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One of the main problems in the differential geometry of spaces with
given structures is the determination of spaces admitting structure-preserving
transformation groups of sufficiently high orders. The problem in generalized
spaces, such as non-metric spaces of linear elements, of hyperplane elements
or of spreads1), has been successfully studied, but scarecely the problem
in metric spaces, such as Finsler and Cartan spaces2). The only one result
in Finsler space is due to H. C. Wang $[32]^{3)}$ , who, by a beautiful group-
theoretic method, determined the n-dimensional Finsler spaces admitting a
group of motions of order higher than $n(n-1)/2+1$ . Now, the author found
that this problem could be also treated and solved by the method of tensor
calculus for spaces such as Finsler and Cartan spaces, if we could develop
the theory of Lie derivatives in the form adapted for the studying of the
transformation groups in these spaces, and this could be done from the
stand-point of the theory of fibre bundles.

In the present paper we shall give such a development and apply it to
determine all the n-dimensional Finsler and Cartan spaces which admit a
group of motions of order $n(n-1)/2+1$ , for $n\neq 4$ .

In Chapter I, we consider a general tensor bundle space to treat Finsler
and Cartan spaces simultaneously. For our discussions, we need the theory
of linear connections on a tensor bundle space, but such a theory may be
obtained by modifying that on spaces of linear elements developed recently
by T. Otsuki [26]. So we refer to [26] for the detail. As the modification
is very slight, we have noted, as preliminaries, only what will be essentially
used in the following. After that, we shall develop the theory of Lie
derivatives, as said above, and consider groups of affine transformations on a
tensor bundle space.

In Chapter II, we shall state a principle of determining Finsler spaces
admitting a transitive group of motions. This principle follows from H. C.

1) [9], [10], [11], [12], [14], [15], [16], [25], [36, Chap. VIII], [37], [38], [39].
2) Cf. [6], [13], [15], [16], [36, p. 182].

3) His discussions appear also in [36, pp. 183-186].
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Wang’s lemmas [32]. By this principle and the results on Riemannian spaces
admitting a group of motions of order $n(n-1)/2+1$ due to K. Yano [35],

we can determine Finsler spaces admitting a group of motions of this order.
Chapter III is devoted to the discussions of spaces of hyperplane elements

and of Cartan spaces. By a principle analogous to that in Chapter II, we
can also determine Cartan spaces which have similar properties.

The author wishes to express here his hearty thanks to Prof. K. Yano,
who aroused his interests in these problems and gave him valuable sugges-
tions, and also to Prof. S. Iyanaga and Prof. T. Otsuki, conversations with
whom were very precious during the preparation of the paper.*)

Chapter I. Groups of transformations on generalized spaces.

\S 1. Preliminaries.

Linear connection on a tensor bundle. We consider a tensor bundle4)

$Z=\{X, Y, \alpha(L_{n}), \tau\}$ of type $\alpha$ , over an n-dimensional differentiable manifold $X$

with an N-dimensional linear space $Y$ as fibre, where $\alpha$ is a linear represen-
tation $L_{n}\rightarrow L_{N}$ [$28$ , p. 23]. Under a coordinate transformation $x^{i\prime}=x^{i\prime}(x^{i})$ in
$X$, an element $z=(x^{i}, y^{\lambda})\in Z^{5)}$ undergoes the change of components

(1.1) $y^{\lambda^{\prime}}=\Delta_{\lambda^{\lambda^{\prime}}}(x)y^{\lambda}$ ,

where we have put

(1.2) $\Delta_{\lambda^{\lambda^{\prime}}}(x)=\alpha_{\lambda^{\lambda^{l}}}(\Delta(x))$ , $\Delta(x)=(\frac{\partial x^{i\prime}}{\partial x^{i}})\in L_{n}$ ,

The tensor field over $Z$, whose components are $y^{\lambda}$ at each point $z=(x^{i}, y^{\lambda})$ , is
called the intrinsic tensor field of $z$ and is denoted by $y$ .

Let $B=\{X, L_{n}, L_{n}, \pi\}$ be the bundle of n-frames over $X$, which is a prin-
cipal bundle, and $\tilde{B}$ the induced bundle $\tau^{-1}B=$ { $Z,$ $L_{n},$ $L_{n}$ , it}. The induced
bundle map $\tilde{B}\rightarrow B$ will be denoted by $\tilde{\tau}$ . $\tilde{B}$ is equivalent to the bundle of
n-frames over $Z$. An n-frame $b=(x, e_{1},\cdots, e_{n})\in B$ or $\tilde{b}=(z, e_{1},\cdots, e_{n})\in\tilde{B}$ may be
denoted by local coordinates with $(x^{i}, a_{a}^{i})$ or $(x^{i}, y^{\lambda}, a_{a}^{\dot{t}})$ respectively, where
$e_{a}=a_{a}^{i}X_{i},$ $(a_{a}^{i})\in L_{n},$ $X_{i}=\partial/\partial x^{i}$ .

A linear connection on a tensor bundle $Z$ is by definition a linear con-

$*)$ The author is also very grateful to the referee, whose kind suggestions were
extremely valuable for the revision of the paper.

4) The notation $Z=\{X, Y, G, \tau\}$ indicates a bundle structure with base space $X$,
fibre $Y$, structural group $G$ and projection $\sim;Z$ indicates simultaneously the space of
the bundle.

5) Throughout this paper, Latin indices run from 1 to $n$ , Greek ones from 1 to $N$

and latin capital ones from 1 to a certain integer unless otherwise is stated. Also
we adopt the kernel-index-method of J. A. Schouten [27, p. 3].
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nection belonging to $\tilde{B}$ in the sense of C. Ehresmann [7]. We denote by
$\omega=(\omega_{J^{i}})$ and $\tilde{\omega}=(\tilde{\omega}_{b}^{a})$ the connection forms on $Z$ and on $\tilde{B}$ respectively; their
components are related by equations

(1.3) $\tilde{\omega}_{b}^{a}(\tilde{b})=b_{t^{a}}(da_{b^{i}}+a_{b^{j}}\omega_{j^{i}})$

for $\tilde{b}=(x^{i}, y^{\lambda}, a_{a}^{i})$ , where $(b_{i}^{a})=(a_{a}^{i})^{-}$ . We put

(1.4) $\omega_{j^{i}}=\Gamma_{jk}^{i}dx^{k}+C_{j\nu}^{i}dy^{\nu}$ $[0,3.2]^{6)}$

Denoting with $\overline{\alpha}$ the linear homomorphism $L(L_{n})\rightarrow L(L_{N})$ induced by $\alpha$ , we
have7)

$\omega_{I}^{\lambda}=\overline{\alpha}_{\mu}^{\lambda}(\omega)=\Gamma_{\mu}^{\lambda_{k}}dx^{k}+C_{\mu}^{\lambda_{\nu}}dy^{\nu}$

(1.5)
$\tilde{\omega}_{\beta^{\alpha}}=\overline{\alpha}_{\beta^{a}}(\tilde{\omega})=b_{\lambda^{a}}(da_{\beta^{\lambda}}+a_{\beta^{\gamma x}}\omega_{t}^{\lambda})$ ,

where $\Gamma_{t}^{\lambda_{k}},$ $C_{\mu}^{\lambda_{\nu}},$ $a_{\beta^{\mu}},$ $b_{\lambda^{\alpha}}$ have obvious meanings. $C_{j\nu}^{i}$ and $C_{\mu^{\lambda}\nu}$ are tensor fields
on $Z$.

The covariant differential of a tensor field $T^{I}$ of any type $\beta$ on $Z$ and
that of the lift $\tilde{T}^{A}=b_{I}^{A}T^{I},$ $(b_{I}^{A})=(a_{A}^{I})^{-1}$ , of $T^{I}$ on $B$ are given by

$DT^{I}=dT^{I}+\omega_{J}^{I}T^{J}$ , $\omega_{J}^{I}=\overline{\beta}_{J}^{1}(\omega)$ ,
(1.6)

$\tilde{D}\tilde{T}^{A}=d\tilde{T}^{A}+\tilde{\omega}_{B}^{A}\tilde{T}^{B}$, $\tilde{\omega}_{B}^{A}=\overline{\beta}_{B}^{A}(\tilde{\omega})$ ,

and it is easy to see that the latter is the lift of the former.7) In particular,
the covariant differential of the intrinsic tensor field $y^{\lambda}$ on $Z$ and that of its
lift $\tilde{y}^{\alpha}=b_{\lambda^{\alpha}}y^{\lambda}$ , on $\tilde{B}$ are given by

$Dy^{\lambda}=dy^{\lambda}+(\Gamma_{\mu}^{\lambda_{k}}dx^{k}+C_{\mu}^{\lambda_{\nu}}dy^{\nu})y^{\prime 1}$

(1.7) $[O, 4.1]$
$=(\delta^{\lambda_{\nu}}+C^{\lambda_{\nu}})dy^{\nu}+\Gamma^{\lambda_{k}}dx^{k}$ ,

(1.8) $\tilde{D}\tilde{y}^{\alpha}=d\tilde{y}^{\alpha}+\tilde{\omega}_{\beta^{\alpha}}\tilde{y}^{\beta}=\tilde{Dy}^{\alpha}$ , $[0,4.14,4.15]$

putting $\Gamma^{\lambda_{k}}=\Gamma_{\mu}^{\lambda_{k}}y^{\mu},$ $C^{\lambda_{\nu}}=C_{\mu}^{\lambda_{\nu}}y^{\prime J}$ . Then we have easily
LEMMA 1.1 [$0$ , Prop. 4.1] The $n+N$ forms $dx^{i}$ and $Dy^{\lambda}$ on $Z$ are linearly

independent if and only if the tensor $\delta^{\lambda_{\nu}}+C^{\lambda_{\nu}}$ forms a regular $(N, N)$-matrix.
Then the $n+N+n^{2}$ forms

$d^{\sim_{X^{a}}}=b_{t^{a}}dx^{i}$ ,

(1.9) $\tilde{Dy}^{a}=b_{\lambda}^{\alpha}\{\Gamma^{\lambda_{k}}dx^{k}+(\delta_{\nu}^{\lambda}+C_{\nu}^{\lambda})dy^{\nu}\}$ ,

$\tilde{\omega}_{b}^{a}=b_{i}^{a}\{a_{b^{j}}\Gamma_{jk}^{i}dx^{k}+a_{b^{j}}C_{j\nu}^{i}dy^{\nu}+da_{b^{i}}\}$

on $\tilde{B}$ are linearly independent.

6) $[O, 3.2]$ means that this formula corresponds to the formula (3.2) of the paper
[26] of T. Otsuki. Hereafter we shall indicate the correspondence with [26] in this
manner.

7) [3, p. 53], [31].
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From (1.8), we have also
LEMMA 1.2. The linear independence of $d^{\sim_{\chi^{a}}},\tilde{Dy}^{a},\tilde{\omega}_{b^{a}}$ is equivalent to that of

$d^{\sim_{X^{a}}},$
$d\tilde{y}^{a},\tilde{\omega}_{b^{a}}$ .
In the rest of this paper, we shall confine ourselves to the case where

$dx^{i}$ and $Dy^{\lambda}$ on $Z$ are linearly independent. If we denote by $(M^{\lambda_{\mu}})$ the inverse
matrix of $(\delta^{\lambda_{\nu}}+C_{\nu}^{\lambda})$ and put

$\Gamma_{jk}^{*i}=\Gamma_{jk}^{i}-C_{j\nu}^{i}M_{\rho}^{\nu}\Gamma^{\rho_{k}}$ ,
(1.10) $[0,4.7]$

$\Gamma_{\mu}^{*\lambda_{k}}=\overline{\alpha}_{\mu}^{\lambda}(\Gamma_{k^{*}})$ , $\Gamma_{k^{*}}=(\Gamma_{jk}^{*i})\in L(L_{n})$ ,

then we have the relations

(1.11) $\omega_{j^{i}}=\Gamma_{jk}^{*i}dx^{k}+C_{j\nu}^{i}M_{\rho}^{\nu}Dy^{\rho}$ , $[0,4.8]$

(1.12) $\Gamma^{*\lambda_{k}}=1\psi^{\lambda_{\mu}}\Gamma^{\mu_{k}}$ , $[0,4.11]$

(1.13) $\Gamma_{jk}^{i}=\Gamma_{jk}^{*i}+C_{j\nu}^{i}\Gamma^{*\nu_{k}}$ , $[0,4.12]$

(1.14) $dy^{\lambda}=lM^{\lambda_{\nu}}Dy^{\nu}-\Gamma^{*\lambda_{k}}dx^{k}$ . $[0,4.13]$

Under a coordinate transformation, $\Gamma_{jk}^{*i}$ are changed by the same rule as
coefficients of linear connection in ordinary spaces.

Put now
$DT^{I}=T_{1_{k}}^{I}dx^{k}+T_{||\nu}^{I}M_{\rho}^{\nu}Dy^{0}$ $[0, 9.9]$

(1.15)
$\tilde{D}\tilde{\tau}^{A}=\tilde{\tau}_{|_{C}dx^{c}+\tilde{T}_{||\gamma}^{A}\tilde{M}_{\xi^{\gamma}}\tilde{Dy}^{\xi}}^{A}\sim$ . $[O, 10.5]$

Then $T_{1_{k}}^{I}$ are called the first covariant derivatives, and $\tau_{||\nu}^{I}$ the second
covariant derivatives. They are given explicitly by

$T_{|k}^{I}=\frac{\partial T^{I}}{\partial x^{k}}-\frac{\partial T^{I}}{\partial y^{\nu}}\Gamma^{*\nu_{k}}+\Gamma_{J}^{*I_{k}}T^{J}$ , $[0,9.7]$

(1.16)
$T_{||_{\nu}}^{I}=\frac{\partial T^{I}}{\partial y^{\nu}}+C_{J}^{I_{\nu}}T^{J}$ , $[0,9.8]$

and $\tilde{T}_{1_{c}}^{A}$ and $\tilde{T}_{||\gamma}^{A}$ are respectively their lifts. In particular, we have imme-
diately, from the definition,

(1.17) $\mathcal{Y}^{\lambda}|_{k^{=0}}$ , $y^{\lambda_{||\nu}}=\delta^{\lambda_{\nu}}+C^{\lambda_{\nu}}$ .
Let us denote by $X_{i},$ $Y_{\lambda},$ $A_{4^{a}}$ the vector fields of the natural basis with

respect to a coordinates $(x^{i}, y^{\lambda}, a_{a}^{i})$ and by $E_{a},$ $F_{a},$ $G_{a}^{b}$ the dual vector fields
of the linearly independent forms (1.9) on $\tilde{B}$. They are related by

$E_{a}=a_{a}^{i}\{X_{i}-\Gamma^{*\lambda_{i}}Y_{\lambda}-a_{b^{j}}\Gamma_{ji}^{*h}A_{h}^{b}\}$ ,

(1.18) $F_{a}=a_{\alpha}^{\lambda}M_{\lambda}^{\nu}(Y_{\nu}-a_{b^{j}}C_{j\nu}^{h}A_{h}^{b})$ , $[0,5.1-3]$

$G_{a}^{b}=a_{a}^{i}A_{i}^{b}$ ,

or conversely by
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$X_{i}=b_{i}^{a}E_{a}+b_{\kappa}{}^{t}\Gamma_{i}^{\kappa}F_{a}+b_{h}^{a}a_{b^{j}}\Gamma_{ji}^{\hslash}G_{a}^{b}$ ,

(1.19) $Y_{\lambda}=b_{\kappa}^{a}(\delta_{\lambda}^{\kappa}+C_{\lambda}^{\kappa})F_{a}+b_{h}^{a}a_{b^{j}}C_{j\lambda}^{h}G_{a}^{b}$ ,

$A_{i}^{b}=b_{i}^{a}G_{a}^{b}$ .
The vectors $E_{a},$ $F_{a}$ are called respectively the basic vectors of the first

and the second kind of the given connection, and $G_{a}^{b}$ are called the funda-
mental vectors of $\tilde{B}$. In the tangent space $T_{b}^{\sim}(\tilde{B})$ at each point $\tilde{b}$ of $\tilde{B}$, the
basic vectors span the horizontal linear subspace of the connectiop and the
fundamental vectors span the vertical linear subspace. For any vertical
vector $V=v_{b}^{a}G_{a}^{b}$ , we have

(1.20) $\tilde{\omega}_{b}^{a}(V)=v_{b}^{a}$ , $\tilde{\omega}_{\beta^{a}}(V)=\overline{\alpha}_{\beta^{\alpha}}(v)$ , $v=(v_{b}^{a})\in L(L_{n})$ .
For the lift $\tilde{T}^{A}$ of a tensor field, we have
(1.21) $E_{C}\tilde{T}^{A}=\tilde{T}^{A}|_{C}$ , $F_{\gamma}\tilde{T}^{A}=\tilde{T}^{A}||_{\beta}\tilde{M}^{\beta_{\gamma}}$ , $G_{a}^{b}\tilde{T}^{A}=-\tilde{\omega}_{B}^{A}(G_{a}^{b})\tilde{T}^{B}$ .
The equations of structure of the connection have the following form, if we
use the basic and fundamental vector fields as a basis of the field of tangent
spaces:

$[E_{c}, E_{(}l]^{\sim_{a}}=S_{cl}E_{a}+\tilde{R}_{0ca}^{a}F_{\alpha}+\tilde{R}_{bra}^{a}G_{a}^{b}$ ,

$[E_{c}, F_{\eta}]=\tilde{C}_{c\delta}^{\alpha}\tilde{M}^{\delta_{\eta}}E_{a}+\tilde{P}^{\alpha_{0c\delta}}\tilde{M}^{\delta_{\eta}}F_{\alpha}+\tilde{P}_{bc\delta}^{a}\tilde{M}^{\delta_{\eta}}G_{a}^{b}$ ,

$[F_{\xi}, F_{\eta}]=\tilde{Q}^{\iota_{0\gamma\delta}}\tilde{M}^{r_{\xi}}\tilde{M}^{\delta_{\eta}}F_{\alpha}+\tilde{Q}_{b\gamma\delta}^{a}\tilde{M}^{\gamma_{\xi}}\tilde{M}^{\delta_{\eta}}G_{a}^{b}$ ,
(1.22) $[0,11.4-9]$

$[G_{a}^{b}, E_{c}]=\delta_{c}^{b}E_{a}$ ,

$[G_{a}^{b}, F_{\tau}]=\tilde{\omega}_{T^{\mathcal{O}}}(G_{a}^{b})F_{\alpha}$ ,

$[G_{a}^{b},G_{c^{(}}x]=\delta_{c}^{b}G_{a^{(}}x-\delta_{a^{J}}^{(}G_{c}^{b}$ .
We notice that, if we apply $[E_{c}, E_{a}],$ $[E_{c}, F_{\delta}]$ and $[F_{\gamma}, F_{\delta}]$ to $\tilde{T}^{A}$ and use

the first three formulas of (1.22), we obtain the so-called Ricci formulas, and
Jacobi identities on $[E_{c}, [E_{d}, E_{e}]],$ $[E_{c}, [E_{l}, F_{\epsilon}]],$ $[E_{c}, [F_{\delta}, F_{\epsilon}]]$ and $[F_{\gamma}, [F_{\delta}, F_{\epsilon}]]$

yield the so-called Bianchi identities on ground of (1.22).

Auxiliary connection. In virtue of the transformation law of $\Gamma_{jk}^{*i}$ , the
forms $\mathring{\omega}_{J^{i}}=\Gamma_{jk}^{*i}dx^{k}$ define a linear connection on $Z$, which is called the auxi-
liary connection of the original connection. We denote the corresponding
quantities with the auxiliary connection to $E_{a},$ $F_{a},$ $G_{a}^{b},$ $R_{jkl}^{i}$ , etc. by $E_{a)}^{o}F_{\alpha},$ $G_{a^{b}}^{o}$ ,
$R_{jkl}^{o_{i}}$ , etc. respectively. From formulas concerning quantities with the original
connection, we obtain the corresponding formulas with the auxiliary connec-
tion, simply in putting all $C_{j\nu}^{i}=0$ . Thus we see from (1.16) that the first and
the second covariant derivatives with respect to the auxiliary connection are
respectively the same as the first covariant derivatives with respect to the
original connection and the partial derivatives with respect to $y^{\nu}$ . We have
also
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(1.23) $\mathring{P}_{jk\omega}^{i}=\frac{\partial\Gamma_{jk}^{*i}}{\partial y^{\omega}}$ , $ Q_{j\nu\omega}^{i}=0\circ$ ,

$ R_{jkl}^{i}=R_{jkl}^{i}-C_{j\pi}^{i}M_{\kappa}^{\pi}R_{0kl}^{\kappa}\circ$ ,
(1.24)

$\mathring{P}_{jk\omega}^{i}=P_{jk\omega}^{i}+C_{j\omega|k}^{i}-C_{j\pi}^{i}M_{\kappa}^{\pi}(C^{\kappa_{\omega|k}}$ ,

(1.25) $\mathring{E}_{a}=E_{a}$ , $\mathring{F}_{a}=a_{\alpha}^{\lambda}Y_{\lambda}$ , $\mathring{G}_{a}^{b}=G_{a}^{b}$ .
Proper tensor bundle and proper connection. In a tensor bundle $Z=\{X,$ $Y$,

$\alpha(L_{n}),$ $\tau$ } of type $\alpha$ , the zero tensor field is a trivial cross-section over $X$.
Identifying it with $X$, we denote $Z-X$ by $Z^{o}$ . We define an equivalence
relation $y\sim y^{\prime}$ in $Y$ by $y^{\prime}=ky,$ $k\neq 0$ . The equivalence relation reduces $Y^{o}=Y-O$

to an $(N-1)$ -dimensional projective space $P$, and we have the natural projec-
tion $\rho:Y^{o}\rightarrow P$. The above equivalence can be naturally extended in the
tensor bundle $Z^{o}$ , and $Z^{o}$ is thereby reduced to a bundle $\overline{Z}=\{X)P,\overline{L}, \sigma\}$ , where
$\overline{L}$ is the factor group of $\alpha(L_{n})$ by a subgroup isomorphic to the multiplicative
group of non-zero real numbers. We call $\overline{Z}$ the proper tensor bundle over $X$.
Then $\rho$ is extended over $Z^{o}$ and the extension is also denoted by $\rho$ . The
projection $\sigma;Z\rightarrow X$ induces a principal bundle $\overline{B}=$ { $\overline{Z},$ $L_{n},$ $L_{n}$ , it}. Denoting by
$\tilde{B}^{o}$ the portion of $\tilde{B}$ over $Z^{o}$ , we have a communtative diagram

(1.26)

$\tilde{\tau},\tilde{\sigma},\tilde{\rho}$ being the bundle maps induced respectively by $\tau,$ $\sigma,$ $\rho$ .
A form on $Z^{o}$ is said to be proper if it is induced from a form on $\overline{Z}$ by

$\rho:Z^{o}\rightarrow\overline{Z}$, and a connection of $Z^{o}$ is called proper if its connection form is
proper. Then we can prove the following lemma.

LEMMA 1.3. A linear connection on $Z^{o}$ is proper if and only if $\Gamma_{j\kappa}^{*i}$ and
$C_{j\nu}^{i}$ are homogeneous in $y^{\lambda}$ of degree $0$ and $-1$ respectively and $C_{j\nu}^{i}$ satisfy

(1.27) $C_{j\nu}^{i}y^{\nu}=0$ .

Since a dual induced map8) $\rho^{*}$ of $\rho$ is commutative with the differential
operator $d$ and with the exterior multiplication we have

8) We denote the tangent bundle of a space $X$ by $T(X)$ and the cotangent bundle
by $T^{*}(x)$ . Let $\varphi$ be a map $X\rightarrow X^{\prime}$ . The map induced by $\varphi$ in the well-known way
of $T(X)$ into $T(X^{\prime})$ –the “ induced map “ of $\varphi$–is denoted by $\varphi*$ ’ and the dual of $\varphi*$

–the ” dual induced map ” of $\varphi-by\varphi^{*};$ $\varphi_{*}:$ $T(X)\rightarrow T(X^{\prime}),$ $\varphi^{*}:$ $T^{*}(X^{\prime})\rightarrow T^{*}(X)$ .
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LEMMA 1.4. If a connection is proper, then so are the curvature and torsion
forms, and consequently the curvalure tensors $R^{i}{}_{l}P_{jk\omega}^{i},$ $Q_{j\nu\omega}^{i}$ are homogeneous

in $y^{\lambda}$ of degree $0,$ $-1,$ $-2$ respectively and they satisfy

$P_{jk\omega}^{i}y^{\omega}=0$ , $Q_{j\nu\omega}^{i}y^{\omega}=0$ .

\S 2. Lie differentiation.

A differentiable transformation $\varphi$ :
$x^{\prime i}=\varphi^{i}(x)$

in the base space $X$ induces a transformation $\overline{\varphi}$ in the bundle space $Z:\overline{\varphi}$ is
defined by

$x^{\prime i}=\varphi^{i}(x)$ , $y^{\prime\lambda}=\alpha_{u}^{\lambda}(\frac{\partial\varphi}{\partial x})y^{\mu}$ , $\frac{\partial\varphi}{\partial x}=(\frac{\partial\varphi^{i}}{\partial x^{j}})\in L_{n}$ ,

and is called the extended transformation of $\varphi$ in $Z$. Let $\xi=(\xi^{i})$ be a vectoi
field on the base space $X$ generating a (local) one-parameter group $\varphi_{t}$ . Then
the extended group $\overline{\varphi}_{t}$ of $\varphi_{t}$ in $Z$ is a one-parameter group with the gener-
ating vector field $(\xi^{i}, \xi^{\lambda})$ such that

(2.1) $\xi^{\lambda}=\overline{\alpha}_{\mu}^{\lambda}(\frac{\partial\xi}{\partial x})y^{\mu}$ , $\frac{\partial\xi}{\partial x}=(\frac{\partial\xi^{i}}{\partial x^{j}})\in L(L_{n})$ .

Since $\overline{\alpha}_{\mu}^{\lambda}(\frac{\partial\xi}{\partial x})$ are independent of $y^{\lambda}$ , we have

(2.2) $\frac{\partial\xi^{\lambda}}{\partial y^{\mu}}=\overline{\alpha}_{/A}^{\lambda}(\frac{\partial\xi}{\partial x})$ .

Now, the Lie derivative of a geometric object 42 on $Z$ with respect to a
vector field $\xi$ on $X$ is defined by

(2.3) $(S\Omega)(z)=\lim_{t\rightarrow 0}\div\{\Omega(\overline{\varphi}_{t}(z))-\varphi_{t^{\prime}}(\Omega(z))\}$ ,

where $\overline{\varphi}_{t}$ has the meaning above explained and $\varphi_{t^{\prime}}$ in the last term indicates
the transformation induced by $\varphi_{t}$ in the bundle of geometric objects of the
type of 2, cf. [19], [22, p. 30], [29], [36, p. 20].

In particular, the Lie derivatives of a $\beta$ -tensor field $T^{I}$ on $Z$ with respect
to a vector field $\xi$ is given by

(2.4) S $T^{I}=\frac{\partial T^{I}}{\partial x^{h}}\xi^{h}+\frac{\partial T^{I}}{\partial y^{\kappa}}\xi^{\kappa}-\overline{\beta}_{J^{I}}(\frac{\partial\xi}{\partial x})T^{J}$

and is also a $\beta$ -tensor field on $Z$. Moreover the Lie derivatives of the first
coefficients $\Gamma_{jk}^{*i}$ of a linear connection, is given by
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(2.5) $iS\Gamma_{jk}^{*i}=\frac{\partial\Gamma_{jk}^{*i}}{\partial x^{h}}\xi^{h}+\frac{\partial\Gamma_{J^{i_{k}}}^{*}}{\partial y^{\kappa}}\xi^{\kappa}-\frac{\partial\xi^{i}}{\partial x^{h}}\Gamma_{jk}^{*h}$

$+\frac{\partial\xi^{h}}{\partial x^{j}}\Gamma_{hk}^{*i}+\frac{\partial\xi^{h}}{\partial x^{k}}\Gamma_{jh}^{*i}+\frac{\partial^{2}\xi^{i}}{\partial x^{j}\partial x^{k}}$

and is a tensor field on $Z$ of covariant degree 2 and contravariant degree 1,
because $\Gamma_{jk}^{*i}$ is a linear geometric object. Clearly we have

$S\Gamma_{\mu}^{*\lambda_{k}}=\overline{\alpha}_{\mu}^{\lambda}(R\Gamma_{k}^{*})$ ,
(2.6) $S\Gamma_{k}^{*}=(iS\Gamma_{jk}^{*i})\in L(L_{n})$ .

$S\Gamma_{J^{I}k}^{*}=\overline{\beta}_{J^{I}}(8\Gamma_{k}^{*})$ ,

Now let $\tilde{B}$ be the bundle of n-frames over $Z$. For a transformation $\varphi$ on
$X$ we define a transformation $\tilde{\varphi}$ of $\tilde{B}$ by $\tilde{\varphi}(z, e_{1},\cdots, e_{n})=(\overline{\varphi}(z), \varphi_{*}(e_{1}),\cdots,$ $\varphi_{*}(e_{n}))$ for
any point $5=(z, e_{1},\cdots, e_{n})\in\tilde{B}$. By use of local coordinates in $\tilde{B},\tilde{\varphi}$ is represented
by

(2.7) $x^{\prime i}=\varphi^{i}(x)$ , $y^{\prime\lambda}=\alpha_{\mu}^{\lambda}(\frac{\partial\varphi}{\partial x})y^{\mu}$, $a_{a^{i}}^{\prime}=\frac{\partial\varphi^{i}}{\partial x^{j}}a_{a^{j}}$ .

In particular a one-parameter group of transformation $\varphi_{t}$ on $X$ yields a one-
parameter group of transformations $\tilde{\varphi}_{\iota}$ on $\tilde{B}$, whose generating vector field $\Xi$

on $\tilde{B}$ is

(2.8) $\Xi=\xi^{i}X_{i}+\xi^{\lambda}Y_{\lambda}+\frac{\partial\xi^{i}}{\partial x^{j}}a_{a^{j}}A_{t^{a}}$ .

$\tilde{\varphi}_{t}$ and $--$ are said to be induced on $\tilde{B}$ by $\varphi_{t}$ or $\xi$ .
Substituting (1.19) into (2.8), we have

(2.9) $\Xi=\tilde{\xi}^{a}E_{a}+\tilde{\xi}^{\alpha_{\beta}}\tilde{y}^{\beta}F_{a}+\tilde{\xi}_{b}^{a}G_{a}^{b}$ ,

where $\tilde{\xi}^{a},\tilde{\xi}_{b}^{a}$ , and $\tilde{\xi}^{\alpha_{\beta}}$ are lifts of $\xi^{i},$ $\xi_{j}^{i}$ , and $\xi^{\lambda_{\mu}}$ respectively; $\xi_{j}^{i},$ $\xi^{\lambda_{\mu}}$ being
defined as follows:

$\xi_{j}^{i}=\frac{\partial\xi^{i}}{\partial x^{j}}+\Gamma_{jk}^{i}\xi^{k}+C_{j\nu}^{i}\xi^{\nu}$ ,

(2.10)
$\xi^{\lambda_{\mu}}=\overline{\alpha}_{\mu}^{\lambda}(\xi)$ , $\xi=(\xi_{j}^{i})\in L(L_{n})$ .

These are tensor fields. Namely, by (1.13), the expressions (2.10) are written
in the form

(2.11) $\xi_{j}^{i}=\frac{\partial\xi^{i}}{\partial x^{j}}+\Gamma_{jk}^{*i}\xi^{k}+C_{j\nu}^{i}(\frac{\partial\xi^{\nu}}{\partial y^{0}}+\Gamma_{\rho^{\nu_{k}}}^{*}\xi^{k})y^{\rho}$ ,

and these show the tensor character of $\xi=(\xi_{j}^{i})$ , because

(2.12) $\frac{\partial\xi^{i}}{\partial x^{j}}+\Gamma_{jk}^{*i}\xi^{k}=\xi^{\iota_{1j}}+S_{jk}^{i}\xi^{k}$

is a tensor field and the expression in the parentheses of the last term of
(2.11) is the representation of (2.12) by $\overline{\alpha}$ . From (2.11), we have equations
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(2.13) $\xi^{\lambda_{\rho}}y^{\rho}=(\delta^{\lambda_{\nu}}+C^{\lambda_{\nu}})(\frac{\partial\xi^{\nu}}{\partial y^{\rho}}+\Gamma_{\rho k}^{*\nu}\xi^{k})y^{\rho}$

or

(2.13)i $j\psi^{\lambda_{\nu}}\xi_{\rho}^{\nu}y^{\rho}=(\frac{\partial\xi^{\lambda}}{\partial y^{\rho}}+\Gamma_{\rho^{\nu}k}^{*}\xi^{k})y^{\rho}$ .

The equations (2.9) clarifies the geometical meaning of the $L(L_{n})$ -valued
tensor field $\xi=(\xi_{j}^{i})$ which appears everywhere in the theory of Lie derivatives
in a space with linear connection with torsion, $e$ . $g$ . [$36$ , p. 8], that is to say,

THEOREM 2.1. The componenls $\tilde{\xi}_{b}^{a}$ of the lift $\tilde{\xi}$ in $\tilde{B}$ are the vertical com-
ponents of the induced veclor field $\Xi$ on $\tilde{B}$.

Now we consider Lie differentiation, denoted by $\tilde{S}$ , of any geometric
object on the principal bundle $\tilde{B}$ with respect to the induced vector field $\Xi$ .
Since the components $\tilde{T}^{A}$ of the lift of a tensor field $T$ are functions on $\tilde{B}$

and Lie differentiation on a function is reduced to an ordinary differentiation,
we obtain from (1.21) and (2.9)

(2.14) $ iS\tilde{T}^{A}=\Xi\tilde{T}^{A}=\tilde{T}_{1a}^{A}\tilde{\xi}^{a}+\tilde{T}_{||\gamma}^{A}\tilde{M}^{r_{\epsilon}}\tilde{\xi}_{\zeta}^{\epsilon}\tilde{y}^{\zeta}-\tilde{\xi}_{B}^{A}\tilde{T}^{B}\sim$ .
It is indeed the lift in $\tilde{B}$ of a $\beta$ -tensor

$T_{1_{h}}^{I}\xi^{h}+T_{I1n}^{I}M_{\kappa}^{\pi}\xi_{\rho}^{\kappa}y^{\rho}-\xi_{J}^{I}T^{J}$

$=(\frac{\partial T^{I}}{\partial x^{h}}-\frac{\partial T^{I}}{\partial y^{\kappa}}\Gamma^{*\kappa_{h}}+\Gamma_{J^{I}h}^{*}T^{J})\xi^{h}+(\frac{\partial T^{I}}{\partial y^{\kappa}}+C_{J^{I}\kappa}T^{J})(\frac{\partial\xi^{\kappa}}{\partial y^{\rho}}+\Gamma_{\rho^{\kappa}k}^{*}\xi^{k})y^{\rho}$

(2.14)i $-(\overline{\beta}_{J}^{I}(\frac{\partial\xi}{\partial x})+\Gamma_{J}^{I_{k}}\xi^{k}+C_{J^{I}\nu}\xi^{\nu})T^{J}$

$=\frac{\partial T^{I}}{\partial x^{\hslash}}\xi^{h}+\frac{\partial T^{I}}{\partial y^{\kappa}}\xi^{\kappa}-\overline{\beta}_{J^{I}}(\frac{\partial\xi}{\partial x})T^{J}$

$=ST$ ,

by (1.16), (2.10) and (2.11). Thus we have established
THEOREM 2.2. The lifl of the Lie derivative of a tensor field $T$ in $Z$ with

respect to a vector field $\xi$ is equal to the ordinary derivative of the lift $\tilde{T}$ in $B$

with respecl to the induced vector field $\Xi$ , that is,

(2.15) $g^{\sim_{T=\tilde{S}\tilde{T}=\Xi\tilde{T}}}$ .
From (1.17) and (2.14), we obtain
LEMMA 2.3. For the intrinsic tensor field $y$ of $Z$ and its lift $\tilde{y}$ in $\tilde{B}$, we have

(2.16) $Sy=\tilde{S}\tilde{y}=0$ .
Since

(2.17) $\xi_{||\nu}^{i}=C_{j\nu}^{i}\xi^{j}$ ,

the Lie derivatives of $C_{J\nu}^{i}$ :
(2.18) $igC_{i^{\nu}}^{i}=C_{j\nu I_{h}}^{i}\xi^{\hslash}+C_{j\nu}^{i}||\pi M_{\kappa}^{\pi}\xi_{\rho}^{\kappa}y^{\rho}-\xi_{h}^{i}C_{j\nu}^{h}+\xi^{h}{}_{j}C_{h\nu}^{i}+\xi_{\nu}^{\kappa}C_{i^{t\rho}}^{i}$
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are equal to

(2.19) $SC_{j\nu}^{i}=\xi_{JI1\nu}^{i}-P_{jl\nu}^{i}\xi^{\iota}+Q_{j\nu\omega}^{i}M_{\kappa}^{\omega}\xi_{\rho}^{\kappa}y^{\rho}$ .
In virtue of (1.21), (1.22) and (2.11), we have furthermore

$\tilde{S}E_{c}=[\overline{\underline{\leftrightarrow}}, E_{c}]$

(220)
$=-\tilde{\Lambda}_{\rho^{\alpha_{c}}}\tilde{y}^{\beta}F_{a}-\tilde{\Lambda}_{b}^{a_{c}}G_{o}^{b}$ ,

where we have put
$\tilde{\Lambda}_{b}^{a_{C}}=\tilde{\xi}^{a_{b}}\dagger_{c}+\tilde{R}_{bca}^{\alpha}\tilde{\xi}^{a}+\tilde{P}^{\alpha_{bc\eta}}\tilde{M}_{\delta}^{\eta}\tilde{\xi}^{\delta_{\zeta}}y^{\zeta}$ ,

(2.21)
$\tilde{\Lambda}_{\beta^{\alpha_{C}}}=\overline{\alpha}_{\beta}^{a}(\Lambda_{c}^{\sim})$ , $\tilde{A}_{c}=(\tilde{\Lambda}_{b^{a}c})\in L(L_{n})$ .

The field $\tilde{\Lambda}_{b}^{\alpha_{c}}$ on $\tilde{B}$ is the lift of a tensor field $\Lambda_{jk}^{i}$ on $Z$ :
(2.22) $\Lambda_{!^{i_{k}}}=\xi_{j}^{i}|_{k}+R_{jkl}^{i}\xi^{l}+P_{jk\pi}^{i}1\psi_{\kappa}^{\pi}\xi_{\rho}^{\kappa}y^{0}$ ,

which are equal to
(2.23) $\Lambda J^{i_{ki}}=S\Gamma_{jk}^{*i}+C_{j\kappa}^{i}S\Gamma^{*\kappa_{k}}$

by the comparison with (2.5). Solving (2.23) in if $\Gamma_{jk}^{*i}$ , we have also

(2.24) $S\Gamma_{jk}^{*i}=\Lambda_{j^{i_{k}}}-C_{J^{\pi}}^{i}M_{\kappa}^{\pi}\Lambda^{\kappa_{k}}$ ,

where A $\kappa_{k^{=\Lambda_{\mu^{\kappa}k}y^{\mu}}}$ Similarly, taking account of (2.19), we have,

(2.25) $\tilde{S}F_{\gamma}=[\Xi, F_{\gamma}]=-(\tilde{S}\tilde{C}^{a_{\pi}})\tilde{M}_{\gamma}^{\pi}F_{a}-(\tilde{S}\tilde{C}_{b\pi}^{a})\tilde{M}_{\gamma}^{\pi}G_{a}^{b}$ .
Moreover, by (1.21) and (1.22), we have

(2.26) $\tilde{f}G_{a}^{b}=[\Xi, G_{a}^{b}]=0$ .
In turning to the auxiliary connection, we obtain, by the method stated

in \S 1, the following formulas, from (2.11), (2.14), (2.22) respectively,

$\xi^{\iota_{j^{=}}}\frac{\partial\xi^{i}}{\partial x^{j}}+\Gamma_{jk}^{*i}\xi^{k}$

(2.27) $=\xi_{1j}^{i}+S_{jk}^{i}\xi^{k}$

$=\xi_{j}^{i}-C_{j\nu}^{i}M_{\kappa}^{\nu}\xi_{\rho}^{\kappa}y^{0}$ ,

(2.28) $i\epsilon\tau^{I}=\tau_{1_{h}}^{I}\xi^{h}+\frac{\partial T^{I}}{\partial y^{\kappa}}\xi_{\rho}^{\kappa}y^{0}-\mathring{\xi}_{J}^{I}T^{J}$

(2.29) $\Lambda_{J^{i_{k}}}^{o}=g_{\Gamma_{jk}^{*i}=}\xi_{\{+\mathring{R}^{i_{jki}}\xi^{\iota}+\frac{\partial\Gamma_{j}^{*i}}{\partial y^{\omega}}}^{i_{J}}kk\mathring{\xi}_{\rho}^{\omega}y^{0}$ .

\S 3. Commutation formulas.

Let $\xi_{1},$ $\xi_{2}$ be two vector fields on $X$, and $\Xi_{1},$ $\Xi_{2}$ the vector fields cn $B$

induced by them respectively. From the definition (2.8) of induced vector
fields, we have
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$\tilde{S}_{1}\Xi_{2}=[\Xi_{1}, \Xi_{2}]$

(3.1)
$=(g_{1}\xi_{2}^{i})X_{i}+(g_{1}\xi_{2})^{\lambda}Y_{\lambda}+\frac{\partial}{\partial x^{p}}(g_{1}\xi_{2}^{i})a_{a}^{p}A_{i}^{a}$ ,

where we have used the equations

(3.2) $g_{1}\xi_{2}^{i}=[\xi_{1}, \xi_{2}]^{i}=\xi_{\iota^{j}}\frac{\partial\xi_{2}^{i}}{\partial x^{j}}-\xi_{2}^{j}\frac{\partial\xi_{1}^{i}}{\partial x^{j}}$

and
$(S_{1}\xi_{2})^{\lambda}=\overline{\alpha}_{\mu}^{\lambda}(\frac{\partial}{\partial x}[\xi_{1}, \xi_{2}])y^{\mu}$

(3.3)
$=\xi_{1}^{j}\frac{\partial\xi_{2}^{\lambda}}{\partial x^{j}}+\xi_{1}^{\mu}\frac{\partial\xi_{2}^{\lambda}}{\partial y^{\mu}}-\xi_{2^{j}}\frac{\partial\xi_{1}^{\lambda}}{\partial x^{j}}-\xi_{2}^{\mu}\frac{\partial\xi_{1}^{\lambda}}{\partial y^{\mu}}$ ,

cf. [30]. Hence we have
LEMMA 3.1. The Lie derivative $\tilde{S}_{1}\Xi_{2}=[\Xi_{1}, \Xi_{2}]$ is the induced vector field on

$\tilde{B}$ of the Lie derivative $S_{1}\xi_{2}=[\xi_{1}, \xi_{2}]$ .
Denoting by $S_{12}$ and $ ig_{12}\sim$ the Lie differentiations in $Z$ and $\tilde{B}$ with respect

to the vector fields $[\xi_{1}, \xi_{2}]$ and $[\Xi_{1}, \Xi_{2}]$ respectively, it follows immediately
from the above lemma

THEOREM 3.2. For the lift $\tilde{T}$ of a tensor field $T$, we have

(3.4) $(\tilde{S}_{1}\tilde{S}_{2^{-i}}^{\sim}S_{2}\tilde{S}_{1})\tilde{T}=\tilde{S}_{12}\tilde{T}$ ,

and consequently for a tensor field $T$ on $Z$

(3.5) $(s_{1}s_{2^{-i}}\epsilon 2s_{1})T=iS_{12}T.9)$

Next, compute Jacobi identities
$[\Xi_{1}, [\Xi_{2}, E_{c}]]-[\Xi_{2}, [\Xi_{1}, E_{c}]]+[E_{c}, [\Xi_{1}, \Xi_{2}]]=0$ ,

$[^{-}-1’[\Xi_{2}, F_{\gamma}]]-[\Xi_{2}, [\Xi_{\iota}, F_{\gamma}]]+[F_{\gamma}, [\Xi_{1}, \Xi_{2}]]=0$ ,

using (2.20), (2.25) and (3.1). In the first equation we pass them to the auxi-
liary connection. Then we obtain

THEOREM 3.3. We have

(3.6) $/1^{a}=\epsilon_{1}\Lambda_{2b}^{a_{C}}-S_{2^{\prime}}1^{a_{C}}\sim_{12bci}\sim\sim_{1b}oo$

$i.e$ .
(3.7) $si_{2j^{i}k}^{\Gamma=(g_{l}g_{2}-i}*\epsilon 2s_{1}$ ) $\Gamma_{jk}^{*i10)}$

and
(3.8) $f_{12}C_{j\nu}^{i}=(S_{1}f_{2}-S_{2i}S_{1})C_{j\nu}^{i}$ .
(3.8) may be also obtained as an application of (3.5) on $C_{J^{i_{\nu}}}$ .

From (1.21), (2.14), (2.20), (2.25), we obtain

9), 10) These formulas have been proved by different methods for more general
geometric objects, [16], [22, p. 114], [29], [30], [34], [36, p. 28].
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THEOREM 3.4. We have
$\tilde{S}(\tilde{T}_{1c}^{A})-(\tilde{S}\tilde{T}^{A})_{1c}=\tilde{\Lambda}_{B^{A_{C}}}\tilde{T}^{B}-\tilde{T}_{||Y}^{A}\tilde{M}^{\gamma_{\xi}}\tilde{\Lambda}^{\xi_{c}}$ ,

(3.9)
$\tilde{S}(\tilde{T}_{||\gamma}^{A})-(\tilde{S}\tilde{T}^{A})_{Nr}=(\tilde{S}\tilde{C}_{B^{A}\gamma})\tilde{T}^{B}$ ,

where
$\Lambda_{B^{A_{0}}}=\overline{\beta}_{B^{A}}(A_{c}),$ $A_{c}=(\Lambda_{b}^{a_{c}})\in L(\mathfrak{L}_{n})$ .

Turning to the auxiliary connection, we obtain
COROLLARY 3.5. We have

$S(T^{I}|_{k})-(ST^{I})_{|k}=(S\Gamma_{J^{I}k}^{*})T^{J}-\frac{\partial T^{I}}{\partial y^{\kappa}}(S\Gamma_{k}^{*\kappa})$ ,
(3.10)

$S(\frac{\partial T^{I}}{\partial y^{\nu}})-\frac{\partial}{\partial y^{\nu}}(ST^{I})=0$ ;

The second of these equations means that Lie differentiation commutes with the
partial differentiation with respect to the second coordinates $y^{\nu}$ .

Using (1.20), (1.22), (2.20), (2.25), (2.26) repeatedly in the following Jacobi
identities

$[\Xi, [E_{c}, E_{a}]]+[E_{c}, [E_{a}, \Xi]]+[E_{a}, [\Xi, E_{c}]]=0$ ,

(3.11) $[\Xi, [E_{c}, F_{\delta}]]+[E_{c}, [F_{\delta}, \Xi]]+[F_{\delta}, [\Xi, E_{c}]]=0$ ,

$[:, [F_{\gamma}, F_{\delta}]]+[F_{\gamma}, [F_{\delta}, \Xi]]+[F_{\delta}, [\Xi, F_{\gamma}]]=0$ ,

we find the following commutation formulas
$\tilde{\Lambda}_{b^{a}c}|a-\tilde{\Lambda}_{b^{a}a1c}=\tilde{S}\tilde{R}_{bca}^{a}-\Lambda_{be}^{a}\tilde{S}_{ca}^{e}-(\tilde{S}\tilde{C}_{b}^{a_{\zeta}})\tilde{M}^{\zeta_{e}}\tilde{R}_{0ca}^{e}$

$+\tilde{P}_{bc\zeta}^{a}\tilde{M}^{\zeta_{6}}\tilde{\Lambda}_{a}^{e}-\tilde{P}^{a_{btl\zeta}}\tilde{M}^{\zeta_{6}}\tilde{\Lambda}^{e_{C}}$ ,

(3.12) $\tilde{\Lambda}_{b}^{a_{0}}||\delta-(\tilde{S}\tilde{C}_{b\delta}^{a})_{1c}=\tilde{S}\tilde{P}_{bc\delta}^{a}-\tilde{\Lambda}_{b}^{a}{}_{e}\tilde{C}_{c\delta}^{e}-(\tilde{S}\tilde{C}_{b}^{a_{\zeta}})\tilde{M}_{\epsilon}^{\zeta}(\tilde{P}_{oc\delta}^{e}+\tilde{C}_{\delta 1_{C}}^{\text{\’{e}}})$

$-\tilde{Q}_{b\delta\zeta}^{a}\tilde{M}_{\epsilon}^{\zeta}\tilde{\Lambda}_{c}^{\epsilon}$ ,

$(\tilde{S}\tilde{C}_{b^{a}\gamma})_{U\delta}-(\tilde{S}\tilde{C}_{b\delta}^{a})_{||\gamma}=\tilde{S}\tilde{Q}_{b\gamma\delta}^{a}+(\tilde{S}\tilde{C}_{b}^{a_{\epsilon}})(\tilde{C}_{7^{6}\delta}-\tilde{C}_{\delta^{e_{\gamma}}})$ .

\S 4. Group of affine transformations.

In this paragraph we deal only with spaces with proper connections.
Clearly any transformation $\varphi$ of $X$ leaves invariant the vectorial form $dx$,

and consequently the induced transformation $\tilde{\varphi}$ leaves invariant $n$ forms $d^{\sim_{X^{a}}}$

on B. $\tilde{\varphi}$ leaves also invariant the lift $\tilde{y}$ of the intrinsic tensor field $y$, there-
fore $N$ functions $\tilde{y}^{\alpha}$ on $\tilde{B}^{o}$ , and furthermore $d\tilde{y}^{\alpha}$, because the dual induced
map $\tilde{\varphi}^{*}$ commutes with the differential operator $d$.

Now denote by $H$ the map of a given proper connection in a principal
bundle $\tilde{B}^{o}$ . A transformation $\varphi$ on $X$ is said to be $a$]$fine$ , if the induced
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transformation $\tilde{\varphi}$ on $\tilde{B}^{o}$ preserves the connection $H,$ [$24$ , p. 66], $i$ . $e$ . the com-
mutativity

(4.1) $\tilde{\varphi}_{*}\circ H_{b}^{\sim}=H_{\tilde{\varphi}(b)}^{\sim}\circ\tilde{\varphi}_{*}$

holds at any point $\tilde{b}\in\tilde{B}^{o}$ . Then we can prove the following
THEOREM 4.1. The induced transformation $\tilde{\varphi}$ of any transformation $\varphi$ on

$X$ leaves invariant the $n+N$ forms $d^{\sim_{\chi^{a}}}$ and $d\tilde{y}^{\alpha\dagger}$ . In order that $\varphi$ is affme, it is
necessary and sufficient that the induced transformation $\tilde{\varphi}$ leaves invariant the
$n^{2}$ forms $\tilde{\omega}_{b}^{a}$ ; then $\tilde{\varphi}$ leaves also invariant the $N$ forms $\tilde{D}y^{\alpha}$ .

PROOF. The second part is proved as follows. We may regard a point
$\tilde{b}\in\tilde{B}^{o}$ as an admissible map $L_{n}\rightarrow\tilde{B}^{o}$ . Let $I_{\tilde{b}}$ be the identity map of $T_{\overline{b}}(\tilde{B}^{o})$

onto itself at $\tilde{b}$ . Then the map $H$ is related to the form $\tilde{\omega}$ by $H_{b}=I_{\overline{b}}-\tilde{b}_{*}\circ\tilde{\omega}_{\overline{b}}$ .
Therefore, if $\varphi$ is an affine transformation, then, from the commutativity (4.1),

we have $\tilde{\varphi}_{*}\circ(I_{b}^{\sim}-\tilde{b}_{*}\circ\tilde{\omega}_{\tilde{b}})=(I_{\tilde{\varphi}^{(\overline{b})}}-\tilde{\varphi}(\tilde{b})_{*}\circ\tilde{\omega}_{\tilde{\varphi}^{(}b)}\sim)\circ\tilde{\varphi}_{*}$ . Since $\tilde{\varphi}_{*}\circ\tilde{b}_{*}=\tilde{\varphi}(\tilde{b})_{*}$ , we have
$\tilde{\varphi}(\tilde{b})_{*}\circ\tilde{\omega}_{\overline{b}}=\tilde{\varphi}(\overline{b})_{*}\circ\tilde{\omega}_{\overline{\varphi}^{(b)}}\sim\circ\tilde{\varphi}_{*}$ or $\tilde{\omega}_{\overline{b}}=\tilde{\omega}_{\overline{\varphi}(b)}\sim\circ\tilde{\varphi}_{*}$ , from which follows the relation $\tilde{\varphi}^{*}\tilde{\omega}$

$=\tilde{\omega}$ as an $L(L_{n})$ -valued form $\tilde{\omega}$ on $\tilde{B}^{o}$ . The last part follows from $\tilde{\varphi}^{*}(\tilde{D}\tilde{y}^{\alpha})$

$=\tilde{\varphi}^{*}H^{*}d\tilde{y}^{\alpha}=H^{*}\tilde{\varphi}^{*}d\tilde{y}^{a}=H^{*}d\tilde{y}^{a}=\tilde{D}\tilde{y}^{\alpha}$ .
In virtue of the duality, it follows at once
THEOREM 4.2. In order that a transformation $\varphi$ on $X$ is $aff_{7}ne$ , it is necessary

and sufficient that the induced transformalion $\tilde{\varphi}$ leaves invariant all the basic
vector fields of the first and the second kinds and the fundamental vector fields.

Now let us prove the following theorem
THEOREM 4.3. The group $G$ of all affine lransformalions on Xwith a proper

linear connection is a Lie group.i1)

Let $L_{n^{+}}$ be the subgroup of $L_{n}$ of matrices of positive determinants and
$\hat{X}$ the right factor space $B/L.+of$ the principal bundle $B$ by $L_{n^{+}}$ . $\hat{X}$ is a
double covering of $X$. We denote the covering map $\hat{X}\rightarrow X$ by $\kappa$ and the non $\cdot$

identical covering transformation of $\hat{X}$ by $\epsilon$ ; rc $\circ\epsilon=\kappa$ . Let $\hat{Z}$ be the induced
tensor bundle of $Z$ by $\kappa$ , and $\hat{\epsilon}$ the map induced from $\epsilon$ by $\kappa$ . $\hat{Z}$ is then a
double covering of $Z$, and $\hat{\epsilon}$ gives the non-identical covering transformation
of $\hat{Z}$. The space of the bundle $B$ has also a structure of the principal
bundle: $\{\hat{X}, L_{n^{+}}, L_{n^{+}}, \times\}$ . Since $\tilde{B}$ is the bundle induced from $B$ by the pro-
jection $\tau$ , the bundle space $\tilde{B}$ has also a structure $\{\hat{Z}, L_{n^{+}}, L_{n^{+}}, \times\}$ . Therefore
the original connection on $Z$ with the components $\tilde{\omega}_{b}^{a}$ on $\tilde{B}$ defines a proper
connection on $\hat{Z}$, and we can speak of affine transformations on $\hat{X}$ . Let $\hat{G}$ be
the group of all affine transformations on $\hat{X}$. Then we have clearly

LEMMA 4.4. A transformation $\varphi$ on $X$ induces a transformation $\hat{\varphi}$ on $\hat{X}$

satisfying the commutativity condition $\hat{\varphi}\circ\epsilon=\epsilon\circ\hat{\varphi}$ . Conversely, if a transformation

11) This is a generalization of a theorem due to Myers-Steenrod-Nomizu-Kobayashi,
[21], [23], [17], [18].
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$\hat{\varphi}$ on $\hat{X}$ satisfies this condition, then $\hat{\varphi}$ can be regarded as a transformation
induced from a transformation on $X$.

LEMMA 4.5. If a transformation $\tilde{\varphi}$ on $\tilde{B}^{o}$ leaves the $n+N$ forms $\overline{dx}^{a}$ and
$d\tilde{y}^{a}$ invariant, then there is a transformation $\hat{\varphi}$ on $\hat{X}$ which induces $\tilde{\varphi}$ .

$P_{ROOF}$ . Let $\tilde{\varphi}$ be represented by the following functions by use of co-
ordinate neighborhoods of any point $\tilde{b}\in\tilde{B}^{o}$ and the image $\tilde{\varphi}(\tilde{b})$ :

(4.2) $x^{\prime\iota}=\varphi^{t},$ $y^{\prime\lambda}=\psi^{\lambda},$ $a_{a}^{\gamma i}=\chi_{a^{t}}$

depending on $x^{t},$ $y^{\lambda},$ $a_{a}^{t}$ . From the invariance of $\overline{d}x^{a}=b_{x^{a}}dx^{t}$ follow the equa-
tions

$b_{t}^{\prime a}(\frac{\partial\varphi^{t}}{\partial x^{J}}dx^{J}+\frac{\partial\varphi^{i}}{\partial y^{\lambda}}dy^{\lambda}+\frac{\partial\varphi^{t}}{\partial a_{b^{j}}}da_{b^{J}})=b_{x^{a}}dx^{t}$ ,

and hence we have

(4.3) $\frac{\partial\varphi^{\iota}}{\partial y^{\lambda}}=0,$ $\frac{\partial\varphi^{l}}{\partial a_{b^{J}}}=0,$
$\chi_{a^{t}}=\frac{\partial\varphi^{i}}{\partial x^{J}}a_{a}^{J}$ .

By the first two of these, the functions $\varphi^{t}$ are independent of $y^{\lambda}$ and $a_{a}^{i}$ , and
therefore $x^{\prime\iota}=\varphi^{t}$ define a transformation $\hat{\varphi}$ on $\hat{X}$, because $Y^{o}$ and $L_{n^{+}}$ are
connected unless $Z$ is a bundle of scalar densities. In a similar manner, we
have equations $\psi^{\lambda}=\overline{\alpha}_{\mu}^{\lambda}(\frac{\partial\varphi}{\partial x})y^{\prime 1}$ from the invariance of $d\tilde{y}^{\alpha}=d(b_{\lambda^{\alpha}}y^{\lambda})$ . These
equations together with the last equations of (4.3) show that the transfor-
mation $\tilde{\varphi}$ is induced from $\hat{\varphi}$ in $\tilde{B}^{o}$ .

LEMMA 4.6. The group $\hat{G}$ of all affine transformations on $\hat{X}$ is a Lie group.
PROOF. In virtue of Theorem 4.1 and Lemma 4.5, $\hat{G}$ is isomorphic to the

group $\tilde{G}$ of all transformations in $\tilde{B}^{O}$ , which leave the $n+N+n^{2}$ linearIy
independent forms $dx^{a},$ $d\tilde{y}^{a},\tilde{\omega}_{b}^{a}$ invariant. By a well known theorem due to
S. Kobayashi [17], [18], $\tilde{G}$ is a Lie group and hence so is $\hat{G}$ .

PROOF OF THEOREM 4.3. By Theorem 4.1 and Lemma 4.5, the group $G$ is
isomorphic to a subgroup $\{\hat{\varphi}|\hat{\varphi}\circ\epsilon=\epsilon\circ\hat{\varphi}\}$ of $\hat{G}$ . The subgroup, being closed in
$\tilde{G}$ , is a Lie group and consequently so is $G$ . The proof is completed.

Now let $\varphi_{t}$ be a l-parameter group of affine transformations in $X$ Then,
the induced vector field $\Xi$ in $\tilde{B}^{o}$ should satisfy, by Theorem 4.2, $[\Xi, E_{c}]=0$

and $[\Xi, F_{\gamma}]=0$ , cf. [24, p. 67]. From (2.20) and (2.25), it follows that equations
$\tilde{\Lambda}_{0^{a}c}=0$ and $\tilde{S}\tilde{C}_{b\gamma}^{a}=0$ should hold. Thus we have

THEOREM 4.7. In order that $a$ one-parameter group of transformations is
affine, it is necessary and sufficient that the generating vector field $\xi^{2}$ satisfies
the differential equations

$\xi_{1_{J}}^{i}=\xi_{J}^{i}-S_{jk}^{i}\xi^{k}-C_{j^{l}\pi}M_{\omega}^{\pi}\xi_{\rho}^{\omega}y^{\rho},$ $\xi_{||_{\beta}}^{t}=C_{h\mu}^{i}\xi^{h}$ ,

(4.4) $\Lambda_{J}^{\iota_{k}}=\xi^{x_{J}}|k+R_{jkl}^{i}\xi^{l}+P_{J^{k\omega}}^{i}M^{\omega_{\kappa}}\xi_{\rho}^{\kappa}y^{\rho}=0$ ,

$SC_{j\nu}^{i}=\xi_{J}^{i}||_{\mathcal{V}}-P_{jl\nu}^{i}\xi^{l}+Q_{\gamma\nu\omega}^{x}M_{\kappa}^{\omega}\xi_{\rho}^{\kappa}y^{0}=0$ .
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We shall call a vector field $\xi^{\iota}$ satisfying these differential equations an
infinitesimal affine transformation.

By (2.23) and (2.24), $\Lambda_{jk}^{i}=0$ is equivalent to $S\Gamma_{jk}^{*i}=0$ . Thus, turning to
the auxiliary connection, we have

COROLLARY 4.8. In order that a vector field $\xi^{i}$ is an infinitesimal affine
transformation, it is necessary and sufficient that $\xi^{i}$ satisfies a mixed system12)

of differential equations
$\xi_{1j}^{i}=\mathring{\xi}_{j}^{i}-S_{jk}^{i}\xi^{k}$ ,

$\frac{\partial\xi^{i}}{\partial y^{\mu}}=0$ ,
(4.5)

$\mathring{\xi}_{J\{k}^{i}=-\mathring{R}_{jkl}^{i}\xi^{l^{o}}-P_{jk\omega}^{i}\xi_{\rho \mathcal{Y}^{o}}^{\omega}$ ,

$\frac{\partial\xi_{j}^{o_{i}}}{\partial y^{\nu}}=P_{jt\nu}^{o_{i}}\xi^{l}$ ,

with an associated system

(4.6) $sC_{j\nu}^{\iota}=\xi^{h}C_{j\nu 1l\iota}^{i}+\mathring{\xi}_{\rho}^{\mathcal{K}}y^{\rho}\frac{\partial C_{j\nu}^{i}}{\partial y^{\kappa}}\xi^{i_{h}}c_{j\nu}h^{\circ}+\xi_{J}^{h}C_{h\nu}^{i}+\xi_{{}_{\nu}C_{j\kappa}^{i}=0}^{\kappa}$ .

Chapter II. Spaces of linear elements and Finsler spaces.

\S 5. Groups of affine transformations on spaces of linear elements.

Throughout this chapter, let $Z$ be the tangent bundle $T(X)=\{X, Y^{n}, L_{n}, \tau\}$

of an n-dimensional space $X$, whose fibre space is an n-dimensional vector
space $Y^{n}$ . We have now $n=N$, and $\alpha$ is the identity automorphism of $L_{n}$

and consequently the homomorphism $\overline{\alpha}$ is also the identity automorphism of
$L(L_{n})$ in the notations of the preceding chapter. A point $z\in T(X)$ will be
now denoted by $(x^{i}, y^{i})$ in a coordinate neighborhood, whereas we have hitherto
denoted it by $(x^{i}, y^{\lambda})$ . We obtain formulas concerning the tangent bundle
$T(X)$ in replacing simply the Greek indices in a number of formulas in the
preceding chapter by Latin indices. Each formula thus obtained will be
indicated with the same number as in the preceding chapter marked with an
asterisk below, like $(4.4)_{*}$ .

Now let

(5.1) $\omega_{j^{i}}=\Gamma_{jk}^{*i}dx^{k}+C_{jk}^{i}Dy^{k}$

define a proper linear connection on $Z^{o}=T^{O}(X)$ . By Lemma 1.3*’ the coeffi-
cients $\Gamma_{jk}^{*i}$ and $C_{jk}^{i}$ are homogeneous in $y^{i}$ of degree zero and $-1$ respectively.
$C_{jk}^{i}$ satisfy furthermore the equations

12) [8].
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(5.2) $C_{jk}^{i}y^{k}=0$ .
Let us now seek for the condition that a space $X$ with a proper connec-

tion admits locally a group of affine transformations of maximum order $n^{2}+n$ ,
that is, the condition of complete integrability of $(4.4)_{*}$ , or of $(4.5)_{*}$ with
$(4.6)_{*}$ . In order that $(4.5)_{*}$ admits $n^{2}+n$ independent solutions, $(4.6)_{*}$ should
be satisfied by any $\xi^{i}$ and any $\xi_{j}^{i}$ and consequently we should have $C_{jk1\hslash}^{i}=0$

and

(5.3) $\frac{\partial C_{jk}^{i}}{\partial y^{h}}y^{p}-\delta_{h}^{i}C_{j}^{p_{k}}+\delta^{p}{}_{j}C_{h^{\dot{t}}k}+\delta^{p}{}_{k}C_{jh}^{i}=0$ .

Contracting over $k$ and $p$ and taking account of (5.2), we have

(5.4) $-C_{jh}^{i}-\delta_{h}^{i}C_{jk}^{k}+C_{hj}^{i}+nC_{jh}^{i}=0$ ,

and, contracting further over $i$ and $j,$ $C_{ik}^{i}=0$ for $n>1$ . Contracting over $i$

and $h$ in (5.4), we have $C_{ji}^{i}=0$ . Consequently $C_{hj}^{i}\Rightarrow(1-n)C_{jh}^{i}=(1-n)^{2}C_{\iota j}^{i}$ and
hence $C_{fk}^{i}=0$ for $n>2$ . For $n=2$ , from (5.4) it follows immediately that $C_{jk}^{i}$

$+C_{kj}^{i}=0$ and hence $C_{11}^{i}=C_{22}^{i}=0$ . Consequently $C_{ik}^{i}=0$ impIy $C_{12}^{i}=-C_{11}^{i}=0$ .
Thus all $C_{jk}^{i}$ vanish for $n\geqq 2$ . Moreover, by Corollary $3.5_{*}$ and $(1.23)_{*}$ , we have

$\frac{\partial}{\partial y^{l}}S\Gamma_{jk}^{*i}=S\frac{\partial\Gamma^{*}}{\partial y}\iota\underline{f^{i}k}=S\mathring{P}_{jkl}^{i}$ ,

and, from the integrability conditions of $(4.5)_{*}$,

$SP_{jk\iota}^{i}=\xi^{h}P_{j\iota\iota 1h}^{i}+\xi_{p}^{h}y^{p}\frac{\partial P_{jkl}^{i}}{\partial y^{h}}\xi_{h}^{i}P_{jkl}^{h}+\xi^{h}{}_{J}P_{hkl}^{i}+\xi_{k}^{h}P_{jkl}^{i}+\xi^{h}{}_{\iota}P_{jkl}^{i}=0$ .

Since, for the complete integrability, these equations should be satisfied by
any $\xi^{i}$ and $\xi_{j}^{i}$, we have equations

$\frac{\partial P_{jkj}^{i}}{\partial y^{h}}y^{p}-\delta_{h}^{i}P^{p_{jkl}}+\delta_{j}^{p}P_{hkl}^{i}+\delta^{p}{}_{k}P_{jhl}^{i}+\delta_{\iota}^{p}P_{jkh}^{i}=0$ .

Contracting over $h$ and $p$ and considering the homogeneity of $P_{jkl}^{i}$ of degree
$-1$ in $y^{i}$, we have at once $P_{jkl}^{i}=\partial\Gamma_{jk}^{*i}/\partial y^{l}=0,$ $i$ . $e.,$ $\Gamma_{jk}^{*i}$ are independent of

$y^{i}$ . Hence, by a well-known theorem [8, p. 234], [16], [34 p. 20], [36, pp. 94
and 194], we obtain

THEOREM 5.1. A necessary and sufficient condition that a space of dimension
$n\geqq 2$ with a proper Jinear connection admits a group of affine transformations of
maximum order $n^{2}+n$ is that the space is locally affinely flat.

\S 6. Groups of motions in Finsler spaces.

A Finsler space $X$ is a metric space in which the length of a tangent
vector $z=(x^{i}, y^{t})$ of $X$ at a point $x$ is given by



58 Y. TASHIRO

(6.1) $|z|^{2}=2F(x, y)=g_{ij}(x, y)y^{i}y^{j}$

or the arc length $s$ of a curve by

$s=\int\sqrt 2\overline{F(x,dx)}=\int\frac{ij}{g_{xj}dxdx}$ ,

where the fundamental function $F(x, y)$ is a function of $x^{i}$ and $y^{i}$ , homogeneous
in $y^{i}$ of degree two and positive valued for any non-zero vector $z=(x^{i}, y^{i})$ ,
$(y^{i})\neq 0$ . $F(x, y)$ may be regarded as a function defined on $T^{o}(X)$ . The func-
tions

(6.2) $g_{ij}(x, y)=\frac{\partial^{2}F}{\partial y^{i}\partial y^{j}}$

are homogenous of degree zero in $y^{i}$ and constitute the components of a
symmetric tensor field on $T^{o}(X)$ associated with $\tilde{B}^{o}$ . The tensor field $g_{ij}$ is
supposed to be positive definite and called the metric tensor of the Finsler
space. E. Cartan [5, pp. 10-16] has introduced a metric connection in such
spaces. We notice that this connection is proper in our sense and has torsion
$C_{ijk}=\frac{1}{2}\partial^{3}F/\partial y^{i}\partial y^{j}\partial y^{k}$ .

A transformation $\varphi$ on a space $X$ with Finsler metric is called a motion
if the induced transformation $\varphi_{*}$ in $T^{o}(X)$ leaves the fundamental function $F$

invariant: $F(\varphi_{*}(z))=F(z)$ for any $z$ .
Suppose now that a Finsler space admits an effective group $G$ of motions

of order $r$, and denote the motion corresponding to an element $g\in G$ by $\varphi_{g}$ .
Taking an arbitrary pdint $x_{0}\in X$, let $G_{0}$ be the isotropic subgroup of $G$ at $x_{0}$

and denote the induced map of $\varphi_{g}$ at $x_{0}$ on $T_{x},(X)$ by $(\varphi_{g^{*}})_{x_{0}}$ . $G_{0}$ is of order
$r^{\prime}\geqq\max(r-n, 0)$ . Then the map $\gamma$ , defined by $\gamma(g)=(\varphi_{g^{*}})_{x_{0}},$ $g\in G_{0}$ , is a linear
representation of $G_{0}$ into $L_{n}$ .

In determining the Finsler space with completely integrable equations of
Killing, H. C. Wang [32] proved, by a group-theoretic method, the following
lemmas and theorem.

LEMMA W. 1. The linear representation $\gamma$ is faithful.
LEMMA W. 2. $\gamma(G_{0})$ is conjugate to a subgroup $O^{\prime}$ of the orthogonal group

$O_{n}$ in $L_{n}$ .
THEOREM W. 3 If an n-dimensional Finsler space, $n\neq 4$ , admits an effec-

tive group of motions of order $r>n(n-1)/2+1$ , the space is a Riemannian space
of constant curvature.

We are now going to determine n-dimensional Finsler spaces admitting a
group $G$ of motions of order $r=n(n-1)/2+1$ for $n\neq 4$ .

13) This theorem can be also proved by tensor calculas in the same way as we
shall prove Theorem 8.1.
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First we notice the following

LEMMA 6.1. If a transformation group $G$ operates transitively on a space $X$

and $\gamma(G_{0})$ at a point $x_{0}$ is conjugate to a subgroup $O^{\prime}$ of the orthogonal group
$O_{n}$ , then we can introduce in $X$ a Riemannian metric with respect to which $G$ is
a group of motions.

PROOF. By assumption $\gamma(G_{0})$ leaves invariant a Euclidean metric on the
tangent space $T_{x_{0}}(X)$ at $x_{0}$ , and the Riemannian metric defined from the
Euclidean metric by the transitivity of $G$ on $X$ is a required one. $q$ . $e$ . $d$ .

Combining Lemma 6.1 with Lemma W. 2, we can state the following

PRINCIPLE 6.2. The problem to determine Finsler spaces admitting a transitive
group $G$ of motions is reduced to determining Riemannian spaces admitting the
group $G$ as group of motions and to finding, in these spaces, Finsler metrics
which are left invariant under $G$ .

Reterning to our problem, let $q^{\prime}$ be the dimension of the orbit of a point
$x$ by $G$ and $q=\max\{q^{\prime}|x\in X\};q$ is usually called the generic rank of the
group $G$ . Now suppose $G$ is intransitive on $X,$ $q<n$ , and we shall show that
this leads to a contradiction under our hypothesis. The order of the isotropic
subgroup $G_{0}$ of $G$ at any point $x_{0}$ would be equal to $r^{\prime}=r-q^{\prime}\geqq r-q>(n-1)$ .
$(n-2)/2$ , and so the order of $\gamma(G_{0})$ must be also equal to $r^{\prime}$ by Lemma W. 1.
Then the subgroup $O^{\prime}$ of the orthogonal group $O_{n}$ , to which $\gamma(G_{0})$ is conjugate
in $L_{n}$ , have to coincide with the orthogonal group $O_{n}$ itself for $n\neq 4[20$,

Lemma 4]. By the same argument as in the proof of Theorem W. 3, we can
see that the space must be then Riemannian. In virtue of a lemma due to
K. Yano [51], the group $G$ of order $n(n-1)/2+1$ must be then transitive on
$X$ ; this contradicts our assumption. Thus $G$ is transitive on $X$.

Hence, by Lemma 6.1, there exists a Riemannian metric on $X$ with respect
to which $G$ is a group of motions. K. Yano [51, Theorem 9] showed that
an n-dimensional Riemannian space $(n\neq 4)$ admitting a group of motions of
order $n(n-1)/2+1$ is one of the following:

(I) the product of a straight line and an $(n-1)$ -dimensional Riemannian
space of constant curvature,

(II) a space of negative constant curvature.
We have to find Finsler metrics in such spaces which are invariant under $G$ .

Case (I). There exists a coordinate neighborhood of $X$ where $r$ generating
vector fields of $G$ are given by

$X_{1}$ ,

(6.3) $(1-\frac{K}{4}v)X_{a}+^{\underline{K}}-x^{a}x^{b}X_{b}2$ $(a, b=2,3,\cdots, n)$

$x^{a}X_{b}-x^{b}X_{a}$ ,
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where $K$ is the constant curvature of the $(n-1)$-dimensional space and $v=$

$\sum_{a\rightarrow 2}^{n}x^{a}x^{a}$ . The corresponding vector fields of the first extended group in $T(X)$

are given by

$X_{1}$ ,

(6.4) $(1-\frac{K}{4}v)X_{a}+\frac{K}{2}x^{a}x^{b}X_{b}+\frac{K}{2}(y^{a}x^{b}+x^{a}y^{b})Y_{b}-\frac{K}{2}x^{b}y^{b}Y_{a}$ ,

$x^{a}X_{b}-x^{b}X_{a}+y^{a}Y_{b}-y^{b}Y_{a}$ .

The fundamental function $F$ is an absolute invariant of the extended group,
that is, all the derivatives of $F$ with respect to the vector fields (6.4) vanish.
Therefore we see that $F$ is independent of $x$‘, and that $F$ contains the varia-

bles $x^{a}$ and $y^{a}(a=2,\cdots, n)$ only as a function of $v=^{n}\sum_{a=2}x^{a}x^{a},$ $w=\sum_{a=2}^{n}y^{a}y^{a}$ and

$t=\sum_{\alpha=2}^{n}x^{\alpha}y^{a}$ . Hence $F$ may be regarded as a function of $y^{1},$ $v,$ $w,$ $t:F=F(y^{1}, v, w, t)$ .
We assume that $F$ is differentiable in $y^{1},$ $v,$ $w,$ $t$. $F$ satisfies moreover

2 $(1+\frac{K}{4}v)x^{a}\frac{\partial F}{\partial v}+Kwx^{a}\frac{\partial F}{\partial w}+\{(1+\frac{K}{4}v)y^{a}+\frac{K}{2}tx^{a}\}\frac{\partial F}{\partial t}=0$ .

Multiplying these equations by $x^{a}$ and $y^{a}$ and summing up with respect to
$a=2,\cdots,$ $n$ we have

2 $(1+\frac{K}{4}v)v\frac{\partial F}{\partial v}+Kvw\frac{\partial F}{\partial w}+\{(1+\frac{K}{4}v)t+\frac{K}{2}tv\}\frac{\partial F}{\partial t}=0$ ,

2 $(1+\frac{K}{4}v)t\frac{\partial F}{\partial v}+Ktw\frac{\partial F}{\partial w}+\{(1+\frac{K}{4}v)w+\frac{K}{2}t^{2}\}\frac{\partial F}{\partial t}=0$ ,

from which we have

$(1+\frac{K}{4}v)(t^{2}-vw)\frac{\partial F}{\partial t}=0$ .

Hence $\partial F/\partial t=0$ in our domain except in the surface $x^{2}=\cdots=x^{n},$ $y^{2}=\cdots=y^{n}$ .
However, since we have supposed $F$ to be differentiable, we have $\partial F/\partial t=0$

in all our domain. Hence $F$ is a solution of a differential equation

$(1+\frac{K}{4}v)\frac{\partial F}{\partial v}+\frac{K}{2}w\frac{\partial F}{\partial w}=0$ .

Since $w/(1+\frac{K}{4}v)^{2}$ is a soluton of this equation, a general fundamental func-

tion is given by a function

(6.5)
$F=f((y^{1})^{2},$ $\frac{w}{(1+\frac{K}{4}v)^{2}})$
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where $f(t_{1}, t_{2})$ is a homogeneous function of degree one in two variables $t_{1}$

and $t_{2}$ .
Case (II). There exists a coordinate system of $X$ where $r$ vector fields

generating $G$ are given by

$--k^{-X_{1}+x^{b}X_{b}}1$

(6.6) $X_{a}$ , $(a, b=2,3,\cdots, n)$

$x^{a}X_{b}-x^{b}X_{a}$ ,

where $-k^{2}$ is the negative constant curvature of the space $X$. The vector
fields of the extended group in $T(X)$ of $G$ are

$-\frac{1}{k}X_{1}+x^{b}X_{b}+y^{b}Y_{b}$ ,

(6.7) $X_{a}$ ,

$x^{a}X_{b}-x^{b}X_{a}+y^{a}Y_{b}-y^{b}Y_{a}$ .
By the same reason as in the former case, we see that the fundamental
function $F$ is independent of $x^{a}$ , and that $F$ contains $y^{a}$ only as a function of
$w=\sum_{a=2}^{n}y^{a}y^{a}$, so that $F$ may be expressed as $F=F(x^{1}, y^{1}, w)$ . We assume again

the differentiability of $F(x^{1}, y^{1}, w)$ . $F$ satisfies moreover a differential equatiop

$-\frac{1}{k}\frac{\partial F}{\partial x^{1}}+2w\frac{\partial F}{\partial w}=0$ .

Since $e^{2kx}w1$ is a solution of this equation, a general fundamental function is
given by a function

(6.8) $F=f((y^{1})^{2}, e^{2^{kx^{1}}}w)$ ,

where $f$ has the same property as in Case (I). Concluding the above discus-
sions, we can state the following

THEOREM 6.3. A necessary and sufficient condition that an n-dimensional
Finsler space $(n\neq 4)$ admits a group of motions of order $n(n-1)/2+1$ is that the
fundamental function $F$ is given by either (6.5) or (6.8) in a suitable coordinate
system.

Chapter III. Spaces of hyperplane elements and Cartan spaces.

\S 7. Space of hyperplane elements.

In this chaptar, we take, as $Z$ in Chapter I the cotangent space, $T^{*}(X)=$

{X, $Y^{*n},$ $L_{n},$ $\tau$ } of a space $X$, where $Y^{*n}$ is the dual vector space to $Y^{n}$ . We
bave again $n=N$ in the notatioll@ of Chapter I, but now the automorphism
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$\alpha$ of $L_{n}$ maps each matrix to the transpose of its inverse, and consequently
$\overline{\alpha}$ has the effect

(7.1) $\overline{\alpha}_{\iota^{j}}(g)=-g_{i}^{j}$

for any element $g=(g_{j^{\dot{2}}})\in L(L_{n})$ . A point $z\in T^{*}(X)$ will be denoted by $(x^{i}, u_{i})$ .
In replacing suitably the indices–in replacing the Greek indices by Latin
ones and interchanging the super- and subscripts–and changing occasionally
the signs, we obtain formulas on $T^{*}(X)$ from some formulas of Chapter I.
We shall indicate these formulas by asterisk placed upward like $(1.3)^{*}$ .

We obtain in particular as $(1.3)^{*}$ and $(1.5)^{*}$ ,

(7.2) $\omega_{j^{i}}=\Gamma_{j^{i}k}^{*}dx^{k}+C_{j}^{ik}Du_{k}$ ,

(7.3) $\overline{\alpha}_{i}^{j}(\omega)=-\omega_{i}^{j},\overline{\alpha}_{i}^{j}(\Gamma_{k})=-\Gamma_{i}^{j_{k}},\overline{\alpha}_{i}^{j}(C^{k})=-C_{i}^{jk}$ ,

The covariant derivatives of a tensor field $T^{I}$ are given as $(1.16)^{*}$ by

$T_{|k}^{I}=\frac{\partial T^{I}}{\partial x^{k}}+\frac{\partial T^{I}}{\partial u_{h}}\Gamma_{l_{1}k}^{*}+\Gamma_{J^{I}k}^{*}T^{J}$ ,

(7.4)
$T^{I}||^{k}=\frac{\partial T^{I}}{\partial u_{k}}+C_{J}^{Ik}T^{J}$ ,

and the Lie derivative of $T^{I}$ are given as $(2.14)^{*}$ by

(7.5) $fT^{I}=T^{t_{1_{h}}}\xi^{h}-T^{I||^{l}}M_{l}^{h}\xi^{p_{h}}u_{p}-\xi_{J}^{1}T^{J}$ ,
where

(7.6) $\xi_{j}^{i}=\frac{\partial\xi^{i}}{\partial x^{j}}+\Gamma_{jk}^{*i}\xi^{k}-C_{j}^{ik}(\frac{\partial\xi^{\iota}}{\partial x^{k}}+\Gamma_{kp}^{*l}\xi^{p})u_{l}$ ,

which is obtained as $(2.11)^{*}$ . In particular, for the intrinsic covariant vector
field $u=(u_{j})$ on $T^{*}(X)$ , we have

$u_{j}|_{k^{=0}}$ , $u_{j}^{||^{k}}=\delta_{j}^{k}-C_{j}^{k}$ , $C_{j}^{k}=C_{j}^{ik}u_{i}$ ,
(7.7)

$fu_{j}=0$ .
By Lemma 1.3*, a linear connection (7.1) is proper if and only if $\Gamma_{jk}^{*i}$

and $C_{j}^{ik}$ are homogeneous in $u_{j}$ of degree zero and minus one respectively
and $C_{j}^{ik}$ satisfy

(7.8) $C_{j}^{ik}u_{k}=0$ .
Then Lemma $1.4^{*}$ shows that the curvature tensors $R_{jkl}^{\iota},$ $P_{jk}^{il},$ $Q_{j}^{ikl}$ are homo-
geneous in $u_{j}$ of degree $0,$ $-1,$ $-2$ resepctively and the last two satisfy
(7.9) $P_{jk}^{il}u_{\iota}=0$ , $Q_{j}^{ikl}u_{\iota}=0$ .

By the same argument as in the proof of Theorem 5.1, we can prove the
following

THEOREM 7.1. A space of hyperplane elements with a proper connection
admits a group of affine transformations of maximum order $n+n^{2}$ if and only
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if it is affinely flat.

\S 8. Groups of motions in Cartan spaces.

A Cartan space is the space in which the volume of a hypersurface is
given by $(n-1)$-ple integral

(8.1) $\int L(x, n)dv$ ,

where $\iota;=(n_{j})$ is the covariant vector density field of weight $-1$ tangent to
the hypersurface, $L(x, n)$ a scalar function of $x^{i}$ and It $j$’ which is positive
homogeneous in $u_{j}$ of degree one, and $dv$ the volume element of the hyper-
surface.

Now let $\mathfrak{L}(x, u)$ be the function of the point $z=(x, u)\in T^{*}(X)$ defined as
follows. In each coordinate system $(x, u)$ are given by their components
$(x^{i}, u_{j})$ . Let $tI$ be the vector density which has the same components $u_{j}$ as
$u$ in the same coordinate system. Then we put

$\mathfrak{L}(x^{i}, u_{j})=L$ ($x$, It) .
$\mathfrak{L}(x^{i}, u_{j})$ is no longer a scalar function on $T^{*}(X)$ , but it is easily shown that
$\mathfrak{L}(x^{i}, u_{j})$ is the component of a scalar density defined on $T^{*}(X)$ of weight $-1$ ,
positive homogeneous in $u_{j}$ of degree 1 and positive valued for $u\neq 0$ . It is
obvious that such scalar densities $\mathfrak{L}(x, u)$ is in one-one corespondence with

scalar functions $L(x, n)$ . We put $\mathfrak{F}=\frac{1}{2}\mathfrak{L}^{2}$ and call $\mathfrak{F}$ the fundamental scalar

density.
Then the contravariant metric tensor field $g^{ij}$ is defined by

(8.2) $g^{ij}=\frac{1}{\mathfrak{g}}\frac{\partial^{2}\mathfrak{F}}{\partial u_{i}\partial u_{j}}$ ,

where

(8.3) $\mathfrak{g}=(\det|\frac{\partial \mathfrak{F}}{\partial u_{i}\partial u_{j}}|)^{\overline{n}-\overline{1}}1$

$g^{ij}$ are homogeneous in $u_{j}$ of degree zero and the determinant $|g^{ij}|$ is equal
to $1/\mathfrak{g}$ . The covariant metric tensor $g_{ij}$ is the reciparocal system of $\mathscr{J}^{j}$ .
From (8.2) and the homogeneity of $\mathfrak{F}$ , we have

(8.4) $\mathscr{J}^{j}u_{j}=\frac{1}{\mathfrak{g}}\frac{\partial \mathfrak{F}}{\partial u_{i}}$ , $\mathscr{J}^{j}u_{i}u_{j}=\frac{2\mathfrak{F}}{\mathfrak{g}}$ .

A linear connection on $T^{*}(X)$ is said to be metric if the covariant deriva-
tives of the metric tensor with respect to it vanish:
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$g_{iJ^{1}k^{=\frac{\partial g_{ij}}{\partial x^{k}}+\frac{\partial g_{ij}}{\partial u_{h}}\Gamma_{hk}^{*}-\Gamma_{ik}^{*h}g_{hj}-\Gamma_{ik}^{*h}g_{ih}=0}}$ ,
(8.5)

$g^{ij||^{k}}=\frac{\partial g^{ij}}{\partial u_{k}}+\mathscr{J}^{h}C_{h}^{jk}+g^{hj}C_{h}^{ik}=0$ .

A remarkable metric connection is characterized by conditions [4], [ $0$ , p. 21
and suppl\’ement]
(8.6) $\Gamma_{jk}^{*i}=\Gamma_{kj}^{*i}$ , $C^{ijk}=C^{jik}$ ,

where $C^{ijk}=g^{ih}C_{h}^{jk}$ . The second coefficients $C^{ijk}$ of this metric connection are
uniquely determined by the fundamental scalar density $\mathfrak{F}$ , as follows: From
the second equations of (8.5) and (8.6), we have

(8.7) $C^{ijk}=-\frac{1}{2}\frac{\partial g^{ij}}{\partial u_{k}}=\frac{1}{2}g^{ij}\frac{1}{\mathfrak{g}}\frac{\partial \mathfrak{g}11\partial^{3}\mathfrak{F}}{\partial u_{k}2\mathfrak{g}\partial u_{i}\partial u_{j}\partial u_{k}}$ .
Putting $C^{k}=g_{i}{}_{j}C^{ijk}=C_{i}^{ik}$, we have

(8.8) $C^{k}=-\frac{1}{2}g_{ij}\frac{\partial g^{ij}}{\partial u_{k}}=\frac{1}{2}\frac{1}{\mathfrak{g}}\frac{\partial \mathfrak{g}}{\partial u_{k}}$

and

(8.9) $C^{ijk}=g^{ij}C^{k}-\frac{1}{2}\frac{1}{\mathfrak{g}}\frac{\partial^{3}\mathfrak{F}}{\partial u_{i}\partial u_{j}\partial u_{k}}$ .

From these equations, we have further

(8.10) $C_{j}^{ik}u_{i}=u_{J}C^{k}$ , $C^{ijk}u_{k}=0$ , $C^{k}u_{k}=0$ ,

(8.11) $C_{k}^{ik}=(2-n)C^{i}$ ,
and

$\det|\delta_{j}^{k}-C_{j}^{ik}u_{\iota}|=\det|\delta_{j}^{k}-u_{!}C^{k}|$

$=1-u_{J}C^{j}=1$ ,

that is, the matrix $(\delta_{j}^{k}-C_{j}^{k})$ is unimodular. Hence the inverse matrix $(M_{j}^{i})$

of $(\delta_{j}^{k}-C_{j}^{k})$ is equal to $(\delta_{j}^{k}-u{}_{j}C^{k})$ .
Moreover we can see that, if a symmetric tensor

$H^{ij}=g^{ij}+2\frac{\mathfrak{F}}{\mathfrak{g}}C_{k}C^{kij}$

(8.12)

$=g^{ij}+2\frac{\mathfrak{F}}{\mathfrak{g}}C^{i}C^{j}-\frac{\mathfrak{F}}{\mathfrak{g}^{2}}C_{k}\frac{\partial^{3}\mathfrak{F}}{\partial u_{i}\partial u_{j}\partial u_{k}}$

is of rank $n$ , then the first coefficients $\Gamma_{jk}^{*i}$ of the metric connection satisfy-
ing (8.6) are completely determined. A Cartan space is said to be regular
if the symmetric tensor $H^{ij}$ has the rank $n$ . We shall deal only with regular
Cartan spaces in the following. We notice that the metric connection satis-
fying (8.6) of a regular Cartan space is proper in our sense. The tensor $H^{ij}$

satisfies
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(8.13) $H^{ij}u_{j}=g^{ij}u_{j}$ .
A transformation $\varphi$ on $X$ is called a motion of the Cartan space if the

induced transformation $\varphi^{*}$ on $T^{*}(X)$ leaves invariant the fundamental scalar
density $\mathfrak{F}$ . In order that a vector field $\xi^{i}$ on $X$ is an infinitesimal motion it
is necessary and sufficient that $\xi^{i}$ satisfy an equation

(8.14) $S\mathfrak{F}=0$ .
Then, by Lemma 3.5*, $S\mathfrak{g}=0$ and $Sg^{ij}=0$ . Conversely, if $Sg^{ij}=0$ , then $S\mathfrak{g}=0$

and, by Lemma $2.3^{*}$ and (8.4), we have $S\mathfrak{F}=0$ . Hence the equation (8.14) is
equivalent to

(8.15) $Sg^{ij}=-(\xi^{ij}+\xi^{ji})=0$ ,

where we have put $\xi^{ij}=\xi_{h}^{i}g^{hj}$. (8.15) are Killing equations in the Cartan
space.

Moreover, applying Theorem $3.4^{*}$ on $g_{ij}$ , we obtain
$g_{ih}\Lambda_{j^{h}k}+g_{hj}\Lambda_{i^{h}k}=0$ ,

or, substituting $(2.23)^{*}$ ,

$g_{ih}S\Gamma_{fk}^{*h}+g_{j\hslash}S\Gamma_{ik}^{*h}-2C_{if}^{h}S\Gamma_{hk}^{*}=0$ .
Since $\Gamma_{jk}^{*i}$ are symmetric in $j$ and $k$ , we obtain equations

(8.16) $i\epsilon\Gamma_{jk}^{*i}=C_{ji}^{ih}S\Gamma_{hk}^{*}+C_{k}^{ih}S\Gamma_{hj}^{*}-C_{jk}^{h}\mathscr{J}^{\iota}S\Gamma_{hl}^{*}$ .
Contracting these equations by $u_{i}$ , we have

$S\Gamma_{jk}^{*}=u_{j}C^{h}S\Gamma_{hk}^{*}+u{}_{k}C^{h}S\Gamma_{hi}^{*}-C_{jk}^{h}u^{l}S\Gamma_{hl}^{*}$ ,

and, contracting further by $u^{k}=g^{ki}u_{i}$ ,

$u_{i}^{k}g\Gamma_{jk}^{*}=u_{k}u^{k}C^{h}f\Gamma_{hj}^{*}=2\frac{\mathfrak{F}}{\mathfrak{g}}C^{h}S\Gamma_{hj}^{*}$ .

From the last two equations, we have

(8.17) $S\Gamma_{jk}^{*}+(2\frac{\mathfrak{F}}{\mathfrak{g}}C_{ik}^{h}-u_{j}\delta_{k}^{h}-u_{k}\delta_{j}^{h})C^{\iota}\epsilon\Gamma_{hl}^{*}=0$

and, contracting by $C^{k}$,

(8.18) $(g^{ij}+2\frac{\mathfrak{F}}{\mathfrak{g}}C^{jki}C_{k}-u^{i}C^{j})C^{\iota}S\Gamma_{jl}^{*}=0$ .
Since we have

$\det|g^{if}+2\frac{\mathfrak{F}}{\mathfrak{g}}C^{jki}C_{k}-u^{i}C^{j}|=\det|H^{if}-u^{i}C^{j}|$

$=(1-u{}_{i}C^{i})\det|H^{ij}|$

$=\det|H^{ij}|\neq 0$

because of the regularity of the space, we have $C^{\iota}S\Gamma_{jl}^{*}=0$ . From (8.17) and
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(8.16), we obtain $S\Gamma_{jk}^{*i}=0$ , which are equivalent to equations

$\Lambda_{J^{i_{k}}}=\xi_{j1k}^{i}+R_{jkl}^{i}\xi^{l}-P_{jk}^{il}M_{l}^{h}\xi^{p_{h}}u_{p}=0$ .
by $(2.23)^{*}$ and $(2.24)^{*}$ .

Now the complete integrability condition of the Killing equations (8.15)

is equivalent, by Theorem 4.7*, to that of a mixed system of linear differ-
ential equations

$\xi_{1j}^{i}=\xi_{j}^{i}+C_{j}^{il}M_{l}^{h}\xi^{p_{h}}u_{p}$ ,

$\xi^{i}||J=C_{h}^{ij}\xi^{h}$ ,

$\xi_{j|k}^{i}=-R_{fkl}^{i}\xi^{l}+P_{jk}^{il}M_{\iota}^{h}\xi^{p_{h}}u_{p}$ ,

$\xi_{j}^{i||k}=P_{jl}^{ik}\xi^{l}+Q_{j}^{ikl}M_{l}^{h}\xi^{p_{h}}u_{p}$

with (8.15) as the associated system.
From the complete integrability of this mixed system follows that the

equations

(8.19) $SC^{ijk}=C_{1h}^{ijk}\xi^{h}-C^{ik}J|1^{l}M_{l}^{h}\xi^{p_{h}}u_{p}-\xi^{i}{}_{h}C^{hjk}-\xi^{f_{h}}C^{ihk}-\xi^{k}{}_{h}C^{ijh}=0$

should be satisfied by any $\xi^{i}$ and any $\xi^{ij}$ satisfying (8.15). Therefore $\sigma_{1h}jk=0$

and

$C^{jjk||l}M^{m_{l}}g_{mh}u_{p}+\delta^{i}{}_{p}C_{n^{jk}}+\delta_{p}^{f}C_{h}^{ik}+\delta_{p}^{k}C^{ij_{l\iota}}$

$=C^{ijk}||^{l}M^{m_{l}}g_{mp}u_{h}+\delta_{h}^{i}C_{p}^{ij}+\delta_{h}^{j}C_{p}^{ik}+\delta_{h}^{k}C^{ij_{p}}$

should hold. Contracting $k$ and $p$ and taking account of (7.7), (8.10), (8.11),

we have

(8.20) $(n-2)C^{ij_{h}}+C_{h}^{ji}+C_{h}^{if}=C^{tJ_{k}|1^{l}}M_{l}^{k}u_{h}+(2-n)(\delta_{h}^{i}C^{j}+\delta_{h}^{j}C^{i})$

and, contracting further by $g_{ij}$ ,

$(n-2)C_{h}=C_{k}^{||^{l}}M_{\iota}^{k}u_{h}$ .
Since $u_{h}C^{h}=0$ and $u_{h}u^{h}=2\mathfrak{F}/\mathfrak{g}\neq 0$ , we obtain $C_{k}^{||^{l}}M_{l}^{k}=0$ and hence $C_{h}=0$ for
$n>2$ . Thus $C^{ijk}$ are symmetric in all indices and by (8.20) we have

$nC^{ijh}=C^{ij_{k}||^{l}}M_{l}^{k}u^{h}$

Since $C^{ijh}u_{h}=0$ , we have $C^{ij_{k}}11^{l}M_{\iota}^{k}=0$ and consequently $C^{ijk}=0$ , which means
that $g^{ij}$ are independent of $u_{j}$ , that is, the metric is Riemannian. Thus we
have established

THEOREM 8.1. If a regular Cartan space admits a group of motions of
maximum order $n(n+1)/2$ for $n>2$ , then it is a Riemannian space of constant
curvature.
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\S 9. Cartan spaces admitting a group of motions of order $r\geqq n(n-1)/2+1$ .
We shall prove in this last paragraph an analogue of Theorem 6.3 on

Cartan spaces. However we must impose a condition on the Cartan space;
$i$ . $e.$ , we suppose that the representation $\gamma:G_{0}\rightarrow L_{n}$ of the isotropic subgroup
$G_{0}$ of motions at any point $x\in X$ is faithful. In the case of Finsler spaces,
the corresponding proposition (Lemma W. 1. in \S 6) is proved by means of
the normal coordinates, on which we have no knowledge in Cartan spaces.
The author has the conjecture that this condition might be satisfied by any
Cartan space, but he has not been successful in proving it. So we must
restrict ourselves to the consideration of regular Cartan spaces satisfying
this condition.

We define a correspondence $\eta$ of the cotangent space $T_{x}^{*}(X)$ to the
tangent space $T_{x}(X)$ at each point $x\in X$ by equations

(9.1) $y^{i}=g^{ij}u_{j}$ .
This correspondence is a differentiable homeomorphism of $T^{*0}(X)$ onto $T^{o}(X)$ ,

because

$|\frac{\partial y^{i}}{\partial u_{j}}|=|g^{ij}-2C^{ikj}u_{k}|=|g^{ij}-2u^{i}C^{j}|=|g^{ij}|\neq 0$

at any point. If we define a scalar function

$F(x, y)=\frac{\mathfrak{F}(x,\eta^{-1}(y))}{\mathfrak{g}(x,\eta^{-1}(y))}$ ,

then $F$ is homogeneous of degree 2 in $y^{i}$ and we may consider a Finsler space
with $F$ as fundamental function and having \dagger ite same base space $X$. If $\varphi$ is
a motion of the Cartan space, then $g^{ij}$ is invariant under $\varphi^{*}$ and we have
$\varphi_{*}\circ\eta=\eta\circ\varphi^{*}$ . Moreover $\mathfrak{F}$ and $\mathfrak{g}$ are invariant under $\varphi^{*}$ and hence $F$ is also
invariant under $\varphi_{*}$ . Therefore, by Lemma W. 2 in \S 6, $\gamma(G_{0})$ is conjugate to
a subgroup $O^{\prime}$ of the rotation group $O_{n}$ in $L_{n}$ .

If the group $G$ of motions of a Cartan space is of order $r>n(n-1)/2+1$ ,

then $\gamma(G_{0})$ is conjugate to the subgroup $O_{n}$ in $L_{n}$ , and hence is of order
$n(n-1)/2$ and so $G_{0}$ has also the same order. Therefore, at $x_{0}$ , the equations
(8.19) with $\xi^{i}(x_{0})=0$ should be satisfied by arbitrary $\xi^{ij}$ satisfying $\xi^{ij}+\xi^{ji}=0$ .
Repeating the discussion at the end of the previous paragraph, we have
$C^{ijk}=0$ at $x_{0}$ for $n=3$ or $n\geqq 5$ . The point $x_{0}$ being arbitrary, we have $C^{ijk}=0$

on $X$, and see that the space is Riemannian and consequently of constant
curvature.

If the group $G$ is of order $r=n(n-1)/2+1$ , then under our assumption at
the bigining of this paragraph, we can verify that $G$ acts transitively on $X$.
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Hence, by the same reasoning as in \S 6, we obtain an exact analogue of
Principle 6.2, and we can determine Cartan spaces admitting a group of
motions of order $n(n-1)/2+1$ as follows.

We can find a coordinate neighborhood in $X$ where $r$ generating vector
fields of $G$ are given by (6.3) or (6.6) as in Case (I) or (II) of \S 6.

Case (I). Corresponding to (6.3) the generating vector fields of the extended
group of $G$ in $T^{*}(X)$ are given by

$X_{1}$ ,

$(1_{4}^{K}---v)X_{a}+\frac{K}{2}x^{a}x^{b}X_{b}+\frac{K}{2}(u_{a}x^{b}-x^{a}u_{b})U^{b}-\frac{K}{2}x^{b}u_{b}U^{a}$ ,

$x^{a}X_{b}-x^{b}X_{\alpha}-u_{b}U^{a}+u_{a}U^{b}$ , $(a, b=2,3,\cdots, n)$

where $U^{a}=\partial/\partial u_{a}$ and $v=\sum_{a=2}^{n}x^{a}x^{a}$ . Since the fundamental scalar density $\mathfrak{F}$ of

weight two is invariant under the extended group, it is a solution of differ-
ential equations

$\frac{\partial \mathfrak{F}}{\partial x^{1}}=0$ ,

$(1-\frac{K}{4}v)\frac{\partial \mathfrak{F}}{\partial x^{a}}+\frac{K}{2}x^{a}x^{b}\frac{\partial \mathfrak{F}}{\partial x^{b}}+\frac{K}{2}(u_{a}x^{b}-x^{a}u_{b})\frac{\partial \mathfrak{F}}{\partial u_{b}}$

(9.2)
$-\frac{K}{2}x^{b}u_{b}\frac{\partial \mathfrak{F}}{\partial x_{a}}+K(n-1)x^{a}\mathfrak{F}=0$ ,

$x^{a}\frac{\partial \mathfrak{F}}{\partial x^{b}}-x^{b}\frac{\partial \mathfrak{F}}{\partial x^{a}}-u_{b}\frac{\partial \mathfrak{F}}{\partial u_{a}}+u_{a}\frac{\partial \mathfrak{F}}{\partial u_{b}}=0$ .

It follows that $\mathfrak{F}$ is independent of $x$‘, and that $\mathfrak{F}$ contains the variables $x^{a}$

and $u_{a}$ only as a function of $v=\sum_{a\Rightarrow 2}^{n}x^{a}x^{a},$ $w^{*}=\sum_{a=2}^{n}u_{a}u_{a}$ and $t^{*}=\sum_{a=2}^{n}x^{a}u_{a}$ . So we
may express $\mathfrak{F}=\mathfrak{F}(u^{1}, v, w^{*}, t^{*})$ . We assume the differentiability of $\mathfrak{F}(u^{1},$ $v,$

$w^{*}$ ,
$t$“). From the second equations of (9.2), we can see that $\mathfrak{F}$ is independent of
$t^{*}$ as in Case (I), \S 6, and $\mathfrak{F}$ is a solution of a differential equation

$(1+\frac{K}{4}v)\frac{\partial \mathfrak{F}K}{\partial v2}w^{*}\frac{\partial \mathfrak{F}}{\partial w^{*}}+\frac{K}{2}(n-1)\mathfrak{F}=0$ .

Since $w^{*}/(1+\frac{K}{4}v)^{2n-4}$ is a solution of this equation, a general fundamental

scalar density is given by

(9.3) $\mathfrak{F}=f((u_{1})^{2},$ $w^{*}/(1+\frac{K}{4}v)^{2n-1})$ ,

where $f(t_{1}, t_{2})$ is a homogeneous function of degree one in two variables $t_{1}$

and $t_{2}$ .
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Case (II). $\mathfrak{F}$ is a solution of differential equations

$-\frac{1}{k}\frac{\partial \mathfrak{F}}{\partial x^{1}}+x^{b}\frac{\partial \mathfrak{F}}{\partial x^{b}}-u_{b}\frac{\partial \mathfrak{F}}{\partial u_{b}}+2(n-1)\mathfrak{F}=0$ ,

(9.4) $\frac{\partial \mathfrak{F}}{\partial x^{a}}=0$ ,

$x^{a}\frac{\partial \mathfrak{F}}{\partial x^{b}}x^{b}\frac{\partial \mathfrak{F}}{\partial x^{a}}u_{b}\frac{\partial \mathfrak{F}}{\partial u_{a}}+u_{a}\frac{\partial \mathfrak{F}}{\partial u_{b}}=0$ .

It follows that $\mathfrak{F}$ is independent of $x^{a}$ , and that $\mathfrak{F}$ contains $u_{a}$ only as a func-

tion of $w^{*}=\sum_{a=2}^{n}u_{a}u_{a}$ . Consequently we may express $\mathfrak{F}=\mathfrak{F}(x^{1}, u_{1}, w^{*})$ . From

the first equation of (9.4), $\mathfrak{F}$ is a solution of a differential equation

$\frac{1}{k}\frac{\partial \mathfrak{F}}{\partial x^{1}}+2w^{*}\frac{\partial \mathfrak{F}}{\partial w^{*}}2(n-1)\mathfrak{F}=0$ .

Since $e^{2k_{(}n-2)^{x}}w^{*}1$ is a solution of this equation, a general fundamental scalar
density $\mathfrak{F}$ is given by

(9.5) $\mathfrak{F}=f((u_{1})^{2}, e^{2k(n-2)^{x}}1w^{*})$ .
Gathering the above results, we have established

THEOREM 9.1. Under the assumption at the biginning of this paragraph, $a$

necessary and sufficient condition that an n-dimensional Cartan space $(n\geqq 3, n\neq 4)$

admits a group of motions of order $n(n-1)/2+1$ is that the fundamental scalar
densitv $\mathfrak{F}$ is given by either (9.3) or (9.5) in a suitable coordinate system.

Department of Mathematics,
Okayama University.
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