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Let $k$ be a knot and let $G(k)$ be the genus of $k$ as defined by Seifert [6].
Let $\Delta(x)=a_{0}+a_{1}x+a_{2}x^{2}+\cdots+a_{2t}x^{2t}$ be the Alexander polynomial of $k$ . Then
Seifert has proved in [6] that we have always

$t\leqq G(k)$ . (1)

In a previous paper [3], we proved that the equality holds in (1) for a
knot in a special class of alternating knots. In the present paper we shall
show that the equality holds in (1) for all alternating knots (Theorem 4.1).

It was also shown in [3] that, for an alternating knot $k$ of the class con-
sidered in that paper, the orientable surface spanning $k$ , whose genus is
equal to $G(k)$ , is obtained by Seifert’s construction [6]. It will bc shown
that this is the case for every alternating knot.

Furthermore we shall show that $\Delta(x)$ is “ alternating ” for an alternating
knot $k$ (Theorem 4.4).

From this theorem, wc can immediately deduce the well-known fact that
a knot $8_{19}$ in [2] is not equivalent with an alternating knot. Throughout
this paper we shall use the same notations as in [3].

\S 1. Preliminaries.

Let $k$ be a polygonal oriented knot in the 3-sphere $S^{3}$ and let $S^{2}$ be a 2-
sphere in $S^{3}$ , which does not meet $k$ . Let $K$ be an image of a regular pro-
jection of $k$ into $S^{2}$ .

Let $K$ have $n$ crossing points $c_{1},$ $c_{2},\cdots,$ $c_{n}$ . Then $K$ divides $S^{2}$ into $n+2$

regions $r_{0},$ $r_{1},\cdots,$ $r_{n+1}$ , which are classified into two classes, called “ black” or
” white”, in such a way that every side of $K$ is the common boundary of
black and white regions. (Whenever we speak of the classification of regions
in ” black ” and ” white ”, we always mean a classification of this nature.)

As is well-known, an integer $I(r_{i})$ , called the index of $r_{i}$ , corresponds to each
region $r_{i}$ . We have

LEMMA 1.1. For two regions $\gamma_{i}$ and $\gamma_{j}$ of the same colour, we have
$I(r_{i})\equiv I(r_{j})$ $(mod 2)$

and conversely.
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Tbis is proved by the same method as used in the proof of Lemma 3.2
in [3].

Each corner of the two of the four regions1) meeting at a crossing point
$c_{i}$ is marked with a dot, and we can assume that the signs of the elements
distinct from $\varphi ro$ in any column of the L-matrices are positive, $i$ . $e$ . either
$x$ or 1 (cf. [1], [3]).

\S 2. The loops of the first and of the second kind.

Let us divide $K$ into some oriented loops, called the standard loops, in
the same way as in [6].

DEFINITION 2.1. If a standard loop $L$ bounds a region $r_{i}$ , we say $L$ is of
the first kind and $r_{i}$ is the region bounded by $L$ . Otherwise $L$ is of the
second kind.

LEMMA 2.2. The corners of the regions bounded by a loop $L$ of the first
kind are either all dotted or all undotted.

This is proved in the same way as in Lemma 3.1 in [3].

Conversely it is obvious that
LEMMA 2.3. If the corners of a region $r_{i}$ are either all dotted or all undotted,

$\dot{r}_{i}$ is a loop of the first kind.
Let $m$ be the number of the loops of the second kind of $K$. The case

$m=0$ has been treated in [3]. In the following we assume $m\geqq 1$ .
Now let us deform the loops of the second kind into the following loops.

Let the loops $C_{i}$ and $C_{j}$ of the second kind have a crossing point $c$ . Let $\epsilon$

be a sufficiently small $po_{s}itive$ number, and $a,$
$b$ and $d,$ $e$ the points of inter-

section of the circle (in $S^{2}$ ) of radius $\epsilon$ with the center $c$ with $C_{i}$ and $C_{j}$

respectively (Fig. 1).

Fig. 1

Then we replace the parts $ac\cup cb$ and $dc\cup ce$ of $C_{i}$ and $C_{j}$ by the disjoint
arcs $ab$ and $de$ respectively. If we perform this operation at each crossing

1) We may assume that these regions arc different from one another. See the
note 5) in [3].
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point of two loops of the second kind, then we obtain $m$ disjoint loops.
These $m$ disjoint loops will be called hereafter loops of the second kind, and
if we need to consider the loops of the second kind in the older sense of
Def. 2.1, we shall mention it expressly. Then it is obvious that

LEMMA 2.4. $m$ loops of the second kind divide $S^{2}$ into $m+1$ domains2) $E_{0}$ ,
$E_{1},\cdots,$ $E_{m}$ .

LEMMA 2.5. Let $E_{j}$ be a domain bounded by some loops, $C_{j_{1}},\cdots,$ $C_{J\nu}$ , of the
second kind: $\dot{E}_{j}=C_{j_{1}}\cup\cdots\cup C_{J\nu}$ . Then the regions $r_{\xi},\cdots,$ $r_{\eta}$ contained in $E_{j}$ having
some sides in common with $C_{j_{i}}$ have the same index (depending on $j_{i}$ ).

Furthermore we have
LEMMA 2.6. The regions contained in the domain $E_{j}$ can be classified in

black and white, and in such a way that the regions having some sides in com-
mon with $\dot{E}$

; have the same colour, say white. All these white regions have then
the same index, say $p$ , and tlZe black regions have loops of the first kind as
boundaries. Then indices of the black regions are either $p-1$ or $p+1$ .

PROOF. Let $\dot{E}_{j}=C_{j_{1}}\cup\cdots\cup C_{J\nu}$ , where $C_{J\iota},$ $i=1,2,\cdots,$ $\nu$ , are loops of the second
kind, and $r_{\xi},\cdots,$ $r_{\eta}$ the regions contained in $E_{j}$ such that each of $\dot{\gamma}_{\xi},\cdots,\dot{\gamma}_{\eta}$ has
some sides with $C_{j_{1}}$ in common. By Lemma 2.5, we have $I(r_{\xi})=\cdots=I(r_{\eta})$ , so
that, if we classify $r_{0},\cdots,$ $r_{n+1}$ in black and white as said above, $\gamma_{\xi},\cdots,$ $\gamma_{\eta}$ have
the same colour, say white, by Lemma 1.1. Let us fix this classification, and
let $\gamma_{\lambda}$ be one of black regions contained in $E_{j}$ such that $\dot{r}_{\lambda}$ has some sides in
common with one of $\dot{r}_{\xi},\cdots,\dot{r}_{\eta}$ . Then $\dot{r}_{\lambda}$ is a loop of the first kind, because, if
a common side of $\dot{r}_{\lambda}$ and $\dot{r}_{\xi}$ , say, were a part of a loop of the second kind,
$\gamma_{\lambda}$ would not be contained in $E_{j}$ . Now let $r_{\mu}$ be a black region in $E_{j}$ opposite
to $r_{\lambda}$ over a crossing point $c_{k}$ . Then $7_{/J}$ is also a loop of the first kind
(Fig. 2).

Fig. 2

In fact, if $c_{m}c_{k}\cup c_{k}c_{\iota}$ in Fig. 2 were a part of a loop of the second kind,
$\gamma_{/2}$ would not be contained in $E_{j}$ , and it is impossible that $c_{m}c_{k}$ and $c_{k}c_{l}$ belong
to two different loops of the first kind. Thus it is easily seen that the
boundaries of all the black regions in $E_{j}$ are loops of the first kind. Hence
the regions in $E_{j}$ , whose boundaries have some sides in common with any
one of $C_{j_{1}},\cdots,$ $C_{j\nu}$ , are white. The remaining part is easy to prove.

2) A domain is connected and is an open subset of $S^{2}$ .
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Hereafter we shall use almost exclusively the classification in black and
white of the regions contained in each domain $E_{j}$ and consider the classifica-
tion of all regions $r_{0},\cdots,$ $r_{n+1}$ only in exceptional cases.

\S 3. Sign of the domain.

Hitherto the numbering of the domains $E_{0},$ $E_{1},\cdots,$ $E_{m}$ and loops of the
second kind $C_{1},$ $C_{2},\cdots,$ $C_{m}$ was made arbitrarily. Now we introduce some rules
on the $1^{-}1umbering$ .

There is at least one lcop of the $s_{\vee}^{3}cond$ kind such that one of the two
parts, into which $ S\lrcorner$

) is divided by it, does not contain other loops of the
second kind. Let us fix one of these loops and denote it by $C_{1}$ . We denote
the domain bounded by $C_{1}$ which does not contain any loop of the second
kind by $E_{0}$ , and the domain bounded by $C_{1}$ and other loops of the second
kind by $E_{1}$ . Let the domains bounded by loops of the second kind other
than $E_{0},$ $E_{1}$ be numbered arbitrarily. They will be denoted by $E_{2},\cdots,$ $E_{m}$ . We
define the outer boundary $C_{i}$ of $E_{l},$ $i=2,\cdots,$ $m$ , as follows. $C_{i}$ is one of the loops
of the second kind bounding $E_{i}$ such that the following holds: $C_{i}$ divides
$S\lrcorner)$ into two parts, one of which contains $E_{0}$ and the other $E_{i}$ . It is clear
that the loops of the second kind and the domains bounded by them are
thus numbered consistently.

Now let us take a point $e_{t}$ from each $E_{i}$ for $i=0,1,\cdots,$ $m$ , and fix it. Let
$l_{ij}$ be an arc connecting $e_{t}$ with $e_{j}$ not crossing over any crossing point and
not touching any loop of the second kind. We shall now define an intersection
number $I(l_{ij}, C_{h}, q)$ for a point $q$ at which $l_{ij}$ meets $C_{h}$ .

DEFINITION 3.1. $I(l_{ij}, C_{h}, q)=+1$ , or $-1$ according as $l_{ij}$ crosses over $C_{h}$ at
$q$ from the right to the left or from the left to the right with reference to
the orientation of $C_{h}$ . We set $I(l_{ij}, C_{h})=\sum_{q}I(l_{tj}, C_{h}, q)$ . If $l_{ij}$ and $C_{h}$ are disjoint,

we set $I(l_{ij}, C_{h})=0$ . Then set $e_{ij}=\sum_{h}I(l_{ij}, C_{h})$ .
It is easily shown that
LEMMA 3.2. $e_{ij}$ is uniquely determined by $e_{i}$ and $e_{j}$ independently of the

choice of $l_{ij}$ .
Hence we may assume that $l_{ij}$ meets $C_{h}$ at most at one point for every

$i,$ $j$ and $h$ . We can easily show that

(3.1) $e_{ij}=-e_{ji}$

(3.2) $e_{ij}=e_{ih}+e_{hj}$ $0\leqq i,j,$ $h\leqq m$ .
DEFINITION 3.3. We shall call the sign of $E_{j}(j=1,2,\cdots, m)$ positive or

negative according as $I(l_{0i}, C_{j}, C_{j}\cap l_{0j})=1$ or $-1$ . The sign of $E_{0}$ is defined as
the same as that of $E_{1}$ .

We may assume without loss of generality that $E_{0},\cdots,$ $E_{a}$ are positive and
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$E_{d+1},\cdots,$ $E_{m}$ are negative, where $d\geqq 1$ . (We have only to change the orientation
of the knot and change the numbering of $E_{2},\cdots,$ $E_{n}$ , if necessary.) Let us
put $\min I(r_{i})=p-1$ and $\max_{j}I(r_{j})=p+h+1$ . We may suppose $h\geqq 1^{3)}$

LEMMA 3.4. The regions with the maximal and minimal indices are the
black regions and the corners of the former are all dotted.

PROOF. Suppose that the region $r_{i_{0}}$ with the maximal index $p+h+1$ is
white. Let $r_{i_{0}}$ be contained in $E_{t}$ . Then $E_{t}$ is positive. For otherwise, the
index of a white region in $E_{s}$ , which is a domain separated from $E_{t}$ by $C_{t}$ ,
will be $p+h+2$ , which is a contradiction. Furthermore $E_{t}$ must contain
black regions. For otherwise, there would exist a positive domain $E_{u}$ whose
outer boundary would be $\subset\dot{E}_{t}$ . Hence a white region in $E_{u}$ would be of the
index $p+h+2$ , which is a contradiction. $Conseq_{Ue^{t}1}tly,$ $E_{\iota}$ must contain a
black region with the index $p+h+2$ . This contradlcts the assumption. Hence
$r_{\iota_{0}}$ is a black region. It will be easily shown that the corners of $r_{i_{0}}$ are all
dotted.

In the same way, we shall see that a region with the minimal index is
black, $q$ . $e$ . $d$ .

REMARK. More generally, we obtain the following Lemma in the same
way as above.

LEMMA 3.5. $\max_{i}I(r_{i})-\min_{j}I(r_{j})=\max_{0\leqq ij_{--}^{\sim}m}e_{ij}+2$ .
As this lemma will not be used in following sections, the proof is

omitted.

\S 4. Statement of the main theorems.

As mentioned in the introduction, our main theorems are the following:
THEOREM 4.1. The genus of an alternating knot is exactly one half of the

degree of its Alexander polynomial.
This will be proved in \S 7. Hence follows in the same way as in \S 8 [3]

THEOREM 4.2. The genus of the product knot1) $k_{0}$ of the two alternating
knots $k_{1}$ and $k_{2}$ is exactly one half of the degree of its Alexander polynomial.

Since the Alexander polynomial of $k_{0}$ is the product of those of $k_{1}$ and
$k_{2}$ , we have

COROLLARY 4.3 The genus of $k_{0}$ is equal to the sum of the genera of $k_{1}$

and $h_{2}$ .
Furthermore, we have
THEOREM 4.4. If $k$ is an alternating knot, then its Alexander polynomial is

3) If $h=0$ , there is no loop of the second kind. This case was considered in [3].
4) $k_{0}$ may not be alternating.
5) This fact is already shown by H. Schubert in [5] for all knots.
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of the form
$\Delta(x)=a_{0}-a_{1}x+a_{2}x^{2}-\cdots+(-1)^{t}a_{t}x^{t}+\cdots+a_{2t}x^{2t}$ ,

where $a_{i}\geqq 0$ , and in particular, $a_{0},$ $a_{t}$ and $a_{2t}\neq 0$ , and $a_{i}=a_{2t-i}$ for $i=0,1,\cdots,$ $2t$ .

\S 5. Preparations for the proofs of theorems.

Let $\Delta_{pq}$ be the determinant of the matrix obtained by striking out from
the L-matrix of $K$ two columns corresponding to two regions with indices $p$

and $q$ . Since $\Delta_{(}=q+1$) $q\pm x^{r-q}\Delta_{(r+1)_{\gamma}}$ , the determinant of the smallest degree
with respect to $x$ among the determinants of the forms $\Delta_{(s+1)_{S}}$ is $\Delta_{(}p+h+1$ ) $(p4h)$ .
Hence the Alexander polynomial $\Delta(x)$ of $h$ is
(5.1) $\Delta(x)=\pm x^{-fJ}\Delta_{(}p+h+1)(p+h)$ ,

where $\mu$ is a non-negative integer. Now the determinant of the matrix
obtained by striking out from the L-matrix two columns corresponding to
two adjacent white regions $r_{\alpha}$ and $r_{\beta}$ contained in $E_{0}$ and $E_{1}$ respectively,
may be denoted by $\Delta_{(}p+q+1$ ) $(p\vdash q)$ , with a suitable $q,$ $0\leqq q\leqq h-1$ , and we have

(5.2) $\Delta_{(}p+h+1$ ) $(p+\hslash)=\pm x^{q-h}\Delta_{(}p+q+1)(p+q)$ .
If $\lambda$ denotes the number of the black regions with all dotted corners, then
we have

(5.3) $\Delta_{(}$ )$=x^{\lambda}\Delta^{0_{(p+q+1)(}c)}p+q|1$) $(\mathcal{D}+qv+\alpha)$ .
Hence, from (5.1), (5.2) and (5.3), we have

(5.4) $\pm x^{h+\mu-\lambda-q}\Delta(x)=\Delta_{(+1)()}^{0_{p+qp+q}}$ .
Consequently, the proof of the main theorem will be complete if only we
prove the following

LEMMA 5.1. $\Delta^{0}$

) $()$ has terms of the degrees $i=0\lambda w_{i}-m+d-2m_{\urcorner}$ and $d-1$ ,

where $w_{i}$ denotes the number of the white regions in $E_{i}$ , and where $d+1$ is the
number of the positive domains.

In fact, it will follow that $h-\vdash\mu-q-\lambda\leqq d-1$ and $h+\mu-q-\lambda+2t\geqq_{i}\lambda_{=0}^{\urcorner}w_{i}-mm$

$\dashv- d-2$ , where $2l$ is the degree of $\Delta(x)$ . Hence $2t\geqq\sum_{i=0}^{m}w_{t}-m+d-2-(h+\mu-q-\lambda)$

$\geqq\sum_{i=0}^{m}w_{i}-m+d-2-(d-1)=\sum_{i=0}^{m}w_{l}-m-1$ . On the other hand, we have $2t\leqq 2G(k)$

$\leqq n-(\sum_{i=0}^{m}b_{i}+m)+1=(\sum_{i=0}^{m}w_{i}+\sum_{i=0}^{m}b_{i}-2)-(\sum_{i=0}^{m}b_{i}+m)+1=\sum_{i=0}^{m}w_{i}-m-1$ , where $G(k)$ de-

notes the genus of $k$ and $b_{i}$ denotes the number of the black regions in $E_{i}$ .
Therefore we have $t=G(k)$ .

6) See [3].
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\S 6. Preparations for the proofs of theorems, continued.

Let us denote the white regions in $E_{i}$ by $W_{i,1},\cdots,$ $W_{i,h_{i}}$ , and the black

regions in $E_{i}$ by $B_{i,1},\cdots,$ $B_{\iota,\iota_{i}}$ . Let $K.=\bigcup_{\lambda=1}^{h_{i}}W_{i,\lambda}\bigcup_{\mu=1}^{l_{i}}B_{i,x}$ .

DEFINITION 6.1. A crossing point such that at least two of four regions
meeting at it are contained in $E_{i}$ is called a crossing point which is contained
in $K_{i}$ (or simply in $K_{\ell}$ ).

Hereafter a side of $K_{i}$ will mean a segment of $K_{i}$ connecting two con-
secutive crossing points in $K_{i}$ . Then $K_{\iota}$ may be regarded as an image of
the regular projection of a link7) into $S^{2}$ , and we have clearly

LEMMA 6.2. $K_{i}$ are alternating.
Since there is no loop of the second kind in $K_{i}$ , lemmas obtained in

[3] hold for $K_{i}$ with slight modifications. Consequently it follows in the
same way as in Lemma 3.6 in [3]

LEMMA 6.3. The corners of the black regions in $E_{i}$ are either all dotted or
all undotted. And the corners adjacent to the dotted (or undotted) corners of
the white regions in $E_{i}$ are undotted (or dotted). We shall say that the c-corner
and $c^{\prime}$ -corner of a region are adjacent, if two crossing points $c$ and c’ are con-
nected by a side of $K_{i}$ .

Let $c$ be a crossing point on $C_{i}$ not contained in $K_{i}$ and let a region $r_{j}$

in $E_{i}$ be one of the four regions meeting at $c$ . Then it will be easily shown
that

LEMMA 6.4. The c-corner of $r_{j}$ is either dotted or undotted according as $E_{i}$

is positive or negative.
LEMMA 6.5. Let $\overline{s}$ be the number of the crossing points in $K_{i},\overline{p}$ the number

of the regions in $E_{i}$ and let $\dot{E}_{i}$ consist of the $\overline{q}$ loops of the second kind. Then
$\overline{s}=\overline{p}+\overline{q}-2$ .

PROOF. The number of the sides of $K_{i}$ is given by $2\overline{s}$ . Since $\overline{s}$ crossing
points and $2\overline{s}$ sides divide $\overline{E}_{i}^{8)}$ into $\overline{s}$ points, $2\overline{s}$ segments and $\overline{p}$ faces, Euler’s
characteristic $\chi$ of $E_{\iota}$ is given by $\chi=\overline{s}-2\overline{s}+\overline{p}=-\overline{s}+\overline{p}$. On the other hand,
$\chi=-\overline{q}+2$ , since $\overline{E}_{i}$ is homeomorphic to a 2-sphere with $\overline{q}$ holes. Thus we
have $\overline{s}=\overline{p}+\overline{q}-2,$ $q$ . $e$ . $d$ .

LEMMA 6.6. Let $\sigma$ be an $L$‘-correspondence9) such that each crossing point

7) A link means a figure composed of a finite number of the disjoint knots in
$S^{3}$ . We can define the standard loops of the first and of the second kind for an image
of the regular projection of a link in the same way as for a knot.

8) A bar over the symbol denotes the closure of the set.
9) In the next section, we shall show that there exists such a $\sigma$ . See [3] for

the definition of an $L^{t}$-correspondence.
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corresponds to one and only one of the $n+2$ regions except for a pair of two
adjacent regions $r_{\alpha}$ and $r_{\beta}$ contained in $E_{0}$ and $E_{1}$ respectively. Then at least
one $re\dot{g}on$ in $E_{i}$ must correspond by $\sigma$ to a crossing point on $C_{i}$ not contained
in $K_{i}$ for $i=2,\cdots,$ $m$ .

PROOF. If $E_{i}$ is bounded by the outer boundary $C_{i}$ alone, this lemma is true
by Lemma 6.5. Now let us suppose that $E_{i}$ is bounded by $l+1$ loops $C_{i_{1}},\cdots,$ $C_{i_{l}}$

and $C_{i}$ , and the lemma is true for domains $E_{\iota_{1}},\cdots,$ $E_{i_{l-1}}$ and $E_{i_{l}}$ . That is, let us
suppose that $t_{i_{h}}(\geqq 1)$ regions in $E_{\iota_{\hslash}}$ correspond to crossing points not contained
in $K_{i_{h}}$ . Since the number of the crossing points in K. is larger than the

number of the regions in $E_{i}$ by $l-1,\sum_{h=1}^{\iota}t_{i_{h}}-l+1(\geqq 1)$ regions in $E_{i}$ must

correspond to the crossing points not contained in $K_{l}$ . Thus at least one
region in $E_{i}$ must correspond to a crossing point on $C_{i}$ not contained in $K_{i}$ ,
$q$ . $e$ . $d$ .

In the special case where $\overline{t}=\sum_{i=0}^{m}w_{i}-m+d-2$ , it follows

LEMMA 6.7. $w_{i}\dashv- b_{i}-1$ regions in $E_{i}$ correspond to the crossing points in $K_{i}$

for $i=2,\cdots,$ $m$ .
PROOF. Let us suppose that $t_{i}(>1)$ regions in $E_{i}$ correspond to the

crossing points on C. not contained in $K_{i}$ . If $E_{i}$ is negative, $t_{i}$ (white) re-
gions in $E_{i}$ correspond to the crossing points at which these regions have
undotted corners. On the other hand, if $E_{\dot{b}}$ is positive, $t_{j}$ (white) regions in
$E_{j}$ , which is separated from $E_{i}$ by $C_{i}$ , correspond to the crossing points at
which these regions have undotted corners. Thus in all cases it is impossible
that $\sigma$ is an $L^{\Sigma^{w}}\iota^{-m+d-2}$-correspondence, since at least one white region in
every $E_{i}$ for $i=d+1,\cdots,$ $m$ , corresponds to a crossing point on $C_{i}$ not contained
in $K_{i}$ at whicli this region has undotted corner, $q$ . $e$ . $d$ .

$Lr_{\lrcorner}1MMA6.8$ . Let $\sigma$ be an $L^{\overline{t}}$-correspondence and let $\tau$ be another $L^{i}$-corre-
spondence, $\overline{t}=\sum_{i=0}^{m}w_{i}-m+d-2$ , such that the following property (P) holds:

(P) $\sigma$ and $\tau$ are defined on the same set of regions, and each of $\sigma,$ $\tau$ assigns
each region of this set to some crossing point, the correspondence between the
$re\dot{p}ons$ and crossing points defined by $\sigma$ and $\tau$ being allowed to be entirely differ-
ent.

Then denoling the terms in $\Delta_{(p+q+1)(p+q)}^{0}$ corresponding to $\sigma$ and $\tau$ by $\epsilon x^{\overline{t}}$ and
$\overline{\epsilon}x^{\overline{t}}$ respectively, it follows

$\epsilon=\overline{c\vee}$

PROOF. Let $L_{h}$ be the closed and oriented L-chain corresponding to a
cyclic permutation $\zeta_{h}$ as used in the proof of Lemma 4.2 in [3]. To show
sgn $\zeta_{h}=1$ , it is sufficient to show that the number of the centers of regions
on $L_{h}$ is odd.
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First we shall show that if $L_{h}$ crosses over the outer boundary of a
domain, then it will cross over the boundary in just two places. In fact,

let us suppose that $L_{h}$ crosses over $C_{i}$ at least at four crossing points. If
$L_{h}$ goes over $C_{i}$ into $E_{i}$ through some two crossing points, we see from
Lemma 6.6 that these crossing points are not contained in $K_{i}$ and these
correspond to some two regions in $E_{i}$ , which contradicts Lemma 6.7. More-
over it follows from the above fact that $L_{h}$ does not cross over $C_{1}$ .

Next we shall show the following
LEMMA 6.9. Let $T_{h}$ be any L-chain and $T_{h}\cap E_{j}=T^{1}\cup\cdots UT^{p}$ and

$T^{i}=c_{i,1}x_{i,1}c_{i,2}\cup c_{i,2}x_{l2}c_{i,3}\cup\cdots\cup c_{i,\lambda_{i}}x_{i,\lambda_{i}}c_{i,\lambda_{i^{+1}}^{10)}}$ for $i=1,\cdots,p$ ,

where $x_{i,1},\cdots,$ $x_{i,j_{i}}$ are the cenlers of the $re\dot{g}ons$ in $T^{i}$ and $C_{i}$ ${}_{1}C_{i\lambda_{i}+1}$ are the
crossing points in $T^{i}$ . Let $t_{i}$ denote the number of the centers of the regions in
$T^{t}$ .

(a) If all $c_{i_{\mu}}$ are contained in $K_{j}$ , then it follows
$\Sigma t_{i}\equiv p+1$ $(mod 2)$ .

(b) If $c_{11}$ and $c_{p,\lambda_{p}+1}$ are not contained in $K_{j}$ and others are all contained
in $K_{j},$ $t$hen it follows

$\Sigma r_{i}\equiv p$ $(mod 2)$ .
(c) If $x_{i,1},\cdots,$ $x_{i,\lambda_{i}}$ are all the centers of the black regions for some $i$ , then

$t_{i}$ is odd or even according as the $c_{i,1}$ -corner of $r_{i,1}$ and the $c_{i,\lambda_{i}+1}$ -corner of $r_{i,\text{{\it \‘{A}}}_{\dot{t}}}$

are either all dotted (or undotted) or not, where $r_{h}$ denotes the black region in
$E_{j}$ with the center $x_{h}$ .

PROOF of (a). In the same way as in Lemma 4.2 in [3], we have $\Sigma t_{i}+$

$p\equiv 1(mod 2)$ , which is equivalent to (a).

PROOF of (b). Let us transform $T^{t}$ into $T_{0}^{i}$ as constructed in the proof of
Lemma 4.2 in [3]. Here, in particular, we transform $C_{11}X_{1}{}_{1}C_{12}$ and $c_{p,\lambda_{p}}x_{p,\lambda_{p}}c_{p,\lambda_{p^{+1}}}$

into the chains $c_{11}^{\prime}y_{11}c_{12}^{\prime}\cup c_{1^{\gamma}}^{\prime}y_{12}c_{13}^{\prime}\cup\cdots\cup c_{1/}^{\prime},y_{1/},c_{12}$ and $ c_{p,\lambda_{p}}z_{p1}c_{p1}^{\prime\prime}\cup c_{p1}^{\prime\prime}z_{p2}c_{p^{\prime}2}^{\prime}\cup\cdots\cup$

$c_{p,\nu-1}^{\prime\prime}z_{p}c_{p\nu}^{\prime\prime}$ , respectively, where $c_{1\xi}^{\prime}$ and $c_{pq}^{f\prime}$ are crossing points on the bounda-
ries of the white regions $r_{11}$ and $r_{p,\lambda_{p}}$ respectively and $c_{1^{\prime}1}$ and $c_{p\nu}^{\prime\prime}$ are con-
tained in $K_{j}$ and lie on $C_{\hslash}$ , and $y_{1\xi}$ and $z_{p^{\eta}}$ are the centers of the black
regions whose boundaries have the sides $c_{1\xi}^{\prime}c_{1,\xi+1}^{\prime}$ and $c_{p^{\eta}-1^{C_{p}^{\prime\prime}\eta}}^{\prime\prime}$ with $r_{11}$ and
$r_{p,\lambda_{P}}$ in common, respectively, for $\xi=1,2,\cdots,$ $\mu,$ $\eta=1,2,\cdots,$ $\nu$ and $c|_{f2+1}=c_{12},$ $c_{p.0}^{\prime\prime}$

$=c_{p,\lambda_{p}}$ . Let $\overline{w}_{1}$ be the number of the white regions and $\overline{b}_{1}$ the number of
the black regions, which are contained in a domain $D$ in $E_{j}$ bounded by
$T^{1},\cdots,$ $T^{p}$ and the parts $C^{0},$ $C^{1},\cdots,$ $C^{p}$ of $C_{j},$ $C_{j_{1}},\cdots,$ $C_{j_{p}}$ , which are contained in

$\dot{E}_{j}$ . Let $\overline{s}_{1}$ be the number of the crossing points in $D\cap K_{j}$ . Similarly let $\overline{w}_{0}$

and $\overline{b}_{0}$ be the numbers of the white and the black regions in $D_{0}$ respectively,

10) For the notation see the proof of Lemma 4.2 in [3].
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which is bounded by $T_{0}^{1},\cdots,$ $T^{p}{}_{0}C_{0}^{0},$ $C^{1},\cdots,$ $C^{p}$ , where $C_{0}^{0}$ is the curve connecting
$c_{1^{\prime}1}$ with $c_{p\nu}^{\prime\prime}$ on $C^{0}$ or on the complement of $C^{0}$ with respect to $C_{i}$ , and $\overline{s}_{0}$ be
the number of the crossing points in $D_{0}\cap K_{j}$ . Then denoting the number of

the centers of the white regions on $T^{i}$ by $u_{i}$ , we have $\overline{w}_{0}=\overline{w}_{1}+\sum_{i=1}^{p}u_{i}$ . Let
$\overline{b}_{0}=\overline{b}_{1}+\overline{k}$ . Then, since $\overline{s}_{1}=\overline{b}_{1}+\overline{w}_{1}$ by the definition, it follows $\overline{s}_{0}=\overline{b}_{0}+\overline{w}_{0}-1$

$=\overline{s}_{1}+\Sigma u_{i}+\overline{k}-1^{11)}$ Moreover since one of $\mu$ and $\nu$ is odd and the other
even, we can write $\mu+\nu-2=2\gamma-1$ . Hence denoting the number of the centers

of the regions in $\bigcup_{i--1}^{p}T_{0}^{i}$ by $t_{0}$ , we $have^{1^{Q})}\Delta$

$t_{0}=\sum_{i\Leftarrow 1}^{p}t_{i}-\}-\sum_{i=1}^{u_{1}-1}(2\lambda_{i1}-1)+\sum_{j=2}^{p-1}\sum_{i=1}^{u_{j}}(2\lambda_{\tau j}-1)-|-\sum_{i=1}^{u_{p}-1}(2\lambda_{ip}-1)+2\gamma-1-(\overline{s}_{0}-\overline{s}_{1}+\overline{k})$

$\equiv\sum_{i=1}^{p}t_{i}-(u_{1}-1)-\sum_{j=2}^{\iota-1}u_{j}-(u_{p}-1)-1-(\sum_{i=1}^{p}u_{i}\dashv- 2\overline{k}-1)$ $(mod 2)$

$\equiv\sum_{5=1}^{p}t_{i}$ $(mod 2)$ ( $\lambda_{ij}$ intgers).

On the other hand, since $t_{0}=p(mod 2)$ , we have $i=^{\urcorner}1\lambda^{p}t_{i}\equiv p(mod 2)$ .
PROOF of (c). If the c-corner of the black region $r_{i}$ is dotted, then the

c-corner of the $blaCl\mathfrak{c}$ region $r_{j}$ which is opposite to $r_{i}$ over $c$ is undotted and
conversely. From this, (c) is immediately proved.

Thus Lemma 6.9 is proved.
Now we shall prove Lemma 6.8.

Let $L_{h}$ be divided into $L_{h}=\bigcup_{i=1}^{p_{1}}L_{i}^{(0)}\cup L^{(1)}$ , where all $L_{i}^{(0)}$ are connected and

contained in only one domain $\overline{E}_{h}$ ,, and $\bigcup_{i=1}^{p_{1}}L_{i}^{(0)}\cap C_{h}=\phi^{I3)}$ and $L^{(1)}=L_{h}-\bigcup_{i\approx 1}^{p_{1}}L_{i}^{t0)}$ .
Now denoting the number of the centers of regions in $L_{j}^{(i)}$ by $t_{j}^{(i)}$ , we have,
by Lemma 6.9 (a),

$i=1\lambda^{\neg^{1}}t_{i}^{(0)}\equiv p_{1}+1p$ $(mod 2)$ .

Next consider $L^{(1)}$ . $L^{(1)}$ consists of $p_{1}$ L-chains $L_{1}^{(1)},\cdots,$ $L_{p_{1}}^{(1)}$ , whose end points
are on the outer boundaries $C_{l},$ ${}_{\iota}C_{l,p_{1}}$ and are not contained in $K_{l,1},\cdots,$ $K_{l,p_{1}}$ ,

respectively. Let $L_{1}^{(\downarrow)}$ be divided into $L_{1}^{(1)}=\bigcup_{i=1}^{p_{11}}L_{i}^{(11)}UL^{(110)}$ , where all $L_{i}^{(11)}$ are

contained in a domain $\overline{E}_{l,i}$ and $L^{(110)}=L_{1}^{(1)}-\bigcup_{i\Rightarrow 1}^{p_{11}}L_{i}^{(11)}$ . Then by Lemma 6.9 (b),

we have
$\Sigma t_{i}^{(11)}\equiv p_{11}$ $(mod 2)$ .

11) See (4.3) in [3].

12) See (4.1) in [3].
13) $\phi$ denotes the empty set.



On the genus of the alternating knot II. 245

Defining $t_{\iota}^{(ij)}$ and $p_{1j}$ in the same way as above, we have

$\sum_{lj}\sum_{=1}^{p_{1}}t_{\iota}^{(1j)}\equiv\sum_{j=1}^{p_{1}}p_{1j}$ $(mod 2)$ .

Moreover dividing $L^{(110)}$ into some L-chains and computing $t_{j}^{(11h)}$ and $p_{11h}$ in
the same way as above, we have

$\sum_{j}\sum_{h}t_{j}^{(11h)}\equiv\sum_{h}p_{11h}$
$(mod 2)$ .

Since the above decomposition will finish after a finite number of steps, the
number $t$ of the centers of the regions in $L_{h}$ will finally be given by

$t=\Sigma t_{i}^{(0)}+\sum_{j,l}t_{\iota}^{(1j)}+\Sigma t_{j}^{(1**)}+\cdots+\Sigma t_{j}^{(1**\cdots\Lambda)}$

$\equiv p_{1}+1+\Sigma p_{1j}+\Sigma p_{1**}+\cdots+\Sigma p_{1*\cdots*}$ .
On the other hand, $p_{1}+\sum p_{1j}+\cdots+\sum p_{1\aleph:\cdots*}$ is even by Lemma 6.9 (c). Hence
we have $t\equiv 1(mod 2)$ . Thus Lemma 6.8 is proved.

\S 7. Proof of Theorem 4.1.

In this section, we shall show that there exists an $L$‘-correspondence,

where $\overline{t}=_{i}\geq_{=0}^{m_{d}}\backslash w_{i}-m+d-2$ .
Let $G_{j}$ be the graph‘4) of $K_{f}$ . Denote the regions into which $G_{j}$ divides

$ S^{\prime}\lrcorner$ by $M_{ji}$ . Then, if we regard the complement of $E_{j}$ as the black regions,
then we see clearly that each $JM_{ji}$ contains one and only one black region.
We can suppose that the indices $i,$ $j$ are so arranged that $11l_{j1}$ contains $C_{j}$

for $j=1,\cdots,$ $m$ , and $1\psi_{01}$ contains $C_{1}$ , and $(\bigcup_{i-1}^{\lambda-1}\dot{M}_{i})\cap\dot{M}_{j\lambda}$ must contain at least

one side of $\dot{M}_{J\lambda}$ .
Let $r_{\alpha}$ and $r_{\beta}$ be a pair of two adjacent white regions in $E_{0}$ and $E_{1}$ re-

spectively. Then we can assign each one of the $w_{0}-|-w_{1}$ white regions in $E_{0}$

and $E_{1}$ except for $r_{a}$ and $r_{\beta}$ to one and only one crossing point lying on its
boundary by means of the graphs $G_{0}$ and $G_{1}$ in the same way as in [3],

where the corner of the region at the corresponding crossing point is dotted.
Let $P_{0}$ and $P_{1}$ denote the semi-graph of $G_{0}$ and $G_{1}$ with respect to the cor-
respondences of the white regions in $E_{0}$ and $E_{1}$ respectively. Then $P_{0}$ and
$P_{1}$ are disjoint and these are trees. Now let $\dot{E}_{1}=C_{1}\cup C_{i_{1}}\cup\cdots\cup C_{ij_{1}}$ . Then we
have

LEMMA 7.1. In each $E_{i_{\lambda}}$ , there exists a region $r_{i_{\lambda}}$ , say, whose center is on a

14) The graph (or the dual graph) of $K$ means the totality of the segments con-
necting the centers of the white (or the black) regions with the crossing points
lying on their boundaries.
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side $m_{i_{\lambda}}$ in $M_{i_{\lambda,0}}$ , and each $\dot{r}_{i_{\lambda}}$ contains at least one crossing point $c_{\iota_{\lambda}}$ which is
not contained in $ K_{i}\lambda$

PROOF. If there docs not exist such a region in $E_{i_{2}},$ , then $P_{1}$ would contain
the boundary of $j\psi_{1\lambda}$ , in which $E_{i_{\mu}}$ would be contained.

Furthermore we have
LEMMA 7.2. We can so choose these crossing points $c_{i_{\lambda}}$ that they are differ-

enl from each other.
PROOF. If $c_{i_{\mu}}=c_{i_{\nu}}$ for some $/\iota,$ $\nu,$

$i$ . $e$ . if there is only one crossing point
which is not contained in $K_{i_{/}}$, and $K_{i_{\mu}}$ , there would be $M_{1\xi}$ and $M_{1\eta}$ , in which
$E_{i_{t}}$ and $E_{\iota_{\nu}}$ would be contained, and $P_{1}$ would contain a loop $\dot{M}_{1\xi}\cup\dot{M}_{1\eta}-(\dot{M}_{1\xi}$

$\cap\dot{M}_{1\eta})$ .
Now we can assign each one $r_{i_{\lambda,J}}$ of the $u_{i_{\lambda}}$ white regions in $E_{i_{\lambda}}$ except for

the regions $r_{i_{\lambda}}$ , whose existence is assured in Lemma 7.1, to only one crossing
point contained in $K_{i_{\lambda}}$ which lies on $\dot{r}_{i_{\lambda,J}}$ by means of the graphs $G_{i_{\lambda}}$ , where
the corners of the regions at the corresponding crossing points are dotted.
Let $P_{i_{\lambda}}$ denote the semi-graph of $ G_{i}\lambda$ with respect to the correspondence of
the white regions in $ E_{i}\lambda$ . Then $P_{i_{\lambda}}$ are the trees and these are mutually
disjoint. In the same way, we obtain

LEMMA 7.3. In each $E_{i}$ , there is one white region $r_{i}$ , say, whose center is on
a side of $1\psi_{i0}$ and there exisls on $\dot{r}_{i}$ at least one crossing point $c_{i}$ , say, not
contained in $K_{i}$ . And these crossing points are different from each other.

Let $P_{i}$ be the semi-graph of $G_{i}$ with respect to the correspondence of
all the white regions except for $r_{i}$ in $E_{i}$ . $P_{i}$ are mutually disjoint.

Now we shall prove the existence of an $L^{\overline{t}}$-correspondence. This will be
performed if we can assign each one of the $m-1$ white regions $r_{i}$ and the
$\sum_{i=0}^{m}b_{i}$ black regions to one and only one crossing point. To do this, we shall

first assign $r_{i}$ (in $E_{i}$ ) to a crossing point $c_{i}$ obtained by Lemma 7.3. Next, to
obtain a correspondence between the black regions in each $E_{i}$ and the crossing
points, we shall apply the proof of Lemma 5.3 in [3] to our case. We regard
the region $r_{i}$ and the connected component, which contains $E_{0}$ , in the com-
plement of $E_{i}$ as $r_{\alpha}$ and $r_{\beta}$ respectively and we consider the subset $Q_{i}$ , disjoint
to $P_{i}$ , of the dual graph $H_{i}$ of $K_{i}$ . Then we can assign also black regions
to the crossing points on its boundaries by means of $Q_{i}$ . Thus we obtain
the required correspondence. Thus we have

LEMMA 7.4. There is an $L^{\Sigma w_{i}-m+\ell l-2}$ -correspondence $\sigma$ as stated in Lemma
6.7.

Similarly, it follows
LEMMA 7.5. There is an $L^{a-1}$ -correspondence.
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From Lemmas 7.4 and 7.5, we have Lemma 5.7. Thus the proof of
Theorem 4.1 is completed.

\S 8. Proof of Theorem 4.4.

We can slightly extend Lemma 6.8 as follows.
LEMMA 8.1. Let $\sigma$ be an $L^{\overline{t}}$-correspondence and $\tau$ an $L^{\overline{s}}$ -correspondence,

$d-1\leqq\overline{t},\overline{s}\leqq\sum_{i=0}^{m}w_{i}-m+d-2$ , which have the property (P) as staled in Lemma 6.8.

If the terms in $\Delta_{(p+q+1)(p+q)}^{0}$ corresponding to $\sigma$ and $\tau$ are denoted by $\epsilon x^{\overline{t}}$ and $\overline{\epsilon}x^{\overline{s}}$ ,

where $\epsilon,\overline{\epsilon}=\pm 1$ , then $c=\overline{\epsilon}$ or $\epsilon=-\overline{\epsilon}$ according as $\overline{t}\equiv\overline{s}(mod 2)$ or not.

PROOF. Wc can assume without loss of generality that $\overline{t}=\sum_{i=0}^{m}w_{i}-m+d-2$ .
First we shall prove this lemma in the $cas^{\circ}$. where $m=0$ and $d=1,$ $i$ . $e.\overline{t}=w_{0}-1$ .
We may suppose that $n$ crossing points $c_{1},$ $c$ ) $c_{n}$ correspond to $n$ regions
$r_{1},$ $r_{u}$) $r_{n}$ respectively, of which first $w_{0}-1$ regions are white, by $\sigma$ . Let $c_{ji}$

correspond to $r_{i}$ by $\tau$ for $i=1,\cdots,$ $n$ and let us assume that $c_{h}- cornt_{\vee}^{\backslash }r$ of $r_{h}$ are
dotted for $h=1,\cdots,\overline{s}$ and $c_{jl}$ -corner of $r_{l}$ are undotted for $l=\overline{s}+1,\cdots,$ $w()-1$ .
Then, to prove Lemma 8.1, it is sufficient to show that

(S.1) sgn $\zeta=sgn\left(\begin{array}{lll}12 & \cdots & n\\j_{1}j\underline{)} & \cdots & j_{n}\end{array}\right)$ .

Let $\zeta$ be represented as the product of some cyclic permutations $\zeta_{1},$ $\zeta_{2},\cdots,$ $\zeta_{r}$ ,
which are mutually disjoint.

Let $\zeta_{1}=(y_{1}\cdots y_{h}),$ $1\leqq y_{1},\cdots,$ $y_{h}\leqq n$ . Consider an oriented L-chain, $L$ corre-
sponding to $\zeta_{1}$ . Let us assume that $L_{1}$ contains $t_{1}$ centers of white regions,
of which $\alpha_{1}$ centers lie on the segments of $L_{1}$ oriented as proceeding from
the dotted corner to the undotted corner. Then we shall transform $L_{1}$ into
$L_{0}$ which does not contain the centers of white regions, in the same way as
in the proof of Lemma 4.2 in [3]. Let $p_{1}$ be the number of the white regions,
$q_{1}$ the number of the black regions and let $s_{1}$ the number of crossing points,
which are contained in the interior15) of $L_{1}$ . Then we have $s_{1}=p_{1}+q_{1}$ . On
the other hand, the number of the white regions contained in the interior
$\tilde{L}_{0}$ of $L_{0}$ is given by $p_{1}+t_{1}$ . Denoting the number of the black regions con-
tained in $\tilde{L}_{0}$ by $q_{1}+\overline{w}_{1}$ , the number of the crossing points contained in $\tilde{L}_{0}$ is
given by $s_{0}=q_{1}+p_{1}+t_{1}+\overline{w}_{1}-1=s_{1}+\overline{w}_{1}+t_{1}-1$ . If the number of the centers
of the regions lying on $L_{0}$ is denoted by $h_{0}$ , then it follows

$h_{0}=h+\sum_{i=1}^{t_{1}-\alpha}(2\lambda_{i}-1)+\sum_{j=1}^{\alpha_{1}}2(\mu_{j}-1)-(s_{0}-s_{1}+\overline{w}_{1})$

15) The interior of $L_{1}$ means the parts in which $L_{0}$ is not contained, between two
parts into which $S^{2}$ are divided by $L_{1}$ .
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$=h+2\Sigma\lambda_{i}-(t_{1}-\alpha_{1})+2\Sigma(lx_{j}-1)-(2\overline{w}_{1}+t_{1}-1)$

$\equiv h+\alpha_{1}+1$ $(mod 2)$ ( $\lambda_{i},$

$/x_{j}$ being positive integers).

Thus we have $h\equiv\alpha_{1}+1$ , since $h_{0}\equiv 0(mod 2)$ . Hence we have sgn $\zeta_{1}=(-1)^{\alpha_{1}}$ .
In the same way, we have sgn $\zeta_{i}=(-1)^{o^{\prime}}\iota$ , where $\alpha_{i}$ are defined in the same
way as $\alpha_{1}$ . Since $\Sigma\alpha_{i}=w_{0}-1-\overline{s}$ , it follows sgn $\zeta=\prod_{i=1}^{\prime}$ sgn $\zeta_{i}=\prod_{i=1}^{r}(-1)^{a_{\dot{l}}}=$

$(-1)^{w_{\Phi}-- 1-\overline{s}}$ .
To prove this lemma in this case where $m>0$ , we may compute the

numbers of the centers on the chains, into which $L_{h}$ is divided, in the same
way as in the proof of Lemma 6.8. Since we can accomplish this computation
in the same way as above, we shall omit the detail.

From this lemma and the fact that $\Delta(-1)$ is always odd, Theorem 4.4
is easily proved.

H\^osei University.
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