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Introduction.

It was shown by N. Aronszajn [1], [2] that, if $u(x)$ satisfies a second order
linear elliptic differential equation Au$(x)=0$ on a domain $D$ and has a zero
point of infinite order in $D$ , then it vanishes identically in $D$ . Recently one
of the authors has proved a similar result for a parabolic equation $\partial u(t, x)/\partial t$

$=Au(t, x)(0<t<\infty, x\in D)$ for the case when $D$ is bounded. The purpose of
this paper is to extend this result to the case when $D$ is not necessarily
bounded.

\S 1. Assumptions and the main theorems.

Let $D$ be a (not-necessarily bounded) domain in a euclidean m-space whose
boundary $B=\overline{D}-D$ consists of at most countably many $C^{3}$-hypersurfaces
of $m-1$ dimension. Consider an elliptic differential operator $A$ defined by

(A) $Au=\frac{1}{\sqrt{a(x})^{-}}\frac{\partial}{\partial x^{i}}(\sqrt{a(x)}a^{ij}\frac{\partial}{\partial x^{j}}u)+c(x)u$ for $x\in D$

with a boundary condition

(B) $\alpha(\xi)u+\{1-\alpha(\xi)\}\partial u/\partial n_{\xi}=0$ for $\xi\in B$ .
Here $||a^{ij}(x)||$ denotes a strictly positive-definite symmetric matrix for any
$x\in\overline{D},$ $0\leqq\alpha(\xi)\leqq 1$ on $B,$ $\partial^{2}a^{ij}(x)/\partial x^{k}\partial x^{\iota}(i, j, k, l=1,\cdots, m)$ and $\partial^{2}\alpha(\xi)/\partial\xi^{p}\partial\xi^{q}(p,$ $q$

$=1,\cdots,$ $m-1$ ) are Lipschitz continuous in $x\in\overline{D}$ and in $\xi\in B$ respectively, where
local coordinates on $B$ are denoted by $<\xi^{1},\cdots,$ $\xi^{m-1}>$ .

Moreover $c(x)$ is assumed to be Lipschitz continuous in $x\in\overline{D}$ , and satisfies

(C) $-\infty<c(x)\leqq C<\infty$

for some constant $C$ . Here the differentiability of functions on $\overline{D}$ at any
point $\xi\in B$ and normal derivatives $\partial u/\partial n_{\xi}(\xi\in B)$ with respect to the metric
tensor $a^{ij}(x)$ should be understood as those defined in one of It\^o’s papers [6].

Under these assumption shown above, it was shown in [6] that there
exists a so-called fundamental solution $U(t,y, x)=U(t, x, y)\geqq 0$ of a parabolic
equation



A unique continuation theorem for solutions of a parabolic differential equation. 315

(1.1) $\partial u(t, x)/\partial t=Au(t, x)$ $(t>0, x\in D)$

associated with the boundary condition (B). Namely, for any $f\in L^{p}(D)$ with
$p\geqq 1$ (with respect to the measure $dx=\sqrt{a(x)}dx^{1}\cdots dx^{m}$ ), the function

(1.2) $u(t, x)\equiv[T_{t}f](x)=\int_{D}f(y)U(t,y, x)dy$

belongs to $L^{p}(D)$ and is a solution of (1.1) satisfying both the initial condi-
tion
(1.3) $\lim_{t\downarrow 0}||T_{t}f-f||_{p}=0$ , ( $||$ $||_{p}$ denotes the norm in $L^{p}(D)$ )

and the boundary condition (B). The main result in the present paper is
the following

THEOREM 1. If i) $u(t, x)$ is defined by (1.2) with $f\in L^{2}(D)$ and ii) there exist
$t_{0}>0$ and an open set $D_{0}\subset D$ such that $u(t_{0}, x)=0$ for any $x\in D_{0}$ , then $u(t, x)=0$

for any $t>0$ and any $x\in\overline{D}$ , and consequently $f(x)=0$ almost everywhere in $D$ .
The proof will be given in \S 3.
The uniqueness of the solution of the equation (1.1) with the initial

condition (1.3) and with the boundary condition (B), does not necessarily hold
(see [6], Appendix I). If we assume that

(1.4) $\left\{\begin{array}{l}theequation(1.1)hasauniquesolutionu(t,x)\in L^{2}(D)satisfyingboth\\theinitiatcondition(1.3\backslash _{q}\iota vithp=2andtheboundarycondition(B),\end{array}\right.$

then the solution can be expressed by (1.2), and hence it follows from Theo-
rem 1 that

THEOREM 2. Let $u(t, x)$ be a solution of a parabolic equalion (1.1) satisfying
(B). If $u(t, x)$ belongs to $L^{2}(D)$ for any $t>0$ , and if the assumption ii) in Theo-
rem 1 holds, then $u(t, x)=0$ for $any<t,$ $x>,$ $t>0$ .

The uniqueness (1.4) holds for any $p\geqq 1$ if, for example,

(1.5) $a^{ij}(x)$ are bounded and $||a^{ij}(x)||$ is uniformly elliptic in $\overline{D}$ .

Hence our result covers the case when $\overline{D}$ is compact. Without the
assumption (1.4) Theorem 2 does not hold (see \S 4).

If (1.5) is satisfied, then $U(t, y, x)$ is bounded in $<x,$ $y>\in D\times D$ for any
$t>0$ and we can prove that, for any $f\in L^{p}(D)$ with $1\leqq p\leqq 2,$ $u(t, )$ defined by
(1.2) belongs to $L^{2}(D)$ for $t>0$ . Hence Theorem 2 is valid for $u(t, x)\in L^{p}(D)$

if $1\leqq p\leqq 2$ , and therefore we have: If $\mu(X)$ is an additive set function of
bounded variation on $D$ , and if the function $u(t, x)=\int_{D}U(t, y, x)d\mu(y)$ satisfies
the assumption ii) in Theorem 1, then $u(t, x)=0$ for any $<t,$ $x>$ , and furthermore
$\mu(X)=0$ for any Borel set $X\subset D$ .
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\S 2. Some properties of solutions of a parabolic equation $\partial u/\partial t=Au$ .
Consider the elliptic differential operator $A$ with the boundary condition

(B) defined in \S 1, and assume that $C=0$ in (C). In one of It\^o’s papers [6],

it is shown $that^{*)}$ : There exist a sequence $\{\phi_{p}(x;\lambda);p=1,2,\cdots\},$ $(x\in\overline{D}, 0\leqq\lambda<\infty)$

of solutions of $A\phi+\lambda\phi=0$ satisfying the boundary condition (B) $pnd$ a sequence
$\{\rho_{p} ; p=1,2,\cdots\}$ of Borel measures on $[0, \infty$ ) with $\rho_{p}([0, \infty))=1$ for any $p$ such
that:

a) any $f\in L^{2}(D)$ is expressible in the form

(2.1) $f(x)=1_{N\rightarrow\infty}i.m.\sum_{p=1}^{N}\int_{0}^{N}\phi_{p}(x;\lambda)f_{p}(\lambda)d\rho_{p}(\lambda)$

where

(2.2) $f_{p}(\lambda)=s-\lim_{F:compact}\uparrow D-\int_{F}\overline{\phi_{p}(x;\lambda)}f(x)dx$

(s-lim means the strong limit in $\sum_{p=1}^{\infty}\oplus L^{2}([0,$ $\infty),$
$\rho_{p}$ )), and

(2.3) $\sum_{p=1}^{\infty}\int_{0}^{\infty}|f_{p}(\lambda)|^{2}d\rho_{p}(\lambda)=\int_{D}|f(x)|^{2}dx$ .

b) the fundamental solution $U(t, y, x)$ of the equation $\partial u/\partial t=Au$ associated
with the boundary condition (B) can be expressed as

(2.4) $U(t, y, x)=\sum_{p=1}^{\infty}\int_{0^{\infty}}e^{-\lambda^{t}}\overline{\phi_{p}(y;\lambda)}\phi_{p}(x;\lambda)d\rho_{p}(\lambda)$ .

It can be seen from the argument in [6], Chapter III that both the
summation and the integral in the right hand side of (2.4) converge uniformly
in $<t,$ $y,$ $x>$ on any compact subset of $(0, \infty)\times\overline{D}\times\overline{D}$ , and

c) $\phi_{p}(x;\lambda),$ $ p=1,2,\cdots$ , are measurable in the variable $<x,$ $\lambda>$ .
A set function $\rho_{\backslash }^{\prime}\Lambda$ ) $=\sum_{p\Leftarrow 1}^{\infty}\rho_{p}(\Lambda)2^{-p}$ defines a Borel measure $\rho$ on $[0, \infty$ )

satisfying $\rho([0, \infty))=1$ . Besidcs all $\rho_{p}’ s$ are absolutely continuous with respect
to $\rho$ . Hence there exist non-negative functions $\omega_{p}(\lambda),p=1,2,\cdots$ such that

(2.5) $d\rho_{p}(\lambda)=\omega_{p}(\lambda)d\rho(\lambda)$

and
$\int_{0^{\infty}}\omega_{p}(\lambda)d\rho(\lambda)=1$ .

Now, let $u(t, x)$ be the function defined by (1.2) with $f(x)\in L^{2}(D)$ . Then,
by a), b) and (2.5), we have

$*)$ Similar results were proved by F. E. Browder [3] [4], L. Garing [5] and others.
Here we quote the expression taken in [6] for the convenience of notation@ in the
present paper,
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(2.6) $f(x)=1.i.m.\sum_{\infty N\rightarrow p=1}^{N}\int_{0}^{N}\phi_{p}(x;\lambda)f_{p}(\lambda)\omega_{p}(\lambda)d\rho(\text{{\it \‘{A}}})$ ,

(2.7) $\int_{D}|f(x)|^{2}dx=\sum_{p=1}^{\infty}\int_{0}^{\sim}|f_{p}(\lambda)|^{2}\omega_{p}(\lambda)d\rho(\lambda)$ ,

and

(2.8) $U(t, x, y)=\sum_{p=1}^{\infty}\int_{0}^{\infty}e^{-\lambda^{t}}\phi_{p}(y;\lambda)\overline{\phi_{p}(xj\lambda)}\omega_{p}(\lambda)d\rho(\lambda)$ .

It follows from (2.6) and (2.8) that

(2.9) $u(t, x)=\int_{D}f(y)U(t, y, x)dy$

$=\sum_{p\subset 1}^{\infty}\int_{0}^{\infty}\phi_{p}(x;\lambda)e^{-\lambda}f_{p}(\lambda)\omega_{p}(\lambda)d\rho(\lambda)$

and therefore

(2.10) $s-\lim_{F:compact}\uparrow D-\int_{F}\overline{\phi_{p}(x;\lambda)}u(t, x)dx=e^{-\lambda^{t}}f_{p}(\lambda)$ .
If we put

(2.11) $v_{p}(x;\lambda)=\phi_{p}(x, \lambda)f_{p}(\lambda)\omega_{p}(\lambda)$ ,
we have

(2.12) $\{\sum_{p=1}^{\infty}\int_{0}^{\infty}|e^{-\lambda^{t}}v_{p}(x;\lambda)|d\rho(\lambda)\}^{2}$

$\leqq\{\sum_{p=1}^{\infty}\int_{0}^{\infty}|f_{p}(\lambda)|^{2}\omega_{p}(\lambda)d\rho(\lambda)\}\{\sum_{p=1}^{\infty}\int_{0^{\infty}}e^{-2\lambda^{t}}|\phi_{p}(x;\lambda)|^{2}\omega_{p}(\lambda)d\rho(\lambda)\}$

$=U(2t, x, x)\int_{D}|f(x)|^{2}dx$

by virtue of Schwarz’s inequality and of (2.7) and (2.8).

LEMMA 1. For every integer $n\geqq 0,$ $A^{n}u(t, x)$ is real-analytic in $t>0$ , and of
class $C^{2}$ in $x$. Furthermore

(2.13) $\partial^{n}u(t, x)/\partial t^{n}=A^{n}u(t, x)=\sum_{p=1}^{\infty}\int_{0^{\infty}}e^{-\lambda^{t}}(-\lambda)^{n}v_{p}(x;\lambda)d\rho(\lambda)$

for $n\geqq 1$ . (Notice that $a^{tj}(x)s$ and $c(x)$ are not assumed to be analytic.)

PROOF. It follows from (2.12) that

(2.14) $\sum_{p=1}^{\infty}\int_{0}^{\infty}|e^{-\lambda^{t}}\lambda^{n}v_{p}(x;\lambda)|d\rho(\lambda)\leqq w_{n}(t)\{U(t, x, x)\int_{D}|f(x)|^{2}dx\}^{1/2}$

for any $n\geqq 0$ where $w_{n}(t)=\sup\{e^{-\lambda^{t/1}}\lambda^{n} ; \lambda\geqq 0\}$ . Hence, for any fixed $n\geqq 0$ , a
sequences of functions $\{u_{N}^{(n)}(t, x);N=1,2,\cdots\}$ defined by

(2.15) $u_{N}^{(\eta)}(t, x)=\sum_{p=1}^{N}\int_{0}^{N}e^{-\lambda^{t}}(-\lambda)^{n}v_{p}(x;\lambda)d\rho(\lambda)$

converges uniformly in any compact subset of $\{t;t>0\}\times\overline{D}$ to the function
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(2.16) $u^{(n)}(t, x)=\sum_{p=1}^{\infty}\int_{0}^{\infty}e^{-\lambda^{t}}(-\lambda)^{n}v_{p}(x;\lambda)d\rho(\lambda)$ .

This does converge even if we consider $t’ s$ in (2.14) and in (2.15) as complex
variables, namely (2.16) converges uniformly in any compact subset of $\{t$ .
$\mathfrak{R}t>0\}\times\overline{D}$ . Since $u_{N}^{(\eta)}(t, x)s$ are analytic in $\{\mathfrak{R}t>0\}$ for any fixed $x$, so are
$u^{(n})(t, x)_{\grave{o}}$ . In particular these functions are real-analytic. Evidently

(2.17) $\partial^{n}u(t, x)/\partial t^{n}-\partial^{n}u^{(0)}(t, x)/\partial t^{n}=u^{(n})(t, x)$ $(n=1,2,\cdots)$ .
Let $\psi(x)$ be a function of class $C^{2}$ with a compact support $\subset D$ . Then

$\int_{D}u_{N}(t, x)A\psi(x)dx=\int_{D}Au_{N}(t, x)\psi(x)dx=\int_{D}u_{N}^{(1)}(t, x)\psi(x)dx$ .

By letting $N$ go to infinity, we get

$\int_{D}u(t, x)A\psi(x)dx=\int_{D}u^{(1)}(t, x)\psi(x)dx$ .

Consequently $u^{(1)}(t, x)$ is of class $C^{2}$ in $x\in D$ , according to the [6], Theorem 5,
[7], Chapitre V, Theoreme XII and we have
(2.18) Au $(t, x)=u^{(1)}(t, x)$ .

Successive uses of similar arguments will prove that $u^{(n}$ ) $(t, x)$ is of class
$C^{d})$ in $x\in D$ and

(2.19) Au) $(t, x)=u^{(n+1)}(t, x)$ .
Combining (2.16), (2.17), (2.18) and (2.19) we have (2.13). Lemma 1 is thus

proved.
LEMMA 2. For $\rho$-almost every $\lambda$ , the function

(2.20) $v(x;\lambda)=\sum_{p-- 1}^{\infty}v_{p}(x;\lambda)$

is of class $C^{2}$ in $x$, and satisfies
(2.21) $Av(x;\lambda)=-\lambda v(x;\lambda)$

on $D$ , and

(2.22) $u(t, x)=\int_{0^{\infty}}e^{-\lambda^{t}}v(x;\lambda)d\rho(\lambda)$ .
$R_{EMARK}$ . It is important that (2.22) holds for all $<t,$ $x>\in(O, \infty)\times\overline{D}$ by

virtue of (2.12).

PROOF. It follows from (c) that $v_{p}(x;\lambda)(p=1,2,\cdots)$ are measurable in
$<x,$ $\lambda>$ and hence, by Fubini’s theorem, (2.12) implies

(2.23) $\int_{F}\sum_{p=1}^{\infty}|v_{p}(x;\lambda)|dx<\infty$

for any compact $F\subset\overline{D}$ , except for $\lambda\in\Lambda_{0}$ of $\rho$ measure $0$ . Hence $v(x;\lambda)$ defined
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by (2.20) is locally summable in $x$ for $\lambda\not\in\Lambda_{0}$ . Since $V_{N}(x;\lambda)=\sum_{p=1}^{N}v_{p}(x;\lambda)$

satisfies

$\int_{D}V_{N}(x;\lambda)A\psi(x)dx=\int_{D}AV_{N}(x;\lambda)\psi(x)dx=-\int_{D}\lambda V_{N}(x;\lambda)\psi(x)dx$

for any function $\psi(x)$ of class $C^{2}$ with its compact support $\subset\overline{D}$, we obtain
for $\lambda\not\in\Lambda_{0}$

$\int_{D}v(x;\lambda)A\psi(x)dx=-\int_{D}\lambda v(x;\lambda)\psi(x)dx$

as $N$ tends to infinity. This implies (2.21) and (2.22) follows from (2.12), (2.9)
and (2.11), $q$ . $e$ . $d$ .

\S 3. Proof of theorems.

LEMMA 3. If $v(\lambda)\in L^{2}(\rho)$ and $\int_{0}^{\infty}e^{-\lambda^{i}}v(\lambda)d\rho(\lambda)=0$ for any $t>0$, then $v(\lambda)=0$

$\rho$ -almost everywhere.
PROOF. Any continuous function $\psi(\lambda)$ on $[0, \infty$ ) satisfying $\lim_{\lambda\rightarrow\infty}\psi(\lambda)=0$

can be approximated uniformly on $[0, \infty$ ) by a linear combination of $e^{-p\lambda}’ s$

$(p=1,2,\cdots)$ ; this fact may be proved by applying Weierstrass’ polynomial
approximation theorem to the function $h(\xi)=\psi(-\log\xi)$ for $0<\xi\leqq 1$ and $=0$

at $\xi=0$ , which is continuous in $[0.1]$ . Therefore the assumption of this

lemma enables us to state that $\int_{0^{\infty}}\psi(\lambda)v(\lambda)d\rho(\lambda)=0$ for any continuous $\psi$ with
its compact support, and consequently for any $\psi\in L^{2}(\rho)$ . Hence $v(\lambda)=0\rho-$

almost everywhere.
PROOF OF THEOREM 1. For any constant $c,$ $e^{-ct}U(t, y, x)$ is a fundamental

solution of the equation $\partial u(t, x)/\partial t=(A-c)u(t, x)$ associated with the boundary
condition (B). Therefore it is sufficient to prove Theorem 1 when $C=0$ in
the condition (C) in \S 1, and hence we are able to use results in \S 2.

By Lemma 1, $u(t, x)$ is real-analytic in $t>0$ . However from the assump-
tion of Theorem 1,

$\partial^{n}u(t_{0}, x)/\partial t^{n}=[A^{n}u](t_{0}, x)=0$

for any $x\in D_{0},$ $\rho\iota=1,2,\cdots$ Hence
(3.1) $u(t, x)=0$

for any $<t,$ $x>\in(O, \infty)\times D_{0}$ .
The function $V(x;\lambda)=e^{-\lambda^{t_{0}}}v(x;\lambda)$ belongs to $L^{2}(\rho)$ for any $x\in D$ by virtue

of (2.12) and (2.20). Moreover on account of (2.22) and (3.1),

(3.2) $\int_{0}^{\infty}e^{-\lambda^{t}}V(x;\lambda)d\rho(\lambda)=0$
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for any $<t,$ $x>\in(O, \infty)\times D_{0}$ .
Hence, by Lemma 3, there exist a countable set $E$ dense in $D_{0}$ and a

Borel set $A_{1}$ of $\rho$-measure $0$ such that $v(x;\lambda)\equiv e^{\lambda^{t_{0}}}V(x;\lambda)=0$ for any $x\in E$ and
for any $\lambda\in\in\Lambda_{1}$ . On the other hand, Lemma 2 shows that $v(x;\lambda)$ is of class
$C^{2}$ and satisfies $(A+\lambda)v(x;\lambda)=0$ in $D$ for $\rho$-almost every $\lambda$ . Hence $v(x;\lambda)=0$

for all $x\in D_{0}$ for $\rho$-almost every $\lambda$ . Therefore, by a theorem of Aronszajn
[1], [2], $v(x;\lambda)=0$ for any $x\in D$ for $\rho\cdot almost$ every $\lambda$ . This means $u(t, x)=0$

for any $<t,$ $x>\in(O, \infty)\times D$ on account of (2.22) and consequently for any
$<t,$ $x>\in(O, \infty)\times\overline{D}$ because of the continuity of $u(t, x)$ . Theorem 1 is tlrus
proved.

Theorem 2 follows from (1.4) and Theorem 1, as was explained in \S 1.

\S 4. A counter example and a conjecture.

Set $a^{1}(x)=e^{-2x}$ and $a(x)=a_{1}(x)=e^{2x}(x\in R^{1})$ , and consider. the differential
operator $A$ :

$Au=\frac{1\partial}{\prime_{a(x)\partial x}}(\sqrt{a(x)}a^{1}(x)\frac{\partial u}{\partial x})=e^{-2x}u_{xx}-e^{-2x}u_{x}$ .

Then, for any fixed $t_{0}>0$ , the function

$u(t, x)=\left\{\begin{array}{l}0 fort\leqq t_{0}\\\int_{t_{\sigma}}^{t}(t-\tau)^{1/\underline{)}}exp[-e^{2x}/4(t-\tau)]d\tau fort>t_{0}\end{array}\right.$

satisfies $u_{t}=Au$ in $(0, \infty)\times R^{1}$ . However $u(t, x)=0$ for $t\leqq t_{0}$ and $u(t, x)>0$ for
$t>t_{0}$ .

This example shows that, even if a solution of $u_{t}=Au$ vanishes identically
in $x$ for some $t_{0}>0$ , it may not necessarily vanish for $t>t_{0}$ .

However the authors propose a conjecture: If $u(t_{0}, x)$ vanishes on any
open set, then $u(t, x)=0$ for any $x$ when $t<t_{0}$ .
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