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F. Frankel and L. Pontrjagin [2] and H. Seifert [5] have given methods
of construction of an orientable closed surface spanning a given knot $i$ . $e$ .
having a given knot as a boundary. Seifert [5] has defined the genus $G(k)$

of the knot $k$ as the minimum of the genera of orientable closed surfaces
spanning $k$ , whose existences are assured by [2] and [5]. Now let $d$ be the
degree of the Alexander polynomial of $k$ . Seifert has proved that we have
always

$-d_{-\leqq G(k)}$ (1)2

where the equality holds, if $k$ is a torus knot, but there are also cases where
the equality does not hold. (There are namely knots, whose Alexander
polynomials are 1 and which are not equivalent to circles.)

In this paper, we shall show that the equality holds in (1) in certain
classes of alternating knots (Theorem 1.1). For example, ” alternierender
Brezelknoten ” of type $(p_{1},p_{2}, \cdots,p_{2n+1}),$ $p_{i}$ being odd, $i$ . $e$ . alternating knots,
whose projections have $p_{i}$ crossing points on each arm and divide the plane

into $\sum_{i=1}^{2n+1}p_{i}+2$ regions, of which $2n+2$ are “ black”, belong to these classes.

It will be shown, at the same time, that for an alternating knot $k$ of our
classes, the orientable closed surface spanning $k$ , whose genus is just equal
to $G(k)$ , is obtained by Seifert’s construction.

\S 1. Main theorem.

Let $k$ be a knot1) and let $K$ be an image of a regular projection2) of $k$

onto the plane $E$ and let $K$ be oriented by the orientation induced by that
of $k$ . Let $K$ have $n$ double points $c_{1},$ $c_{2},$ $\cdots,$ $c_{n}$ , called the crossing points. One
of the two segments through a crossing point $c_{i}$ passes under the other. It
is called the lower segment at $c_{i}$ and the other the upper segment. The

1) A knot means a polygonal simple closed (oriented) curve in Euclidean three
dimensional space $E^{3}$ .

2) See [3].
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segments’) of $K$ connecting two consecutive crossing points are called sides
of K. $K$ divides $E$ into $n+2$ regions $r_{0},$ $r_{1},$ $\cdots,$ $r_{n+1}$ , where we assume that $r_{0}$

is always an unbounded region. We can classify these regions into two
classes, called “ black ” and “ white ” for convenience’ sake, in such a way
that each side is always a common boundary of a black and a white region,
where $r_{0}$ belongs to a black class.

Let us assign to each crossing point $c_{i}$ the incidence number $I(c_{i})$ , where
$I(c_{i})=+1$ or $-1$ according as the smaller rotation to make the lower seg-
ment coincide with the upper segment, the orientation of the segments
being taken into account, is carried out in the black or in the white region
(Fig. 1).

Fig. 1. (The parts drawn by the oblique lines represent the black regions)

Then the main theorem of our paper is the following
THEORFM 1.1. For any alternating knot zvith a constant incidence number,

the genus is exactly equal to one half of the degree of its Alexander polynomial.
As a corollary of this theorem we have the following
COROLLARY 1.2. Let $k_{1}$ and $k_{2}$ be alternating knots with constant incidence

numbers. Then the degree of the Alexander polynomial of a product knot $k_{0}$ of
$k_{1}$ and $k_{2}$ is exactly equal to double of the genus of $k_{0}$ , where $k_{0}$ may not be
an alternating knot and may not be of constant incidence numbers.

COROLLARY 1.3. The knots $k_{0},$ $k_{1},$ $k_{2}$ being as in $Cor$. $1.2$ , the genus of $k_{0}$ is
equal to the sum of the genera of $k_{1}$ and $k_{2}$ .

REMARK. It was already shown by H. Schubert in [4] that the genus
of the product knot is always equal to the sum of the genera of factors.

\S 2. Alexander polynomial and the genus of a knot.

Let us remember the definition of the Alexander polynomials defined
in [1]. As in \S 1 let us assume that there are $n$ crossing points $c_{1},$ $c_{2},$ $\cdots,$ $c_{n}$

3) Hereafter, a segment means generally a polygonal line.
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in $K$ and that $K$ divides $E$ into $n+2$ regions $r_{0},$ $r_{1},$ $\cdots,$ $r_{n+1}$ and that these
regions are classified into two classes, black and white.

To each region $\gamma_{i}$ an integer $I(r_{i})$ , called an index of $r_{i}$ , is assigned. At
each crossing point $c_{i}$ , just four corners of four regions $r_{j},$ $r_{k},$ $\gamma_{l}$ and $r_{m}$ , let
us say, meet. Two corners among these four corners are marked with dots
[1].

Now for each crossing point $c_{i}$ , we shall write the following linear
equation

$c_{i}(r)=xr_{j}-xr_{k}+r_{l}-r_{m}=0$ ,

where $c_{i}$ -corners4) of $r_{j}$ and $r_{k}$ are dotted. We may assume, hereafter, that
$j,$ $k,$ $l$ and $m$ are different from one another.5)

Consider the matrix $M$, called the L-malrix, of the coefficients of these
equations. $M$ has $n$ rows and $n+2$ columns, each row corresponding to a
crossing point and each column corresponding to a region. If we denote
the determinant of the square matrix obtained from $M$ by striking out two
columns corresponding to a pair of regions with consecutive indices $p$ and
$p+1$ , by $\Delta_{p^{(}p+1)}$ , it follows6)

(2.1) $\Delta_{p^{(}p+1)}=\pm x^{r-p}\Delta_{r(r+1)}$ .
The G.C.M. of these determinants, freed from the factor $x$, is the Alexander
polynomial of $k$ . According to Alexander [1], we can assume that the signs
of all the elements distinct from zero in the L-matrix $M$ are positive, $i$ . $e$ .
either $x$ or 1.

Let us compute the genus of an orientable surface spanning $k$ after
the manner of H. Seifert [5].

Let us divide $K$ into some loops,7) called standard loops, in the same
way as in [5]. Suppose that $K$ is divided into $m$ standard loops. Then the
genus $G(k)$ of $k$ is limited $by^{8)}$

(2.2) $G(k)\leqq\frac{n-m+1}{2}$ .
LEMMA 2.1. For any altemating knot with a constant incidence number

$I(c_{i})$ , the number $m$ of the standard loops is either the number of the white or of
the black regions according as $I(c_{i})>0$ or $I(c_{i})<0$ .

PROOF. We shall only prove Lemma in the case where $I(c_{i})>0$. We
shall prove that a standard loop $L$ corresponds to a white region. To do

4) $c_{i}$-corner of $r_{j}$ means the corner of $r_{j}$ meeting at $c_{i}$ .
5) In fact, it is impossible that $i=k$ , or $k=l$, or $l=m$ , or $m=i$. If $i=k$ , we

can transform $K$ into $K^{\prime}$ which does not contain such a crossing point $c_{i}$ . See [3].
6) See [1].
7) A loop means a simple closed curve.
8) See [5].
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this we shall show that $L$ will bound a white region $W$. Suppose that a
point $P$ moves positively along $\dot{W}^{9)}$ looking $W$ on the left. When $P$ arrives
at a crossing point $c_{i}$ , suppose it is always on the upper segment at $c_{i}$ .
Then the lower segment must be crossing under the upper segment from
right to left, as $I(c_{i})>0$ . Thus $P$ must turn to the left, and hence $P$ must
move positively along the boundary of a white region $W^{\prime}$ , seeing it on the
left again. It will be evident that $W=W^{\prime}$ . Thus $P$ makes a round on $\dot{W}$,
seeing $W$ on the left. Consequently $L$ bounds $W$. Furthermore it will be
easily shown that two different standard loops do not bound the same
white region.

If we assume that when $P$ arrives at a crossin $g$ point, it is always on
the lower segment, then we can prove Lemma in the same way as above.

In the same way, it will be proved that if $I(c_{i})<0$ , a standard loop
will bound a black region. $q$ . $e.d$ .

\S 3. $L_{0}$-matrix.

By Lemma 2.1 we can see that it is sufficient to prove Theorem 1.1 in
the case where $I(c_{i})>0$ . Consequently we shall suppose, hereafter, that

(A) $I(c_{i})>0$ for all $i$ .
Hence the number $m$ of standard loops is equal to the number of the

white regions.
LEMMA 3.1. Under the assumption $(A)$ the elements distinct from zero in

the columns corresponding to the white regions are all $x’ s$ or all l’s.
PROOF. It is sufficient to prove that the corners of a white region are

either all dotted or all undotted. The proof of this fact is, however, con-
tained in the proof of Lemma 2.1, taking notice of the dots of the corners.

$q$ . $e$ . $d$ .
On account of this Lemma we can replace the L-matrix $M$ by the

matrix $M_{0}$ , whose elements distinct from zero in the columns corresponding
to the white regions are all equal to 1. $M_{0}$ will be called the $L_{0}$ -matrix.

LEMMA 3.2. Under the assumption $(A)$ all the indices of the black regions
are constant, say $p$ , and then the indices of the white regions are either $p-1$ or
$p+1$ .

PROOF. Let two black regions $B_{1}$ and $B_{2}$ , and two white regions $W_{1}$

and $W_{2}$ , be four regions whose corners meet at a crossing point $c_{i}$ . Among
these four regions the $c_{i}$ -corners of two regions, of which one is the black
and the other the white, are dotted. Suppose that the $c_{i}$ -corner of $B_{1}$ is

9) A dot over the symbol denotes the set of boundary points,
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dotted. If the $c_{i}$-corner of $W_{1}$ is dotted, then the lower segment is oriented
as we see $W_{1}$ and $B_{1}$ on the left. Since $I(c_{i})=1$ , the upper segment must
be oriented as we see $W_{1}$ and $B_{2}$ on the left. Hence it follows $I(W_{1})=p+1$ ,
$I(W_{2})=p-1$ and $I(B_{\cap,\lrcorner})=p$ . Similarly if the $c_{i}$-corner of $W_{2}$ is dotted, then
it follows $I(W_{1})=p-1,$ $I(W_{2})=p+1$ and $I(B_{2})=p$ . In the case where the $c_{i^{-}}$

corner of $B_{2}$ is dotted, it will be shown in the same way that we have the
same result. $q$ . $e$ . $d$ .

From the proof of this Lemma, it follows
LEMMA 3.3. The index of the white region with dotted corners is $p+1$ and

the index of the other white region is $p-1$ , provided that the index of the black
region is $p$ .

From this Lemma it follows
LEMMA 3.4. The elements distinct from zero in either cotumn of two columns

of the $L_{0}$ -matrix $M_{0}$ , which are corresponding to two regions with consecutive
indices, are all l’s.

Consequently, the following Lemma will be easily shown from Lemmas
3.2, 3.3 and 3.4.

LEMMA 3.5. Any determinant $\Delta_{(p-1)p}^{0}$ or $\Delta_{pp+1}^{0_{()}}$ of the square malrix obtained
from $M_{0}$ by striking out two columns corresponding to two regions with consecu-
tive indices is uniquely determined, except for the sign.

Hence, hereafter, we shall consider only $\Delta_{pp+1}^{0_{()}}$ .
LEMMA 3.6.io) Under the assumption $(A)$ there exist $2q(q>0)$ crossing

points on the boundary of any black region $B$ and the corners adjacent to the
dotted (or undotted) corner of the black region are undotted (or dotted).

PROOF. Suppose that $\dot{B}$ and the boundary of a white region $W$ have a
side $s$ in common. Let us denote the end points of $s$ by $c_{i}$ and $c_{j}$ . If $c_{i}$

’

corner and $c_{j}$-corner of $B$ are both dotted, then either one of $c_{i}$ -corner or
$c_{j}$-corner of $W$ is undotted and the other is dotted, which contradicts to
Lemma 3.1. If two corners of $B$ are both undotted, then $c_{i}$-corner of $B^{\prime}$

and $c_{j}$-corner of $B^{\prime\prime}$ are dotted, where $B^{\prime}$ and $B^{f/}$ are black regions meeting
with $B$ at $c_{i}$ and $c_{j}$ respectively. Then it is impossible that $c_{i}$-corner and
$c_{j}$-corner of $W$ are both dotted or both undotted. This is a contradiction.

$q$ . $e$ . $d$ .

\S 4. $L$-correspondence.

Consider the terms of the largest and the smallest degrees in the
determinant $\Delta_{p}^{0_{(p+1)}}$ . Since $\Delta_{p}^{0_{(p+1)}}$ is the determinant of the degree $n$ and
the elements of $m-1$ columns are either $0$ or 1, it is the polynomial of
the degree $n-m+1$ at most.

10) That the converse is also true, is pointed out by Prof. H. Terasaka.
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Now let us assign to each crossing point $c_{i}$ one of the four regions
meeting at it such that

(C) Each one of the $n+2$ regions except certain two regions $r_{\alpha}$ and $\gamma_{\beta}$

with consecutive indices corresponds to one and only one of the crossing
point lying on its boundary.

Such a correspondence will be called an $L^{q}$-correspondence if $n-m+1$

crossing points $c_{i}$ correspond to $n-m+1$ black regions, of which the corners
of the $q$ black regions at the corresponding crossing points are dotted.
Then we have clearly

LEMMA 4.1. An $L^{q}$-correspondence corresponds to a term $x^{q}$ or $-x^{q}$ in
$\Delta_{p^{(}p+1)}^{0}$ .

LEMMA 4.2. Let $\sigma$ be an $L^{n-m+1},correspondence^{11)}$ such that each crossing
point corresponds to one and only one of the $n+2$ regions except for a pair of
two adjacent regions $r_{\alpha}$ and $\gamma_{\beta}$ , and let $\tau$ be another $L^{n-m+1}$ -correspondence which
is obtained from $\sigma$ by changing the correspondences in some crossing points.
Denoting the terms in $\Delta_{p}^{0_{(p+1)}}$ corresponding to $\sigma$ and $\tau$ by $\epsilon x^{n-m+1}$ and $ ex^{n-m+1}\sim$

respectively, it follows
$\epsilon=\overline{\epsilon}$ ,

where $\epsilon,$

$\overline{\epsilon}=\pm 1$ .
$p_{ROOF}$ . We can suppose that the columns of $\Delta_{pp+1}^{0_{()}}$ have been arranged

so that i-th column corresponds to a black region $B_{i}(i=1,2,\cdots, n-m+1)$ and
j-th column corresponds to a white region $W_{j-n+m-1}(j=n-m+2,\cdots, n)$ .

Let us suppose that $c_{j_{\lambda}}$
corresponds to $B_{\lambda}(\lambda=1,\cdots, n-m+1)$ and $c_{J_{\nu}}$ cor-

responds to $W_{\nu-n+m-1}(\nu=n-m+2,\cdots, n)$ in $\sigma$ . Then we can write

$\epsilon=sgn\left(\begin{array}{llll}1 & 2 & \cdots & n\\j_{1} & j_{2} & \cdots & j_{n}\end{array}\right)$

In $\tau$ , if $c_{k_{\lambda}}$ and $c_{k_{\nu}}$ correspond to $B_{\lambda}$ and $W_{\nu-n+m-1}$ respectively, we can write

$\overline{\epsilon}=sgn$ (
$k_{1}k_{2}$

’..

$n_{n}k$ ).
Hence it is sufficient to prove that

sgn $\zeta=sgn(jjk^{1_{1}}k^{2_{2}}\ldots jk^{n_{n}})=1$ .

Let $\zeta$ be represented as the product of $r$ cycles $\zeta_{1},$ $\zeta_{2},\cdots,$ $\zeta_{\gamma}$ , which are
mutually disjoint. Since sgn $\zeta=(sgn\zeta_{1})$ (sgn $\zeta_{2}$ ) $\cdots(sgn\zeta_{r})$ , it is sufficient to
show that sgn $\zeta_{i}=1$ for every $i$ .

Let $\zeta_{i}=(s_{I}\cdots s_{k})$ . Now let us assign a chain $L$ , called an L-chain, to $\zeta_{i}$

as follows. Take a point, called a center, in each region and fix it. Since

11) It will be shown in \S 5 that there exists such a $\sigma$ .
12) Sgn $P=1$ or $-1$ according as $P$ is an cven or an odd permutation,
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both $c_{s_{1}}$ and $c_{s_{2}}$ lie on the boundary of a region $r_{i_{1}}$ , say, we can join $c_{s_{1}}$ and
$c_{Sz}$ with the center $a_{i_{1}}$ of $r_{i_{1}}$ by a segment $l_{1}$ , in $\gamma_{i_{1}}$ . $l_{1}$ will be oriented in
the direction from $c_{s_{1}}$ to $c_{s_{2}}$ through $a_{i}$ .. In the same way, we can join $c_{Sn}$

and $c_{s}$ , with the center $a_{i}$ . of $r_{i_{2}}$ by a segment $l_{2}$ in $r_{i_{2}}$ , and so forth. We set

$L=\bigcup_{i=1}^{k}l_{i}$ . $L$ is a loop. If $L$ contains the centers of black regions, then we

shall transform $L$ into $L_{0}$ as follows. Suppose the interior13) of $L$ does not
contain $r_{\alpha}$ and $r_{\beta}$ . If $L$ contains an oriented segment joining $c_{\lambda}$ with $c_{J}$

through the center $b$ of a black region $B$, denoted by $c_{\lambda}bc_{J}$ , we replace it
by a chain of the segments $c_{\lambda}w_{1}c_{\nu}\cup c_{\nu}w_{2}c_{\xi}\cup\cdots\cup c_{\zeta}w_{\iota}c_{\mu}$ , where $c_{\lambda},\cdots,$ $c_{t}$ are the
crossing points such that, a point $P$ moving positively or negatively from
$c_{\lambda}$ to $c_{\mu}$ along $\dot{B}$ according as the orientation of $E$ induced by $L$ is positive
or negative14), passes $c_{\lambda},\cdots,$ $c_{1}$ in this order, and where $w_{I},\cdots,$ $w_{l}$ are the
centers of the white regions which have the sides $c_{\lambda}c_{\nu},\cdots,$ $c_{\zeta}c_{J}$ with $1\dot{3}$ in
common. Thus we obtain a figure $F$. Let us transform $F$ into $L_{0}$ with two
following operations. (a) If $F$ contains $c_{i}w_{j}c_{k}\cup c_{k}w_{j}c_{m}$ , then we shall replace
it by $c_{i}w_{j}c_{m}$ . (b) If $F$ contains $c_{i}w_{j}c_{k}\cup c_{k}w_{j}c_{i}$ , we shall take it away. Thus
$F$ is transformed into a loop $L_{0}$ .

Here we shall prove the following two facts.
LEMMA 4.3. Let $p_{0}$ and $q_{0}$ be the numbers of the black and the white regions

in the interior $L_{0}^{0}$ (or the exterior) of $L_{0}$ respectively and let $s_{0}$ be the number of
the crossing points in $L_{0}^{0}$ . Then

$s_{0}=p_{0}+q_{0}-1$ .
PROOF. Let $t$ be the number of the centers of the white regions on $L_{0}$ .

Since $t$ is equal to the number of the crossing points on $L_{0},$ $L_{0}^{0}\cup L_{0}$ is divided
into $s_{0}+2t$ points, $2s_{0}+3t$ segments and $p_{0}+q_{0}+t$ faces by the crossing points,
the centers and the sides. Hence Euler’s characteristic $\chi$ of $L_{0}^{0}\cup L_{0}$ is given
by

$\chi=s_{0}+2t-(2s_{0}+3t)+p_{0}+q_{0}+t=-s_{0}+p_{0}+q_{0}$ .
On the other hand $\chi=1$ , since $L_{0}^{0}\cup L_{0}$ is homeomorphic to an 2-dimen-

sional closed cell. Thus we have $s_{0}=p_{0}+q_{0}-1$ . $q$ . $e$ . $d$ .
LEMMA 4.4. Let $p_{1},$ $q_{1}$ and $s_{1}$ be the numbers of the black, the white regions

and the crossing points in the interior of L. Then denoting the number of the
centers of the (white) regions lying on $L_{0}$ by $k_{0}$ , it follows

13) We may call either one of two sets $E_{1}$ and $E_{2}$ into which $E$ is divided by
$L$ , the interior and the other the exterior. But hereafter, we assume that the
interior of $L$ , or generally a loop, means the bounded set among $E_{1}$ and $E_{2}$ .

14) If the exterior of $L$ does not contain $\gamma_{\alpha}$ and $r_{\beta},$

$P$ will move along $\dot{B}$ in the
inverse direction.
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(4.1) $k_{0}=k+\sum_{i=1}^{p_{0}-p_{1}}(2\lambda_{i}-1)-(s_{0}-s_{1})-(q_{0}-q_{1})$ ,

where $\lambda_{i}$ are positive integers.
PROOF. The number15) of the centers of the regions on $F$ is given by

$k+\sum_{i=1}^{p_{0}-p_{1}}(2\lambda_{i}-1)$ , since it increases by $2\lambda_{i}-1$ per a black region which is con-

tained in the interior of $L_{0}$ and is not contained in the interior of $L$ . But
the number of the centers of the regions on $L_{0}$ is first decreased by $s_{0}-s_{1}$

by the operation (a) and again it is decreased by $q_{0}-q_{1}$ by the operation
(b). Thus we have (4.1). $q$ . $e$ . $d$ .

Now in our case it follows $s_{1}=p_{1}+q_{1}$ by the definition. Hence it follows
from Lemmas 4.3 and 4.4

$k_{0}=k+\sum_{i-1}^{p_{0}-p_{1}}(2\lambda_{i}-1)-(s_{0}-s_{1})-(q_{0}-q_{1})$

$=k+2\sum_{i=1}^{p_{0}-p_{1}}\lambda_{i}-(p_{0}-p_{1})-(p_{0}+q_{0}-1-p_{1}-q_{1})-(q_{0}-q_{1})$

$\equiv k+1(mod 2)$ .
While $k_{0}\equiv 0(mod 2)$ , as shown from the fact that if c-corner of a white

region $X$ is dotted (or undotted), then c-corner of the white region $X^{\prime}$ which
is opposite to $X$ over $c$ is undotted (or dotted). Hence we obtain $k\equiv 1$ (mod

2), $i$ . $e$ . sgn $\zeta_{i}=1$ . $q$ . $e$ . $d$ .

\S 5. Proof of theorem.

The subset $G$ (or $H$) of $E$ obtained by connecting the centers of all the
black regions (or all the white regions) with the crossing points lying on
their boundaries will be called the graph (or the dual graph) of $K$ The
segments of $G$ (or $H$) connecting two consecutive centers of the regions
are called sides of $G$ (or $H$). There is only one crossing point on each side.
Denote by $M_{k}$ the regions into which $E$ is divided by G. $M_{k}$ contains
clearly only one white region. We can suppose that the indices $k$ are so

arranged that $\bigcup_{\lambda\Leftarrow 1}^{r}\dot{M}_{\lambda}\cap\dot{M}_{r+1}$ contains at least one side on $\dot{M}_{r+I}$ for $ r=1,2,\cdots$ ,

$n-m+1$ .
Now let us prove the existence of an $L^{n-m+1}$ -correspondence. To do this

let us assign in the following way to each crossing point one of the $n+2$

regions except a pair of a white region $r_{\alpha}$ , contained in $M_{1}$ , and a black
region $\gamma_{\beta}$ adjacent to $\gamma_{a}$ .

15) A center lying on the part $c_{i}w_{j}c_{k}\cup c_{k}w_{j}c_{m}$ or $c_{i}w_{j}c_{k}Uc_{k}w_{j}c_{i}$ of $\Gamma$’ is
counted doubly.
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First we shall assign $n-m+2$ black regions except $r_{\beta}$ to $n-m+1$ cros-
sing points. Let $\dot{M}_{1}$ consist of $t$ sides $m_{1},$ $m$ )

$\lrcorner$

$m_{t}$ , where $m_{i}$ denotes the
side connecting the center of $B_{i}$ with that of $B_{i+1}$ through a crossing point
$c_{j_{i}}$ for $i=1,2,\cdots,$ $t$ . (We put $B_{t+1}=B_{1}.$) We assume here that $B_{i}$ does not coin-
cide with $B_{j}$ for any $i,j,$ $(i\neq j)$ . It is easily seen that if $B_{i}=B_{j}$ for some
$i,$ $j$, then $k$ will be a product knot. We shall consider this case in the next
section. We can assume without loss of generality that $\gamma_{\beta}$ is the black
region $B_{1}$ . Now, from the definition of the graph either of the $c_{1}$ -corner or
the $c_{t}$-corner of $B_{1}$ is dotted. Let the $c_{1}$ -corner of $B_{1}$ be dotted. Then, since
the $c_{1}$ -corner of $B_{2}$ is undotted, the $c_{2}$ -corner of $B_{2}$ is dotted. In general
the $c_{i}$ -corner of $B_{i}$ is dotted. Hence we shall assign $B_{i}$ to $c_{i}$ for $i=2,\cdots,$ $t$ .
If the $c_{t}$-corner of $B_{1}$ is dotted, we shall assign $B_{i}$ to $c_{i+1}$ . Next let us
suppose that each of the black regions except $r_{\beta}$ , whose center is on $\cup h\dot{M}_{j}$ ,

$j=1$

corresponds to one and only one crossing point such that the corner of this
region at the corresponding crossing point is dotted. Then we shall assign
the regions whose centers are on $\dot{M}_{\hslash+1}$ to the crossing point as follows.
Let $\dot{M}_{h+1}$ consist of $s$ sides $m_{1}^{\prime},$ $m_{2}^{\prime},\cdots,$ $m_{\epsilon}^{\prime}$ and let $m_{1}^{\prime},$ $m_{2}^{\prime},\cdots,$ $m_{\acute{h}_{1}},$ $m_{\acute{h}}$ ., $m_{\acute{h}},+1’$ ,

$m_{\acute{h}\epsilon},\cdots,$
$m_{\acute{h}_{\lambda-1}},$ $m_{\acute{h}_{\lambda-1^{+1}}},\cdots,$ $m_{\acute{h}_{\lambda}}$ be contained in $\cup\hslash\dot{M}_{j}$ , where $m_{J^{\prime}}$ denotes the side

$j=1$

connecting the center of $B_{J^{\prime}}$ with that of $B_{j+1}^{\prime}$ through a crossing point $c_{j^{\prime}}$ .
Then either of the $c_{l\iota_{1}}^{\prime}$ -corner or the $c_{\acute{h}}.+1$ -corner of $B_{h_{1}+1}$ is dotted. If $c_{h_{1}}^{\prime}-$

corner of $B_{h+1}$ is dotted, then we shall assign $B_{\hslash_{1}+1}$ to $c_{h_{1}}$ . In general, we
shall assign $B_{h_{1}+i+1}$ to $c_{h_{1}+i}$ for $0\leqq i\leqq h_{2}-h_{1}-2$ . If $c_{h_{1}+1}$ -corner of $B_{h_{1}+1}$ is
dotted, then we shall assign $B_{h_{1}+i+1}$ to $c_{h_{1}+i+1}$ . In the same way we shall
assign $B_{h_{l}+j+1}$ to $c_{h_{l}+j}$ or $c_{h_{l}+j+1}$ for $l=2,\cdots,$ $\lambda$ and $j=0,1,\cdots,$ $h_{\iota+1}-h_{\iota}-2;h_{\lambda+1}=s$ .

Thus we obtain a correspondence such that each of the black regions
except $r_{\beta}$ corresponds to a crossing point on its boundary, where the corner
of each region at corresponding point is dotted.

Finally we shall assign all white regions except $r_{\alpha}$ to the crossing
points. To do this we shall consider a subset $M$ of $G$ , called the semi-graph
with respect to the correspondence of the black regions. $M$ is defined as
a subset of $G$ obtained from $G$ by striking out the sides, where the crossing
points on these sides do not correspond to any black regions. Then we have

LEMMA 5.1. $M$ is a tree, $i$ . $e$ . $M$ is connected and does not contain a loop.

PROOF. Set $\lrcorner NX^{h}=M\cap\bigcup_{j=1}^{h}\dot{M}_{j}$ , for $h=1,2,\cdots,$ $n-m+2$ . Then it is obvious

that $M^{1}=\dot{M}_{1}-m_{1}$ or $M^{1}=\dot{M}_{1}-m_{t}$ according as the $c_{1}$ -corner of $B_{1}$ is dotted
or undotted and that $M^{1}$ is a tree. Furthermore it follows from the defini-
tion of $M$ that if $M^{h}$ is connected then $M^{h+1}$ is connected. Hence we shall
see that $M=M^{n-m+2}$ will be connected by the induction. To prove the
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latter half of Lemma let us compute the Euler’s characteristic $\chi$ of $M$

Since $M$ is divided into $2(n-m+1)+1$ points and $2(n-m+1)$ segments by
$n-m+1$ crossing points and $n-m+2$ centers of the black regions on $M$, we
have $\chi=1$ . Hence $M$ does not contain a loop. $q$ . $e$ . $d$ .

Now let $N$ be the subset of the dual graph $H$ obtained by striking out
from $H$ the sides meeting with $M$. Then

LEMMA 5.2. $N$ is a tree.
PROOF. If $N$ is decomposed into two components $N_{1}$ and $N_{2}$ , where

$ N_{1}\cap N_{2}=\emptyset$ , the sides $h_{1},$ $h_{2},\cdots,$ $h_{t}$ of $N$ connecting $N_{1}$ with $N_{2}$ are meeting
with the sides $g_{1},$ $g_{2},\cdots,$ $g_{t}$ of $M$ respectively. Then $g_{1}\cup\cdots\cup g_{t}$ is a loop,
which contradicts to Lemma 5.1. Furthermore $N$ does not contain a loop.
For, if $N$ contains a loop $T$, then the interior of $T$ contains at least one
black region $B$. Since $M$ contains the center of $B,$ $ M\cap T\neq\phi$ . Thus $ M\cap N\neq\phi$ ,
which is a contradiction. $q$ . $e$ . $d$ .

Now we shall assign the white regions to the crossing points by means
of $N$. Let $n_{1},\cdots,$ $n_{\lambda}$ be all the sides of $N$ connecting the center of $r_{\alpha}$ with
the centers of the white regions $W_{1},\cdots,$ $W_{\lambda}$ through the crossing points
$c_{l_{1}},\cdots,$

$c_{\iota_{\lambda}}$
respectively. Then we shall assign $W_{i}$ to $c_{\iota_{i}}$ . Next, to the crossing

points
$c_{p_{j}}$ on the sides $n_{j^{\prime}}$ of $N$, except $n_{i}$ through the centers of $W_{i}$ , we

shall assign the regions $W_{j^{\prime}}$ which are opposite to $W_{t}$ over $c_{p_{j}}$ . Thus we
shall obtain a correspondence such that each white region except $r_{a}$ will
correspond to one and only one crossing point on its boundary. For, we
see from definition of $N$ that each white region corresponds to a crossing
point and moreover we see that if two crossing point correspond to one
white region, then $N$ would contain a loop. Thus we obtain

LEMMA 5.3. There is an $L^{n-m+1}$ -correspondence as stated in Lemma 4.2.
Similarly it follows
LEMMA 5.4. There is an $L^{0}$-correspondence $\sigma_{0}$ such that each crossing point

corresponds to one and only one of the $n+2$ regions except a certain pair of two
adjacent regions.

PROOF. $\sigma_{0}$ will be constructed as follows. If a crossing point $c$ corre-
sponds to a black region $B$ in an $L^{n-m+1}$ -correspondence, then we assign to
$c$ a black region $B^{\prime}$ , which is opposite to $B$ over $c$ . Since c-corner of $B^{\prime}$ is
undotted, we shall obtain a correspondence such that $n-m+1$ crossing
points $c_{i}$ correspond to $n-m+1$ black regions whose $c_{i}$ -corners are undotted.
For the rest it will be shown in the same way as in the proof of Lemma
5.3, as the analogue of Lemma 4.2 holds for an $L^{0}$-correspondence. $q$ . $e$ . $d$ .

LEMMA 5.5. If $K$ is of $m$ standard loops, the Alexander polynomial of $k$ is
a polynomial of degree $n-m+1$ .

PROOF. It follows from Lemma 4.2, 5.3 and 5.4.
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PROOF OF THEOREM 1.1.
Denote the genus of $k$ by $G(k)$ . If $K$ is of $m$ standard loops, then $G(k)$

$\leqq\frac{n-m+1}{2}$ . Thus $2G(k)\leqq n-m+1=d$, where $d$ denotes the degree of the

Alexander polynomial of $k$ . On the other hand $d\leqq 2G(k)$ . Hence it follows
$d=2G(k)$ . Thus the proof of Theorem 1.1 is completed.

\S 6. Proof of corollary 1.2.

It is well known16) that the Alexander polynomial of $k_{0}$ is the product
of those of $k_{1}$ and $k_{2}$ . Hence $d_{0}=d_{1}+d_{2}$ , where $d_{i}$ denote the degrees of the
Alexander polynomials of $k_{i}$ . Let $K_{i}$ be the images of the regular projec-
tions of $k_{i}$ onto $E$. From the assumption, there is a circle $C$ on $E$ such
that $C$ meets with $K_{0}$ at only two points $P$ and $Q$ , where $P$ and $Q$ are not
crossing points and these lie on two sides of the boundary of a region $r_{k}$ .
$C$ divides $E$ into two parts $E_{1}$ and $E_{2}$ , and $s=C\cap r_{k}$ divides $r_{k}$ into two
regions $r_{k^{\prime}}$ and $r_{k}^{\prime\prime}$ . Let $E_{1}$ and $E_{2}$ contain $r_{k^{\prime}}$ and $r_{k^{\prime\prime}}$ respectively. Let
$(E_{1}\cap K_{0})\cup s=K_{1}^{\prime}$ and $(E_{2}\cap K_{0})\cup s=K_{2}^{\prime}$ . Since $K_{i^{\prime}}$ are equivalent to $K_{i}$ , we
shall write $K_{i}$ instead of $K_{i}^{\prime}$ . Denoting the number of the crossing points
and that of the standard loops of $K_{i}$ by $n_{i}$ and $m_{i}$ respectively, the genera
$G(k_{i})$ are given by

(6.1) $G(k_{i})=\frac{n_{i}-m_{l}+1}{2}$ for $i=1,2$ .
Now it is obvious that

(6.2) $n_{0}=n_{1}+n_{2}$ .
To compute $m_{0}$ , let us classify the regions into which $E$ is divided by

$K_{i}$ , into two classes, called black and white, where the unbounded region
always belongs to the black class. Then it is easy to show that

(6.3) $m_{0}=m_{1}+m_{2}-1$ .
Hence it follows from (6.1), (6.2) and (6.3) that

$2G(k_{0})\leqq n_{0}-m_{0}+1$

$=n_{1}+n_{2}-(m_{1}+m_{2}-1)+1$

$=(n_{1}-m_{1}+1)+(n_{2}-m_{2}+1)$

$=2G(k_{1})+2G(k_{2})$

$=d_{1}+d_{2}$

$=d_{0}$ .

16) For example, see [1].
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Since $d_{0}\leqq 2G(k_{0})$ , we have $d_{0}=2G(k_{0})$ . $q$ . $e$ . $d$

Corollary 1.3 is immediately obtained from Corollary 1.2.

H\^osei University.

References

[1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math.
Soc., 30 (1928), pp. 275-306.

[2] F. Frankel und L. Pontrjagin, Ein Knotensatz mit Anwendung auf die Dimen-
sionstheorie, Math. Ann., 102 (1930).

[3] K. Reidemeister, Knotentheorie, Julius Springer, (1932).
[4] H. Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.

Ber. Heidelberg. Akad. Wiss., (1949).
[5] H. Seifert, \"Uber das Geschlecht von Knoten, Math. Ann., 110 (1935), pp. 571-592.


	On the genus of the alternating ...
	\S 1. Main theorem.
	\S 2. Alexander polynomial ...
	\S 3. $L_{0}$ -matrix.
	\S 4. $L$ -correspondence.
	\S 5. Proof of theorem.
	\S 6. Proof of corollary ...
	References


