On cohomology operations of the second kind.

By Yoshiro Inoue

(Received Nov. 1, 1957)
(Revised March 12, 1958)

Introduction.

Let A, B be abelian groups and $n, p \geqq 1$ be two integers. A cohomology operation $\theta_{1}(A, B, n, p)$ of the first kind is a function θ_{1}, defined for every c.s.s. pair (K, L), of the cohomology group $H^{n}(K, L ; A)$ into $H^{p}(K, L ; B)$, which satisfies the naturality condition. Given such a cohomology operation $\theta_{1}(A, B, n, p)$, an abelian group C and an integer $q \geqq 1$, a cohomology operation of the second kind relative to $\left\{\theta_{1}(A, B, n, p), C, q\right\}^{1)}$ is a function

$$
\theta_{2}: H^{n}(K, L ; A) \supseteq \operatorname{Ker}\left(\theta_{1}\right) \rightarrow H^{q}(K, L ; C) / G_{\theta_{2}}(K, L),
$$

defined for every c.s.s. pair (K, L), of $\operatorname{Ker}\left(\theta_{1}\right)$ into a factor group of $H^{q}(K, L$; C) by a subgroup $G_{\theta_{2}}(K, L)$, where $G_{\theta_{2}}(K, L)$ are determined by θ_{2} in such a way that

$$
G_{\theta_{3}}(K, L) \supseteq f^{*} G_{\theta_{2}}\left(K^{\prime}, L^{\prime}\right)
$$

for every simplicial map $f:(K, L) \rightarrow\left(K^{\prime}, L^{\prime}\right)$. Furthermore, we require that θ_{2} satisfies the naturality condition, i. e. the following diagram is commutative:

The cohomology operations introduced by J. Adem [2], N. Shimada [8] and T. Yamanoshita [9] are of the second kind.

It is well known that there exists a $1-1$ correspondence between the cohomology operations relative to $\{A, B, n, p\}$ and the elements of the Eilen-berg-MacLane cohomology group $H^{p}(A, n ; B)\left(\mathrm{n}^{\circ} 14,[3]\right)$, i. e. in the terminology of J.F. Adams [1], the example-spaces of the first kind ${ }^{2}$) examplify the cohomology operations of the first kind. Our purpose of this note is to show that the example-spaces of the first and the second kind examplify the cohomology operations of the second kind defined in the above.

[^0]1. Preliminalies. A c.s.s. complex X is a direct sum $\sum_{q \geq 0} X_{q}$ of free abelian groups together with face and degeneracy opeators $\partial_{i}: X_{q} \rightarrow X_{q-1}$, $s_{i}: X_{q} \rightarrow X_{q+1}(0 \leqq i \leqq q)$ which are homomorphisms and satisfy the following conditions: (i) For each q, the base of the group X_{q} is given (the elements of this base are called q-simplices and are denoted by σ_{q}, ρ_{q} etc.). (ii) The operators ∂_{i} and s_{i} map each simplex into a simplex and satisfy the $F D$-commutation rules (§2, [4]]. A simplicial map $f: X \rightarrow Y$ of a c.s.s. complex X into another Y is a homomorphism which transforms a q-simplex into a q-simplex for each q and commutes with ∂_{i} and s_{i}. Throughout this paper, simplicial maps will be refered to simply as maps. Two maps f and $g: X \rightarrow Y$ are called homotopic if there is a map $h: X \times I \rightarrow Y$ such that $h k_{0}=f, h k_{1}=g$, where k_{0} and $k_{1}: X \rightarrow X \times I$ are maps of X into the base and the top of $X \times I$ respectively. We shall denote by Δ_{n} the c.s.s. complex whose p-simplices are ($p+1$)-tuples of integers ($i_{0}, i_{1}, \cdots, i_{p}$) with $0 \leqq i_{0} \leqq i_{1} \leqq \cdots \leqq i_{p} \leqq n$. The operators ∂_{i} and s_{i} of Δ_{n} are defined by the usual manner. The non-degenerate n-simplex will be denoted by the same letter Δ_{n}.

Let Π be an abelian group and $n \geqq 0$ be an integer. The c.s.s. complex $M(I I, n)$ is defined as the complex whose q-simplices are the normalized cochains of $C_{N}^{n}\left(\Delta_{q}, \Pi\right)$. The Eilenberg-MacLane complex $K(\Pi, n)$ is a subcomplex of $M(\Pi, n)$. Let X be a c.s.s. complex. For a normalized cocycle $k \in Z_{N}^{n+1}(X, \Pi)$, the c.s.s. complex $K(X, \Pi, n ; k)$ is a subcomplex of the cartesian product $X \times M(\Pi, n)$ defined as follows: For a q-simplex σ of X, there is a unique map $\hat{\sigma}: \Delta_{q} \rightarrow X$ with $\hat{\sigma}\left(\Delta_{q}\right)=\sigma$ and $\hat{\sigma}$ induces $\hat{\sigma}^{\imath}: C^{*}(X, \Pi) \rightarrow C^{*}\left(\Delta_{q}, \Pi\right)$. Then the q-simplices of $K(X, \Pi, n ; k)$ are the q-simplices $(\sigma, \rho) \in X \times M(\Pi, n)$ satisfying $\delta \rho+\hat{\sigma}^{*} k=0$ in $C^{n+1}\left(\Delta_{q}, \Pi\right)$. Define a simplicial map $\lambda: K(X, \Pi, n ; k)$ $\times K(\Pi, n) \rightarrow K(X, \Pi, n ; k)$ by $\lambda\left((\sigma, \rho) \times \rho^{\prime}\right)=\left(\sigma, \rho+\rho^{\prime}\right)$. For maps $f: K \rightarrow K(X, \Pi, n$; k) and $g: K \rightarrow K(\Pi, n)$, a map $\lambda(f \times g): K \rightarrow K(X, \Pi, n ; k)$ is defined by $\lambda(f \times g)(\sigma)$ $=\lambda(f(\sigma) \times g(\sigma))$.

Let A, B be abelian groups and $n \geqq 1, p \geqq 1$ be integers. We put $X=$ $K(K(A, n), B, p-1 ; k), k \in Z^{p}(A, n ; B)$, and $X^{\prime}=K(B, p-1)$. Denote by the same letter 1_{0} the 0 -simplex of X^{\prime} or $K(A, n)$ defined by $1_{0}\left(\Delta_{0}\right)=0$. Also, denote by 1_{0} the 0 -simplex $\left(1_{0}, 1_{0}\right)$ of X and by D the subcomplex of X, X^{\prime} or $K(A, n)$ generated by all $1_{q}=s_{q-1} \cdots s_{0} 1_{0}$ with $q \geqq 0$. Let (K, L) be a c.s.s. pair and $f:(K, L) \rightarrow(X, D)$ and $g:(K, L) \rightarrow\left(X^{\prime}, D\right)$ be maps. Define a chain map

$$
R(f, g):(K, L) \rightarrow X
$$

as the composite of three chain maps:

$$
(K, L) \xrightarrow{e}(K, L) \times(K, L) \xrightarrow{R(f) \times R(g)} X \times X^{\prime} \longrightarrow X,
$$

where e is the diagonal map, $R(f) \times R(g)$ is the cartesian product of $R(f)$
and $R(g)$ which are defined by

$$
R(f)\left(\rho_{q}\right)=f\left(\rho_{q}\right)-1_{q}, \quad R(g)\left(\rho_{q}^{\prime}\right)=g\left(\rho_{q}^{\prime}\right)-1_{q}
$$

and λ is the map defined in the above. Let C be an abelian group, $q \geqq 1$ be an integer and $\mathfrak{y} \in H^{q}(X, C)$ be a cohomology class. We shall define an element $\mathfrak{y}(f, g) \in H^{q}(K, L ; C)$ by

$$
\mathfrak{y}(f, g)=R(f, g)^{*} \mathfrak{y} .
$$

Corresponding to this notation, we shall denote by $\mathfrak{y}(f)$ for the element $R(f) * \mathfrak{y}$. Since the element $\mathfrak{y}(f, g)$ depends only on the homotopy classes of maps f and g, and the homotopy class of g is determined by the element $\xi=g^{*} \boldsymbol{b}_{p-1}$ $\in H^{p-1}(K, L ; B)$, where $\boldsymbol{b}_{p-1} \in H^{p-1}(B, p-1 ; B)$ is the basic cohomology class, then we shall denote by $\mathfrak{y}(f, \xi)$ for $\mathfrak{y}(f, g)$. The proofs of the following lemmas are analogous to that of Theorems 7.1 and 10.2 of [5] respectively.

Lemma 1. (Naturality) Let (K, L) and $\left(K^{\prime}, L^{\prime}\right)$ be c.s.s. pairs and $U:\left(K^{\prime}, L^{\prime}\right)$ $\rightarrow(K, L)$ be a map. Then

$$
U^{*}(\mathfrak{y}(f, \xi))=\mathfrak{y}\left(f U, U^{*} \xi\right), \quad U^{*}(\mathfrak{l}(f))=\mathfrak{y}(f U) .
$$

Lemma 2. (Additivity) $\mathfrak{y}(\lambda(f \times g))=\mathfrak{y}(f, \xi)+\mathfrak{y}(f)+i^{*} \mathfrak{y} \mid-\xi$, where $\xi=g^{*} \boldsymbol{b}_{p-1}, i^{*}$: $H^{q}(X, C) \rightarrow H^{q}\left(X^{\prime}, C\right)$ is induced by the inclusion map $i: X^{\prime} \rightarrow X$ and \vdash is the operation of Eilenberg-MacLane [5].

Let $\eta: X \rightarrow K(A, n)$ be the projection and $c_{p-1} \in C^{p-1}(X, B)$ be the basic cochain which is defined by $c_{p-1}((\sigma, \rho))=\rho\left(\Lambda_{p-1}\right)$. A map $f:(K, L) \rightarrow(X, D)$ is determined by the map ηf and the cochain $c_{f}=c_{p-1} f \in C^{p-1}(K, L ; B)$ which satisfy the condition:

$$
\begin{equation*}
k\left(\eta f\left(\sigma_{p}\right)\right)+\delta c_{f}\left(\sigma_{p}\right)=0 \quad \text { (cf. Lemma 1.1, [7]). } \tag{1}
\end{equation*}
$$

It follows from (1) that, for any two maps f and $f^{\prime}:(K, L) \rightarrow(X, D)$ such that $\eta f=\eta f^{\prime}$, the cochain $z=c_{f^{\prime}}-c_{f}$ is a cocycle, and if $g:(K, L) \rightarrow\left(X^{\prime}, D\right)$ is a map such that $g\left(\rho_{p-1}\right)\left(\Delta_{p-1}\right)=z\left(\rho_{p-1}\right)$, then $f^{\prime}=\lambda(f \times g)$. Conversely, for a cocycle $z \in Z^{p-1}(K, L ; B)$, if $g:(K, L) \rightarrow\left(X^{\prime}, D\right)$ is a map such that $g\left(\rho_{p-1}\right)\left(\Lambda_{p-1}\right)=z\left(\rho_{p-1}\right)$, then $c_{\lambda(f \times g)}=c_{f}+z$. Now, consider the set $\{\mathfrak{y}(\lambda(f \times g), \xi)\} \subseteq H^{q}(K, L ; C)$ consisting of all elements $\mathfrak{y}(\lambda(f \times g), \xi)$ with a map $g:(K, L) \rightarrow\left(X^{\prime}, D\right)$. It is easy to see that, if $\boldsymbol{b}_{n} \in H^{n}(A, n ; A)$ is the basic cohomology class, this set depends only on the cohomology class $\zeta=(\eta f)^{*} \boldsymbol{b}_{n}$ and ξ. Then we shall denote by $\mathfrak{y}(\zeta, \xi)$ for this set. The definition of the set $\mathfrak{y}(\zeta)$ is similar.

2. Classification of cohomology operations of the second kind.

Let A, B be abelian groups and $n \geqq 1, p \geqq 1$ be integers. A cohomology operation of the first kind $\theta_{1}(A, B, n, p)$ is determined by an element $\Omega_{\theta_{1}} \in$ $H^{p}(A, n ; B)$, i. e. for each element $\zeta \in H^{n}(K, L ; A)$, there is a map $f:(K, L) \rightarrow$
$(K(A, n), D)$ such that $\zeta=f^{*} \boldsymbol{b}_{n}$ and $\theta_{1} \zeta=\Re_{\theta_{1}} \vdash \zeta$. We choose a cocycle $k_{\theta_{1}}$ representing $\Omega_{\theta_{1}}$ and construct the complex $X=K\left(K(A, n), B, p-1 ; k \theta_{1}\right)$.

Let C be an abelian group and $\mathfrak{y} \in H^{q}(X, C), q \geqq 1$, be a cohomology class. For any c.s.s. pair (K, L), we shall define a subgroup $G_{\eta}(K, L) \subseteq H^{q}(K, L ; C)$ as the subgroup generated by all the sets $\mathfrak{y}(\zeta, \xi)+i^{*} \mathfrak{y} \vdash \xi$ with elements $\xi \in$ $H^{p-1}(K, L ; B)$ and $\zeta \in H^{n}(K, L ; A)$ such that $\theta_{1} \zeta=0$. From the naturality of the operations $\mathfrak{y}(*, *)$ and \vdash, we have

$$
f^{*} G_{v}\left(K^{\prime}, L^{\prime}\right) \cong G_{v}(K, L)
$$

for every $\operatorname{map} f:(K, L) \rightarrow\left(K^{\prime}, L^{\prime}\right)$.
Two cohomology classes \mathfrak{y} and $\mathfrak{z} \in H^{q}(X, C)$ will be called to be equivalent if

$$
G_{\mathfrak{y}}(X)=G_{v}(X) \text { and } \mathfrak{y}-\mathfrak{z} \in G_{\mathfrak{y}}(X) \text {. }
$$

It is clear that this relation is an equivalence relation. We shall denote by [\mathfrak{y}] the equivalent class containing \mathfrak{y} and call it a characteristic class.

Lemma. 3. The group $G_{\emptyset}(K, L)$ is generated by all elements $\lambda(f \times g)^{*} \mathfrak{y}-f^{*}{ }_{y}$ with maps $f:(K, L) \rightarrow(X, D)$ and $g:(K, L) \rightarrow(K(B, p-1), D)$.

Proof. Since $\lambda(f \times g)^{*} \mathfrak{y}=\mathfrak{y}(\lambda(f \times g))$ and $f^{*} \mathfrak{y}=\mathfrak{y}(f)$, it follows from the additivity formula that $\mathfrak{y}(\lambda(f \times g))-\mathfrak{y}(f)=\mathfrak{y}(f, g)+i^{*} \mathfrak{y} \vdash g$.

Lemma. 4. Let $\mathfrak{y}, \mathfrak{z} \in H^{q}(X, C)$ be two cohomology classes. If $\mathfrak{y}-\mathfrak{z} \in G_{\mathfrak{y}}(X)$, then $G_{y}(K, L)=G_{\mathfrak{z}}(K, L)$. Especially, y and 子 are equivalent.

Proof. This readily follows from Lemma 3, the naturality of $G_{\emptyset}(K, L)$ and the relation :

$$
\left(\lambda(f \times g)^{*}-f^{*}\right)(\mathfrak{y}+\alpha)=\left(\lambda(f \times g)^{*}-f^{*}\right) \mathfrak{y}+\lambda(f \times g)^{*} \alpha-f^{*} \alpha,
$$

for $\alpha \in G_{\eta}(X)$ and maps $f:(K, L) \rightarrow(X, D)$ and $g:(K, L) \rightarrow(K(B, p-1), D)$.
Lemma. 5. An element $\mathfrak{y} \in H^{q}(X, C)$ defines a cohomology operation of the second king relative to $\left\{\theta_{1}(A, B, n, p), C, q\right\}$. If \mathfrak{y} and $\mathfrak{z} \in H^{q}(X, C)$ are equivalent, they define a same cohomology operation of the second kind.

Proof. Define a transformation

$$
\theta_{2}: H^{n}(K, L ; A) \supseteqq \operatorname{Ker}\left(\theta_{1}\right) \rightarrow H^{q}(K, L ; C) / G_{n}(K, L)
$$

by

$$
\theta_{2}(\zeta)=\text { the element of } H^{q}(K, L ; C) / G_{\mathfrak{y}}(K, L) \text { containing } \mathfrak{y}(\zeta) \text {. }
$$

The naturality of θ_{2} is clear. The last proposition follows from Lemma 4.
The cohomology operation θ_{2} defined in the proof in the above, which is fully determined by the characteristic class [$\mathfrak{y}]$, is called to be defined by \mathfrak{y} or [y].

Let

$$
\psi_{2}: H^{n}(K, L ; A) \supseteq \operatorname{Ker}\left(\theta_{1}\right) \rightarrow H^{q}(K, L ; C) / G \psi_{2}(K, L)
$$

be a cohomology operation of the second kind relative to $\left\{\theta_{1}(A, B, n, p), C, q\right\}$.

We say that ψ_{2} is minimal if the following condition is satisfied:
(M) If there is a cohomology operation of the second kind ϕ_{2} relative to $\left\{\theta_{1}(A, B, n, p), C, q\right\}$ such that

$$
\begin{equation*}
G_{\phi_{2}}(K, L) \cong G_{\psi_{2}}(K, L) \quad \text { and } \quad \psi_{2}=\tau \circ \phi_{2}, \tag{2}
\end{equation*}
$$

where $\tau: H^{q}(K, L ; C) / G_{\phi_{2}}(K, L) \rightarrow H^{q}(K, L ; C) / G_{\psi_{3}}(K, L)$ is the factorization homomorphism, then we always have

$$
G \phi_{2}(K, L)=G \psi_{2}(K, L) .
$$

Theorem 1. Let θ_{2} be a cohomology operation of the second kind relative to $\left\{\theta_{1}(A, B, n, p), C, q\right\}$. Then there is a minimal cohomology operation ϕ_{2} relative to $\left\{\theta_{1}(A, B, n, p), C, q\right\}$ such that

$$
G_{\phi_{2}}(K, L) \subset G_{\theta_{2}}(K, L) \quad \text { and } \quad \theta_{2}=\tau \circ \phi_{2},
$$

where $\tau: H^{q}(K, L ; C) / G_{\phi_{2}}(K, L) \rightarrow H^{q}(K, L ; C) / G_{\theta_{2}}(K, L)$ is the factorization homomorphism.

Proof. Let $\boldsymbol{c} \in H^{n}(X, C)$ be the cohomology class of the cocycle c which is defined by $c((\sigma, \rho))=\sigma\left(\Delta_{n}\right)$. Since $\boldsymbol{c}=\eta^{*} \boldsymbol{b}_{n}$, it follows from the definition that $\theta_{1} \boldsymbol{c}=\eta^{*} \Omega_{\theta_{1}}$. Since, for each p-simplex $(\sigma, \rho) \in X$, we have $k_{\theta_{1}} \eta(\sigma, \rho)=k_{\theta_{1}}(\sigma)=$ $-\delta c_{p-1}((\sigma, \rho))$, where c_{p-1} is the basic cochain of X, then we have $\theta_{1} \boldsymbol{c}=0$. We choose an element $\mathfrak{y} \in \theta_{i} c$ and denote by ϕ_{2} the cohomology operation defined by \mathfrak{y}. Let $f:(K, L) \rightarrow(X, D)$ and $g:(K, L) \rightarrow(K(B, p-1), D)$ be maps. It follows from the naturality of θ_{1} that $0_{1} \zeta=0$, where $\zeta=(\eta f)^{*} \boldsymbol{b}_{n}=(\eta(\lambda(f \times g))) * \boldsymbol{b}_{n}$. Furthermore, from the naturality of θ_{2}, we have

$$
\begin{aligned}
\theta_{2} \zeta & =\theta_{2}(\eta f)^{*} \boldsymbol{b}_{n}=\theta_{2} f^{*} \eta^{*} \boldsymbol{b}_{n}=\theta_{2} f^{*} \boldsymbol{c}=f^{*} \theta_{2} \boldsymbol{c}, \\
\theta_{2} \zeta & =\lambda(f \times g)^{*} \theta_{2} \boldsymbol{c} .
\end{aligned}
$$

Since $f^{*} \mathfrak{y}_{\mathfrak{y}} \in f^{*} \theta_{2} \boldsymbol{c}$ and $\lambda(f \times g)^{*} \mathfrak{y} \in \lambda(f \times g)^{*} \theta_{2} \boldsymbol{c}$, it follows from Lemma 3 that $G_{\emptyset}(K, L) \subset G_{\theta_{2}}(K, L)$ and $\theta_{2}=\tau \circ \phi_{2}$. Then the proof is complete from the following lemma.

Lemma 6. The cohomology operation ψ_{2} defined by an element \mathfrak{y} of $H^{q}(X, C)$ is minimal.

Proof. Since ψ_{2} is the cohomology operation defined by \mathfrak{y}, we see that

$$
\begin{equation*}
\mathfrak{y} \in \psi_{2} \boldsymbol{c}, \tag{3}
\end{equation*}
$$

from the definition. Let ϕ_{2} be the cohomology operation of the second kind satisfying the condition (2). As was shown in the proof of Theorem 1, the cohomology operation θ_{2} defined by an element $\mathfrak{z} \in \phi_{2} \boldsymbol{c}$ satisfies the condition

$$
\begin{equation*}
G_{0}(K, L) \subseteq G_{\phi_{2}}(K, L) \quad \text { and } \quad \phi_{2}=\tau \circ \theta_{2} . \tag{4}
\end{equation*}
$$

It follows from (3), (4) and $\mathfrak{z \in \theta _ { 2 }} \boldsymbol{c}$ that $\mathfrak{y}-\mathfrak{z} \in G_{\eta}(X)$. Then, from Lemmas 4 and $5, \mathfrak{y}$ and \mathfrak{z} are equivalent and $G_{\mathfrak{y}}(K, L)=G_{\mathfrak{z}}(K, L)$. This completes the proof.

The following theorem follows from Lemmas 5 and 6.
Theorem 2. There exists a 1-1 correspondence between the minimal cohomology operations relative to $\left\{\theta_{1}(A, B, n, p), C, q\right\}$ and the characteristic classes of elements of $H^{q}\left(K\left(K(A, n), B, p-1 ; k_{\theta_{1}}\right), C\right)$.

Amagasaki High School, Amagasaki City.

Bibliography

[1] J.F. Adams, On products in minimal complexes, Trans. Amer. Math. Soc., 82 (1956), 180-189.
[2] J. Adem, The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 720-726.
[3] H. Cartan, Séminaire E. N. S., 1954-1955.
[4] S. Eilenberg and S. MacLane, On the groups $H(\Pi, n)$ I, Ann. of Math., 58 (1953), 55-106.
[5] S. Eilenberg and S. MacLane, On the groups $H(\Pi, n)$ III, Ann. of Math., 60 (1954), 513-557.
[6] W.S. Massey, Some problems in algebraic topology and the theory of fibre bundles, Ann. of Math., 62 (1955), 327-359.
[7] K. Mizuno, On homotopy classification and extension, Inst. Polytech., Osaka City Univ., 6 (1955), 55-69.
[8] N. Shimada, Homotopy classification of mappings of a 4-dimensional complex into a 2-dimensional sphere, Nagoya Math. J., 5 (1953), 127-144.
[9] T. Yamanoshita, On certain cohomology operations, J. Math. Soc. Japan, 8 (1956), 300-344.

[^0]: 1) Cf. § 3. 6, [6].
 2) An example-space of the n-th kind is a space with precisely n non-vanishing homotopy groups and is simple in all dimensions.
