On the genus of the alternating knot II.

By Kunio Murasugi

(Received Oct. 25, 1957)
(Revised May 12, 1958)
Let k be a knot and let $G(k)$ be the genus of k as defined by Seifert [6], Let $\Delta(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 t} x^{2 t}$ be the Alexander polynomial of k. Then Seifert has proved in [6] that we have always

$$
\begin{equation*}
t \leqq G(k) . \tag{1}
\end{equation*}
$$

In a previous paper [3], we proved that the equality holds in (1) for a knot in a special class of alternating knots. In the present paper we shall show that the equality holds in (1) for all alternating knots Theorem 4.1). It was also shown in [3] that, for an alternating knot k of the class considered in that paper, the orientable surface spanning k, whose genus is equal to $G(k)$, is obtained by Seifert's construction [6]. It will be shown that this is the case for every alternating knot.

Furthermore we shall show that $\Delta(x)$ is "alternating" for an alternating knot k Theorem 4.4).

From this theorem, we can immediately deduce the well-known fact that a knot 8_{19} in [2] is not equivalent with an alternating knot. Throughout this paper we shall use the same notations as in [3].

§ 1. Preliminaries.

Let k be a polygonal oriented knot in the 3 -sphere S^{3} and let S^{2} be a 2 sphere in S^{3}, which does not meet k. Let K be an image of a regular projection of k into S^{2}.

Let K have n crossing points $c_{1}, c_{2}, \cdots, c_{n}$. Then K divides S^{2} into $n+2$ regions $r_{0}, r_{1}, \cdots, r_{n+1}$, which are classified into two classes, called "black" or " white", in such a way that every side of K is the common boundary of black and white regions. (Whenever we speak of the classification of regions in "black" and "white", we always mean a classification of this nature.) As is well-known, an integer $I\left(r_{i}\right)$, called the index of r_{i}, corresponds to each region r_{i}. We have

Lemma 1.1. For two regions r_{i} and r_{j} of the same colour, we have

$$
I\left(r_{i}\right) \equiv I\left(r_{j}\right) \quad(\bmod 2)
$$

and conversely.

This is proved by the same method as used in the proof of Lemma 3.2 in [3].

Each corner of the two of the four regions ${ }^{1)}$ meeting at a crossing point c_{i} is marked with a dot, and we can assume that the signs of the elements distinct from zero in any column of the L-matrices are positive, i. e. either x or 1 (cf. [1], [3]).

§ 2. The loops of the first and of the second kind.

Let us divide K into some oriented loops, called the standard loops, in the same way as in [6].

Definition 2.1. If a standard loop L bounds a region r_{i}, we say L is of the first kind and r_{i} is the region bounded by L. Otherwise L is of the second kind.

Lemma. 2.2. The corners of the regions bounded by a loop L of the first kind are either all dotted or all undotted.

This is proved in the same way as in Lemma 3.1 in [3].
Conversely it is obvious that
Lemma. 2.3. If the corners of a region r_{i} are either all dotted or all undotted, \dot{r}_{i} is a loop of the first kind.

Let m be the number of the loops of the second kind of K. The case $m=0$ has been treated in [3]. In the following we assume $m \geqq 1$.

Now let us deform the loops of the second kind into the following loops. Let the loops C_{i} and C_{j} of the second kind have a crossing point c. Let ε be a sufficiently small positive number, and a, b and d, e the points of intersection of the circle (in S^{2}) of radius ε with the center c with C_{i} and C_{j} respectively (Fig. 1).

Fig. 1
Then we replace the parts $a c \cup c b$ and $d c \cup c e$ of C_{i} and C_{j} by the disjoint $\operatorname{arcs} a b$ and de respectively. If we perform this operation at each crossing

1) We may assume that these regions are different from one another. See the note 5) in [3].
point of two loops of the second kind, then we obtain m disjoint loops. These m disjoint loops will be called hereafter loops of the second kind, and if we need to consider the loops of the second kind in the older sense of Def. 2.1, we shall mention it expressly. Then it is obvious that

Lemma 2.4. m loops of the second kind divide S^{3} into $m+1$ domains ${ }^{2} E_{0}$, E_{1}, \cdots, E_{m}.

Lemma. 2.5. Let E_{j} be a domain bounded by some loops, $C_{j_{j}}, \cdots, C_{j \nu}$, of the second kind: $\dot{E}_{j}=C_{j_{1}} \cup \cdots \cup C_{j_{\nu}}$. Then the regions $r_{\xi}, \cdots, r_{\eta}$ contained in E_{j} having some sides in common with $C_{j_{i}}$ have the same index (depending on j_{i}).

Furthermore we have
Lemma 2.6. The regions contained in the domain E_{j} can be classified in black and white, and in such a way that the regions having some sides in common with \dot{E}_{j} have the same colour, say white. All these white regions have then the same index, say p, and the black regions have loops of the first kind as boundaries. Then indices of the black regions are either $p-1$ or $p+1$.

Proof. Let $\dot{E}_{j}=C_{j_{1}} \cup \cdots \cup C_{j \nu}$, where $C_{j_{i}}, i=1,2, \cdots, \nu$, are loops of the second kind, and r_{ξ}, \cdots, r_{n} the regions contained in E_{j} such that each of $\dot{r}_{\xi}, \cdots, \dot{r}_{\eta}$ has some sides with $C_{j_{1}}$ in common. By Lemma 2.5, we have $I\left(r_{\xi}\right)=\cdots=I\left(r_{\eta}\right)$, so that, if we classify r_{0}, \cdots, r_{n+1} in black and white as said above, r_{ξ}, \cdots, r_{n} have the same colour, say white, by Lemma 1.1. Let us fix this classification, and let r_{λ} be one of black regions contained in E_{j} such that \dot{r}_{λ} has some sides in common with one of $\dot{r}_{\xi}, \cdots, \dot{r}_{\eta}$. Then \dot{r}_{λ} is a loop of the first kind, because, if a common side of \dot{r}_{λ} and \dot{r}_{ξ}, say, were a part of a loop of the second kind, r_{λ} would not be contained in E_{j}. Now let r_{μ} be a black region in E_{j} opposite to r_{k} over a crossing point c_{k}. Then $\dot{r}_{l k}$ is also a loop of the first kind (Fig. 2).

Fig. 2
In fact, if $c_{m} c_{k} \cup c_{k} c_{l}$ in Fig. 2 were a part of a loop of the second kind, r_{μ} would not be contained in E_{j}, and it is impossible that $c_{m} c_{k}$ and $c_{k} c_{l}$ belong to two different loops of the first kind. Thus it is easily seen that the boundaries of all the black regions in E_{j} are loops of the first kind. Hence the regions in E_{j}, whose boundaries have some sides in common with any one of $C_{j_{1}}, \cdots, C_{j \nu}$, are white. The remaining part is easy to prove.
2) A domain is connected and is an open subset of S^{2}.

Hereafter we shall use almost exclusively the classification in black and white of the regions contained in each domain E_{j} and consider the classification of all regions r_{0}, \cdots, r_{n+1} only in exceptional cases.

§ 3. Sign of the domain.

Hitherto the numbering of the domains $E_{0}, E_{1}, \cdots, E_{m}$ and loops of the second kind $C_{1}, C_{2}, \cdots, C_{m}$ was made arbitrarily. Now we introduce some rules on the numbering.

There is at least one lcop of the second kind such that one of the two parts, into which S^{2} is divided by it, does not contain other loops of the second kind. Let us fix one of these loops and denote it by C_{1}. We denote the domain bounded by C_{1} which does not contain any loop of the second kind by E_{0}, and the domain bounded by C_{1} and other loops of the second kind by E_{1}. Let the domains bounded by loops of the second kind other than E_{0}, E_{1} be numbered arbitrarily. They will be denoted by E_{2}, \cdots, E_{m}. We define the outer boundary C_{i} of $E_{i}, i=2, \cdots, m$, as follows. C_{i} is one of the loops of the second kind bounding E_{i} such that the following holds: C_{i} divides S^{3} into two parts, one of which contains E_{0} and the other E_{i}. It is clear that the loops of the second kind and the domains bounded by them are thus numbered consistently.

Now let us take a point e_{i} from each E_{i} for $i=0,1, \cdots, m$, and fix it. Let $l_{i j}$ be an arc connecting e_{i} with e_{j} not crossing over any crossing point and not touching any loop of the second kind. We shall now define an intersection number $I\left(l_{i j}, C_{h}, q\right)$ for a point q at which $l_{i j}$ meets C_{h}.

Definition 3.1. $I\left(l_{i j}, C_{h}, q\right)=+1$, or -1 according as $l_{i j}$ crosses over C_{h} at q from the right to the left or from the left to the right with reference to the orientation of C_{h}. We set $I\left(l_{i j}, C_{h}\right)=\sum_{q} I\left(l_{i j}, C_{h}, q\right)$. If $l_{i j}$ and C_{h} are disjoint, we set $I\left(l_{i j}, C_{h}\right)=0$. Then set $e_{i j}=\sum_{n} I\left(l_{i j}, C_{h}\right)$.

It is easily shown that
Lemma 3.2. $e_{i j}$ is uniquely determined by e_{i} and e_{j} independently of the choice of $l_{i j}$.

Hence we may assume that $l_{i j}$ meets C_{h} at most at one point for every i, j and h. We can easily show that

$$
\begin{array}{ll}
e_{i j}=-e_{j i} & \\
e_{i j}=e_{i h}+e_{h j} & 0 \leqq i, j, h \leqq m . \tag{3.2}
\end{array}
$$

Definition 3.3. We shall call the sign of $E_{j}(j=1,2, \cdots, m)$ positive or negative according as $I\left(l_{0}, C_{j}, C_{j} \cap l_{0 j}\right)=1$ or -1 . The sign of E_{0} is defined as the same as that of E_{1}.

We may assume without loss of generality that E_{0}, \cdots, E_{d} are positive and
E_{d+1}, \cdots, E_{m} are negative, where $d \geqq 1$. (We have only to change the orientation of the knot and change the numbering of E_{2}, \cdots, E_{m}, if necessary.) Let us put $\min _{i} I\left(r_{i}\right)=p-1$ and $\max _{j} I\left(r_{j}\right)=p+h+1$. We may suppose $\left.h \geqq 1 .{ }^{3}\right)$

Lemma 3.4. The regions with the maximal and minimal indices are the black regions and the corners of the former are all dotted.

Proof. Suppose that the region r_{i} with the maximal index $p+h+1$ is white. Let r_{i} be contained in E_{t}. Then E_{t} is positive. For otherwise, the index of a white region in E_{s}, which is a domain separated from E_{t} by C_{t}, will be $p+h+2$, which is a contradiction. Furthermore E_{t} must contain black regions. For otherwise, there would exist a positive domain E_{u} whose outer boundary would be $\subset \dot{E}_{t}$. Hence a white region in E_{u} would be of the index $p+h+2$, which is a contradiction. Consequently, E_{t} must contain a black region with the index $p+h+2$. This contradicts the assumption. Hence r_{i} is a black region. It will be easily shown that the corners of r_{i} are all dotted.

In the same way, we shall see that a region with the minimal index is black, q. e. d.

Remark. More generally, we obtain the following Lemma in the same way as above.

Lemma. 3.5. $\max _{i} I\left(r_{i}\right)-\min _{j} I\left(r_{j}\right)=\max _{0 \leqq i, j \leqq m} e_{i j}+2$.
As this lemma will not be used in following sections, the proof is omitted.

§ 4. Statement of the main theorems.

As mentioned in the introduction, our main theorems are the following:
Theorem 4.1. The genus of an alternating knot is exactly one half of the degree of its Alexander polynomial.

This will be proved in §7. Hence follows in the same way as in $\S 8$ [3]
Theorem 4.2. The genus of the product knot ${ }^{4}$) k_{0} of the two alternating knots k_{1} and k_{2} is exactly one half of the degree of its Alexander polynomial.

Since the Alexander polynomial of k_{0} is the product of those of k_{1} and k_{2}, we have

Corollary 4.3.5) The genus of k_{0} is equal to the sum of the genera of k_{1} and k_{2}.

Furthermore, we have
Theorem 4.4. If k is an alternating knot, then its Alexander polynomial is
3) If $h=0$, there is no loop of the second kind. This case was considered in [3].
4) k_{0} may not be alternating.
5) This fact is already shown by H. Schubert in [5] for all knots.
of the form

$$
\Delta(x)=a_{0}-a_{1} x+a_{2} x^{2}-\cdots+(-1)^{t} a_{t} x^{t}+\cdots+a_{2} x^{2^{t}},
$$

where $a_{i} \geqq 0$, and in particular, a_{0}, a_{t} and $a_{2 t} \neq 0$, and $a_{i}=a_{2 t-i}$ for $i=0,1, \cdots, 2 t$.

§ 5. Preparations for the proofs of theorems.

Let $\Delta_{p q}$ be the determinant of the matrix obtained by striking out from the L-matrix of K two columns corresponding to two regions with indices p and q. Since $\Delta_{(q+1) q}= \pm x^{r-q} \Delta_{(r+1) r}$, the determinant of the smallest degree with respect to x among the determinants of the forms $\Delta_{(s+1) s}$ is $\Delta_{(p+h+1)(p+h)}$. Hence the Alexander polynomial $\Delta(x)$ of k is

$$
\begin{equation*}
\Delta(x)= \pm x^{-\mu} \Delta_{(p+h+1)(p+h)}, \tag{5.1}
\end{equation*}
$$

where μ is a non-negative integer. Now the determinant of the matrix obtained by striking out from the L-matrix two columns corresponding to two adjacent white regions r_{α} and r_{β} contained in E_{0} and E_{1} respectively, may be denoted by $\Delta_{(p+q+1)(p+q)}$, with a suitable $q, 0 \leqq q \leqq h-1$, and we have

$$
\begin{equation*}
\Delta_{(p+h+1)(p+h)}= \pm x^{q-h} \Delta_{(p+q+1)(p+q)} . \tag{5.2}
\end{equation*}
$$

If λ denotes the number of the black regions with all dotted corners, then we have

$$
\begin{equation*}
\Delta_{(p+q+1)(p+q)}=x^{\lambda} \Delta_{(p+q+1)(p+q)}^{0} \cdot .^{6)} \tag{5.3}
\end{equation*}
$$

Hence, from (5.1), (5.2) and (5.3), we have

$$
\begin{equation*}
\pm x^{n+\mu-\lambda-q} \Delta(x)=厶_{(p+q+1)(p+q)}^{0} . \tag{5.4}
\end{equation*}
$$

Consequently, the proof of the main theorem will be complete if only we prove the following

Lemma 5.1. $\Delta_{(p+q+1)(p+q)}^{0}$ has terms of the degrees $\sum_{i=0}^{m} w_{i}-m+d-2$ and $d-1$, where w_{i} denotes the number of the white regions in E_{i}, and where $d+1$ is the number of the positive domains.

In fact, it will follow that $h+\mu-q-\lambda \leqq d-1$ and $h+\mu-q-\lambda+2 t \geqq \sum_{i=0}^{m} w_{i}-m$ $+d-2$, where $2 t$ is the degree of $\Delta(x)$. Hence $2 t \geq \sum_{i=0}^{m} w_{i}-m+d-2-(h+\mu-q-\lambda)$ $\geqq \sum_{i=0}^{m} w_{i}-m+d-2-(d-1)=\sum_{i=0}^{m} w_{i}-m-1$. On the other hand, we have $2 t \leqq 2 G(k)$ $\leqq n-\left(\sum_{i=0}^{m} b_{i}+m\right)+1=\left(\sum_{i=0}^{m} w_{i}+\sum_{i=0}^{m} b_{i}-2\right)-\left(\sum_{i=0}^{m} b_{i}+m\right)+1=\sum_{i=0}^{m} w_{i}-m-1$, where $G(k)$ denotes the genus of k and b_{i} denotes the number of the black regions in E_{i}. Therefore we have $t=G(k)$.

[^0]
§ 6. Preparations for the proofs of theorems, continued.

Let us denote the white regions in E_{i} by $W_{i, 1}, \cdots, W_{i, h_{i}}$, and the black regions in E_{i} by $B_{i, 1}, \cdots, B_{i, l_{i}}$. Let $K_{i}=\bigcup_{\lambda=1}^{h_{i}} W_{i, \lambda} \bigcup_{\mu=1}^{i_{i}} B_{i, \mu}$.

Definition 6.1. A crossing point such that at least two of four regions meeting at it are contained in E_{i} is called a crossing point which is contained in K_{i} (or simply in K_{i}).

Hereafter a side of K_{i} will mean a segment of K_{i} connecting two consecutive crossing points in K_{i}. Then K_{i} may be regarded as an image of the regular projection of a link ${ }^{7}$) into S^{3}, and we have clearly

Lemma. 6.2. K_{i} are alternating.
Since there is no loop of the second kind in K_{i}, lemmas obtained in [3] hold for K_{i} with slight modifications. Consequently it follows in the same way as in Lemma 3.6 in [3]

Lemma. 6.3. The corners of the black regions in E_{i} are either all dotted or all undotted. And the corners adjacent to the dotted (or undotted) corners of the white regions in E_{i} are undotted (or dotted). We shall say that the c-corner and c^{\prime}-corner of a region are adjacent, if two crossing points c and c^{\prime} are connected by a side of K_{i}.

Let c be a crossing point on C_{i} not contained in K_{i} and let a region r_{j} in E_{i} be one of the four regions meeting at c. Then it will be easily shown that

Lemma 6.4. The c-corner of r_{j} is either dotted or undotted according as E_{i} is positive or negative.

Lemma 6.5. Let \bar{s} be the number of the crossing points in K_{i}, \bar{p} the number of the regions in E_{i} and let \dot{E}_{i} consist of the \bar{q} loops of the second kind. Then

$$
\bar{s}=\bar{p}+\bar{q}-2 .
$$

Proof. The number of the sides of K_{i} is given by $2 \bar{s}$. Since \bar{s} crossing points and $2 \bar{s}$ sides divide $\bar{E}_{i}{ }^{8}$) into \bar{s} points, $2 \bar{s}$ segments and \bar{p} faces, Euler's characteristic χ of \bar{E}_{i} is given by $\chi=\bar{s}-2 \bar{s}+\bar{p}=-\bar{s}+\bar{p}$. On the other hand, $\chi=-\bar{q}+2$, since \bar{E}_{i} is homeomorphic to a 2 -sphere with \bar{q} holes. Thus we have $\bar{s}=\bar{p}+\bar{q}-2$, q. e. d.

Lemma. 6.6. Let σ be an L^{F}-correspondence ${ }^{9}$) such that each crossing point

[^1]corresponds to one and only one of the $n+2$ regions except for a pair of two adjacent regions r_{α} and r_{β} contained in E_{0} and E_{1} respectively. Then at least one region in E_{i} must correspond by σ to a crossing point on C_{i} not contained in K_{i} for $i=2, \cdots, m$.

Proof. If E_{i} is bounded by the outer boundary C_{i} alone, this lemma is true by Lemma 6.5. Now let us suppose that E_{i} is bounded by $l+1$ loops $C_{i_{1}}, \cdots, C_{i_{l}}$ and C_{i}, and the lemma is true for domains $E_{i_{1}}, \cdots, E_{i_{l-1}}$ and $E_{i_{i}}$. That is, let us suppose that $t_{i_{h}}(\geqq 1)$ regions in $E_{i_{h}}$ correspond to crossing points not contained in $K_{i_{h}}$. Since the number of the crossing points in K_{i} is larger than the number of the regions in E_{i} by $l-1, \sum_{h=1}^{l} t_{i_{h}}-l+1(\geqq 1)$ regions in E_{i} must correspond to the crossing points not contained in K_{i}. Thus at least one region in E_{i} must correspond to a crossing point on C_{i} not contained in K_{i}, q.e.d.

In the special case where $\bar{t}=\sum_{i=0}^{m} w_{i}-m+d-2$, it follows
Lemma 6.7. $w_{i}+b_{i}-1$ regions in E_{i} correspond to the crossing points in K_{i} for $i=2, \cdots, m$.

Proof. Let us suppose that $t_{i}(>1)$ regions in E_{i} correspond to the crossing points on C_{i} not contained in K_{i}. If E_{i} is negative, t_{i} (white) regions in E_{i} correspond to the crossing points at which these regions have undotted corners. On the other hand, if E_{i} is positive, t_{j} (white) regions in E_{j}, which is separated from E_{i} by C_{i}, correspond to the crossing points at which these regions have undotted corners. Thus in all cases it is impossible that σ is an $L^{w_{i}-m+d-2}$-correspondence, since at least one white region in every E_{i} for $i=d+1, \cdots, m$, corresponds to a crossing point on C_{i} not contained in K_{i} at which this region has undotted corner, q.e.d.

Lemma 6.8. Let σ be an L^{i}-correspondence and let τ be another L^{i}-correspondence, $\bar{t}=\sum_{i=0}^{m} w_{i}-m+d-2$, such that the following property (P) holds:
(P) σ and τ are defined on the same set of regions, and each of σ, τ assigns each region of this set to some crossing point, the correspondence between the regions and crossing points defined by σ and τ being allowed to be entirely different.

Then denoting the terms in $\Delta_{(p+q+1)(p+q)}^{0}$ corresponding to σ and τ by εx^{τ} and $\bar{\varepsilon} x^{\bar{i}}$ respectively, it follows

$$
\varepsilon=\bar{\varepsilon}
$$

Proof. Let L_{n} be the closed and oriented L-chain corresponding to a cyclic permutation ζ_{h} as used in the proof of Lemma 4.2 in [3]. To show $\operatorname{sgn} \zeta_{h}=1$, it is sufficient to show that the number of the centers of regions on L_{n} is odd.

First we shall show that if L_{h} crosses over the outer boundary of a domain, then it will cross over the boundary in just two places. In fact, let us suppose that L_{h} crosses over C_{i} at least at four crossing points. If L_{n} goes over C_{i} into E_{i} through some two crossing points, we see from Lemma 6.6 that these crossing points are not contained in K_{i} and these correspond to some two regions in E_{i}, which contradicts Lemma 6.7. Moreover it follows from the above fact that L_{n} does not cross over C_{1}.

Next we shall show the following
Lemma 6.9. Let T_{h} be any L-chain and $T_{h} \cap E_{j}=T^{1} \cup \cdots \cup T^{p}$ and

$$
T^{i}=c_{i, 1} x_{i, 1} c_{i, 2} \cup c_{i, 2} x_{i, 2} c_{i, 3} \cup \cdots \cup c_{i, \lambda_{i}} x_{i, \lambda_{i}} c_{i, \lambda_{i}+1}{ }^{10)} \quad \text { for } \quad i=1, \cdots, p,
$$

where $x_{i, 1}, \cdots, x_{i, \lambda_{i}}$ are the centers of the regions in T^{i} and $c_{i, 1}, \cdots, c_{i, \lambda_{i}+1}$ are the crossing points in T^{i}. Let t_{i} denote the number of the centers of the regions in T^{i}.
(a) If all $c_{i_{\mu}}$ are contained in K_{j}, then it follows

$$
\sum t_{i} \equiv p+1 \quad(\bmod 2) .
$$

(b) If c_{11} and $c_{p, \lambda_{p+1}}$ are not contained in K_{j} and others are all contained in K_{j}, then it follows

$$
\sum t_{i} \equiv p \quad(\bmod 2)
$$

(c) If $x_{i, 1}, \cdots, x_{i, \lambda_{i}}$ are all the centers of the black regions for some i, then t_{i} is odd or even according as the $c_{i, 1}$-corner of $r_{i, 1}$ and the $c_{i, \lambda_{i+1}-\text {-corner of } r_{i, \lambda_{i}}, ~}^{\text {- }}$ are either all dotted (or undotted) or not, where r_{n} denotes the black region in E_{j} with the center x_{h}.

Proof of (a). In the same way as in Lemma 4.2 in [3], we have $\Sigma t_{i}+$ $p \equiv 1(\bmod 2)$, which is equivalent to (a).

Proof of (b). Let us transform T^{i} into T_{0}^{i} as constructed in the proof of Lemma 4.2 in [3]. Here, in particular, we transform $c_{11} x_{11} c_{12}$ and $c_{p, \lambda_{p}} x_{p, \lambda_{p}} c_{p, \lambda_{p}+1}$ into the chains $c_{11}^{\prime} y_{11} c_{12}^{\prime} \cup c_{12}^{\prime} y_{12} c_{13}^{\prime} \cup \cdots \cup c_{1, \prime}^{\prime} y_{1 \mu} c_{12}$ and $c_{p, \lambda_{p}} z_{p 1} c_{p 1}^{\prime \prime} \cup c_{p 1}^{\prime \prime} z_{p 2} c_{p 2}^{\prime \prime} \cup \cdots \cup$ $c_{p, \nu-1}^{\prime \prime} z_{p} c_{p \nu}^{\prime \prime}$, respectively, where $c_{1 \xi}^{\prime}$ and $c_{p \eta}^{\prime \prime}$ are crossing points on the boundaries of the white regions r_{11} and $r_{p, \lambda_{p}}$ respectively and c_{11}^{\prime} and $c_{p \nu}^{\prime \prime}$ are contained in K_{j} and lie on C_{h}, and $y_{1 \xi}$ and $z_{p \eta}$ are the centers of the black regions whose boundaries have the sides $c_{1 \xi}^{\prime} c_{1, \xi+1}^{\prime}$ and $c_{p, \eta-1}^{\prime \prime} c_{p, \eta}^{\prime \prime}$ with r_{11} and $r_{p, \lambda_{p}}$ in common, respectively, for $\xi=1,2, \cdots, \mu, \eta=1,2, \cdots, \nu$ and $c_{1, \mu+1}^{\prime}=c_{12}, c_{p, 0}^{\prime \prime}$ $=c_{p, \lambda_{p}}$. Let \bar{w}_{1} be the number of the white regions and \bar{b}_{1} the number of the black regions, which are contained in a domain D in E_{j} bounded by T^{1}, \cdots, T^{p} and the parts $C^{0}, C^{1}, \cdots, C^{p}$ of $C_{j}, C_{j_{2}}, \cdots, C_{j_{p}}$, which are contained in \dot{E}_{j}. Let \bar{s}_{1} be the number of the crossing points in $D \cap K_{j}$. Similarly let \bar{w}_{0} and \bar{b}_{0} be the numbers of the white and the black regions in D_{0} respectively,

[^2]which is bounded by $T_{0}^{1}, \cdots, T_{0}^{p}, C_{0}^{0}, C^{1}, \cdots, C^{p}$, where C_{0}^{0} is the curve connecting c_{11}^{\prime} with $c_{p \nu}^{\prime \prime}$ on C^{0} or on the complement of C^{0} with respect to C_{i}, and \bar{s}_{0} be the number of the crossing points in $D_{0} \cap K_{j}$. Then denoting the number of the centers of the white regions on T^{i} by u_{i}, we have $\bar{w}_{0}=\bar{w}_{1}+\sum_{i=1}^{p} u_{i}$. Let $\bar{b}_{0}=\bar{b}_{1}+\bar{k}$. Then, since $\bar{s}_{1}=\bar{b}_{1}+\bar{w}_{1}$ by the definition, it follows $\bar{s}_{0}=\bar{b}_{0}+\bar{w}_{0}-1$ $=\bar{s}_{1}+\sum u_{i}+\bar{k}-1 .{ }^{11)} \quad$ Moreover since one of μ and ν is odd and the other even, we can write $\mu+\nu-2=2 \gamma-1$. Hence denoting the number of the centers of the regions in $\bigcup_{i=1}^{p} T_{0}^{i}$ by t_{0}, we have ${ }^{(2)}$
\[

$$
\begin{aligned}
t_{0} & =\sum_{i=1}^{p} t_{i}+\sum_{i=1}^{u_{1}-1}\left(2 \lambda_{i 1}-1\right)+\sum_{j=2}^{p-1} \sum_{i=1}^{u_{j}}\left(2 \lambda_{i j}-1\right)+\sum_{i=1}^{u_{p}-1}\left(2 \lambda_{i p}-1\right)+2 \gamma-1-\left(\bar{s}_{0}-\bar{s}_{1}+\bar{k}\right) \\
& \equiv \sum_{i=1}^{p} t_{i}-\left(u_{1}-1\right)-\sum_{j=2}^{p-1} u_{j}-\left(u_{p}-1\right)-1-\left(\sum_{i=1}^{p} u_{i}+2 \bar{k}-1\right) \quad(\bmod 2) \\
& \equiv \sum_{i=1}^{p} t_{i} \quad(\bmod 2) \quad\left(\lambda_{i j} \text { intgers }\right) .
\end{aligned}
$$
\]

On the other hand, since $t_{0} \equiv p(\bmod 2)$, we have $\sum_{i=1}^{p} t_{i} \equiv p(\bmod 2)$.
Proof of (c). If the c-corner of the black region r_{i} is dotted, then the c-corner of the black region r_{j} which is opposite to r_{i} over c is undotted and conversely. From this, (c) is immediately proved.

Thus Lemma 6.9 is proved.
Now we shall prove Lemma 6.8.
Let L_{h} be divided into $L_{h}=\bigcup_{i=1}^{p_{1}} L_{i}^{(0)} \cup L^{(1)}$, where all $L_{i}^{(0)}$ are connected and contained in only one domain $\bar{E}_{h_{1}}$, and $\bigcup_{i=1}^{p_{1}} L_{i}^{(0)} \cap C_{h}=\phi^{(3)}$ and $L^{(1)}=L_{h}-\bigcup_{i=1}^{p_{1}} L_{i}^{(0)}$. Now denoting the number of the centers of regions in $L_{j}^{(i)}$ by $t_{j}^{(i)}$, we have, by Lemma 6.9 (a),

$$
\sum_{i=1}^{p_{1}} t_{i}^{(0)} \equiv p_{1}+1 \quad(\bmod 2)
$$

Next consider $L^{(1)}$. $L^{(1)}$ consists of $p_{1} L$-chains $L_{1}^{(1)}, \cdots, L_{p_{1}}^{(1)}$, whose end points are on the outer boundaries $C_{l, 1}, \cdots, C_{l, p_{1}}$ and are not contained in $K_{l, 1}, \cdots, K_{l, p_{1}}$, respectively. Let $L_{1}^{(1)}$ be divided into $L_{1}^{(1)}=\bigcup_{i=1}^{p_{1}} L_{i}^{(1)} \cup L^{(110)}$, where all $L_{i}^{(1)}$ are contained in a domain $\bar{E}_{l, i}$ and $L^{(110)}=L_{1}^{(1)}-\bigcup_{i=1}^{p_{11}} L_{i}^{(11)}$. Then by Lemma 6.9 (b), we have

$$
\sum t_{i}^{(11)} \equiv p_{11} \quad(\bmod 2)
$$

11) See (4.3) in [3].
12) See (4.1) in [3].
13) ϕ denotes the empty set.

Defining $t_{l}^{(i j)}$ and $p_{1 j}$ in the same way as above, we have

$$
\sum_{l} \sum_{j=1}^{p_{1}} t_{l}^{(1 j)} \equiv \sum_{j=1}^{p_{1}} p_{1 j} \quad(\bmod 2)
$$

Moreover dividing $L^{(110)}$ into some L-chains and computing $t_{j}^{(11 h)}$ and $p_{11 \hbar}$ in the same way as above, we have

$$
\sum_{j} \sum_{n} t_{j}^{(11 h)} \equiv \sum_{n} p_{11 h} \quad(\bmod 2) .
$$

Since the above decomposition will finish after a finite number of steps, the number t of the centers of the regions in L_{h} will finally be given by

$$
\begin{aligned}
t & =\Sigma t_{i}^{(0)}+\sum \sum_{j, l} t_{l}^{(1 j)}+\Sigma t_{j}^{(1 * *)}+\cdots+\Sigma t_{j}^{(1 * * \cdots *)} \\
& \equiv p_{1}+1+\sum p_{1 j}+\Sigma p_{1 * *}+\cdots+\Sigma p_{1 * \cdots *} .
\end{aligned}
$$

On the other hand, $p_{1}+\sum p_{1, i}+\cdots+\sum p_{1 * \cdots *}$ is even by Lemma 6.9 (c). Hence we have $t \equiv 1(\bmod 2)$. Thus Lemma 6.8 is proved.

§ 7. Proof of Theorem 4.1.

In this section, we shall show that there exists an L^{i}-correspondence, where $\bar{t}=\sum_{i=0}^{m} w_{i}-m+d-2$.

Let G_{j} be the graph ${ }^{14)}$ of K_{j}. Denote the regions into which G_{j} divides S^{2} by $M_{j i}$. Then, if we regard the complement of E_{j} as the black regions, then we see clearly that each $M_{j i}$ contains one and only one black region. We can supposc that the indices i, j are so arranged that $M_{j 1}$ contains C_{j} for $j=1, \cdots, m$, and M_{01} contains C_{1}, and $\left(\bigcup_{i=1}^{\lambda-1} \dot{M}_{1 i}\right) \cap \dot{M}_{j \lambda}$ must contain at least one side of $\dot{M}_{j \lambda}$.

Let r_{α} and r_{β} be a pair of two adjacent white regions in E_{0} and E_{1} respectively. Then we can assign each one of the $w_{0}+w_{1}$ white regions in E_{0} and E_{1} except for r_{α} and r_{β} to one and only one crossing point lying on its boundary by means of the graphs G_{0} and G_{1} in the same way as in [3], where the corner of the region at the corresponding crossing point is dotted. Let P_{0} and P_{1} denote the semi-graph of G_{0} and G_{1} with respect to the correspondences of the white regions in E_{0} and E_{1} respectively. Then P_{0} and P_{1} are disjoint and these are trees. Now let $\dot{E}_{1}=C_{1} \cup C_{i_{1}} \cup \cdots \cup C_{i j_{1}}$. Then we have

Lemma 7.1. In each $E_{i_{i}}$, there exists a region $r_{i \lambda}$, say, whose center is on a

[^3]side $m_{i_{\lambda}}$ in $M_{i_{1,}, 0}$, and each $\dot{r}_{i_{\lambda}}$ contains at least one crossing point $c_{i_{\lambda}}$ which is not contained in $K_{i_{\lambda}}$.

Proof. If there does not exist such a region in $E_{i_{\mu}}$, then P_{1} would contain the boundary of $M_{1 \lambda}$, in which $E_{i \mu}$ would be contained.

Furthermore we have
Lemma 7.2. We can so choose these crossing points $c_{i_{\lambda}}$ that they are different from each other.

Proof. If $c_{i_{\mu}}=c_{i_{\nu}}$ for some μ, ν, i. e. if there is only one crossing point which is not contained in $K_{i \mu}$, and $K_{i_{\nu}}$, there would be $M_{1 \xi}$ and $M_{1 \eta}$, in which $E_{i_{\mu}}$ and $E_{i_{\nu}}$ would be contained, and P_{1} would contain a loop $\dot{M}_{1 \xi} \cup \dot{M}_{1 \eta}-\left(\dot{M}_{1 \xi}\right.$ $\left.\cap \dot{M}_{1 \eta}\right)$.

Now we can assign each one $r_{i_{\lambda}, j}$ of the $w_{i_{\lambda}}$ white regions in $E_{i_{\lambda}}$ except for the regions $r_{i_{\lambda}}$, whose existence is assured in Lemma 7.1, to only one crossing point contained in $K_{i_{\lambda}}$ which lies on $\dot{r}_{i_{\lambda}, j}$ by means of the graphs $G_{i_{i}}$, where the corners of the regions at the corresponding crossing points are dotted. Let $P_{i_{\lambda}}$ denote the semi-graph of $G_{i_{\lambda}}$ with respect to the correspondence of the white regions in $E_{i \lambda}$. Then $P_{i_{\lambda}}$ are the trees and these are mutually disjoint. In the same way, we obtain

Lemma 7.3. In each E_{i}, there is one white region r_{i}, say, whose center is on a side of $M_{i 0}$ and there exists on \dot{r}_{i} at least one crossing point c_{i}, say, not contained in K_{i}. And these crossing points are different from each other.

Let P_{i} be the semi-graph of G_{i} with respect to the correspondence of all the white regions except for r_{i} in $E_{i} . \quad P_{i}$ are mutually disjoint.

Now we shall prove the existence of an L^{i}-correspondence. This will be performed if we can assign each one of the $m-1$ white regions r_{i} and the $\sum_{i=0}^{m} b_{i}$ black regions to one and only one crossing point. To do this, we shall first assign r_{i} (in E_{i}) to a crossing point c_{i} obtained by Lemma 7.3. Next, to obtain a correspondence between the black regions in each E_{i} and the crossing points, we shall apply the proof of Lemma 5.3 in [3] to our case. We regard the region r_{i} and the connected component, which contains E_{0}, in the complement of E_{i} as r_{α} and r_{β} respectively and we consider the subset Q_{i}, disjoint to P_{i}, of the dual graph H_{i} of K_{i}. Then we can assign also black regions to the crossing points on its boundaries by means of Q_{i}. Thus we obtain the required correspondence. Thus we have

Lemma 7.4. There is an $L^{\Sigma w_{i}-m+d-2}$-correspondence σ as stated in Lemma 6.7.

Similarly, it follows
Lemma 7.5. There is an L^{d-1}-correspondence.

From Lemmas 7.4 and 7.5, we have Lemma 5.7. Thus the proof of Theorem 4.1 is completed.

§ 8. Proof of Theorem 4.4.

We can slightly extend Lemma 6.8 as follows.
Lemma 8.1. Let σ be an L^{i}-correspondence and τ an L^{ξ}-correspondence, $d-1 \leqq \bar{t}, \bar{s} \leqq \sum_{i=0}^{m} w_{i}-m+d-2$, which have the property (P) as stated in Lemma 6.8. If the terms in $\Delta_{(p+q+1)(p+q)}^{0}$ corresponding to σ and τ are denoted by $\varepsilon x^{\bar{\tau}}$ and $\bar{\varepsilon} x^{s}$, where $\varepsilon, \bar{\varepsilon}= \pm 1$, then $\varepsilon=\bar{\varepsilon}$ or $\varepsilon=-\bar{\varepsilon}$ according as $\bar{t} \equiv \bar{s}(\bmod 2)$ or not.

Proof. We can assume without loss of generality that $\bar{t}=\sum_{i=0}^{m} w_{i}-m+d-2$. First we shall prove this lemma in the case where $m=0$ and $d=1$, i. e. $\bar{t}=w_{0}-1$. We may suppose that n crossing points $c_{1}, c_{2}, \cdots, c_{n}$ correspond to n regions $r_{1}, r_{2}, \cdots, r_{n}$ respectively, of which first $w_{0}-1$ regions are white, by σ. Let $c_{j i}$ correspond to r_{i} by τ for $i=1, \cdots, n$ and let us assume that $c_{j n}$-corner of r_{h} are dotted for $h=1, \cdots, \bar{s}$ and $c_{j l}$-corner of r_{l} are undotted for $l=\bar{s}+1, \cdots, w_{0}-1$. Then, to prove Lemma 8.1, it is sufficient to show that

$$
\operatorname{sgn} \zeta=\operatorname{sgn}\left(\begin{array}{cccc}
1 & 2 & \cdots & n \tag{8.1}\\
j_{1} & j_{2} & \cdots & j_{n}
\end{array}\right) .
$$

Let ζ be represented as the product of some cyclic permutations $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{r}$, which are mutually disjoint.

Let $\zeta_{1}=\left(y_{1} \cdots y_{n}\right), 1 \leqq y_{1}, \cdots, y_{h} \leqq n$. Consider an oriented L-chain, L corresponding to ζ_{1}. Let us assume that L_{1} contains t_{1} centers of white regions, of which α_{1} centers lie on the segments of L_{1} oriented as proceeding from the dotted corner to the undotted corner. Then we shall transform L_{1} into L_{0} which does not contain the centers of white regions, in the same way as in the proof of Lemma 4.2 in [3]. Let p_{1} be the number of the white regions, q_{1} the number of the black regions and let s_{1} the number of crossing points, which are contained in the interior ${ }^{15)}$ of L_{1}. Then we have $s_{1}=p_{1}+q_{1}$. On the other hand, the number of the white regions contained in the interior \widetilde{L}_{0} of L_{0} is given by $p_{1}+t_{1}$. Denoting the number of the black regions contained in \widetilde{L}_{0} by $q_{1}+\bar{w}_{1}$, the number of the crossing points contained in \widetilde{L}_{0} is given by $s_{0}=q_{1}+p_{1}+t_{1}+\bar{w}_{1}-1=s_{1}+\bar{w}_{1}+t_{1}-1$. If the number of the centers of the regions lying on L_{0} is denoted by h_{0}, then it follows

$$
h_{0}=h+\sum_{i=1}^{t_{1}-\alpha_{1}}\left(2 \lambda_{i}-1\right)+\sum_{j=1}^{\alpha_{1}} 2\left(\mu_{j}-1\right)-\left(s_{0}-s_{1}+\bar{w}_{1}\right)
$$

15) The interior of L_{1} means the parts in which L_{0} is not contained, between two parts into which S^{2} are divided by L_{1}.

$$
\begin{aligned}
& =h+2 \sum \lambda_{i}-\left(t_{1}-\alpha_{1}\right)+2 \sum\left(\mu_{j}-1\right)-\left(2 \bar{w}_{1}+t_{1}-1\right) \\
& \equiv h+\alpha_{1}+1 \quad(\bmod 2) \quad\left(\lambda_{i}, \mu_{j} \text { being positive integers }\right) .
\end{aligned}
$$

Thus we have $h \equiv \alpha_{1}+1$, since $h_{0} \equiv 0(\bmod 2)$. Hence we have $\operatorname{sgn} \zeta_{1}=(-1)^{\alpha_{1}}$. In the same way, we have $\operatorname{sgn} \zeta_{i}=(-1)^{\alpha} i$, where α_{i} are defined in the same way as α_{1}. Since $\sum \alpha_{i}=w_{0}-1-\bar{s}$, it follows $\operatorname{sgn} \zeta=\prod_{i=1}^{r} \operatorname{sgn} \zeta_{i}=\prod_{i=1}^{r}(-1)^{\alpha_{i}}=$ $(-1)^{w_{0}-1-5}$.

To prove this lemma in this case where $m>0$, we may compute the numbers of the centers on the chains, into which L_{h} is divided, in the same way as in the proof of Lemma 6.8. Since we can accomplish this computation in the same way as above, we shall omit the detail.

From this lemma and the fact that $\Delta(-1)$ is always odd, Theorem 4.4 is easily proved.

> Hôsei University.

References

[1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc., 30 (1928), 275-306.
[2] J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math., 28 (1927), 563-586.
[3] K. Murasugi, On the genus of the alternating knot, J. Math. Soc. Japan, 10 (1958), 94-105.
[4] K. Reidemeister, Knotentheorie, Julius Springer, (1932).
[5] H. Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S. Ber. Heidelberg. Akad., Wiss., (1949).
[6] H. Seifert, Über das Geschlecht von Knoten, Math. Ann., 110 (1935), 571-592.

[^0]: 6) See [3].
[^1]: 7) A link means a figure composed of a finite number of the disjoint knots in S^{3}. We can define the standard loops of the first and of the second kind for an image of the regular projection of a link in the same way as for a knot.
 8) A bar over the symbol denotes the closure of the set.
 9) In the next section, we shall show that there exists such a σ. See [3] for the definition of an L^{t}-correspondence.
[^2]: 10) For the notation see the proof of Lemma 4.2 in [3].
[^3]: 14) The graph (or the dual graph) of K means the totality of the segments connecting the centers of the white (or the black) regions with the crossing points lying on their boundaries.
