On cohomology operations of the second kind.

By Yoshiro INOUE

(Received Nov. 1, 1957) (Revised March 12, 1958)

Introduction.

Let A, B be abelian groups and $n, p \ge 1$ be two integers. A cohomology operation $\theta_1(A, B, n, p)$ of the first kind is a function θ_1 , defined for every c. s. s. pair (K, L), of the cohomology group $H^n(K, L; A)$ into $H^p(K, L; B)$, which satisfies the naturality condition. Given such a cohomology operation $\theta_1(A, B, n, p)$, an abelian group C and an integer $q \ge 1$, a cohomology operation of the second kind relative to $\{\theta_1(A, B, n, p), C, q\}^{(1)}$ is a function

$$\theta_2: H^n(K, L; A) \supseteq \operatorname{Ker}(\theta_1) \to H^q(K, L; C)/G_{\theta_2}(K, L),$$

defined for every c.s.s. pair (K, L), of $\operatorname{Ker}(\theta_1)$ into a factor group of $H^q(K, L; C)$ by a subgroup $G_{\theta_2}(K, L)$, where $G_{\theta_2}(K, L)$ are determined by θ_2 in such a way that

$$G_{\theta_2}(K,L) \supseteq f^* G_{\theta_2}(K',L')$$

for every simplicial map $f: (K, L) \rightarrow (K', L')$. Furthermore, we require that θ_2 satisfies the naturality condition, i.e. the following diagram is commutative:

$$H^{n}(K', L'; A) \supseteq \operatorname{Ker}(\theta_{1}) \xrightarrow{f^{*}} \operatorname{Ker}(\theta_{1}) \subseteq H^{n}(K, L; A)$$

$$\downarrow \theta_{2} \qquad \qquad \downarrow \theta_{2}$$

$$H^{q}(K', L'; C)/G_{\theta_{4}}(K', L') \xrightarrow{f^{*}} H^{q}(K, L; C)/G_{\theta_{4}}(K, L).$$

The cohomology operations introduced by J. Adem [2], N. Shimada [8] and T. Yamanoshita [9] are of the second kind.

It is well known that there exists a 1–1 correspondence between the cohomology operations relative to $\{A, B, n, p\}$ and the elements of the Eilenberg-MacLane cohomology group $H^{p}(A, n; B)$ (n°14, [3]), i.e. in the terminology of J.F. Adams [1], the example-spaces of the first kind²) examplify the cohomology operations of the first kind. Our purpose of this note is to show that the example-spaces of the first and the second kind examplify the cohomology operations of the second kind defined in the above.

¹⁾ Cf. § 3. 6, [6].

²⁾ An example-space of the *n*-th kind is a space with precisely n non-vanishing homotopy groups and is simple in all dimensions.

Y. INOUE

1. Preliminalies. A c.s.s. complex X is a direct sum $\sum_{q\geq 0} X_q$ of free abelian groups together with face and degeneracy opeators $\partial_i: X_q \rightarrow X_{q-1}$, $s_i: X_q \rightarrow X_{q+1} \ (0 \leq i \leq q)$ which are homomorphisms and satisfy the following conditions: (i) For each q, the base of the group X_q is given (the elements of this base are called q-simplices and are denoted by σ_q , ρ_q etc.). (ii) The operators ∂_i and s_i map each simplex into a simplex and satisfy the *FD*-commutation rules (§ 2, [4]). A simplicial map $f: X \to Y$ of a c.s.s. complex X into another Y is a homomorphism which transforms a q-simplex into a q-simplex for each q and commutes with ∂_i and s_i . Throughout this paper, simplicial maps will be referred to simply as maps. Two maps f and $g: X \rightarrow Y$ are called homotopic if there is a map $h: X \times I \rightarrow Y$ such that $hk_0 = f$, $hk_1 = g$, where k_0 and $k_1: X \rightarrow X \times I$ are maps of X into the base and the top of $X \times I$ respectively. We shall denote by Δ_n the c.s.s. complex whose *p*-simplices are (p+1)-tuples of integers (i_0, i_1, \dots, i_p) with $0 \le i_0 \le i_1 \le \dots \le i_p \le n$. The operators ∂_i and s_i of Δ_n are defined by the usual manner. The non-degenerate *n*-simplex will be denoted by the same letter Δ_n .

Let Π be an abelian group and $n \ge 0$ be an integer. The c.s.s. complex $M(\Pi, n)$ is defined as the complex whose *q*-simplices are the normalized cochains of $C_N^n(\Delta_q, \Pi)$. The Eilenberg-MacLane complex $K(\Pi, n)$ is a subcomplex of $M(\Pi, n)$. Let X be a c.s.s. complex. For a normalized cocycle $k \in \mathbb{Z}_N^{n+1}(X, \Pi)$, the c.s.s. complex $K(X, \Pi, n; k)$ is a subcomplex of the cartesian product $X \times M(\Pi, n)$ defined as follows: For a *q*-simplex σ of X, there is a unique map $\hat{\sigma}: \Delta_q \to X$ with $\hat{\sigma}(\Delta_q) = \sigma$ and $\hat{\sigma}$ induces $\hat{\sigma}^{\dagger}: C^*(X, \Pi) \to C^*(\Delta_q, \Pi)$. Then the *q*-simplices of $K(X, \Pi, n; k)$ are the *q*-simplices $(\sigma, \rho) \in X \times M(\Pi, n)$ satisfying $\delta \rho + \hat{\sigma}^* k = 0$ in $C^{n+1}(\Delta_q, \Pi)$. Define a simplicial map $\lambda: K(X, \Pi, n; k) \times K(\Pi, n) \to K(X, \Pi, n; k)$ by $\lambda((\sigma, \rho) \times \rho') = (\sigma, \rho + \rho')$. For maps $f: K \to K(X, \Pi, n; k)$ and $g: K \to K(\Pi, n)$, a map $\lambda(f \times g): K \to K(X, \Pi, n; k)$ is defined by $\lambda(f \times g)(\sigma) = \lambda(f(\sigma) \times g(\sigma))$.

Let A, B be abelian groups and $n \ge 1, p \ge 1$ be integers. We put $X = K(K(A, n), B, p-1; k), k \in Z^{p}(A, n; B)$, and X' = K(B, p-1). Denote by the same letter 1_0 the 0-simplex of X' or K(A, n) defined by $1_0(\mathcal{A}_0) = 0$. Also, denote by 1_0 the 0-simplex $(1_0, 1_0)$ of X and by D the subcomplex of X, X' or K(A, n) generated by all $1_q = s_{q-1} \cdots s_0 1_0$ with $q \ge 0$. Let (K, L) be a c.s.s. pair and $f: (K, L) \to (X, D)$ and $g: (K, L) \to (X', D)$ be maps. Define a chain map

$$R(f,g): (K,L) \rightarrow X$$

as the composite of three chain maps:

$$(K, L) \xrightarrow{e} (K, L) \times (K, L) \xrightarrow{R(f) \times R(g)} X \times X' \longrightarrow X,$$

where e is the diagonal map, $R(f) \times R(g)$ is the cartesian product of R(f)

and R(g) which are defined by

$$R(f)(\rho_q) = f(\rho_q) - 1_q$$
, $R(g)(\rho_q') = g(\rho_q') - 1_q$,

and λ is the map defined in the above. Let *C* be an abelian group, $q \ge 1$ be an integer and $\mathfrak{y} \in H^q(X, C)$ be a cohomology class. We shall define an element $\mathfrak{y}(f,g) \in H^q(K,L;C)$ by

 $\mathfrak{y}(f,g) = R(f,g)^*\mathfrak{y}.$

Corresponding to this notation, we shall denote by $\mathfrak{y}(f)$ for the element $R(f)^*\mathfrak{y}$. Since the element $\mathfrak{y}(f,g)$ depends only on the homotopy classes of maps fand g, and the homotopy class of g is determined by the element $\xi = g^* \boldsymbol{b}_{p-1}$ $\in H^{p-1}(K,L;B)$, where $\boldsymbol{b}_{p-1} \in H^{p-1}(B,p-1;B)$ is the basic cohomology class, then we shall denote by $\mathfrak{y}(f,\xi)$ for $\mathfrak{y}(f,g)$. The proofs of the following lemmas are analogous to that of Theorems 7.1 and 10.2 of [5] respectively.

LEMMA 1. (Naturality) Let (K, L) and (K', L') be c.s. s. pairs and $U: (K', L') \rightarrow (K, L)$ be a map. Then

$$U^*(\mathfrak{y}(f,\xi)) = \mathfrak{y}(fU, U^*\xi), \quad U^*(\mathfrak{y}(f)) = \mathfrak{y}(fU).$$

LEMMA 2. (Additivity) $\eta(\lambda(f \times g)) = \eta(f, \xi) + \eta(f) + i^* \eta \vdash \xi$, where $\xi = g^* \boldsymbol{b}_{p-1}$, i^* : $H^q(X, C) \to H^q(X', C)$ is induced by the inclusion map $i: X' \to X$ and \vdash is the operation of Eilenberg-MacLane [5].

Let $\eta: X \to K(A, n)$ be the projection and $c_{p-1} \in C^{p-1}(X, B)$ be the basic cochain which is defined by $c_{p-1}((\sigma, \rho)) = \rho(\mathcal{A}_{p-1})$. A map $f: (K, L) \to (X, D)$ is determined by the map ηf and the cochain $c_f = c_{p-1}f \in C^{p-1}(K, L; B)$ which satisfy the condition:

(1)
$$k(\eta f(\sigma_p)) + \delta c_f(\sigma_p) = 0 \qquad (cf. Lemma 1.1, [7]).$$

It follows from (1) that, for any two maps f and $f': (K, L) \to (X, D)$ such that $\eta f = \eta f'$, the cochain $z = c_{f'} - c_f$ is a cocycle, and if $g: (K, L) \to (X', D)$ is a map such that $g(\rho_{p-1})(\mathcal{A}_{p-1}) = z(\rho_{p-1})$, then $f' = \lambda(f \times g)$. Conversely, for a cocycle $z \in Z^{p-1}(K, L; B)$, if $g: (K, L) \to (X', D)$ is a map such that $g(\rho_{p-1})(\mathcal{A}_{p-1}) = z(\rho_{p-1})$, then $c_{\lambda(f \times g)} = c_f + z$. Now, consider the set $\{ \mathfrak{y}(\lambda(f \times g), \xi) \} \subseteq H^q(K, L; C)$ consisting of all elements $\mathfrak{y}(\lambda(f \times g), \xi)$ with a map $g: (K, L) \to (X', D)$. It is easy to see that, if $\mathbf{b}_n \in H^n(A, n; A)$ is the basic cohomology class, this set depends only on the cohomology class $\zeta = (\eta f)^* \mathbf{b}_n$ and ξ . Then we shall denote by $\mathfrak{y}(\zeta, \xi)$ for this set. The definition of the set $\mathfrak{y}(\zeta)$ is similar.

2. Classification of cohomology operations of the second kind.

Let A, B be abelian groups and $n \ge 1$, $p \ge 1$ be integers. A cohomology operation of the first kind $\theta_1(A, B, n, p)$ is determined by an element $\Re_{\theta_1} \in H^p(A, n; B)$, i. e. for each element $\zeta \in H^n(K, L; A)$, there is a map $f: (K, L) \to$

(K(A, n), D) such that $\zeta = f^* \boldsymbol{b}_n$ and $\theta_1 \zeta = \Re_{\theta_1} \vdash \zeta$. We choose a cocycle k_{θ_1} representing \Re_{θ_1} and construct the complex $X = K(K(A, n), B, p-1; k_{\theta_1})$.

Let *C* be an abelian group and $\mathfrak{y} \in H^q(X, C)$, $q \ge 1$, be a cohomology class. For any c. s. s. pair (K, L), we shall define a subgroup $G_{\mathfrak{y}}(K, L) \subseteq H^q(K, L; C)$ as the subgroup generated by all the sets $\mathfrak{y}(\zeta, \xi) + i^*\mathfrak{y} \vdash \xi$ with elements $\xi \in$ $H^{p-1}(K, L; B)$ and $\zeta \in H^n(K, L; A)$ such that $\theta_1 \zeta = 0$. From the naturality of the operations $\mathfrak{y}(*, *)$ and \vdash , we have

$$f^*G_{\mathfrak{y}}(K', L') \subseteq G_{\mathfrak{y}}(K, L)$$

for every map $f: (K, L) \rightarrow (K', L')$.

Two cohomology classes \mathfrak{y} and $\mathfrak{z} \in H^q(X, C)$ will be called to *be equivalent* if

$$G_{\mathfrak{g}}(X) = G_{\mathfrak{g}}(X)$$
 and $\mathfrak{y} - \mathfrak{z} \in G_{\mathfrak{g}}(X)$.

It is clear that this relation is an equivalence relation. We shall denote by [v] the equivalent class containing v and call it *a characteristic class*.

LEMMA 3. The group $G_{\mathfrak{y}}(K, L)$ is generated by all elements $\lambda(f \times g)^* \mathfrak{y} - f^* \mathfrak{y}$ with maps $f: (K, L) \rightarrow (X, D)$ and $g: (K, L) \rightarrow (K(B, p-1), D)$.

PROOF. Since $\lambda(f \times g)^* \mathfrak{y} = \mathfrak{y}(\lambda(f \times g))$ and $f^* \mathfrak{y} = \mathfrak{y}(f)$, it follows from the additivity formula that $\mathfrak{y}(\lambda(f \times g)) - \mathfrak{y}(f) = \mathfrak{y}(f,g) + i^* \mathfrak{y} \vdash g$.

LEMMA 4. Let $\mathfrak{y}, \mathfrak{z} \in H^q(X, C)$ be two cohomology classes. If $\mathfrak{y}-\mathfrak{z} \in G_{\mathfrak{y}}(X)$, then $G_{\mathfrak{y}}(K, L) = G_{\mathfrak{z}}(K, L)$. Especially, \mathfrak{y} and \mathfrak{z} are equivalent.

PROOF. This readily follows from Lemma 3, the naturality of $G_{\mathfrak{g}}(K, L)$ and the relation:

$$(\lambda(f\times g)^*-f^*)(\mathfrak{y}+\alpha)=(\lambda(f\times g)^*-f^*)\mathfrak{y}+\lambda(f\times g)^*\alpha-f^*\alpha,$$

for $\alpha \in G_{\mathfrak{g}}(X)$ and maps $f: (K, L) \rightarrow (X, D)$ and $g: (K, L) \rightarrow (K(B, p-1), D)$.

LEMMA 5. An element $\mathfrak{y} \in H^q(X, C)$ defines a cohomology operation of the second king relative to $\{\theta_1(A, B, n, p), C, q\}$. If \mathfrak{y} and $\mathfrak{z} \in H^q(X, C)$ are equivalent, they define a same cohomology operation of the second kind.

PROOF. Define a transformation

$$\theta_2: H^n(K, L; A) \supseteq \operatorname{Ker}(\theta_1) \to H^q(K, L; C)/G_{\mathfrak{g}}(K, L)$$

by

 $\theta_2(\zeta)$ = the element of $H^q(K, L; C)/G_{\mathfrak{g}}(K, L)$ containing $\mathfrak{g}(\zeta)$.

The naturality of θ_2 is clear. The last proposition follows from Lemma 4.

The cohomology operation θ_2 defined in the proof in the above, which is fully determined by the characteristic class [y], is called to be defined by y or [y].

Let

$$\psi_2: H^n(K, L; A) \supseteq \operatorname{Ker}(\theta_1) \to H^q(K, L; C)/G_{\psi_2}(K, L)$$

be a cohomology operation of the second kind relative to $\{\theta_1(A, B, n, p), C, q\}$.

We say that ψ_2 is *minimal* if the following condition is satisfied:

(M) If there is a cohomology operation of the second kind ϕ_2 relative to $\{\theta_1(A, B, n, p), C, q\}$ such that

(2)
$$G_{\phi_2}(K,L) \subseteq G_{\psi_2}(K,L) \quad and \quad \psi_2 = \tau \circ \phi_2$$
,

where $\tau: H^q(K, L; C)/G_{\phi_a}(K, L) \rightarrow H^q(K, L; C)/G_{\phi_a}(K, L)$ is the factorization homomorphism, then we always have

$$G_{\phi_{\mathfrak{s}}}(K,L) = G_{\psi_{\mathfrak{s}}}(K,L)$$
.

THEOREM 1. Let θ_2 be a cohomology operation of the second kind relative to $\{\theta_1(A, B, n, p), C, q\}$. Then there is a minimal cohomology operation ϕ_2 relative to $\{\theta_1(A, B, n, p), C, q\}$ such that

$$G_{\phi_2}(K,L) \subset G_{\theta_2}(K,L)$$
 and $\theta_2 = \tau \circ \phi_2$,

where $\tau: H^q(K, L; C)/G_{\phi_s}(K, L) \rightarrow H^q(K, L; C)/G_{\theta_s}(K, L)$ is the factorization homomorphism.

PROOF. Let $\mathbf{c} \in H^n(X, C)$ be the cohomology class of the cocycle c which is defined by $c((\sigma, \rho)) = \sigma(\mathcal{A}_n)$. Since $\mathbf{c} = \eta^* \mathbf{b}_n$, it follows from the definition that $\theta_1 \mathbf{c} = \eta^* \Re_{\theta_1}$. Since, for each p-simplex $(\sigma, \rho) \in X$, we have $k_{\theta_1} \eta(\sigma, \rho) = k_{\theta_1}(\sigma) = -\delta c_{p-1}((\sigma, \rho))$, where c_{p-1} is the basic cochain of X, then we have $\theta_1 \mathbf{c} = 0$. We choose an element $\mathfrak{h} \in \theta_1 \mathbf{c}$ and denote by ϕ_2 the cohomology operation defined by \mathfrak{h} . Let $f: (K, L) \to (X, D)$ and $g: (K, L) \to (K(B, p-1), D)$ be maps. It follows from the naturality of θ_1 that $\theta_1 \zeta = 0$, where $\zeta = (\eta f)^* \mathbf{b}_n = (\eta(\lambda(f \times g)))^* \mathbf{b}_n$. Furthermore, from the naturality of θ_2 , we have

$$\theta_2 \zeta = \theta_2 (\eta f)^* \boldsymbol{b}_n = \theta_2 f^* \eta^* \boldsymbol{b}_n = \theta_2 f^* \boldsymbol{c} = f^* \theta_2 \boldsymbol{c} ,$$

$$\theta_2 \zeta = \lambda (f \times g)^* \theta_2 \boldsymbol{c} .$$

Since $f^* \mathfrak{y} \in f^* \theta_2 c$ and $\lambda(f \times g)^* \mathfrak{y} \in \lambda(f \times g)^* \theta_2 c$, it follows from Lemma 3 that $G_{\mathfrak{y}}(K, L) \subset G_{\theta_2}(K, L)$ and $\theta_2 = \tau \circ \phi_2$. Then the proof is complete from the following lemma.

LEMMA 6. The cohomology operation ψ_2 defined by an element \mathfrak{y} of $H^q(X, \mathbb{C})$ is minimal.

PROOF. Since ψ_2 is the cohomology operation defined by η , we see that

$$\mathfrak{y} \in \psi_2 \boldsymbol{c} ,$$

from the definition. Let ϕ_2 be the cohomology operation of the second kind satisfying the condition (2). As was shown in the proof of Theorem 1, the cohomology operation θ_2 defined by an element $\mathfrak{z} \in \phi_2 \mathbf{c}$ satisfies the condition

(4)
$$G_{\mathfrak{g}}(K,L) \subseteq G_{\phi_2}(K,L) \text{ and } \phi_2 = \tau \circ \theta_2.$$

It follows from (3), (4) and $\mathfrak{z} \in \theta_2 \mathbf{c}$ that $\mathfrak{y} - \mathfrak{z} \in G_{\mathfrak{y}}(X)$. Then, from Lemmas 4 and 5, \mathfrak{y} and \mathfrak{z} are equivalent and $G_{\mathfrak{y}}(K, L) = G_{\mathfrak{z}}(K, L)$. This completes the proof.

The following theorem follows from Lemmas 5 and 6.

THEOREM 2. There exists a 1-1 correspondence between the minimal cohomology operations relative to $\{\theta_1(A, B, n, p), C, q\}$ and the characteristic classes of elements of $H^q(K(K(A, n), B, p-1; k_{\theta_1}), C)$.

Amagasaki High School, Amagasaki City.

Bibliography

- [1] J. F. Adams, On products in minimal complexes, Trans. Amer. Math. Soc., 82 (1956), 180-189.
- [2] J. Adem, The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 720-726.
- [3] H. Cartan, Séminaire E. N. S., 1954-1955.
- [4] S. Eilenberg and S. MacLane, On the groups H(Π, n) I, Ann. of Math., 58 (1953), 55-106.
- [5] S. Eilenberg and S. MacLane, On the groups H(Π, n) III, Ann. of Math., 60 (1954), 513-557.
- [6] W.S. Massey, Some problems in algebraic topology and the theory of fibre bundles, Ann. of Math., 62 (1955), 327-359.
- [7] K. Mizuno, On homotopy classification and extension, Inst. Polytech., Osaka City Univ., 6 (1955), 55-69.
- [8] N. Shimada, Homotopy classification of mappings of a 4-dimensional complex into a 2-dimensional sphere, Nagoya Math. J., 5 (1953), 127-144.
- [9] T. Yamanoshita, On certain cohomology operations, J. Math. Soc. Japan, 8 (1956), 300-344.