimensionally full-valued space for Q, it is necessary and sufficient that X have any one property of $\boldsymbol{P}, \boldsymbol{P}_{1}$ and \boldsymbol{P}_{2}.

In [10, Addendum], we have proved that our property P is equivalent to the following Boltyanskii's property for n-dimensional compact metric spaces.
B.

For every prime number p there exists a pair $\left(A_{p}, B_{p}\right)$ of closed subsets of X such that $H^{n}\left(A_{p}, B_{p}: Q_{p}\right) \neq 0$, where Q_{p} means the additive group of all rational numbers of the form m / p^{k} reduced modulo 1 and $H^{n}(A, B: G)$ means the n-dimensional unrestricted Čech cohomology group of (A, B) with coefficients in G.
But we do not know whether Boltyanskii's property \boldsymbol{B} is equivalent to our property \boldsymbol{P} even for locally compact fully normal spaces, since it seems that the duality between the unrestricted Čech homology groups and cohomology groups does not hold generally.

§4. Examples.

Let $\mathfrak{p}=\left(p_{1}, p_{2}, \cdots\right)$ be a sequence of positive integers. We shall construct a 2 -dimensional continuum $R(\mathfrak{p})$ for each \mathfrak{p}. Let E be a 2 -cell whose boundary is a 1 -sphere S. For a positive integer q, let us denote by $N(q)$ a polytope obtained from E by identifying points on S corresponding to each other under the rotation of angle $2 \pi / q$. Let f be the identification mapping. We shall call $f(S)$ the " boundary" of $N(q)$. The boundary of $N(q)$ is a 1 -sphere. In general, $N(q)$ is a 2 -dimensional curvilinear polytope. We shall consider $N(q)$ as a simplicial polytope with a fixed triangulation. Let T be the boundary of $N(q)$. Let us give an orientation to each 2 -simplex of $N(q)$ such that the integral chain $c(N(q))$ which has the value 1 on each 2 -simplex is a cycle relative to T. Obviously $H_{2}(N(q), T: Z) \approx Z$ and $c(N(q))$ is a generator of $H_{2}(N(q), T: Z)$. We call $c(N(q))$ the fundamental chain of $N(q)$. The following lemma is proved easily by a similar way as in the proof of [10, Lemma 14].

Lemma 15. Let f be a topological mapping from the boundary T of $N(q)$ onto the 1-sphere S which is the boundary of the 2 -cell E and let $F:(N(q), T) \rightarrow$ (E, S) be an extension of $f .{ }^{23)}$ If F_{*} is the induced homomorphism of $H_{2}(N(q)$, $T: Z)$ into $H_{2}(E, S: Z)$, we have $F_{*}\left(c(N(q))=q \cdot \nu\right.$, where ν is a generator of $H_{2}(E$, $S: Z)$.

Put $R\left(p_{1}\right)=N\left(p_{1}\right)$. Let us replace every triangle τ of $R\left(p_{1}\right)$ by $N_{\tau}\left(p_{2}\right)$ such that $N_{\tau}\left(p_{2}\right) \cap N_{\tau}\left(p_{2}\right)=T \cap T^{\prime}$, where each $N_{\tau}\left(p_{2}\right)$ is a topological image ${ }^{23 a}$)
23) Since E is contractible in itself, it is obvious that there exists at least one extension F of f.

23a) By a topological image of a topological space X we mean a space homeomorphic to X.
of $N\left(p_{2}\right), T$ and T^{\prime} are the boundaries of $N_{\tau}\left(p_{2}\right)$ and $N_{F^{\prime}}\left(p_{2}\right)$ respectively. We have a 2 -dimensional simplicial complex $R\left(p_{1}, p_{2}\right)=\bigcup_{\tau} N_{\tau}\left(p_{2}\right)$. Let Δ_{1} be the 1 -section of $R\left(p_{1}\right)$. We may consider Δ_{1} as a subset of $R\left(p_{1}, p_{2}\right)$. There exists a projection $\phi_{1}{ }^{2}$ from $R\left(p_{1}, p_{2}\right)$ onto $R\left(p_{1}\right)$ such that the restricted mapping $\phi_{1}{ }^{2} \mid \Delta_{1}$ is topological. The integral chain $c\left(p_{1}, p_{2}\right)=\sum_{\tau} c\left(N_{\tau}\left(p_{2}\right)\right)$ is a cycle of $R\left(p_{1}, p_{2}\right)$ relative to the boundary T of $R\left(p_{1}\right)$, where $c\left(N_{-}\left(p_{1}\right)\right)$ is the fundamental chain of $N_{\tau}\left(p_{2}\right)$, and $c\left(p_{1}, p_{2}\right)$ is a generator of the group $H_{2}\left(R\left(p_{1}, p_{2}\right)\right.$, $T: Z$) which is isomorphic to Z. Moreover, by Lemma 15, we have $\left(\phi_{1}{ }^{2}\right)_{*} c\left(p_{1}, p_{2}\right)$ $=p_{2} \cdot c\left(p_{1}\right)$, where $c\left(p_{1}\right)$ is the fundamental chain of $R\left(p_{1}\right)$. Let us suppose that for some i we have constructed the following 2 -dimensional simplicial polytope $R\left(p_{1}, \cdots, p_{i}\right)$: (1) $R\left(p_{1}, \cdots, p_{i}\right)$ contains the 1 -section Δ_{i-1} of $R\left(p_{1}, \cdots, p_{i-1}\right)$, (2) there exists a projection ϕ_{i-1}^{i} from $R\left(p_{1}, \cdots, p_{i}\right)$ onto $R\left(p_{1}, \cdots, p_{i-1}\right)$ such that the restricted mapping $\Varangle_{i-1}^{i} \mid \Delta_{i-1}$ is topological, (3) $H_{2}\left(R\left(p_{1}, \cdots, p_{l}\right), T: Z\right) \approx Z$, (4) the integral chain $c\left(p_{1}, \cdots, p_{i}\right)$ which has the value 1 on each 2 -simplex of $R\left(p_{1}, \cdots, p_{i}\right)$ is a generator of $H_{2}\left(R\left(p_{1}, \cdots, p_{i}\right), T: Z\right)$ and $\left(\phi_{i-1}^{i}\right) * c\left(p_{1}, \cdots, p_{i}\right)=p_{i}$. $c\left(p_{1}, \cdots, p_{i-1}\right)$. Let us replace every triangle μ of $R\left(p_{1}, \cdots, p_{i}\right)$ by $N_{\mu}\left(p_{i+1}\right)$ such that $N_{\mu \prime}\left(p_{i+1}\right) \cap N_{\mu \prime}\left(p_{i+1}\right)=T_{\mu} \cap T_{\mu^{\prime}}$, where $N_{\mu \prime}\left(p_{i+1}\right)$ is a topological image of $N\left(p_{i+1}\right), T_{\mu}$ and $T_{\mu^{\prime}}$ are the bouudaries of $N_{\mu}\left(p_{i+1}\right)$ and $N_{\mu \prime}\left(p_{i+1}\right)$ respectively. We have a 2 -dimensional simplicial complex $R\left(p_{1}, \cdots, p_{i+1}\right)=\bigcup_{\mu} N_{\mu}\left(p_{i+1}\right)$. If Δ_{i} is the 1 -section of $R\left(p_{1}, \cdots, p_{i}\right)$, we may consider Δ_{i} as a subset of $R\left(p_{1}, \cdots\right.$, $\left.p_{i+1}\right)$. There exists a projection ϕ_{i}^{i+1} from $R\left(p_{1}, \cdots, p_{i+1}\right)$ onto $R\left(p_{1}, \cdots, p_{i}\right)$ such that the restricted mapping $\phi_{i}^{i+1} \mid \Delta_{i}$ is topological. Obviously $H_{2}\left(R\left(p_{1}, \cdots, p_{i+1}\right)\right.$, $T: Z) \approx Z$ and the integral chain $c\left(p_{1}, \cdots, p_{i+1}\right)=\sum_{\mu} c\left(N_{\mu}\left(p_{i+1}\right)\right)$ is a generator of $H_{2}\left(R\left(p_{1}, \cdots, p_{i+1}\right)\right.$, where $c\left(N_{\mu}\left(p_{i+1}\right)\right)$ is the fundamental chain of $N_{\mu}\left(p_{i+1}\right)$. Moreover, by Lemma 15, we have $\left(\phi_{i}^{i+1}\right) * c\left(p_{1}, \cdots, p_{i+1}\right)=p_{i+1} \cdot c\left(p_{1}, \cdots, p_{i}\right)$. Put $R(p)=$ $\lim \left\{R\left(p_{1}, \cdots, p_{i}\right): \phi_{i-1}^{i}\right\}$. Let ϕ_{i} be the projection from $R(\mathfrak{p})$ onto $R\left(p_{1}, \cdots, p_{i}\right)$. $\overleftarrow{\mathrm{We}}$ shall call the boundary of $R\left(p_{1}\right)$ the " boundary" of $R(p)$.

Lemma 16. For each sequence \mathfrak{p} of positive integers the space $R(p)$ is a 2-dimensional continuum.

Proof. Let $\mathfrak{p}=\left(p_{1}, \cdots, p_{i}, \cdots\right)$. Put $q_{i}=p_{1} \cdot p_{2} \cdots \cdot p_{i}$ for $i=1,2, \cdots$. Let T be the boundary of $R(p)$. By the continuity theorem of Čech homology groups (cf. [6, Chap. X]), we have an isomorphism $H_{2}\left(R(p), T: R_{1}\right) \approx \lim \left\{H_{2}\left(R\left(p_{1}, \cdots, p_{i}\right)\right.\right.$, $\left.\left.T: R_{1}\right):\left(\phi_{i}^{i+1}\right)_{*}\right\}$. Consider the collection $\left\{\left.\frac{1}{q_{i}^{-}} c\left(p_{1}, \cdots, p_{i}\right) \right\rvert\, i=1,2, \cdots\right\}$, where $c\left(p_{1}, \cdots, p_{i}\right)$ is a generator of the group $H_{2}\left(R\left(p_{1}, \cdots, p_{i}\right), T: Z\right)$. Since $\left(\phi_{i}^{i+1}\right)_{*} c\left(p_{1}\right.$, $\left.\cdots, p_{i+1}\right)=p_{i+1} \cdot c\left(p_{1}, \cdots, p_{i}\right)$, we have $\left(\phi_{i}^{i+1}\right) *\left(\frac{1}{q_{i+1}} c\left(p, \cdots, p_{i+1}\right)\right)=\frac{1}{q_{i}} c\left(p_{1}, \cdots, p_{i}\right)$ for $i=1,2, \cdots$. Therefore $\left\{\frac{1}{q_{i}} c\left(p_{1}, \cdots, p_{i}\right)\right\}$ determines a non-zero element of $H(R(\mathfrak{p})$, $T: R_{\mathrm{f}}$). By Lemma 2 we have $\operatorname{dim} R(\mathfrak{p}) \geqq 2$. Since $\operatorname{dim} R(\mathfrak{p}) \leqq 2$ by [10, Lemma

12], we have $\operatorname{dim} R(\mathfrak{p})=2$.
The following lemma shows that the converse of Corollary 1 is not true.
Lemma 17. There exists a 2-dimensional continuum X such that (i) X has the property \boldsymbol{P}, (ii) for each pair (A, B) of closed subsets we have $H_{2}(A, B: Z)=0$.

Proof. Let p be a prime number. Let $\mathfrak{p}(p)$ be the sequence (p, p, \cdots). Let us prove that the continuum $R(\mathfrak{p}(p))$ has the following properties: (1) $H_{2}\left(R(\mathfrak{p}(p)), T: Z\left(\mathfrak{a}_{q}\right)\right) \neq 0$ for each prime number $q \neq p$, where T is the boundary of $R(p(p))$, (2) $H_{2}(A, B: Z)=0$ for each pair (A, B) of closed subsets. Let us denote by R_{i} the 2 -dimensional simplicial polytope $R\left(\frac{p \text {-fold }}{i, \cdots, p}\right), i=1,2, \cdots$. Put $\phi_{i}{ }^{j}=\phi_{i}^{i+1} \cdots \phi_{j-1}^{j}, j>i$, where ϕ_{i}^{i+1} is the projection from R_{i+1} onto R_{i}. Let $h_{i}{ }^{j}$ be a natural homomorphism from $Z_{q} j$ onto $Z_{q^{i}}, j>i$. For $j>i$ and $j^{\prime}>i^{\prime}$,
 of the homomorphisms $\left(h_{i^{\prime}}^{j^{\prime}}\right)_{*}: H_{2}\left(R_{j}, T: Z_{q^{j}}\right) \rightarrow H_{2}\left(R_{j}, T: Z_{q^{i}}{ }^{i}\right)$ and $\left(\phi_{i}{ }^{j}\right)_{*}: H_{2}\left(R_{j}, T\right.$: $\left.Z_{q^{i}}\right) \rightarrow H_{2}\left(R_{i}, T: Z_{q^{i}}\right)$. By Lemma 9 we have an isomorphism $H_{2}\left(R(p(p)), T: Z\left(\mathfrak{a}_{q}\right)\right)$
 gral cycle relative to T, we may consider c_{i} as a cycle relative to $T \bmod p^{j}$, $j=1,2, \cdots$ and $i=1,2, \cdots$. Let $j>i$ and $j^{\prime}>i^{\prime}$. Since p and q are coprime numbers, we have $\Re\left(\Re_{\left.i i^{\prime} i^{\prime}\right)}^{(j, j)} c_{j} \equiv\left(\phi_{i}{ }^{j}\right)_{*}\left(h_{i}^{j)^{\prime}}\right)_{*} c_{j} \equiv\left(\phi_{i}{ }^{j}\right)_{*} c_{j} \equiv p^{(j-i)} \cdot c_{i} \equiv 0 \bmod q^{i{ }^{i}}\right.$. Ac-
 is a finite group for $i=1,2, \cdots$ and $i^{\prime}=1,2, \cdots$, we can conclude that $\left.H_{2}(R(p) p)\right)$, $\left.T: Z\left(\mathfrak{a}_{q}\right)\right) \neq 0$ by Lemma 6. This completes the proof of (1). To prove (2), by [10, Lemma 7], it is sufficient to prove that $H_{2}(R(p(p)), A: Z)=0$ for each closed subset A of $R(p(p))$. Put $A_{i}=\phi_{i}(A), i=1,2, \cdots$, where ϕ_{i} is the projection from $R(p(p))$ onto R_{i}. Let \bar{A}_{i} be the smallest closed subcomplex of the simplicial polytope R_{i} containing A_{i}. Then the projection ϕ_{i}^{i+1} maps \bar{A}_{i+1} into $\bar{A}_{i}, i=1,2, \cdots$. Since $(R(p(p)), A)=\lim _{\leftrightarrows}\left\{\left(R_{i}, \bar{A}_{i}\right): \phi_{i}^{i+1}\right\}^{24)}$, by the continuity theorem of Čech homology groups, we have an isomorphism $H_{2}(R(\mathfrak{p}(p)), A: Z)$ $\approx \lim \left\{H_{2}\left(R_{i}, \bar{A}_{i}: Z\right):\left(\phi_{i}^{i+1}\right)_{*}\right\}$. Take a 2 -simplex σ of $R_{k}-\bar{A}_{k}$ for some k. Put $\sigma_{j}=\left(\phi_{k}{ }^{j}\right)^{-1} \sigma, j>k$. Let $a=\left\{a_{i} \mid i=1,2, \cdots\right\}$ be any element of $H_{2}(R(p(p)), A: Z)$, where $a_{i} \in H_{2}\left(R_{i}, \bar{A}_{i}: Z\right), i=1,2, \cdots$. Since a_{i} is an integral cycle, for each $j>k$ a_{j} has the same integral coefficient t_{j} on each 2 -simplex of σ_{j}. Let $j^{\prime}>j>k$. Since $\left(\phi_{j^{j}}\right)_{*} t_{j^{\prime}} \cdot \sigma_{j^{\prime}}=t_{j^{\prime}} \cdot\left(\phi_{j}{ }^{j^{\prime}}\right)_{*} \sigma_{j^{\prime}}=t_{j^{\prime}} \cdot p^{\left(j^{\prime}-j\right)} \cdot \sigma_{j}=t_{j} \cdot \sigma_{j}{ }^{25)}$ by Lemma 15 , we have
24) Let (X, A) be a pair of topological spaces and let $\left\{\left(X_{\alpha}, A_{\alpha}\right): \pi_{a}{ }^{\beta}\right\}$ be an inverse
 $X=\underset{\longleftarrow}{\lim }\left\{X_{\alpha}: \pi_{\alpha^{\beta}}\right\}$ and $A=\underset{\rightleftarrows}{\lim \left\{A_{\alpha}: \pi_{\alpha}{ }^{\beta} \mid A_{\beta}\right\} . ~ . ~ . ~}$
25) In this case, we mean by $t_{j} \cdot \sigma_{j}$ the integral chain which has the integral coefficient t_{j} on each 2 -simplex of σ_{j} and by $\left(\phi_{j} j^{\prime}\right)_{*}$ the chain homomorphism induced by $\phi_{j}{ }^{j}$.
$t_{j}=t_{j^{\prime}} \cdot p^{\left(j^{\prime}-j\right)}$ for each $j^{\prime}>j$. Therefore t_{j} is zero for $j>k$. Since σ is any 2 -simplex of $R_{k}-\bar{A}_{k}$, we have $a_{i}=0, i=1,2, \cdots$. Since a is any element of $H_{2}(R(\mathfrak{p}(p)), A: Z)$, we have $H_{2}(R(\mathfrak{p}(p)), A: Z)=0$. This completes the proof of (2). To complete the proof of the lemma, let p and q be two different prime numbers. Let T and T^{\prime} be the boundaries of $R(p(p))$ and $R(p(q))$ respectively, and let f be a topological mapping of T into T^{\prime}. Let us denote by X the space obtained from $R(\mathfrak{p}(p))+R(p(q))^{26)}$ by identifying points on $T+T^{\prime}$ corresponding to each other under the homeomorphism f. Let g be the identification mapping and put $S=g\left(T+T^{\prime}\right)$. Let r be a prime number. We have $p \neq r$ or $q \neq r$. Let $p \neq r$. Since $H_{2}\left(R(p(p)), T: Z\left(\mathfrak{a}_{r}\right)\right) \neq 0$ and $H_{2}(R(p(p))+R(p(q))$, $\left.T+T^{\prime}: Z\left(\mathfrak{a}_{r}\right)\right) \approx H_{2}\left(X, S: Z\left(\mathfrak{a}_{r}\right)\right)$ by the map excision theorem [17], we have $H_{2}\left(X, S: Z\left(\mathfrak{a}_{r}\right)\right) \neq 0$. Similarly, if $q \neq r$, we have $H_{2}\left(X, S: Z\left(\mathfrak{a}_{r}\right)\right) \neq 0$, too. Put $X_{1}=g(R(p(p)))$ and $X_{2}=g(R(p(q)))$. Let A be a closed subset of X. If $H_{2}(X$, $A: Z) \neq 0$ we have $H_{2}(X, A \cup S: Z) \neq 0$ by [10, Lemma 7]. On the other hand, since $H_{2}(X, A \cup S: Z) \approx H_{2}\left(X_{1}, X_{1} \cap A: Z\right)+H_{2}\left(X_{2}, X_{2} \cap A: Z\right)$ and $H_{2}\left(X_{1}, X_{1} \cap A: Z\right)$ $=H_{2}\left(X_{2}, X_{2} \cap A: Z\right)=0, H_{2}(X, A \cap S: Z)$ must be zero. Therefore we have $H_{2}(X, A: Z)=0$ for each closed subset A of X. By [10, Lemma 7], this shows that the continuum X has the property (ii) mentioned in the lemma. This completes the proof.

Lemma 18. For each prime number p, there exists a 2-dimensional continuum $X(p)$ such that (i) there exists a closed subset A of $X(p)$ such that $H(X(p), A$: $\left.Z\left(\mathfrak{a}_{p}\right)\right) \neq 0$, (ii) for any prime number $q \neq p$ and any pair (A, B) of closed subsets of $X(p)$ we have $H_{2}\left(A, B: Z\left(\mathfrak{a}_{q}\right)\right)=0$.

Proof. Let $\mathfrak{p}_{p}=\left\{p_{1}, \cdots, p_{i}, \cdots\right\}$ be a sequence consisting of all positive integers of the form q^{k}, where q ranges over all prime numbers except p and k ranges over all positive integers. Put $X(p)=R\left(\mathfrak{p}_{p}\right)$. Let T be the boundary of $R\left(\mathfrak{p}_{p}\right)$. Since each member p_{i} of the sequence \mathfrak{p}_{p} and p are coprime numbers, we can see by a similar way as in the proof of Lemma 18 that $H_{2}\left(X(p), T: Z\left(a_{p}\right)\right) \neq 0$. To prove that $X(p)$ has the property (ii) mentioned in the lemma, let q be a prime number different from p. Let A be a closed subset of $X(p)$. Put $R_{i}=R\left(p_{1}, \cdots, p_{i}\right)$ and $A_{i}=\phi_{i}(A), i=1,2, \cdots$, where ϕ_{i} is the projection from $X(p)$ onto R_{i}. Let \bar{A}_{i} be the smallest subcomplex of R_{i} containing $A_{i}, i=1,2, \cdots$. By Lemma 9 and the continuity theorem of Čech homology groups, we have an isomorphism $H_{2}\left(X(p), A: Z\left(\mathfrak{a}_{q}\right)\right) \approx \underset{\longleftarrow}{\lim }\left\{H_{2}\left(R_{i}, \bar{A}_{i}\right.\right.$: $\left.Z_{Q^{i}}\right): \mathfrak{P}_{\left(i, i^{\prime}\right)}^{\left(j, j^{\prime}\right)} \mid j>i$ and $\left.j^{\prime}>i^{\prime}\right\}$, where $\mathfrak{P}_{\left(i, i, i^{\prime}\right)}^{(j, j)}$ is a composition of the homomorphisms $\left(h_{i^{j}}^{j^{\prime}}\right)_{*}: H_{2}\left(R_{j}, \bar{A}_{j}: Z_{q^{j^{i}}}\right) \rightarrow H_{2}\left(R_{j}, \bar{A}_{j}: Z_{q^{i}}\right)$ and $\left(\phi_{i}{ }^{j}\right)_{*}: H_{2}\left(R_{j}, \bar{A}_{j}: Z_{q^{i}}\right) \rightarrow H_{2}\left(R_{i}\right.$, $\left.\bar{A}_{i}: Z_{q^{i}}\right)$. Assume that $H_{2}\left(X(p), A: Z\left(\mathfrak{a}_{q}\right)\right) \neq 0$. Let $\left\{a_{i, i} \mid i=1,2, \cdots\right.$ and $\left.i^{\prime}=1,2, \cdots\right\}$
26) Let $\left\{X_{\alpha} \mid \alpha \in \Omega\right\}$ be a collection of topological spaces. By $\sum_{\omega \in \Omega} X_{\alpha}$ we understand a topological space X such that X is an union of topological images $X_{\alpha}{ }^{\prime \prime}$ s of $X_{\alpha^{\prime}} \mathrm{s}$ and $X_{\alpha^{\prime}}^{\prime} \cap X_{\beta^{\prime}}=\phi, \alpha \neq \beta$.
be a non-zero element of $H_{2}\left(X(p), A: Z\left(\mathfrak{a}_{q}\right)\right)$, where $a_{i, i} \in H_{2}\left(R_{i}, \bar{A}_{i}: Z_{q^{i}}\right), i=1,2, \cdots$ and $i^{\prime}=1,2, \cdots$ Let $a_{i, i^{\prime}} \neq 0$. There exist integers i_{0} and j_{0} such that $i_{0}>i$, $j_{0} \geqq i^{\prime}$ and the i-th member $p_{i_{0}}$ of the sequence $\mathfrak{p}_{p}=q^{j^{0}}$. Take any 2 -simplex σ of $R_{i_{\circ}-1}-\bar{A}_{i_{0}-1}$. Put $\tau=\left(\phi_{i_{0}-1}^{i_{0}}\right)^{-1} \sigma$. Since $a_{i_{\circ}, i^{\prime}}$ is a cycle $\bmod q^{i^{\prime},} a_{i_{0}, i^{\prime}}$ must have the same coefficient t on each 2 -simple of τ, where $t \in Z_{q^{\prime}}$. Let \tilde{t} be an integer such that $\rho(\tilde{t})=t$, where ρ is a natural homomorphism from Z onto $Z_{q^{i}}$. Suppose that $a_{i_{0-1}, i^{\prime}}$ has the coefficient s on the 2 -simplex σ, where $s \in Z_{q^{i}}$. Let \tilde{s} be an integer such that $\rho(\tilde{s})=s$. Since $j_{0} \geqq i^{\prime}$, we have $\tilde{s} \cdot \sigma \equiv$ $\left.\left(\phi_{i_{0}-1}^{i o}\right)_{*} \tilde{t} \cdot \tau \equiv \tilde{t} \cdot\left(\phi_{i_{0}-1}^{i_{0}}\right)_{*} \tau \equiv \tilde{t} \cdot q^{j_{0}} \cdot \sigma \equiv 0^{27}\right) \bmod q^{i \prime}$. Therefore we have $s=0$. Since σ is any 2 -simplex of $R_{20-1}-\bar{A}_{i_{0}-1}, a_{i \circ-1, i^{\prime}}$ must be zero. Since $\mathfrak{P}_{\left.\left(i, i^{i}\right)^{\prime}, i^{\prime}\right)}^{\left.(i)^{\prime}\right)} a_{i_{0-1, i^{\prime}}}=$ $a_{i, i^{\prime}}$, this contradicts $a_{i, i^{\prime}} \neq 0$. Thus, we have $H_{2}\left(X(p), A: Z\left(a_{q}\right)\right)=0$. By [10, Lemma 7], we see that the continuum $X(p)$ has the property (ii) mentioned in the lemma. This completes the proof.

Lemma 19. There exists a 2-dimensional continuum which has the property \boldsymbol{P} but not the property (*) mentioned in Lemma 11.

Proof. First, let us remark that in compact spaces the property (*) is equivalent to the following property ($* *$).

For each prime number p there exist a closed subset A_{p} of X and a covering \mathfrak{H} of X such that $0 \neq(\phi)_{*} H_{n}\left(X, A_{p}: Z\left(\mathfrak{a}_{p}\right)\right) \subset H_{n}\left(K, L: Z\left(\mathfrak{a}_{p}\right)\right)$, where (K, L) is the pair of the nerves of \mathfrak{H} corresponding to (X, A) and ϕ is a canonical mapping of (X, A) into (K, L).
Thus, to prove the lemma, it is sufficient to construct a 2 -dimensional continuum X which has the property \boldsymbol{P} but not the property ($* *$). Let (p_{1}, p_{2}, \cdots) be a sequence of all prime numbers. Put $X^{\prime}=x_{0}+\sum_{i=1}^{\infty} X\left(p_{i}\right)^{28)}$, where x_{0} is one point space and $X\left(p_{i}\right)$ is the continuum constructed in Lemma 18, $i=1,2, \cdots$. Let x_{i} be a point on the boundary of $X\left(p_{i}\right) . i=1,2, \cdots$. Let X be a continuum obtained from X^{\prime} by retopologizing X such that x_{0} is the topological limit of a sequence $\left\{X^{\prime}\left(p_{i}\right)\right\}$, where $X^{\prime}\left(p_{i}\right)$ is the subspace, homeomorphic to $X\left(p_{i}\right)$, of X^{\prime}, and by identifying the set $\sum_{i=1}^{\infty} x_{i}$ with the point x_{0}. Let f be the identification mapping. Put $X_{i}=f\left(X^{\prime}\left(p_{i}\right)\right), i=1,2, \cdots$, and $\bar{x}=f\left(x_{0}\right)$. Let $\mathfrak{H}=$ $\left\{U_{i} \mid i=1,2, \cdots, k\right\}$ be a covering of X such that $\bar{x} \in U_{1}$ and $\bar{x} \notin \bigcup_{i=2}^{k} \bar{U}_{i}$. Put $V=X-\bigcup_{i=2}^{k} \bar{U}_{i}$. There exists an integer i_{0} such that, if $i \geqq i_{0}, X_{i} \subset V$. Let A be a closed subset of X. Let (K, L) be the pair of the nerves of \mathfrak{H} corresponding to (X, A) and let ϕ be a canonical mapping of (X, A) into (K, L). Since $\phi\left(\bigcup_{i=i_{0}}^{\infty} X_{i}\right)=U_{1}$ and $H_{2}\left(X_{k}, X_{k} \cap A: Z\left(\mathfrak{a}_{p_{j}}\right)\right)=0$ for $k<i_{0} \leqq j$ by Lemma 18,
27) Cf. footnotes 7) and 25).
28) See footnote 26).
we have $(\phi)_{*} H_{2}\left(X, A: Z\left(\mathfrak{a}_{p_{j}}\right)\right)=0, j=i_{0}, i_{0}+1, \cdots$. Since \mathfrak{l} is any covering of X, the continuum X has not the property ($* *$). Since it is obvious that X has the property P, this completes the proof.

National Defence Academy.

References

[1] M. G. Barret, Track groups II, Proc. London Math. Soc., (3) 5 (1955), 239-255.
[2] C.H. Dowker, Local dimension of normal spaces, Quart. J. Math., 6 (1955), 101120.
[3] C.H. Dowker, Mapping theorems for non-compact spaces, Amer. J. of Math., 69 (1947), 202-242.
[4] C. H. Dowker, Čech cohomology theory and the axioms, Ann. of Math., 51 (1950), 278-292.
[5] C. H. Dowker, Topology of metric complexes, Amer. J. of Math., 74 (1952), 555 -577.
[6] S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton, 1952.
[7] W. L. Gordon, On the coefficient group in cohomology, Duke Math. J., 21 (1954), 139-152.
[8] W. Hurewicz, Sur la dimension des produits Cartesiens, Ann. of Math., 36 (1935), 194-197.
[9] W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941.
[10] Y. Kodama, On a problem of Alexandroff concerning the dimension of product spaces I, J. of Math. Soc. of Japan, 10 (1958), 380-404.
[11] K. Morita, H. Hopf's extension theorem in normal spaces, Proc. Physico-Math. Soc. of Japan, 3rd Ser., 23 (1941), 161-167.
[12] K. Morita, On the dimension of normal spaces II, J. Math. Soc. of Japan, 2 (1950), 16-33.
[13] K. Morita, On the dimension of product spaces, Amer. J. Math., 75 (1953), 205 -223.
[14] A.H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc., 54 (1948), 677-688.
[15] J. W. Tukey, Convergence and uniformity in topology, Princeton, 1941.
[16] J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., 45 (1939), 243-327.
[17] A. D. Wallace, The map excision theorem, Duke Math. J., 19 (1952), 177-182.

[^0]: 1) Cf. $[10, \S 1]$.
[^1]: 2) A mapping of X into K is called a canonical mapping if the inverse image of the open star of each vertex U is contained in the open set U. Throughout this paper we shall mean by a mapping a continuous transformation.
 3) Cf. [6, Chap. I and Chap. IX].
[^2]: 18) By Ind X we mean the dimension of X defined inductively in terms of the boundaries of neighborhoods of closed sets of X (cf. [2, p. 102]).
