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On the fundamental conjecture of $GLC$ V.
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In this paper we shall introduce the notion of regular proof-figures in
$GLC$ (\S 1), and prove that the end-sequence of such a proof-figure is provable
without cut (Chap. I). This generalizes our result of [6].

From this result and the restriction theory in [2] follows immediately
that no end-sequence of a regular proof-figure in $G^{1}LC$ can contain an
inconsistency of the theory of natural numbers, i.e. the logical system
consisting of regular proof-figures of $G^{1}LC$ and the theory of natural
numbers–we shall denote this system with $R^{1}NN$ for a while–is consistent.
The system obtained in replacing $G$ ‘ $LC$ in the above definition of $R^{1}NN$ by
$GLC$ will be denoted by $RNN$. The consistency of $RNN$ could be also
proved as an application of the result of Chapter I, but this would involve
some complications. In Chapter II we prove the consistency of $RNN$ by an
anologous method as in Chapter I.

In this paper, we make use of the theory of ordinal diagrams, as de-
veloped in [7]. We shall show in [8] that the theory of ordinal diagrams
can be formalized in $RNN$.

Chapter I. The regular proof-figure and the fundamental conjecture.

\S 1. Several concepts concerning a proof-figure of $GLC$ and lemmas on
ordinal diagrams.

We refer to [6], Chapter I as to the notations and the notions on $GLC$

such as t-variables, $f$-variables, words, positive and negative, proper and
inproper, degenerate and non-degenerate. We remind further that we have
introduced in [5] 1.1, the notions of a formula in a proof-figure $\mathfrak{P}$ , and of a
logical symbol or a variable in a formula $A$ . As these notions are of frequ-
ent use in the sequel, we shall illustrate them by an example. The same
logical symbol $\forall$ may appear in a formula $A$ as the outermost symbol and
again several times. (E. $g$ . $A=\forall\varphi\forall\psi 7\forall\xi 7\forall x(\xi[x]\varphi[x]\wedge\psi[x]).$ ) To distin-
guish these $\forall s$ , we shall designate the outermost one by 7, the second one
by $\#$ , the third one by ta etc. (so that $A=7\varphi\#\psi 7\#\xi 7\forall x(\xi[x]\varphi[x]\wedge\psi[x])$

in the above example). These 7, $\#$ , ta, , symbols considered together with the
places they occupy in the formula $A$ are examples of symbols in the formula
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$A$ (in this example they are $\forall s$ in $A$).

1.1. We say ‘ 7 ties an $f$-variable $\alpha$ , or a logical symbol or a variable $\#$ in
some formula ’ in the following case: 7 is the outermost $\forall$ on an $f$-variable
in a word of the form $\forall\varphi C(\varphi)$ and $\alpha$ or $\#$ appears in $C(\varphi)$ .

1.2. We say ‘ 7 affects $\#$
’ in the following case: $\iota/$ is the outermost $\forall$ on

an $f$-variable in a word of the form $\forall\varphi C(\varphi),$ $\#$ is $\forall$ on an $f$-variable tied by
$t/$ , and $\#$ ties $\varphi$ .

1.3. Let $A$ be a formula and 7 be a proper $\forall$ on an $f$-variable in $A$ . We
say ‘ 7 is isolated ‘, if and only if the following conditions are fulfilled:
1.3.1. No free variable is tied by 7.
1.3.2. No $\forall$ on an $f$-variable affects 7.
1.3.3. 7 affects no proper $\forall$ on an $f$-variable in $A$ .

1.4. Let $A$ be a formula in a proof-figure $\mathfrak{P}$ and $\iota/$ be a proper $\forall$ on an
$f$-variable in A. 7 is called an $\forall$ left in $\mathfrak{P}$ , if and only if one of the fol-
lowing conditions is satisfied:
1.4.1. $A$ is placed in the left side of a sequence and 7 is positive to $A$ .
1.4.2. $A$ is placed in the right side of a sequence and 7 is negative to $A$ .

Otherwise 7 is called an $\forall$ right in $\mathfrak{P}$ .

1.5. Lemmas on ordinal diagrams.
Let $\alpha,$ $\beta$ and $\gamma$ be c. o. $d$ . ’s (See [7].) and $i$ be an integer satisfying

$1<i\leqq n$ . By $R_{i}(\gamma, \alpha, \beta)$ , we shall mean the following conditions:
1.5.1. $\gamma$ is an i-section of $\alpha$ .
1.5.2. If $\alpha^{\prime}$ is a k-section of $\alpha$ and is neither $\gamma$ nor a k-section of $\gamma$ , and $k$

is an integer satisfying $1<k\leqq n$ , there exists a k-section $\beta^{\prime}$ of $\beta$ such that
$\alpha^{\prime}\leqq k\beta^{\prime}$ .
1.5.3. $\alpha<1\beta$ .

Let $\alpha$ and $\beta$ be c. o. $d$ . $s$ . By $R(\alpha, \beta)$ , we shall mean the following condi-
tions:
1.5.4. If $\alpha^{\prime}$ is a k-section of $\alpha$ , and $k$ is an integer satisfying $1<k\leqq n$ ,

there exists a k-section $\beta^{\prime}$ of $\beta$ such that $\alpha^{\prime}\leqq_{k}\beta^{\prime}$ .
1.5.5. $\alpha<l\beta$ .

The following lemmas are easily verified.
LEMMA 1. $R_{i}(\gamma, \alpha, \beta)$ implies $\alpha<k\beta(1\leqq k<i)$ .
LEMMA 2. $R(\alpha, \beta)$ implies $\alpha<k\beta(1\leqq k\leqq n)$ .
LEMMA 3. Let $j$ be an integer satisfying $1\leqq j<i$ and $a$ be a positive integer.

$R_{i}(\gamma, \alpha, \beta)$ implies $R_{i}$ ( $\gamma,$ ( $j;a$ , a# $\delta$), $(j;a,$ $\beta\#\delta)$) where $\delta$ is a $c$ . $0.d.$ , or $\delta$ is void
in which case $\alpha\#\delta,$ $\beta\#\delta$ mean $\alpha,$ $\beta$ respectively.
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LEMMA 4. Let $j$ be an integer satisfying $i\leqq j\leqq n$ and $a$ be a positive integer.
$R(\gamma, \beta)$ and $R_{i}(\gamma, \alpha, \beta)$ imply $R((i;a, \alpha),$ $(j;a, \beta))$ and $\alpha<k\beta(1\leqq k\leqq n)$ .

LEMMA 5. $R(\alpha, \beta)$ implies $R((j;a, \alpha\#\delta),$ $(j;a, \beta\#\delta))(1\leqq j\leqq n)$ where $\delta$ is
as in Lemma 3.

\S 2. Regular proof-figures.

In this section, we define first the concept of regular proof-figures and
next the concept of proof-figures of order $n$ and correspondence of the
ordinal diagram to a proof-figure of order $n$ .

2.1. A formula $A$ is regular, if the following condition is fulfilled: Let
$\backslash /,$ $\#$ be any pair of proper $\forall s$ on $f$-variables in $A$ . If $\iota$’ ties in and in is
not isolated, then $\iota/$ is positive to $l\{$ .

2.2. A proof-figure $\mathfrak{P}$ is regular, if and only if the following condition is
fulfilled: If $\mathfrak{P}$ contains an implicit $\forall$ left on an $f$-variable of the form

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

then $\forall\varphi F(\varphi)$ is regular.
With this terminology, we now fomulate our principal theorem:
THEOREM 1. The end-sequence of a regular proof-figure is provable without

cut.

2.3. An isolated degree of a regular formula.
Let $A$ be a regular formula and 7 be an isolated $\forall$ on an $f$-variable

in $A$ . The isolated degree of $L/$ in $A$ is defined recursively as follows:
2.3.1. If 7 ties no isolated $\forall$ on an $f$-variable, then the isolated degree of

$\iota/$ is one.
2.3.2. If $\iota/$ ties an isolated $\forall$ on an $f$-variable, then the isolated degree of
7 is $n+1$ where $n$ is the maximal number of the isolated degrees of the
isolated $\forall s$ on $f$-variables tied by 7.

Let $A$ be a regular formula. The isolated degree of $A$ is the maximal
number of the isolated degrees of the isolated $\forall s$ on $f$-variables in $A$ , if
such exist; otherwise the isolated degree of $A$ is defined to be zero.

2.4. We introduce the following inference called ‘ substitution’ in $GLC$.
Inference-schema on \‘oubstitution:

$A_{1},\cdots,$ $A_{n}\rightarrow B_{1},\cdots,\underline{B_{m}}-$

$\overline{A_{1}\left(\begin{array}{l}V\\\alpha\end{array}\right),\cdots,A_{n}\left(\begin{array}{l}V\\\alpha\end{array}\right)\rightarrow B_{1}\left(\begin{array}{l}V\\\alpha\end{array}\right)},\cdots,$
$B_{7n}\left(\begin{array}{l}V\\\alpha\end{array}\right)$

’
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where $\alpha$ is a free $f$-variable and $V$ is a variety of the same type as $\alpha$ .
(See [2], \S 5 for $\left(\begin{array}{l}V\\\alpha\end{array}\right).$ ) $\alpha$ is called the eigenvariable of this substitution.

The formula of $A_{j}\left(\begin{array}{l}V\\\alpha\end{array}\right)$ or $B_{k}\left(\begin{array}{l}V\\\alpha\end{array}\right)$ in the lower sequence of this substitu-

tion is called the successor of the formula $A_{j}$ or $B_{k}$ in the upper sequence
respectively.

As we have shown in [2] 6.9,

$A_{1}\left(\begin{array}{l}V\\\alpha\end{array}\right),\cdots,$ $A_{n}\left(\begin{array}{l}V\\\alpha\end{array}\right)\rightarrow B_{1}\left(\begin{array}{l}V\\\alpha\end{array}\right),\cdots,$ $B_{m}\left(\begin{array}{l}V\\\alpha\end{array}\right)$

is provable, if
$A_{1},\cdots,$ $A_{n}\rightarrow B_{1},\cdots,$ $B_{m}$

is provable, so that the inference schema on substitution is in principle
reducdant in $GLC$, but the introduction of this inference schema facilitates
us the reduction of regular proof-figures, as we shall show in the following.

2.5. Proof-figures of order $n$ .
Let $\mathfrak{P}$ be a regular proof-figure. We attach an integer $i$ greater than

1 to every substitution in $\mathfrak{P}$ and call $i$ the index of the substitution. We
call $\mathfrak{P}$ (considered together with $i’ s$ and a positive integer n) a proof-figure
of order $n$ , if $\mathfrak{P}i’ s$ and $n$ satisfy the following conditions.
2.5.1. Every substitution is in the end-place.
2.5.2. Every $i\leqq n$ .
2.5.3. Let $A$ be an arbitrary implicit regular formula in $\mathfrak{P}$ . Then the
isolatcd degree of $A$ is less than $n$ .
2.5.4. Let $s^{\alpha}$ be an arbitrary substitution with the index $i$ in $\mathfrak{P}$ and $A$ be
an arbitrary implicit formula in the upper sequence of $s^{\alpha}$ If $A$ is regular
and the isolated degree of $A$ is $j$, then $i+j-1\leqq n$ . If there exsists a proper
non-isolated $\forall$ on an $f$-variable in $A$ , it is an $\forall$ right in $\mathfrak{P}$ and $i$ must be 2.

Since every regular proof-figure may be, in introducing adequately $i’ s$

and $n$ , considered as a proof-figure of order $n$ for sufliciently great $n$ , we
have only to prove that the end-sequence of a proof-figure of order $n$ is
provable without cut.

2.6. ’
$i$-loader ’ of a sequence.

Let $\mathfrak{P}$ be a proof-figure of order $n$ and $\mathfrak{S}$ be a sequence in $\mathfrak{P}$ . The
i-loader of $\mathfrak{S}$ is the upper sequence of the uppermost substitution under $\mathfrak{S}$ ,
whose index is not less than $i$ , if such exists; otherwise the i-loader of $\mathfrak{S}$

is the end-sequence.

2.7. Correspondence of an ordinal diagram of order $n$ to a proof-figure of
order $n$ .
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Now we assign an ordinal diagram of order $n$ to every sequence of a
proof-figure of order $n$ recursively as follows:
2.7.1. The ordinal diagram of a beginning sequence is 1.
2.7.2. If $S_{1}$ and $\mathfrak{S}_{2}$ are the upper sequence and the lower sequence of an
inference $s^{\alpha}$ on structure, then the ordinal diagram of $\mathfrak{S}_{2}$ is equal to that
of $S_{1}$ .
2. $\overline{/}.3$ . If $S_{1}$ and $\mathfrak{S}_{2}$ are the upper sequence and the lower sequence of an
inference 7, $\Lambda$ left, $\forall$ on a t-variable, $\forall$ right on an $f$-variable or explicit
$\forall$ left on an $f$-variable respectively, then the ordinal diagram of $S_{3}$ is
$($ 1; 1, $\sigma)$ , where $\sigma$ is the ordinal diagram of $S_{1}$ .
2.7.4. If $\mathfrak{S}_{I}$ and $\mathfrak{S}_{2}$ are the upper sequences and $\mathfrak{S}$ is the lower sequence
of an inference $\Lambda$ right, then the ordinal diagram of $\mathfrak{S}$ is $(1; 1, \sigma_{1}\#\sigma_{2})$ ,

where $\sigma_{I}$ and $\sigma_{2}$ are the ordinal diagrams of $S_{1}$ and $\mathfrak{S}_{2}$ respectively.
2.7.5. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are the upper sequence and the lower sequence of an
implicit inference $\forall$ left $s^{\alpha}$ on an $f$-variable respectively, then the ordinal
diagram of $S_{2}$ is $(1; a+2, \sigma)$ , where $\sigma$ is the ordinal diagram of $S_{1}$ , and $a$

is the number of the proper logical symbols in the subformula of $s^{\alpha}$ .
2.7.6. If $S_{1}$ and $\mathfrak{S}_{2}$ are the upper sequences and $\mathfrak{S}$ is the lower sequence
of a cut 3, then the ordinal diagram of $\mathfrak{S}$ is $(1; a+1, \sigma_{1}\#\sigma_{2})$ , where $\sigma_{1}$ and
$\sigma_{2}$ are the ordinal diagrams of $S_{1}$ and $\mathfrak{S}_{2}$ respectively and $a$ is the number
of the proper logical symbols in the cut-formula of $s^{\alpha}$ .
2.7.7. If $S_{1}$ and $\mathfrak{S}_{2}$ are the upper sequence and the lower sequence of a
$subst\cdot itutions^{\alpha}$ with the index $i$ respectively, then the ordinal diagram of
$\mathfrak{S}_{2}$ is $(i;1, \sigma)$ where $\sigma$ is the ordinal diagram of $\mathfrak{S}_{1}$ .

We call the ordinal diagram of a proof-figure of order $n$ the ordinal
diagram assigned to its end-sequence.

\S 3. Preparation to the essential reduction.

3.1. Let $\mathfrak{S}_{1},\cdots,$ $\mathfrak{S}_{m}$ and $\mathfrak{S}$ be sequences. $\mathfrak{S}$ is reducible to $\mathfrak{S}_{1},\cdots,$ $\mathfrak{S}_{m}$ will
mean ‘ if $\mathfrak{S}_{1},\cdots,$ $\mathfrak{S}_{m}$ are provable without cut, then $\mathfrak{S}$ is provable without
cut ‘.

Let $\mathfrak{P}_{1},\cdots,$ $\mathfrak{P}_{m}$ and $\mathfrak{P}$ be proof-figures of order $n$ . We say $\mathfrak{P}$ is reduced
to $\mathfrak{P}_{1},\cdots,$ $\mathfrak{P}_{m}$ if and only if the following conditions are satisfied:
3.1.1. For each $i(1\leqq i\leqq m)$ , the ordinal diagram of $\mathfrak{P}_{i}$ is less than that of
$\mathfrak{P}$ .
3.1.2. The end-sequence of $\mathfrak{P}$ is reducible to the end-sequences of $\mathfrak{P}_{1}\cdots,$ $\mathfrak{P}_{m}$ .

As we have proved in [7] that the ordinal diagrams of order $n$ form
a well-ordered system, we have only to show for the proof of our theorem
that we can find proof-figures $\mathfrak{P}_{1},\cdots,$ $\mathfrak{P}_{m}$ of order $n$ for a given proof-figure
$\mathfrak{P}$ of order $n$ , such that ‘

$\mathfrak{P}$ is reduced to $\mathfrak{P}_{1},\cdots,$ $\mathfrak{P}_{m}$
‘ in the sense just defined.
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3.2. Reduction for the case that the end-place contains an explicit logical
inference.

Let $\mathfrak{P}$ be a proof-figure of order $n$ and KS be the lowermost explicit
logical inferece contained in the end-place of $\mathfrak{P}$ . The inference $s^{\alpha}$ may have
various forms, but since all cases are similarly treated, we may assume
that $\mathfrak{P}$ is of the following form:
3.2.1.

$\backslash _{\backslash \backslash \downarrow^{\prime},^{\prime}\prime}l^{\prime}$

$\underline{\Gamma\rightarrow\Delta,F(\alpha)}$

$\Gamma\rightarrow\Delta,$

$\forall\varphi F(\varphi)^{S}\infty$

$\backslash _{\backslash \backslash \backslash 1^{i},}\backslash ’\psi^{\prime}$

’

$\Gamma_{0}\rightarrow\Delta_{0}$

Without loss of generality, we may assume moreover that $\alpha$ is not an
eigenvariable of any substitution in $\mathfrak{P}$ and that $\Gamma_{0}\rightarrow\Delta_{0}$ contains no $\alpha$ .
3.2.2. Now we consider the following proof-figure $\mathfrak{P}^{\prime}$ :

$\Gamma^{s_{\backslash _{\backslash _{\backslash }}}}\rightarrow^{\prime}\Delta,$

$F(\alpha)\backslash \backslash \nu^{\prime}’|,$

’

bome exchanges
$\overline{I^{1}\rightarrow F(\alpha),\Delta}$

$\overline{\Gamma\rightarrow F(\alpha),\Delta,\forall\varphi F(\varphi)}$

$\Gamma_{0}\rightarrow^{\prime}\tilde{F}(\alpha),$

$\Delta_{0}\backslash _{\backslash \prime}’\backslash v_{l}^{\prime}\dot{j}$

where every substitution in $\mathfrak{P}^{\prime}$ has the same index as the corresponding
one in $\mathfrak{P}$ and $\tilde{F}(\alpha)$ denotes the descendant of $F(\alpha)$ .

We now show that $\mathfrak{P}^{\prime}$ is a proof-figure of order $n$ and $\mathfrak{P}$ is reduced to
$\mathfrak{P}^{\prime}$ . For every substitution in $\mathfrak{P}^{\prime}$ , there exsists corresponding one in $\mathfrak{P}$

with the same index, and as is a proof-figure of order $n$ . So $\mathfrak{P}^{\prime}$ is of order
$n$ . Let $\tau$ be the ordinal diagram of the sequence $\Gamma\rightarrow\Delta,$ $F(\alpha)$ in $\mathfrak{P}$ . Then
the ordinal diagrams of $\Gamma\rightarrow F(\alpha),$ $\Delta,$ $\forall\varphi F(\varphi)$ and $\Gamma\rightarrow\Delta,$ $\forall\varphi F(\varphi)$ are $\tau$ and
$($ 1; 1, $\tau)$ , respectively. If $\tau^{\prime}$ is a k-section of $\tau$ and $k>1,$ $\tau^{\prime}$ is also a k-
section of $($1; 1, $\tau)$ . Then clearly $R(\tau\cdot, (1;1, \tau))$ . From this we see that the
ordinal diagram of $\mathfrak{P}^{\prime}$ is less than that of $\mathfrak{P}$ , by the help of Lemmas 5 and
2 and induction on the number of sequences under $\Gamma\rightarrow F(\alpha),$ $\Delta,$ $\forall\varphi F(\varphi)$ .
Since $\forall\varphi F(\varphi)$ is an explicit formula in $\mathfrak{P}$ and $\mathfrak{P}$ has no logical $i_{I1}ference$

under $s^{\alpha},$ $\Delta_{0}$ contains a formula of the form $\forall\varphi\tilde{F}(\varphi)$ . Thus $\mathfrak{P}$ is reduced to
$\mathfrak{P}^{\prime}$ .

3.3. Reuction for the case that the end-place contains an implicit beginning
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sequence.
Hereafter we consider only proof-figures of order $n$ whose end-places

contain no logical inferences. Here we consider the case that the end-place
of the proof-figure 8 of order $n$ contains an implicit beginning sequence.
3.3.1. Let $\mathfrak{P}$ be of the following form and $D\rightarrow D$ be one of the beginning
sequences in the end-place of $\mathfrak{P}$ :

$D\rightarrow D$

$\backslash .I^{2^{\prime^{\prime}}}\prime _{J^{\prime}}$

$\tau_{V^{\prime}}\backslash \backslash |,\cdot’$

’

$\frac{\Gamma\rightarrow\Delta,\tilde{D}\tilde{D},\Pi\rightarrow\Lambda_{1},\tilde{D},\Lambda_{9}}{\Gamma,\Pi\rightarrow\Delta,\Lambda_{1},\tilde{D},\Lambda_{2}}$

$\backslash \backslash ,|^{\prime}^{\prime^{\prime}}\vee^{\prime}’$’

$\Gamma_{0}\rightarrow\Delta_{0}$

where two $\tilde{D}’ s$ in the right side of the cut denote the descendants of the
$D’ s$ occuring in the beginning sequence.
3.3.2. Now we consider the proof-figure $\mathfrak{P}^{\prime}$ of the following form:

$\Gamma^{\backslash _{\backslash _{\backslash }}}\rightarrow^{\prime}\Delta,\tilde{D}\backslash \backslash l^{\prime}|,\prime l^{\prime}$

Some weakenings andedxchexchanges
$\Gamma,$ $\Pi\rightarrow\Delta,$ $\Lambda_{1},\tilde{D},$ $\Lambda_{2}$

$\backslash l^{\prime}\backslash ’\backslash ’\backslash _{\backslash \nu’}’\prime 1$

$\Gamma_{0}\rightarrow\Delta_{0}$

where every substitution in $\mathfrak{P}^{\prime}$ has the same index as the corresponding
one in $\mathfrak{P}$ . We see in the same way as in 3.2.2, that $\mathfrak{P}^{\prime}$ is a proof-figure of
order $n$ .

Let $\lambda$ and $\mu$ be the ordinal diagrams of $\Gamma\rightarrow\Delta,\tilde{D}$ and $\tilde{D},$ $\Pi\rightarrow\Lambda,\tilde{D},$
$\Lambda_{2}$ in

$\mathfrak{P}$ respectively. Then the ordinal diagrams of $\Gamma,$ $\Pi\rightarrow\Delta,$ $\Lambda,\tilde{D},$
$\Lambda_{2}$ in $\mathfrak{P}$ and in

$\mathfrak{P}^{\prime}$ are $(1; a+1, \lambda\#\mu)$ and $\lambda$ where $a$ is the number of the proper logical
symbols in $\tilde{D}$ , rsepectively. We see easily $R$(\‘A, (1; $a+1,$ $\lambda$ #pt)). Then, in the
same way as in 3.2.2, we see the ordinal diagram of $\mathfrak{P}^{\prime}$ is less than that
of $\mathfrak{P}$ .

\S 4. Essential reduction.

4.1. According to 3.2 and 3.3, we may assume that the end-place of a proof-
figure of order $n$ contains no logical inference and no implicit beginning
sequence. Then in the same way as in [3], \S 6, we may assume that the
end-place contains a ’ suitable cut ’ as defined in [3]. Moreover, without
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loss of generality, we may assume that every free variable used as an
eigenvariable in a proof-figure is different from each other and is not
contained in the sequences under the inference in which it is used as an
eigenvariable.

Let $\mathfrak{P}$ be a proof-figure of order $n$ and $s^{\alpha}$ be a suitable cut in $\mathfrak{P}$ . To
“define the essential reduction, we must treat separately several cases ac-
cording to the form of the outermost logical symbol of the cut-formulas
of $\mathfrak{P}$ .
4.2. First we treat the case that the outermost logical symbol of $s^{\alpha}$ is $\forall$ on
an $f$-variable. Then $\mathfrak{P}$ is of the following form:
4.2.1.

$\frac{\Gamma_{\uparrow^{\backslash _{\backslash }}\rightarrow^{\prime}\Delta_{1},F(}^{\backslash _{\backslash }}\lambda^{\prime,i^{i}}\bigvee_{1}^{\prime}j}{\Gamma_{1_{\backslash }}\rightarrow_{l^{\prime}}\Delta_{1},\forall\varphi,\backslash \backslash \backslash \downarrow^{\prime}\prime\prime^{\prime}}\frac{)}{(\varphi)}\alpha F$ $\frac{F_{1}(V),\Pi\prime^{\psi^{\prime}}\backslash !_{i}\backslash _{\backslash }\prime\backslash l}{\forall\varphi F_{1}(\varphi),\Pi_{1}\rightarrow,\Lambda_{1}\backslash \backslash ’\backslash _{\backslash 2\backslash \prime\psi^{\prime}}\prime 1_{1}}$

$-\lambda_{l}\succ\Delta_{9},$

$\forall\varphi\tilde{F}_{2}(\varphi)\Gamma,\Pi_{2}^{\Gamma_{2}}\rightarrow^{--}\Delta,\Lambda_{2}\forall_{2}\varphi\tilde{F}\underline{(\varphi),\Pi_{?}}\mu-\rightarrow^{2}\Lambda_{q}\mathring{d}$

$\backslash \backslash _{\backslash _{\backslash }\backslash 1,\prime}\psi^{\prime}’$

,

$\Gamma_{3}\rightarrow^{1}\nu\Delta_{3}$

$\backslash _{\backslash }|,w^{\prime}\prime i^{\prime}$

’

$\Gamma_{0}\rightarrow\sigma\Delta_{0}$

Here and the following, the small Greek letters $\lambda_{1},$ $\lambda_{2},$
$\mu_{1},$ $\mu_{2},\cdots$ in the figure

denote respectively the ordinal diagrams of the sequences, on the arrows
of which they are written. Let $i$ be the isolated degree of $fi_{(\alpha)}^{\langle}$ . Let $i$

mean 2 or $n-j+1$ according as $\forall\varphi\tilde{F}(\varphi)$ has a proper non-isolated $\forall$ on an
$f$-variable or not. Let $\Gamma_{3}\rightarrow\Delta_{3}$ be the i-loader of $\Gamma_{2},$ $\Pi_{2}\rightarrow\Delta_{2},$ $\Lambda_{2}$ . Generally
$\forall\varphi F_{1}(\varphi)$ is different from $\forall\varphi\tilde{F}(\varphi)$ , as some substitutions may appear between
$\forall\varphi F_{1}(\varphi),$ $\Pi_{1}\rightarrow\Lambda_{1}$ and $\forall\varphi\tilde{F}(\varphi),$ $\Pi_{2}\rightarrow\Lambda_{2}$ . But now this is not the case, because
every substitution in $\mathfrak{P}$ satisfies 2.5.4 and $\forall\varphi F_{1}(\varphi)$ is in the left side of the
sequence. Thus $\forall\varphi F_{1}(\varphi)$ is $\forall\varphi\tilde{F}(\varphi)$ .
4.2.2.
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$\backslash \backslash $. $|_{1}$

$\psi^{\prime_{l}}$

$\Gamma_{1}\rightarrow^{1}\lambda\Delta_{1},$ $F(\alpha)$

Some exchanges and aweakening
$\overline{\Gamma_{1}\rightarrow F(\alpha),\Delta_{1},\forall\varphi F(\varphi)}$

$\frac{\Gamma^{\backslash }3^{\backslash \prime}\lambda^{\backslash J^{\prime}}\rightarrow^{,}\Delta_{3},\tilde{F}(\alpha)\backslash jiv^{\prime};}{\Gamma_{3}\rightarrow\Delta_{3},\tilde{F}(V)}s_{1}^{\alpha}$

$\tilde{F}(V),$

$\Pi\mu^{\prime}\iota\rightarrow^{\prime}\Lambda_{1}\backslash _{\backslash \prime}’\backslash .\nu_{1^{\prime}}’$

$\overline{\Gamma_{3},\Pi_{l}\rightarrow\Delta_{3},\Lambda_{1}}$

$\underline{Some}$exchanges and aweakening
$\forall\varphi\tilde{F}(\varphi),$ $\Pi_{1},$ $\Gamma_{8}\rightarrow\Delta_{3},$ $\Lambda_{1}$

$\backslash ’\backslash ;_{i}\backslash \prime^{\prime}v^{\prime};_{\sim}^{\prime}|$
$\backslash \backslash ’\backslash j^{\prime}’\Psi^{\prime}\prime_{l}’$

’

$\Gamma_{2}\rightarrow^{2}\lambda\Delta_{2},$
$\forall\varphi\tilde{F}(\varphi)$ $\forall\varphi\tilde{F}(\varphi),$ $\Pi_{2},$ $\Gamma_{3}\rightarrow\mu s\Delta_{3},$ $\Lambda_{2}$

$\frac{\Gamma_{9}\overline,\Pi_{2},\Gamma_{3}\rightarrow\Delta_{2},\Delta_{3},\Lambda_{2}}{\frac{Someexchanges}{\Gamma_{2},\Pi_{2},\Gamma_{3}\rightarrow\Delta_{3},\Delta_{2},\Lambda_{2}}}$

$\backslash _{\backslash .1,’\prime^{\prime}}\backslash \not\in^{\prime}^{\prime}$

’

$\frac{\Gamma_{q},\Gamma_{3}\rightarrow\Delta_{3},\Delta_{3}}{Someexchangesandcontractions}$

$-\overline{\Gamma_{3}\nu\rightarrow^{2}\Delta_{3}}$

$\Gamma_{0^{\backslash }\rightarrow\Delta_{0}}^{\backslash :_{i^{\prime}}i}\backslash \backslash \sigma v^{j_{j_{1}}}$

,

where $5_{1}$ is a substitution whose eigenvariable is $\alpha$ and whose index is
defined to be $i$. Every substitution in this proof-figure, except $s_{1}^{\alpha}$ , has the
same index as the corresponding one in $\mathfrak{P}$ .

We shall prove in 4.2.3 that $\mathfrak{P}$ is reduced to a proof-figure $\mathfrak{P}^{\prime}$ of the
form 4.2.2. Here we should remark that the formula in the upper sequence
of $s_{1}^{\alpha}$ , which is the descendant of $F(\alpha)$ , is $\tilde{F}(\alpha)$ . In fact, $i$ is 2, or $\tilde{F}(\alpha)$

contains no other free $f$-variables than $\alpha$ , according as $\forall\varphi\tilde{F}(\varphi)$ contains a
proper non-isolated $\forall$ on an $f$-variable or not. In the former case, no sub-
stitution is used between $\Gamma_{2},$ $\Pi_{2}\rightarrow\Delta_{2},$ $\Lambda_{2}$ and $\Gamma_{3}\rightarrow\Delta_{3}$ , and in the latter case,
any substitution does not influence $\tilde{F}(\alpha)$ . So in both cases the upper sequ-
ence of $s^{\alpha}l$ may be denoted as $\Gamma_{3}\rightarrow\Delta_{3},\tilde{F}(\alpha)$ .
4.2.3. Now we prove that $\mathfrak{P}^{\prime}$ is a proof-figure of order $n,$

$i$ . $e$ . $\mathfrak{P}^{\prime}$ satisfies
the conditions described in 2.5. The conditions 2.5.1 and 2.5.2 for as’ follow
from those for as, as the new substitution $\mathfrak{J}_{1}$ is in the end-place and its
index is defined to satisfy 2.5.2.
4.2.3.1. To prove 2.5.3 for $\mathfrak{P}^{\prime}$ , it is sufficient to show that the isolated
degree of $\tilde{F}(\alpha)$ is less than $n$ . This is clear because $\forall\varphi\tilde{F}(\varphi)$ is implicit in
8 and has consequently an isolated degree $<n$ , and the isolated degree of
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$\tilde{F}(\alpha)\leqq$ the isolated degree of $\forall\varphi\tilde{F}(\varphi)$ , as every proper $\forall$ on an $f$-variable
isolated in $\tilde{F}(\alpha)$ is also isolated in $\forall\varphi\tilde{F}(\varphi)$ .
4.2.3.2. Now we prove 2.5.4 for $\mathfrak{P}^{\prime}$ . $\Gamma_{3}\rightarrow\Delta_{3}$ is either an upper sequence of
a substitution in $\mathfrak{P}$ , whose index $k$ is not less than $i$, or the end-sequence
of $\mathfrak{P}$ . In the former case, let $l$ be the isolated degree of an arbitrary
implicit formula in $\Gamma_{3}\rightarrow\Delta_{3}$ , then $k+l-1\leqq n$ . This and $i\leqq k$ imply $i+l-1\leqq n$ .
In the latter case, no implicit formula is in $\Gamma_{3}\rightarrow\Delta_{3}$ . Now we show 2.6.4 on
$\tilde{F}(\alpha)$ . We have $i=n-j+1$ by our assumption, if no proper non-isolated $\forall$

on an $f$-variable is in $\forall\varphi F(\varphi)$ . Moreover, if there exists a proper non-
isolated $\forall$ on an $f$-variable in $\tilde{F}(\alpha)$ , which is denoted by /, it is also
proper non-isolated in $\forall\varphi\tilde{F}(\varphi)$ . Now let in be the outermost logical symbol
of $\forall\varphi\tilde{\Gamma\prec}(\varphi)$ . Then in ties 7. This implies that ta must be positive to / by
regularity of $\forall\varphi F(\varphi)$ . $\tilde{F}(\alpha)$ being in the right side of the sequence, $\backslash /$ is
an $\forall$ right in $\mathfrak{P}^{\prime}$ and $i$ is 2 by our assumption.
4.2.4. New we prove that $\sigma^{\prime}$ is less than $\sigma$ .
4.2.4.1. First we show that the index $k$ of every substitution between
$\Gamma_{3},$ $\Pi_{1}\rightarrow\Delta_{3},$ $A_{1}$ and $\Gamma_{3}\rightarrow\Delta_{3}$ is less than $i$ . If $\forall\varphi\tilde{F}(\varphi)$ contains a proper non-
isolated $\forall$ on an $f$-variable, which is denoted by 7, 7 is positive to $\forall\varphi\tilde{F}(\varphi)$

by regularity of V $\varphi\tilde{F}(\varphi)$ . Then, $\forall\varphi\tilde{F}(\varphi)$ being in the left side of the sequ-
ence, no substitution is used above $\forall\varphi F(\varphi),$ $\Pi_{2}\rightarrow\Lambda_{2}$ in $\mathfrak{P}$ . And if $\forall\varphi\tilde{F}(\varphi)$

contains no proper non-isolated $\forall$ on an $f$-variable, necessarily the outermost
logical symbol is isolated. Then the isolated degree of $\forall\varphi\tilde{F}(\varphi)$ must be $j+1$

where $j$ is that of $\tilde{F}(\alpha)$ , and we see $k+j\leqq n$ by 2.5.4 for as, that is, $k<i$ .
For each sequence between $\Gamma_{2},$ $\Pi_{2},$ $\Gamma_{3}\rightarrow\Delta_{2},$ $\Delta_{3},$ $\Lambda_{2}$ and $\Gamma_{3}\rightarrow\Delta_{3}$ , our assertion
follows from the fact that $\Gamma_{3}\rightarrow\Delta_{3}$ is the i-loader of $\Gamma_{2},$ $\Pi_{2}\rightarrow\Delta_{2},$ $\Lambda_{2}$ .
4.2.4.2. Let $\tau^{\prime}$ and $\tau$ be the ordinal diagrams of $\forall\varphi\tilde{F}(\varphi),$

$\Pi_{1},$ $\Gamma_{3}\rightarrow\Delta_{3},$ $\Lambda_{1}$ and
$\forall\varphi\tilde{F}(\varphi),$ $\Pi_{1}\rightarrow\Lambda_{1}$ respectively. We have to prove $R_{i}(\lambda_{3}, \tau^{\prime}, \tau)$ . $\tau^{\prime}$ and $\tau$ are
$(1; a+1, (i;1, \lambda_{3})\#\mu_{1})$ and $(1; a+2, l^{l_{1}})$ respectively. Since $(i;1, \lambda_{3})$ contains
no l-section, we see easily $\tau^{\prime}<_{i}\tau$ . Other conditions 1.5.1, 1.5.2 are clearly
obtained. Then we can obtain $R_{i}(\lambda_{3}, \nu_{2}, \nu_{1})$ by the help of 4.2.4.1, Lemma 3
and induction on the number of sequences under $\forall\varphi\tilde{F}(\varphi),$

$\Pi_{1},$ $\Gamma_{3}\rightarrow\Delta_{3},$ $\Lambda_{1}$ . On
the other hand we have $R(\lambda_{3}, \nu_{1})$ in the same way as in 3.2. Then, by
Lemma 4, we obtain $R((k;1, \nu_{2}),$ $(k;1, \nu_{1}))$ where $k$ is the index of the sub-
stitution whose upper sequence is $\Gamma_{3}\rightarrow\Delta_{cJ}\circ$ , and $\nu_{2}<\nu_{1}$ . Then $R(\sigma^{\prime}, \sigma)$ by the
help of Lemma 5 and induction on the number of sequences under the
substitution. From this follows $\sigma^{\prime}<\sigma$ by Lemma 2.

4.3. Next we treat the case that the outermost logical symbol of the cut-
formulas of $s^{\alpha}$ is $\Lambda$ .

Then $\mathfrak{P}$ is of the following form:
4,3.1,
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$\backslash |$; $\backslash _{\backslash \backslash \backslash i,\prime}\backslash v’ l^{\prime}$ $\backslash \psi i,\prime^{\prime}$

’

$v$

$\Gamma_{\underline{1}\rightarrow^{1}}\lambda\Delta_{\underline{1}}^{\lambda}-\Gamma_{1},\Gamma\frac{A_{1}\Gamma_{9}}{2\rightarrow\Delta_{1},\Delta_{2}}A_{1}^{-\succ}\overline{\Lambda}^{\frac{\Delta}{}}B_{1}^{2}\underline{B_{1}}$ $\frac{A_{2},\Pi_{1}\mu_{1}-\succ\Lambda_{1}}{A_{2}\Lambda B_{2},\Pi_{1}\rightarrow\Lambda_{1}}$

$\backslash \backslash !^{\prime},’\prime^{\prime}$

’

$\backslash \backslash \backslash \backslash \downarrow^{\prime},’\prime^{\prime}|$

$\Gamma_{3}\rightarrow^{S}\lambda\underline{\Delta_{3},}A\bigwedge_{\frac{B}{\Gamma}}A\underline{\Lambda B,\Pi_{2}/t}\overline{3’ lI}^{\nu}2-\rightarrow\Delta_{3},$$\Lambda_{2}^{-}s\rightarrow^{2}\Lambda_{2\propto}$

$\backslash \backslash \iota_{\backslash \prime}|^{\prime},^{\prime}v^{_{1}}’$

,

$\Gamma_{0}\rightarrow\sigma\Delta_{0}$

We shall prove that $\mathfrak{P}$ is reduced to $\mathfrak{P}^{\prime}$ of the following form.
4.3.2.

$\backslash _{\backslash l\tilde{v}^{^{\prime^{\prime}}}}’’’’’$

,
$\backslash \iota_{V^{j}’}|,J^{\prime}$

’

$\Gamma_{1}\rightarrow^{1}\lambda\Delta_{1},$ $A_{1}$ $---A_{\underline{2}},$$\Pi_{1\rightarrow^{1}}\mu\Lambda_{1}$

Some exchangcs and Some exchanges and
weakenings a weakening

$-\Gamma_{1}\overline{\Gamma_{2}\rightarrow A}_{1},,$
$\Delta_{1},$ $\Delta_{2},$ $A_{1}\wedge B_{1}$ $\overline{A_{)}\wedge}B.,$ $\Pi_{1’ 9}-A\overline{\rightarrow\Lambda}$

$\frac{\Gamma_{3^{\backslash }}^{\backslash }\lambda^{\bigvee_{3^{\prime^{J^{\prime}}}}^{\prime^{\prime}}}-\succ A,\Delta_{q},A\wedge BA\wedge B,\Pi t\backslash \backslash 1\prime\backslash \prime\prime\backslash \bigvee_{p^{\prime^{\prime}}}^{\prime}_{\sim}}{\Gamma_{3},\Pi_{?}\rightarrow A,\Delta_{3},\Lambda_{2}}$
$\frac{\Gamma_{3\rightarrow^{3^{\prime}}\Delta_{3},A\wedge B}^{\backslash l}\backslash _{\backslash \prime\backslash \prime}\prime\vee^{\prime}J^{\prime}\nu_{\lambda}\prime 1}{\Gamma_{3’\underline{2}}\prod_{-},A}-\frac{A}{\Delta}\bigwedge_{\rightarrow 3’\Lambda_{9}}B,\prod_{-}QA_{-}^{\backslash \prime}t\prime^{\prime}\mu_{-}^{\psi^{\prime_{1}^{\prime}}}\rightarrow^{2^{\prime^{\prime}}}\Lambda_{2}’’-$

Some exchanges $-Some$ exchanges
$\underline{\Gamma}0\prod_{--\frac{p^{\overline{\rightarrow\Delta_{3},\Lambda_{9},}A^{--}}-}{\Gamma_{0},,\Pi_{?},\Gamma_{3},\Pi_{2}\rightarrow\Delta_{\circ},\Lambda_{2},\Delta)}\frac{A,\Gamma\circ}{3’\Lambda_{9}’}-}..--\Pi 2-\rightarrow\overline{\Delta}\circ$

, $A.-s^{\alpha\prime}-$

$-S\overline{omeexchan_{-}ges}$and $contr\overline{actions}$

$-\Gamma_{3},$ $\Pi_{2}\rightarrow^{\prime}\nu\overline{\Delta_{3},\Lambda_{2}}$

$\backslash \prime v^{\acute{H_{1}}}|^{\prime},’$’

$\Gamma_{0}\rightarrow^{\prime}\sigma\Delta_{0}$

Every substitution in $\mathfrak{P}^{\prime}$ has the same index as the corresponding one in $\mathfrak{P}$ .
4.3.3. We prove first that $\mathfrak{P}^{\prime}$ is a proof-figure of order $n$ . It follows from
the fact that for every substitution in $\mathfrak{P}^{\prime}$ there exists corresponding one
in $\mathfrak{P}$ with the same index, and $\mathfrak{P}$ is a proof-figure of order $n$ .
4.3.4. We have to prove $\sigma^{\prime}<\sigma$ . Let $a$ and $b$ be the numbers of the proper
logical symbols in $A$ and in $B$ respectively. In the same was as in 3.2, we
have $R(\lambda_{3}^{\prime}, \lambda_{3}),$ $R(\mu_{2}^{\prime}, \mu_{2}),$ $R((1;a+b+2, \lambda_{3}^{\prime}\#\mu_{-)}),$ $\nu$) and $R((1;a+b+2, \lambda_{3}\#\angle\ell_{3}^{\prime}),$ $\nu$ ).

Then we see easily $R(\nu^{\prime}, \nu)$ . Then the proof is concluded by Lemmas 5 and
2 and induction on the number of sequences under $s^{\alpha\gamma}$ .
4.4. Now we consider the case that the outermost logical symbol of the
cut-formulas of $s^{\alpha}$ is $\forall$ on a variable.

Then $\mathfrak{P}$ is of the following form:
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4.4.1.

$\backslash |_{/}$ $\backslash |i$

$\backslash \acute{\Psi}$
$\backslash \backslash _{\backslash }jv^{l^{\prime}}$

$\Gamma_{1}\rightarrow^{1}J\Delta_{1},$ $F(a)$ $F_{2}(T),$ $\Pi_{1}\rightarrow^{1}\rho\Lambda_{1}$

$\overline{\Gamma_{1}\rightarrow\Delta_{1},\forall xF_{1}(x)}$ $\overline{\forall x}F_{2}\overline{(x),\Pi_{1}\rightarrow\Lambda_{1}}$

$\backslash \backslash :\backslash \backslash j_{r^{\prime}}^{l}l^{\prime}\prime j$

$\backslash \backslash |$

,$\cdot$

$\backslash _{\backslash }\backslash t^{\prime^{\prime}}’’$

’

$\frac{\Gamma_{2\rightarrow^{2}}\lambda\Delta_{2},\forall xF(x)\forall xF(x),\Pi_{2\rightarrow\Lambda_{2}}\mu a}{\Gamma_{2},\Pi_{2\rightarrow}\nu\Delta_{2},\Lambda_{2}}$

$\backslash \backslash \backslash ’\dot{i},\cdot’$

’

$\Gamma_{0}\rightarrow\sigma\Delta_{0}$

We can prove in the same way as in 4.3 that $\mathfrak{P}$ is red $\iota lced$ to $\mathfrak{P}^{\prime}$ of the
following form.

4.4.2.

$\Gamma_{\iota\rightarrow\Pi_{1},F_{1}(\tilde{T})}^{\backslash _{\backslash _{\backslash }}}\backslash \lambda_{1^{\prime^{\prime}}}^{\prime}\backslash \dagger|_{1}’’$

’

$F_{2}(T),$

$\Pi’\backslash ’\backslash v_{p^{\prime}}^{\prime}\mathfrak{i}_{1^{\prime^{\prime}}}^{\prime}’’’’$

$-\overline{Some}$exchanges and Some $exchan\dot{g}$es and
$\frac{aweakening}{\Gamma_{1}\rightarrow F_{1}(\tilde{T}),\Delta,\forall xF_{1}(x)}$ $\frac{aweakening}{\forall xF_{2}(x),\Pi_{1},F_{2}(T)\rightarrow\Lambda_{1}}$

$\underline{\Gamma_{2^{\backslash \prime}}^{\backslash \prime\backslash _{\backslash \prime}^{t}\prime}\backslash j\prime\lambda_{\rightarrow^{\prime^{\prime}}F(\tilde{T}),\Delta_{2},\forall xF(x)\forall xF(x),\Pi l^{\backslash }}^{\backslash }v_{2\ell^{\prime_{1}}}\nu_{l^{\prime^{\prime}}}\prime,2\rightarrow^{\prime}\Lambda_{2}\backslash _{\backslash }\prime\prime}\underline{\Gamma_{2^{\backslash }\rightarrow^{,}\Delta_{2},\forall xF(x)}^{\backslash }\backslash \lambda^{\prime^{\prime,}\prime_{p^{\prime^{\prime}}}}\backslash \prime \mathfrak{l}\prime\prime^{\prime}}\forall xF(x),$

$\Pi_{2},$

$F(\tilde{T})^{\backslash \prime}\backslash \prime^{p^{\prime^{l^{\prime}}}}\rightarrow^{\prime,}\Lambda_{2}\backslash v_{\ovalbox{\tt\small REJECT}^{i^{\prime}}}^{\prime,}$

$\frac{\Gamma_{2},\Pi_{2}\rightarrow F(\tilde{T}),\Delta_{2},\Lambda_{2}}{\frac{Someexchanges}{\Gamma_{2},\Pi_{2}\rightarrow\Delta_{2},\Lambda_{2},F(\tilde{T})}}$
$\frac{F(\tilde{T})\rightarrow\Delta_{2},\Lambda_{2}}{\frac{\Gamma_{22)s_{om}^{\Pi}}}{F(\tilde{T})}\frac{eexchanges}{\underline,,\Gamma_{2},\Pi_{2}\rightarrow\Delta_{2},\Lambda_{2}}}$

$\overline{\Gamma_{2},\Pi_{2},\Gamma_{2},\Pi_{2}\rightarrow\Delta_{2},\Lambda_{2},\Delta_{2}},\cdot\Lambda_{2}$

$\overline{Some-*}$exchanges and $c\overline{ont\underline{ractions}}$

$\Gamma_{2},$ $\Pi_{2}1\nu\rightarrow^{\prime}\Delta_{2},$ $\Lambda_{2}$

$\Gamma_{0^{\backslash }\rightarrow\Delta_{0}}^{\backslash _{\backslash }J^{\prime}}\backslash ’\backslash ’\sigma^{\prime}\psi^{\prime},^{\prime}$

’

where every substitution has the same index as the corresponding one in
$\mathfrak{P}$ and the proof-figure to $\Gamma_{1}\rightarrow\Delta_{I},$ $F_{1}(\tilde{T})$ , is obtained from the proof-figure
to $\Gamma_{1}\rightarrow\Delta_{1},$ $F_{1}(a)$ by substituting everywhere $\tilde{T}$ for $a$ . Here we should re-
mark that the ordinal diagram of the sequence $\Gamma_{1}\rightarrow\Delta_{1},$ $F_{1}(\tilde{T})$ is the same
$\lambda_{1}$ as that of the sequence $\Gamma_{1}\rightarrow\Delta_{1},$ $F_{1}(a)$ , because the logical symbols in
$\Gamma_{1}\rightarrow\Delta_{1},$ $F_{1}(\tilde{T})$ , which are not contained in $\Gamma_{1}\rightarrow\Delta_{1},$ $F_{1}(a)$ , are degenerate in
$F_{1}(\tilde{T})$ .
4.5. The remaining case, that the outermost logical symbol is 7, is treated
in the same way as in 4.3.
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Chapter II. On the theory of natural numbers.

1. The system $RNN$.
We obtain the logical system $RNN$ from $GLC$ modifying it as follows:

1.1. Every beginning sequence of $RNN$ is of the form $D\rightarrow D$ or of the
form $a=b,$ $A(a)\rightarrow A(b)$ or the “ mathematische Grundsequenz” in Gentzen
[1].

1.2. The following inference-schema called ‘ induction ‘ is added:
$A(a))\Gamma\rightarrow\Delta,$ $A(a^{\prime})$

$-A(0\overline{),\Gamma\rightarrow\Delta,A(t)}$

where $a$ is contained in none of $A(O),$ $\Gamma,$
$\Delta$ , and $t$ is an arbitrary term. $A(a)$

and $A(a^{\prime})$ are called the chief-formulas and $a$ is called an eigenvariable of
this induction. We call every ancestor of $A(a)$ or $A(a^{\prime})$ implicit.

1.3. The inference $\forall$ left on an $f$-variable of the form
$F(V),$ $\Gamma\rightarrow\Delta$

$\overline{\forall\varphi F}(\overline{\varphi),\Gamma\rightarrow\Lambda}$

is restricted by the condition that $\forall\varphi F(\varphi)$ is regular.

2. The purpose of the present chapter is to prove the following theorem.

THEOREM 2. $RNN$ is consistent, lhat $is,$ $\rightarrow is$ not provable in $RNN$.
PROOF. We introduce the inference ‘ substitution’ in $RNN$ too, and

generalize the notion of a proof-figure of order $n$ in $RNN$. Moreover, we
assign an ordinal diagram to every sequence of a proof-figure of order $n$

in $RNN$ by the method as in 2.8, and by the following additional condition:
2.1. If $s^{\alpha}$ is an inference ‘ induction ‘ and $S_{I}$ and $\mathfrak{S}_{2}$ are the upper and the
lower sequences of $s^{\alpha}$ respectively, then the ordinal diagram of $\mathfrak{S}_{2}$ is
$(1; a+2, \sigma)$ , where $\sigma$ is the ordinal diagram of $S_{1}$ , and $a$ is the number of
the proper logical symbols in one of the chief-formulas of $s^{\alpha}$

Then the consistency of $RNN$ is easily proved by the proof of Theorem
1 of this paper and the ” VJ-Reduktion” in Gentzen [1].

Tokyo University of Education.
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