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It is not too much to say that Cauchy’s theorem acts a role as a starting
point of the whole theory of complex-valued regular functions of a complex
variable. And, as far as we know, this theorem was extended only to the
following two cases. First, this was extended to the case of regular func-
tions defined on the complex plane and having its values in a complex
Banach space. Next, R. Lorch proved that Cauchy’s theorem is valid for
regular functions (see Definition 3 bellow) in a commutative Banach algebra.
The purpose of the present paper is to extend Cauchy’s theorem so as to
include both of the above extentions (see Corollary 2).

DEFINITION 1. Let $X$ and $Y$ be two complex Banach spaces, and let a
mapping $y=f(x)$ from $X$ to $Y$ be defined on an open set $D\subseteqq X$ and suppose
that for every $x\in D$ and $h\in X$ the quotient $[f(x+\lambda h)-f(x)]/\lambda$ , which is defined
for sufficiently small $|\lambda|$ , tends to a unique limit as $\lambda\rightarrow 0$ . We then say that
$f(x)$ is G-differentiable in $D$, and write $\delta f(x;h)=\lim_{\lambda\rightarrow 0}[f(x+\lambda h)-f(x)]/\lambda$ . If fur-

ther $\delta f(x;h)$ is a continuous function of $h$ for any fixed $x\in D$ , then $f(x)$ is
said to be F-differentiable in $D$ (see [1, pp. 72 and 73]).

REMARK 1. If $f(x)$ is G-differentiable in $D$ , then it is proved that (i)
$\delta f(x;\alpha h)=\alpha\delta f(x;h)$ , where $\alpha$ is a complex number, (ii) $\delta f(x;h_{1}+h_{2})=\delta f(x;h_{1})$

$+\delta f(x;h_{2})$ (see [1, pp. 72 and 73]). Hence if $f(x)$ is F-differentiable, we see
that $\delta f(x;)$ for fixed $x$ in $D$ is a bounded linear operator from $X$ to $Y$.

ASSUMPTION (A). Let $X,$ $Y$ and $Z$ be three complex Banach spaces. Sup-
pose that to each pair $(x, y),$ $x\in X$ and $y\in Y$, there corresponds an element $z$

(denoted by $x\circ y$ or $y\circ x$) in $Z$ and the following conditions are satisfied:
(1) $(x_{1}+x_{2})\circ y=x_{1}\circ y+x_{2}\circ y$, $x\circ(y_{1}+y_{2})=x\circ y_{1}+x\circ y_{2}$ .
(2’) $\lambda x\circ y=\lambda(x\circ y)=x\circ\lambda y$, where $\lambda$ is a complex number.
(3) $\Vert x\circ y\Vert\leqq\Vert x\Vert\cdot\Vert y\Vert$ .
DEFINITION 2. Suppose that Assumption (A) is satisfied. Let $f(x)$ be a

continuous function defined on a rectifiable curve $\Gamma$ in $X$ and having its
values in Y. (The concept of rectifiable curve in a Banach space $X$ can be
defined quite similarly as in the usual case.) Then we can define the integral

$\int_{\Gamma}f(x)\circ dx$ as follows:
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Let $\Gamma$ be parametrized by $x=x(t)$ . $0\leqq t\leqq 1$ . Then it is easily seen that

the sum $\sum_{i=1}^{n}f(x(t_{i}^{\prime}))\circ[x(t_{i})-x(t_{i-1})]$ , where $0=t_{0}<t_{1}<\cdots<t_{n}=1$ and $t_{i-1}\leqq t_{i}^{\prime}\leqq t_{i}$ ,

$i=1,2,\cdots,$ $n$ , tends to a definite limit $J$ as $\max_{i}(t_{l}-t_{i-1})\rightarrow 0$ . We denote this

limit $J$ as $\int_{\Gamma}f(x)\circ dx$.
REMARK 2. It is easily seen that

(1) $\Vert\int_{\Gamma}f(x)\circ dx\Vert\leqq Ml(\Gamma)$ ,

where $ M=\sup_{x\in\Gamma}\Vert f(x)\Vert$ and $l(\Gamma)$ is the length of the curve $\Gamma$ .
THEOREM (CAUCHY). Let $X,$ $Y$ and $Z$ be three complex Banach spaces satis-

fying Assumption (A). Let $f(x)$ be a function defined on an open subset $D\subseteqq X$

and having its values in Y. Furthermore, we assume that
(i) $D$ is a convex set,
(ii) $f(x)$ is F-differentiable in $D$,
(iii) For every $x\in D$ and every $h,$ $k\in X$

$\delta f(x;h)\circ k=\delta f(x;k)\circ h$ .
Then we have

(2) $\int_{\Gamma}f(x)\circ dx=0$

for any rectifiable closed curve $\Gamma$ contained in $D$ .
PROOF. It is easily seen that for every $\epsilon<0$ there exists a polygon $K$ in

$D$ such that $\Vert\int_{\Gamma}f(x)\circ dx-\int_{K}f(x)\circ dx\Vert<\epsilon$. Hence, in order to prove (2), it is

sufficient to show that for every polygon $K$ contained in $D$ the following
equality holds:

(3) $\int_{K}f(x)\circ dx=0$

By using the condition (i) of the present theorem we see easily that for the
proof of (3) it is sufficient to show that the equality

(4) $\int_{\Delta}f(x)\circ dx=0$

holds for every triangle $\Delta$ contained in $D$ .
Hence we shall prove (4). We can devide $\Delta$ into

four mutually congruent triangles $\Delta_{1},$ $\Delta_{2},$ $\Delta_{3}$ and $\Delta_{4}$ by
joining mid points of all the sides of $\Delta$ . The orientation
of each triangle is designated by the left diagram.

Setting $J=\int_{44_{i}}f(x)\circ dx,$$J_{i}=\int f(x)\circ dx,$ $i=1,2,3,4$ , we have
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clearly $J=\sum_{i\rightarrow 1}^{4}J_{\dot{l}}$ ; hence $\Vert J\Vert\leqq\sum_{i=1}^{4}\Vert J_{i}\Vert$ . Consequently there exists at least one
$\Delta^{\prime}(=\Delta_{i})$ such that

$\Vert J\Vert\leqq 4\Vert\int_{\Delta^{\prime}}f(x)\circ dx\Vert$ .

By the same reasoning we have a triangle $\Delta^{\prime\prime}$ which is one-fourth of $\Delta^{\prime}$ , such
that

$\Vert\int_{\Delta},f(x)\circ dx\Vert\leqq 4\Vert\int_{\Delta},$ $ f(x)\circ dx\Vert$ .

Continuing this process we obtain a sequence of triangles

(5) $\Delta,$ $\Delta^{\prime},$ $\Delta^{\prime\prime},\cdots,$ $\Delta^{(n}$ ) $\ldots$

such that $\Delta^{(+1)}n\subseteqq\Delta^{(n)}(n=1,2,\cdots)$ and

(6) $\Vert J\Vert\leqq 4^{n}\Vert\int_{\Delta^{(n)}}f(x)\circ dx\Vert$ , $ n=1,2,\cdots$ .

Let $L$ be the plane which contains the triangle $\Delta$ and $\overline{\Delta^{(n)}}$ the closed domain

bounded by $\Delta^{()}n$ in $L$ . As is easily seen, $\tilde{\bigcap_{n=1}}\Delta^{()}-n$ consists of a single point $c$

in $L\cap D$. We set
(7) $f(c+h)=f(c)+\delta f(c;h)+\tau(h)$ .
Then for every $e>0$ there exists a $\sigma>0$ such that

(8) $\Vert h\Vert<\sigma$ implies $\Vert\tau(h)\Vert\leqq\epsilon\Vert h\Vert$ , (see [1, p. 82]).

We select a natural number $N$ such that

(9) $\oint/2^{N}<\sigma$ ,

where $l$ is the length of the perimeter of $\Delta$ .
Since the length of the perimeter of $\Delta^{(N)}$ is clearly $l/2^{N}$ , we have

(10) $\Vert x-c\Vert\leqq l/2^{N}<\sigma$ for every $x\in\Delta^{(n)}$ .
We set $f(x)=f(c+(x-c))=f(c)+\delta f(c;x-c)+\tau(x-c)$ . Then

(11) $\int_{\Delta^{(N)}}f(x)\circ dx=\int_{\Delta}(N)f(c)\circ dx+\int_{\Delta^{(N)}}\delta f(c;x-c)\circ dx+\int_{\Delta^{(N)}}\tau(x-c)\circ dx$ .

Evidently $\int_{\Delta^{(N)}}f(c)\circ dx=0$ . And by using relations (1), (8) and (10) we have

$\Vert\int_{\Delta^{(N)}}\tau(x-c)\circ dx\Vert\leqq\epsilon\cdot l/2^{N}\cdot l/2^{N}=\epsilon l^{2}/4^{N}$ .

Hence by relations (6) and (11) we easily see that

(12) $\Vert J\Vert\leqq 4^{N}\int_{\Delta^{(N)}}\delta f(c;x-c)\circ dx+\epsilon l^{2}$ .
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If the equality

(13) $\int_{\Delta^{(n)}}\delta f(c;x-c)\circ dx=0$

holds for every $n$ , then we have clearly $J=0$ . Hence for the proof of (4) it
is sufficient to show (13).

Let
(14) $p_{1}=c+\lambda_{I}h+\mu_{1}k$ , $p_{2}=c+\lambda_{2}h+\mu_{2}k$ , $p_{3}=c+\lambda_{3}h+\mu_{3}k$ ,

(where $h,$ $k\in X$)

be the vertices of the triangle $\Delta^{(n)}$ . And let the segment $\overline{p_{1}p}_{2^{*}}$ be parametrized
by
(15) $x(t)=c+\lambda_{1}h+\mu_{1}k+[(\lambda_{2}-\lambda_{1})h+(\mu_{2}-\mu_{1})k]t$

$=c+[\lambda_{2}t+\lambda_{1}(1-t)]h+[\mu_{2}t+\mu_{I}(1-t)]k$, $0\leqq t\leqq 1$ .
Hence by the condition (ii) of Remark 1 we have

(16)
$\int_{\rightarrow_{2}}\delta f(c;x-c)\circ dx=\int_{\rightarrow_{l}}\delta f(c;[\lambda_{2}t+\lambda_{1}(1-t)]h+[\mu_{2}t+\mu_{1}(1-t)]k)\circ dxp_{1}pp_{1}p$

$=\int_{\rightarrow_{1}}[\lambda_{2}t+\lambda_{1}(1-t)]\delta f(c;h)\circ dx+\int_{\rightarrow_{1}}[\mu_{2}t+\mu_{1}(1-t)]\delta f(c;k)\circ dxpp_{l}pp_{l}$

On the other hand, from (15) we have $dx=(\lambda_{2}-\lambda_{1})hdt+(\mu_{2}-\mu_{1})kdt$ . Hence

(17)
$\int_{\rightarrow_{1} ,pp_{1}}[\lambda_{2}t+\lambda_{1}(1-t)]\delta f(c;h)\circ dx$

$=\int_{0}^{1}[\lambda_{2}t+\lambda_{1}(1-t)]\delta f(c;h)\circ[(\lambda_{2}-\lambda_{1})h+(\mu_{2}-\mu_{1})k]dt$

$=\int_{0}^{1}(\lambda_{2}-\lambda_{1})[\lambda_{2}t+\lambda_{1}(1-t)][\delta f(c;h)\circ h]dt$

$+\int_{0}^{1}(\mu_{2}-\mu_{1})[\lambda_{2}t+\lambda_{1}(1-t)][\delta f(c;h)\circ k]dt$

$=(\lambda_{2}-\lambda_{1})(\lambda_{2}+\lambda_{1})/2\cdot[\delta f(c;h)\circ h]+(\mu_{2}-\mu_{1})(\lambda_{2}+\lambda_{1})/2\cdot[\delta f(c;h)\circ k]$

and

(18)
$\int_{\rightarrow_{1} ,p_{1}p}[\mu_{2}t+\mu_{1}(1-t)]\delta f(c;k)\circ dx$

$=\int_{0}^{1}[\mu_{2}t+\mu_{1}(1-t)]\delta f(c;k)\circ[(\lambda_{2}-\lambda_{1})h+(\mu_{2}-\mu_{1})k]dt$

$=\int_{0}^{1}(\lambda_{2}-\lambda_{1})[\mu_{2}t+\mu_{1}(1-t)][\delta f(c;k)\circ h]dt$

$+\int_{0}^{1}(\mu_{2}-\mu_{1})[\mu_{2}t+\mu_{1}(1-t)][\delta f(c;k)\circ k]dt$

$=(\lambda_{2}-\lambda_{1})(\mu_{2}+\mu_{1})/2\cdot[\delta f(c;k)\circ h]+(\mu_{2}-\mu_{1})(\mu_{2}+\mu_{1})/2\cdot[\delta f(c;k)\circ k]$ .
Consequently, from (16), (17) and (18) we have
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(19)
$\int_{pp}\rightarrow_{1}\delta f(c;x-c)\circ dx=(\lambda_{2^{2}}-\lambda_{1^{2}})[\delta f(c;h)\circ h]/2+(\mu_{2}-\mu_{1})(\lambda_{2}+\lambda_{1})[\delta f(c;h)\circ k]/2$

$+(\mu_{2}+\mu_{1})(\lambda_{2}-\lambda_{1})[\delta f(c;k)\circ h]/2+(\mu_{2^{2}}-\mu_{\iota^{2}})[\delta f(c;k)\circ k]/2$ .
Similarly

(20)
$\int_{\rightarrow_{l} ,p_{2}p}\delta f(c;x-c)\circ dx=(\lambda_{3^{2}}-\lambda_{2^{2}})[\delta f(c;h)\circ h]/2+(\mu_{3}-\mu_{2})(\lambda_{3}+\lambda_{2})[\delta f(c;h)\circ k]/2$

$+(\mu_{3}+\mu_{2})(\lambda_{3}-\lambda_{2})[\delta f(c;k)\circ h]/2+(\mu_{3^{2}}-\mu_{2^{2}})[\delta f(c;k)\circ k]/2$ ,
and

(21)
$\int_{p_{l}p}\rightarrow_{1}\delta f(c;x-c)\circ dx=(\lambda_{1^{2}}-\lambda_{3^{2}})[\delta f(c;h)\circ h]/2+(\mu_{1}-\mu_{3})(\lambda_{1}+\lambda_{3})[\delta f(c;h)\circ k]/2$

$+(\mu_{1}+\mu_{3})(\lambda_{1}-\lambda_{3})[\delta f(c;k)\circ h]/2+(\mu_{1^{2}}-\mu_{3^{2}})[\delta f(c;k)\circ k]/2$ .
Hence

$\int_{\Delta_{p_{1}p_{l}p_{l}p_{8}p_{l}p_{1}}^{(n)}}\delta f(c;x-c)\circ dx=\int_{\rightarrow}+\int_{\rightarrow}+\int_{\rightarrow}$

$=[\delta f(c;h)oh](\lambda_{2^{2}}-\lambda_{1^{2}}+\lambda_{3^{2}}-\lambda_{2^{2}}+\lambda_{1^{2}}-\lambda_{3^{2}})/2$

$+[\delta f(c;h)\circ k][(\mu_{2}-\mu_{1})(\lambda_{2}+\lambda_{1})+(\mu_{3}-\mu_{2})(\lambda_{3}+\lambda_{2})+(\mu_{1}-\mu_{3})(\lambda_{1}+\lambda_{3})]/2$

$+[\delta f(c;k)\circ h][(\mu_{2}+\mu_{1})(\lambda_{2}-\lambda_{1})+(\mu_{3}+\mu_{2})(\lambda_{3}-\lambda_{2})+(\mu_{1}+\mu_{3})(\lambda_{1}-\lambda_{2})]/2$

$+[\delta f(c;k)\circ k](\mu_{2^{2}}-\mu_{1^{2}}+\mu_{3^{2}}-\mu_{2^{2}}+\mu_{1^{2}}-\mu_{3^{2}})/2$

$=[\delta f(c;h)\circ k](\mu_{2}\lambda_{1}-\mu_{1}\lambda_{2}+\mu_{3}\lambda_{2}-\mu_{2}\lambda_{3}+\mu_{1}\lambda_{3}-\mu_{3}\lambda_{1})/2$

$+[\delta f(c;k)\circ h](-\mu_{2}\lambda_{1}+\mu_{1}\lambda_{2}-\mu_{3}\lambda_{2}+\mu_{2}\lambda_{3}-\mu_{1}\lambda_{3}+\mu_{3}\lambda_{1})/2$

$=0$ . (See the condition (iii) of the Theorem.)

Hence our theorem is completely proved.
COROLLARY 1. Suppose that Assumption (A) is satisfied. Let $f(x)$ be a func-

tion defined on an open set $D\subseteqq X$ and having its values in Y. Let $\Gamma$ be a
rectifiable closed curve contained in D. If the conditions (ii) and (iii) of the
above theorem are satisfied, then we have

(22) $\int_{\Gamma}f(x)\circ dx=\int_{\Gamma_{1}}f(x)\circ dx$

for any rectifiable closed curve $\Gamma_{1}\subseteqq D$ which is homotopic to $\Gamma$ in D. And hence
if $\Gamma$ is homotopic to a point in $D$ , we have clearly

(23) $\int_{r^{f(X)0}}dx=0$ .
PROOF. Let $\Gamma$ and $\Gamma_{1}$ be parametrized by $x=x(t),$ $0\leqq t\leqq 1$ , and $x=x_{1}(t)$ ,

$0\leqq t\leqq 1$ , respectively. Since $\Gamma$ is homotopic to $\Gamma_{I}$ in $D$ , there is a function
of two real variables, $F(s, t)$ , continuous on the unit square $\{0\leqq s\leqq 1,0\leqq t\leqq 1\}$

with respect to both variables and such that $F(O, t)=x(t),$ $F(1, t)=x_{1}(t)$ and
$F(s, O)=F(s, 1),$ $0\leqq s\leqq 1$ , and moreover $F(s, t)$ is in $D$ for every $(s, t)$ in the
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unit square. We take a natural number $n$ and set

(24) $P_{i,j}^{(n)}=F(i/n, j/n)$ , $i=0,1,2,\cdots n$ , $j=0,1,2,\cdots n$ .
For every $i(0\leqq i\leqq n)$ let $K_{i}^{(n)}$ be the polygon consisting of the line segments
joining the points $P_{i,0}^{(n)},$ $P_{i,1}^{(n)},\cdots,$ $P_{i.n}^{(n)}$ in this order. And let $Q_{i.j}^{(n)}(0\leqq i\leqq n-1$ ,
$0\leqq j\leqq n-1)$ be the polygon consisting of the line segments joining the points
$P_{i,j}^{(n)},$ $P_{i}^{(n_{j^{)}+1}},$ $P_{i+1}^{(n)},{}_{f+1}P_{i+1}^{(n)},{}_{J}P_{i}^{(n_{j^{)}}}$ in this order. If $n$ is sufficiently large, it is
easily seen that there exists an open convex set $D_{i,j}^{(n)}\subseteqq D$ which contains $Q_{i_{*}j}^{(n)}$ .
Hence by the preceding theorem we have

(25)
$\int_{Q_{i,j}^{(n)}}f(x)\circ dx=0$

, $j=0,1,\cdots,$ $n-1$ , $i=0,1,\cdots,$ $n-1$ .

Adding (25) for $j=0,1,\cdots,$ $n-1$ we obtain

(26)
$\int_{x_{i}^{(n)}}f(x)\circ dx=\int_{x_{i+1}^{(n)}}f(x)\circ dx$ , $i=0,1,\cdots,$ $n-1$ .

From (26) we have clearly

(27) $i_{K_{0}^{(n)}}f(x)\circ dx=\int_{K_{n}^{(n)}}f(x)\circ dx$ .

Letting $ n\rightarrow\infty$ , we obtain directly (22).

DEFINITION 3 (LORCH). Let $\mathfrak{B}$ be a commutative Banach algebra with a
unit element. A function $f(x)$ whose domain $D$ (open) and range $R$ are in $\mathfrak{B}$

is said to have a derivative $f^{\prime}(x_{0})$ at $x=x_{0}$ if for each $e>0$ we can choose such
a $\delta>0$ that for all $h$ in $\mathfrak{B}$ with $\Vert h\Vert<\delta$ it holds

$\Vert f(x_{0}+h)-f(x_{0})-hf^{\prime}(x_{0})\Vert<e\Vert h\Vert$ .
If $f(x)$ has a derivative everywhere in $D$ , then it is regular in $D$ .

Let $\mathfrak{B}$ be a commutative Banach algebra with a unit element. In As-
sumption (A) if we set $X=Y=Z=\mathfrak{B}$ and define $x\circ y=xy$ for $x\in X=\mathfrak{B}$ and
$y\in Y=\mathfrak{B}$ , the conditions (1), (2) and (3) are obviously satisfied. Let $f(x)$ be
a regular function (see Definition 3 above) defined on an open subset $D\subseteqq \mathfrak{B}$.
Since $\delta f(c;h)=\lim_{\lambda\rightarrow 0}[f(c+\lambda h)-f(c)]/\lambda=\lim_{\lambda\rightarrow 0}[\lambda hf^{\prime}(c)+\epsilon]/\lambda=hf^{\prime}(c),$ $f(x)$ is F-differ-

entiable in $D$ and $\delta f(c;h)\circ k=hkf^{\prime}(c)=\delta f(c;k)\circ h$ . Thus $f(x)$ satisfies the condi-
tions (ii) and (iii) of our theorem. Hence by Corollary 1 we have the follow $\cdot$

ing
COROLLARY 2 (THEOREM OF LORCH). Let $\mathfrak{B}$ be a commutative Banach

algebra with a unit element and $f(x)$ a regular function defined on an open
subset $D\subseteqq \mathfrak{B}$ . If a rectifiable closed curve $\Gamma\subseteqq D$ is homotopic to another rectifi-
able closed cvrve $\Gamma_{1}\subseteqq D$ in $D$ , then we have

(28) $\int_{r^{f(x)dx=\int_{\Gamma_{1}}f(x)dx}}$
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In particular, if $\Gamma$ is homotopic to a single point in $D$ , then clearly

(29) $\int_{r^{f(x)dx=0}}$

(When $D$ is a convex set, any closed curve contained in $D$ is homotopic to a
point in $D$ and hence the above relation (29) holds for any rectifiable closed curve
$\Gamma\subseteqq D.)$

Let $X$ and $Z$ be two complex Banach spaces and $\mathfrak{E}(X, Z)$ the Banach space
of all bounded linear operators from $X$ to $Z$. If we set $X=X,$ $Y=\mathfrak{E}(X, Z)$ and
$Z=Z$ and define $x\circ T=T(x)$ for $x\in X$ and $T\in Y=\mathfrak{E}(X, Z)$ , then the conditions
(1), (2) and (3’) of the assumption (A) are obviously satisfied. Let $f(x)$ be
a F-differentiable function defined on an open set $D\subseteqq X$ and having its values
in $Z$. By Remark 1 $\delta f(x;h)$ can be regarded as a bounded linear operator
from $X$ to $Z$ for any fixed $x\in D$ . Thus, $\delta f(x;)$ is a mapping from $D$ to
$Y=\mathfrak{E}(X, Z)$ . On the other hand, it is proved that $\delta f(x;)$ is a continuous
mapping from $D$ to $Y=\mathfrak{E}(X, Z)$ (see [1, p. 82]). Hence, by Definition 2 we
can define the integral $\int_{\Gamma}\delta f(x;)\circ dx$ for any rectificable curve $\Gamma\subseteqq D$ . We

shall denote this integral by $\int_{\Gamma}\delta f(x;dx)$ . It is not difficult to show that
$\delta f(x;)$ , considered as a mapping from $D\subseteqq X$ to $Y=\mathfrak{E}(X, Z)$ , satisfies the con-
ditions (ii) and (iii) of our theorem. Hence by our theorem we get immediately
the following.

COROLLARY 3. Let $f(x)$ be a $F- di$]$7erentiable$ function defined on an open
convex subset $D$ of a complex Banach space $X$ and having its values in a com-
plex Banach space Z. Then we have

(30) $\int_{\tau^{\delta f(x;dx)=0}}$

for any rectiable closed curve $\Gamma$ contained in $D$ .
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