On the genus of the alternating knot, I.

By Kunio Murasugi

(Received Aug. 14, 1957)
(Revised Oct. 25, 1957)
F. Frankel and L. Pontrjagin [2] and H. Seifert [5] have given methods of construction of an orientable closed surface spanning a given knot i.e. having a given knot as a boundary. Seifert [5] has defined the genus $G(k)$ of the knot k as the minimum of the genera of orientable closed surfaces spanning k, whose existences are assured by [2] and [5]. Now let d be the degree of the Alexander polynomial of k. Seifert has proved that we have always

$$
\begin{equation*}
\frac{d}{2} \leqq G(k) \tag{1}
\end{equation*}
$$

where the equality holds, if k is a torus knot, but there are also cases where the equality does not hold. (There are namely knots, whose Alexander polynomials are 1 and which are not equivalent to circles.)

In this paper, we shall show that the equality holds in (1) in certain classes of alternating knots (Theorem 1.1). For example, "alternierender Brezelknoten" of type ($p_{1}, p_{2}, \cdots, p_{2 n+1}$), p_{i} being odd, i.e. alternating knots, whose projections have p_{i} crossing points on each arm and divide the plane into $\sum_{i=1}^{2 n+1} p_{i}+2$ regions, of which $2 n+2$ are "black", belong to these classes. It will be shown, at the same time, that for an alternating knot k of our classes, the orientable closed surface spanning k, whose genus is just equal to $G(k)$, is obtained by Seifert's construction.

§ 1. Main theorem.

Let k be a knot $^{1)}$ and let K be an image of a regular projection ${ }^{2}$ of k onto the plane E and let K be oriented by the orientation induced by that of k. Let K have n double points $c_{1}, c_{2}, \cdots, c_{n}$, called the crossing points. One of the two segments through a crossing point c_{i} passes under the other. It is called the lower segment at c_{i} and the other the upper segment. The

[^0]segments ${ }^{3}$) of K connecting two consecutive crossing points are called sides of K. K divides E into $n+2$ regions $r_{0}, r_{1}, \cdots, r_{n+1}$, where we assume that r_{0} is always an unbounded region. We can classify these regions into two classes, called "black" and " white" for convenience' sake, in such a way that each side is always a common boundary of a black and a white region, where r_{0} belongs to a black class.

Let us assign to each crossing point c_{i} the incidence number $I\left(c_{i}\right)$, where $I\left(c_{i}\right)=+1$ or -1 according as the smaller rotation to make the lower segment coincide with the upper segment, the orientation of the segments being taken into account, is carried out in the black or in the white region (Fig. 1).

Fig. 1. (The parts drawn by the oblique lines represent the black regions)
Then the main theorem of our paper is the following
Theorem 1.1. For any alternating knot with a constant incidence number, the genus is exactly equal to one half of the degree of its Alexander polynomial.

As a corollary of this theorem we have the following
Corollary 1.2. Let k_{1} and k_{2} be alternating knots with constant incidence numbers. Then the degree of the Alexander polynomial of a product knot k_{0} of k_{1} and k_{2} is exactly equal to double of the genus of k_{0}, where k_{0} may not be an alternating knot and may not be of constant incidence numbers.

Corollary 1.3. The knots k_{0}, k_{1}, k_{2} being as in Cor. 1.2 , the genus of k_{0} is equal to the sum of the genera of k_{1} and k_{2}.

Remark. It was already shown by H. Schubert in [4] that the genus of the product knot is always equal to the sum of the genera of factors.

§ 2. Alexander polynomial and the genus of a knot.

Let us remember the definition of the Alexander polynomials defined in [1]. As in $\S 1$ let us assume that there are n crossing points $c_{1}, c_{2}, \cdots, c_{n}$
3) Hereafter, a segment means generally a polygonal line.
in K and that K divides E into $n+2$ regions $r_{0}, r_{1}, \cdots, r_{n+1}$ and that these regions are classified into two classes, black and white.

To each region r_{i} an integer $I\left(r_{i}\right)$, called an index of r_{i}, is assigned. At each crossing point c_{i}, just four corners of four regions r_{j}, r_{k}, r_{l} and r_{m}, let us say, meet. Two corners among these four corners are marked with dots [1].

Now for each crossing point c_{i}, we shall write the following linear equation

$$
c_{i}(r)=x r_{j}-x r_{k}+r_{l}-r_{m}=0,
$$

where c_{i}-corners ${ }^{4}$) of r_{j} and r_{k} are dotted. We may assume, hereafter, that j, k, l and m are different from one another. ${ }^{5)}$

Consider the matrix M, called the L-matrix, of the coefficients of these equations. M has n rows and $n+2$ columns, each row corresponding to a crossing point and each column corresponding to a region. If we denote the determinant of the square matrix obtained from M by striking out two columns corresponding to a pair of regions with consecutive indices p and $p+1$, by $\Delta_{p(p+1)}$, it follows ${ }^{6)}$

$$
\begin{equation*}
\Delta_{p(p+1)}= \pm x^{r-p} \Delta_{r(r+1)} . \tag{2.1}
\end{equation*}
$$

The G.C.M. of these determinants, freed from the factor x, is the Alexander polynomial of k. According to Alexander [1], we can assume that the signs of all the elements distinct from zero in the L-matrix M are positive, i.e. either x or 1 .

Let us compute the genus of an orientable surface spanning k after the manner of H. Seifert [5].

Let us divide K into some loops, ${ }^{7 \text { r }}$ called standard loops, in the same way as in [5]. Suppose that K is divided into m standard loops. Then the genus $G(k)$ of k is limited by ${ }^{8}$

$$
\begin{equation*}
G(k) \leqq \frac{n-m+1}{2} . \tag{2.2}
\end{equation*}
$$

Lemma 2.1. For any alternating knot with a constant incidence number $I\left(c_{i}\right)$, the number m of the standard loops is either the number of the white or of the black regions according as $I\left(c_{i}\right)>0$ or $I\left(c_{i}\right)<0$.

Proof. We shall only prove Lemma in the case where $I\left(c_{i}\right)>0$. We shall prove that a standard loop L corresponds to a white region. To do

[^1]this we shall show that L will bound a white region W. Suppose that a point P moves positively along $\dot{W},{ }^{9}$ looking W on the left. When P arrives at a crossing point c_{i}, suppose it is always on the upper segment at c_{i}. Then the lower segment must be crossing under the upper segment from right to left, as $I\left(c_{i}\right)>0$. Thus P must turn to the left, and hence P must move positively along the boundary of a white region W^{\prime}, seeing it on the left again. It will be evident that $W=W^{\prime}$. Thus P makes a round on \dot{W}, seeing W on the left. Consequently L bounds W. Furthermore it will be easily shown that two different standard loops do not bound the same white region.

If we assume that when P arrives at a crossing point, it is always on the lower segment, then we can prove Lemma in the same way as above.

In the same way, it will be proved that if $I\left(c_{i}\right)<0$, a standard loop will bound a black region.
q. e.d.

§ 3. L_{0}-matrix.

By Lemma 2.1 we can see that it is sufficient to prove Theorem 1.1 in the case where $I\left(c_{i}\right)>0$. Consequently we shall suppose, hereafter, that
(A) $I\left(c_{i}\right)>0$ for all i.

Hence the number m of standard loops is equal to the number of the white regions.

Lemma 3.1. Under the assumption (A) the elements distinct from zero in the columns corresponding to the white regions are all x 's or all 1's.

Proof. It is sufficient to prove that the corners of a white region are either all dotted or all undotted. The proof of this fact is, however, contained in the proof of Lemma 2.1, taking notice of the dots of the corners.
q. e. d.

On account of this Lemma we can replace the L-matrix M by the matrix M_{0}, whose elements distinct from zero in the columns corresponding to the white regions are all equal to $1 . M_{0}$ will be called the $L_{0}-$ matrix.

Lemma 3.2. Under the assumption (A) all the indices of the black regions are constant, say p, and then the indices of the white regions are either $p-1$ or $p+1$.

Proof. Let two black regions B_{1} and B_{2}, and two white regions W_{1} and W_{2}, be four regions whose corners meet at a crossing point c_{i}. Among these four regions the c_{i}-corners of two regions, of which one is the black and the other the white, are dotted. Suppose that the c_{i}-corner of B_{1} is

[^2]dotted. If the c_{i}-corner of W_{1} is dotted, then the lower segment is oriented as we see W_{1} and B_{1} on the left. Since $I\left(c_{i}\right)=1$, the upper segment must be oriented as we see W_{1} and B_{2} on the left. Hence it follows $I\left(W_{1}\right)=p+1$, $I\left(W_{2}\right)=p-1$ and $I\left(B_{2}\right)=p$. Similarly if the c_{i}-corner of W_{2} is dotted, then it follows $I\left(W_{1}\right)=p-1, I\left(W_{2}\right)=p+1$ and $I\left(B_{2}\right)=p$. In the case where the c_{i} corner of B_{2} is dotted, it will be shown in the same way that we have the same result.
q. e.d.

From the proof of this Lemma, it follows
Lemma 3.3. The index of the white region with dotted corners is $p+1$ and the index of the other white region is $p-1$, provided that the index of the black region is p.

From this Lemma it follows
Lemma 3.4. The elements distinct from zero in either column of two columns of the L_{0}-matrix M_{0}, which are corresponding to two regions with consecutive indices, are all 1's.

Consequently, the following Lemma will be easily shown from Lemmas 3.2, 3.3 and 3.4 .

Lemma 3.5. Any determinant $\Delta_{(p-1) p}^{0}$ or $\Delta_{p(p+1)}^{0}$ of the square matrix obtained from M_{0} by striking out two columns corresponding to two regions with consecutive indices is uniquely determined, except for the sign.

Hence, hereafter, we shall consider only $\Delta_{p(p+1)}^{0}$.
Lemma 3.6. ${ }^{10)}$ Under the assumption (A) there exist $2 q(q>0)$ crossing points on the boundary of any black region B and the corners adjacent to the dotted (or undotted) corner of the black region are undotted (or dotted).

Proof. Suppose that \dot{B} and the boundary of a white region W have a side s in common. Let us denote the end points of s by c_{i} and c_{j}. If c_{i} corner and c_{j}-corner of B are both dotted, then either one of c_{i}-corner or c_{j}-corner of W is undotted and the other is dotted, which contradicts to Lemma 3.1. If two corners of B are both undotted, then c_{i}-corner of B^{\prime} and c_{j}-corner of $B^{\prime \prime}$ are dotted, where B^{\prime} and $B^{\prime \prime}$ are black regions meeting with B at c_{i} and c_{j} respectively. Then it is impossible that c_{i}-corner and c_{j}-corner of W are both dotted or both undotted. This is a contradiction.

§ 4. L-correspondence.

Consider the terms of the largest and the smallest degrees in the determinant $\Delta_{p(p+1)}^{0}$. Since $\Delta_{p(p+1)}^{0}$ is the determinant of the degree n and the elements of $m-1$ columns are either 0 or 1 , it is the polynomial of the degree $n-m+1$ at most.

[^3]Now let us assign to each crossing point c_{i} one of the four regions meeting at it such that
(C) Each one of the $n+2$ regions except certain two regions r_{α} and r_{β} with consecutive indices corresponds to one and only one of the crossing point lying on its boundary.

Such a correspondence will be called an L^{q}-correspondence if $n-m+1$ crossing points c_{i} correspond to $n-m+1$ black regions, of which the corners of the q black regions at the corresponding crossing points are dotted. Then we have clearly

Lemma 4.1. An L^{q}-correspondence corresponds to a term x^{q} or $-x^{q}$ in $\Delta_{p(p+1)}^{0}$.

Lemma 4.2. Let σ be an L^{n-m+1}-correspondence ${ }^{11)}$ such that each crossing point corresponds to one and only one of the $n+2$ regions except for a pair of two adjacent regions r_{∞} and r_{β}, and let τ be another L^{n-m+1}-correspondence which is obtained from σ by changing the correspondences in some crossing points. Denoting the terms in $\Delta_{p(p+1)}^{0}$ corresponding to σ and τ by εx^{n-m+1} and $\bar{\varepsilon} x^{n-m+1}$ respectively, it follows

$$
\varepsilon=\bar{\varepsilon},
$$

where $\varepsilon, \bar{\varepsilon}= \pm 1$.
Proof. We can suppose that the columns of $\Delta_{p(p+1)}^{0}$ have been arranged so that i-th column corresponds to a black region $B_{i}(i=1,2, \cdots, n-m+1)$ and j-th column corresponds to a white region $W_{j-n+m-1}(j=n-m+2, \cdots, n)$.

Let us suppose that $c_{j_{\lambda}}$ corresponds to $B_{\lambda}(\lambda=1, \cdots, n-m+1)$ and $c_{j_{\nu}}$ corresponds to $W_{\nu-n+m-1}(\nu=n-m+2, \cdots, n)$ in σ. Then we can write

$$
\varepsilon=\operatorname{sgn}\left(\begin{array}{llll}
1 & 2 & \cdots & n \\
j_{1} & j_{2} & \cdots & j_{n}
\end{array}\right)^{12)} .
$$

In τ, if $c_{k_{\lambda}}$ and $c_{k_{\nu}}$ correspond to B_{λ} and $W_{\nu-n+m-1}$ respectively, we can write

$$
\bar{\varepsilon}=\operatorname{sgn}\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
k_{1} & k_{2} & \cdots & k_{n}
\end{array}\right) .
$$

Hence it is sufficient to prove that

$$
\operatorname{sgn} \zeta=\operatorname{sgn}\left(\begin{array}{lll}
j_{1} & j_{2} & \cdots
\end{array} j_{n}, 1\right.
$$

Let ζ be represented as the product of r cycles $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{r}$, which are mutually disjoint. Since $\operatorname{sgn} \zeta=\left(\operatorname{sgn} \zeta_{1}\right)\left(\operatorname{sgn} \zeta_{2}\right) \cdots\left(\operatorname{sgn} \zeta_{r}\right)$, it is sufficient to show that $\operatorname{sgn} \zeta_{i}=1$ for every i.

Let $\zeta_{i}=\left(s_{1} \cdots s_{k}\right)$. Now let us assign a chain L, called an L-chain, to ζ_{i} as follows. Take a point, called a center, in each region and fix it. Since
11) It will be shown in $\S 5$ that there exists such a σ.
12) $\operatorname{Sgn} P=1$ or -1 according as P is an even or an odd permutation.
both $c_{s_{1}}$ and $c_{s_{2}}$ lie on the boundary of a region $r_{i_{2}}$, say, we can join $c_{s_{1}}$ and $c_{s_{2}}$ with the center $a_{i_{1}}$ of $r_{i_{1}}$ by a segment l_{1}, in $r_{i_{1}} . l_{1}$ will be oriented in the direction from $c_{s_{1}}$ to $c_{s_{2}}$ through $\alpha_{i_{1}}$. In the same way, we can join $c_{s_{2}}$ and $c_{s_{3}}$ with the center $a_{i_{2}}$ of $r_{i_{2}}$ by a segment l_{2} in $r_{i_{2}}$, and so forth. We set $L=\bigcup_{i=1}^{k} l_{i} . L$ is a loop. If L contains the centers of black regions, then we shall transform L into L_{0} as follows. Suppose the interior ${ }^{13}$) of L does not contain r_{α} and r_{β}. If L contains an oriented segment joining c_{λ} with c_{μ} through the center b of a black region B, denoted by $c_{\lambda} b c_{\mu}$, we replace it by a chain of the segments $c_{\lambda} w_{1} c_{\nu} \cup c_{\nu} w_{2} c_{\xi} \cup \cdots \cup c_{\xi} w_{l} c_{\mu}$, where $c_{\lambda}, \cdots, c_{\mu}$ are the crossing points such that, a point P moving positively or negatively from c_{λ} to c_{μ} along \dot{B} according as the orientation of E induced by L is positive or negative ${ }^{14}$, passes $c_{\lambda}, \cdots, c_{\mu}$ in this order, and where w_{1}, \cdots, w_{l} are the centers of the white regions which have the sides $c_{\lambda} c_{\nu}, \cdots, c_{\xi} c_{\mu}$ with \dot{B} in common. Thus we obtain a figure F. Let us transform F into L_{0} with two following operations. (a) If F contains $c_{i} w_{j} c_{k} \cup c_{k} w_{j} c_{m}$, then we shall replace it by $c_{i} w_{j} c_{m}$. (b) If F contains $c_{i} w_{j} c_{k} \cup c_{k} w_{j} c_{i}$, we shall take it away. Thus F is transformed into a loop L_{0}.

Here we shall prove the following two facts.
Lemma 4.3. Let p_{0} and q_{0} be the numbers of the black and the white regions in the interior L_{0}^{0} (or the exterior) of L_{0} respectively and let s_{0} be the number of the crossing points in L_{0}^{0}. Then

$$
s_{0}=p_{0}+q_{0}-1 .
$$

$\mathrm{P}_{\text {roof. }}$ Let t be the number of the centers of the white regions on L_{0}. Since t is equal to the number of the crossing points on $L_{0}, L_{0}^{0} \cup L_{0}$ is divided into $s_{0}+2 t$ points, $2 s_{0}+3 t$ segments and $p_{0}+q_{0}+t$ faces by the crossing points, the centers and the sides. Hence Euler's characteristic χ of $L_{0}^{0} \cup L_{0}$ is given by

$$
\chi=s_{0}+2 t-\left(2 s_{0}+3 t\right)+p_{0}+q_{0}+t=-s_{0}+p_{0}+q_{0} .
$$

On the other hand $\chi=1$, since $L_{0}^{0} \cup L_{0}$ is homeomorphic to an 2-dimensional closed cell. Thus we have $s_{0}=p_{0}+q_{0}-1$. q.e.d.

Lemma 4.4. Let p_{1}, q_{1} and s_{1} be the numbers of the black, the white regions and the crossing points in the interior of L. Then denoting the number of the centers of the (white) regions lying on L_{0} by k_{0}, it follows
13) We may call either one of two sets E_{1} and E_{2} into which E is divided by L, the interior and the other the exterior. But hereafter, we assume that the interior of L, or generally a loop, means the bounded set among E_{1} and E_{2}.
14) If the exterior of L does not contain r_{α} and r_{β}, P will move along \dot{B} in the inverse direction.

$$
\begin{equation*}
k_{0}=k+\sum_{i=1}^{p_{0}-p_{1}}\left(2 \lambda_{i}-1\right)-\left(s_{0}-s_{1}\right)-\left(q_{0}-q_{1}\right), \tag{4.1}
\end{equation*}
$$

where λ_{i} are positive integers.
Proof. The number ${ }^{15)}$ of the centers of the regions on F is given by $k+\sum_{i=1}^{p_{0}-p_{1}}\left(2 \lambda_{i}-1\right)$, since it increases by $2 \lambda_{i}-1$ per a black region which is contained in the interior of L_{0} and is not contained in the interior of L. But the number of the centers of the regions on L_{0} is first decreased by $s_{0}-s_{1}$ by the operation (a) and again it is decreased by $q_{0}-q_{1}$ by the operation (b). Thus we have (4.1).
q. e.d.

Now in our case it follows $s_{1}=p_{1}+q_{1}$ by the definition. Hence it follows from Lemmas 4.3 and 4.4

$$
\begin{aligned}
k_{0}= & k+\sum_{i=1}^{p_{0}-p_{1}}\left(2 \lambda_{i}-1\right)-\left(s_{0}-s_{1}\right)-\left(q_{0}-q_{1}\right) \\
& =k+2 \sum_{i=1}^{p_{0}-p_{1}} \lambda_{i}-\left(p_{0}-p_{1}\right)-\left(p_{0}+q_{0}-1-p_{1}-q_{1}\right)-\left(q_{0}-q_{1}\right) \\
& \equiv k+1(\bmod 2) .
\end{aligned}
$$

While $k_{0} \equiv 0(\bmod 2)$, as shown from the fact that if c-corner of a white region X is dotted (or undotted), then c-corner of the white region X^{\prime} which is opposite to X over c is undotted (or dotted). Hence we obtain $k \equiv 1$ (mod 2), i. e. $\operatorname{sgn} \zeta_{i}=1$.
q. e.d.

§ 5. Proof of theorem.

The subset G (or H) of E obtained by connecting the centers of all the black regions (or all the white regions) with the crossing points lying on their boundaries will be called the graph (or the dual graph) of K. The segments of G (or H) connecting two consecutive centers of the regions are called sides of G (or H). There is only one crossing point on each side. Denote by M_{k} the regions into which E is divided by G. M_{k} contains clearly only one white region. We can suppose that the indices k are so arranged that $\bigcup_{\lambda=1}^{r} \dot{M}_{\lambda} \cap \dot{M}_{r+1}$ contains at least one side on \dot{M}_{r+1} for $r=1,2, \cdots$, $n-m+1$.

Now let us prove the existence of an L^{n-m+1}-correspondence. To do this let us assign in the following way to each crossing point one of the $n+2$ regions except a pair of a white region r_{α}, contained in M_{1}, and a black region r_{β} adjacent to γ_{α}.
15) A center lying on the part $c_{i} w_{j} c_{k} \cup c_{k} w_{j} c_{m}$ or $c_{i} w_{j} c_{k} \cup c_{k} w_{j} c_{i}$ of F is counted doubly.

First we shall assign $n-m+2$ black regions except r_{β} to $n-m+1$ crossing points. Let \dot{M}_{1} consist of t sides $m_{1}, m_{2}, \cdots, m_{t}$, where m_{i} denotes the side connecting the center of B_{i} with that of B_{i+1} through a crossing point $c_{j_{i}}$ for $i=1,2, \cdots, t$. (We put $B_{l+1}=B_{1}$.) We assume here that B_{i} does not coincide with B_{j} for any $i, j,(i \neq j)$. It is easily seen that if $B_{i}=B_{j}$ for some i, j, then k will be a product knot. We shall consider this case in the next section. We can assume without loss of generality that r_{β} is the black region B_{1}. Now, from the definition of the graph either of the c_{1}-corner or the c_{t}-corner of B_{1} is dotted. Let the c_{1}-corner of B_{1} be dotted. Then, since the c_{1}-corner of B_{2} is undotted, the c_{2}-corner of B_{2} is dotted. In general the c_{i}-corner of B_{i} is dotted. Hence we shall assign B_{i} to c_{i} for $i=2, \cdots, t$. If the c_{t}-corner of B_{1} is dotted, we shall assign B_{i} to c_{i+1}. Next let us suppose that each of the black regions except r_{β}, whose center is on $\bigcup_{j=1}^{h} \dot{M}_{j}$, corresponds to one and only one crossing point such that the corner of this region at the corresponding crossing point is dotted. Then we shall assign the regions whose centers are on \dot{M}_{n+1} to the crossing point as follows. Let \dot{M}_{h+1} consist of s sides $m_{1}{ }^{\prime}, m_{2}{ }^{\prime}, \cdots, m_{s}{ }^{\prime}$ and let $m_{1}{ }^{\prime}, m_{2}{ }^{\prime}, \cdots, m_{h_{1}}^{\prime}, m_{h_{2}}^{\prime}, m_{h_{3}+1}^{\prime}, \cdots$, $m_{h_{3}}^{\prime}, \cdots, m_{n_{\lambda-1}}^{\prime}, m_{h_{\lambda-1}+1}^{\prime}, \cdots, m_{h_{\lambda}}^{\prime}$ be contained in $\bigcup_{j=1}^{h} \dot{M}_{j}$, where $m_{j}{ }^{\prime}$ denotes the side connecting the center of $B_{j}{ }^{\prime}$ with that of B_{j+1}^{\prime} through a crossing point $c_{j}{ }^{\prime}$. Then either of the $c_{h_{1}}^{\prime}$-corner or the $c_{h_{1}+1}^{\prime}$-corner of $B_{n_{1}+1}$ is dotted. If $c_{h_{1}-}^{\prime}$ corner of $B_{h_{1}+1}$ is dotted, then we shall assign $B_{h_{1}+1}$ to $c_{h_{1}}$. In general, we shall assign $B_{h_{1}+i+1}$ to $c_{h_{1}+i}$ for $0 \leqq i \leqq h_{2}-h_{1}-2$. If $c_{h_{1}+1}$ corner of $B_{h_{1}+1}$ is dotted, then we shall assign $B_{h_{1}+i+1}$ to $c_{h_{1}+i+1}$. In the same way we shall assign $B_{h_{l}+j+1}$ to $c_{h_{l}+j}$ or $c_{h_{l^{+}}+j+1}$ for $l=2, \cdots, \lambda$ and $j=0,1, \cdots, h_{l+1}-h_{l}-2 ; h_{\lambda+1}=s$.

Thus we obtain a correspondence such that each of the black regions except r_{β} corresponds to a crossing point on its boundary, where the corner of each region at corresponding point is dotted.

Finally we shall assign all white regions except r_{x} to the crossing points. To do this we shall consider a subset M of G, called the semi-graph with respect to the correspondence of the black regions. M is defined as a subset of G obtained from G by striking out the sides, where the crossing points on these sides do not correspond to any black regions. Then we have

Lemma 5.1. M is a tree, i.e. M is connected and does not contain a loop.
Proof. Set $M^{h}=M \cap \bigcup_{j=1}^{h} \dot{M}_{j}$, for $h=1,2, \cdots, n-m+2$. Then it is obvious that $M^{1}=\dot{M}_{1}-m_{1}$ or $M^{1}=\dot{M}_{1}-m_{t}$ according as the c_{1}-corner of B_{1} is dotted or undotted and that M^{1} is a tree. Furthermore it follows from the definition of M that if M^{h} is connected then M^{h+1} is connected. Hence we shall see that $M=M^{n-m+2}$ will be connected by the induction. To prove the
latter half of Lemma let us compute the Euler's characteristic χ of M. Since M is divided into $2(n-m+1)+1$ points and $2(n-m+1)$ segments by $n-m+1$ crossing points and $n-m+2$ centers of the black regions on M, we have $\chi=1$. Hence M does not contain a loop.
q.e.d.

Now let N be the subset of the dual graph H obtained by striking out from H the sides meeting with M. Then

Lemma 5.2. N is a tree.
Proof. If N is decomposed into two components N_{1} and N_{2}, where $N_{1} \cap N_{2}=\phi$, the sides $h_{1}, h_{2}, \cdots, h_{t}$ of N connecting N_{1} with N_{2} are meeting with the sides $g_{1}, g_{2}, \cdots, g_{t}$ of M respectively. Then $g_{1} \cup \cdots \cup g_{t}$ is a loop, which contradicts to Lemma 5.1. Furthermore N does not contain a loop. For, if N contains a loop T, then the interior of T contains at least one black region B. Since M contains the center of $B, M \cap T \neq \phi$. Thus $M \cap N \neq \phi$, which is a contradiction.
q. e.d.

Now we shall assign the white regions to the crossing points by means of N. Let $n_{1}, \cdots, n_{\lambda}$ be all the sides of N connecting the center of r_{α} with the centers of the white regions $W_{1}, \cdots, W_{\lambda}$ through the crossing points $c_{l_{1}}, \cdots, c_{l_{\lambda}}$ respectively. Then we shall assign W_{i} to $c_{l_{i}}$. Next, to the crossing points $c_{p_{j}}$ on the sides n_{j}^{\prime} of N, except n_{i} through the centers of W_{i}, we shall assign the regions W_{j}^{\prime} which are opposite to W_{i} over $c_{p_{j}}$. Thus we shall obtain a correspondence such that each white region except r_{α} will correspond to one and only one crossing point on its boundary. For, we see from definition of N that each white region corresponds to a crossing point and moreover we see that if two crossing point correspond to one white region, then N would contain a loop. Thus we obtain

Lemma 5.3. There is an L^{n-m+1}-correspondence as stated in Lemma 4.2. Similarly it follows
Lemma 5.4. There is an L^{0}-correspondence σ_{0} such that each crossing point corresponds to one and only one of the $n+2$ regions except a certain pair of two adjacent regions.

Proof. σ_{0} will be constructed as follows. If a crossing point corresponds to a black region B in an L^{n-m+1}-correspondence, then we assign to c a black region B^{\prime}, which is opposite to B over c. Since c-corner of B^{\prime} is undotted, we shall obtain a correspondence such that $n-m+1$ crossing points c_{i} correspond to $n-m+1$ black regions whose c_{i}-corners are undotted. For the rest it will be shown in the same way as in the proof of Lemma 5.3, as the analogue of Lemma 4.2 holds for an L^{0}-correspondence. q.e.d.

Lemma 5.5. If K is of m standard loops, the Alexander polynomial of k is a polynomial of degree $n-m+1$.

Proof. It follows from Lemma 4.2, 5.3 and 5.4.

Proof of theorem 1.1.
Denote the genus of k by $G(k)$. If K is of m standard loops, then $G(k)$ $\leqq \frac{n-m+1}{2}$. Thus $2 G(k) \leqq n-m+1=d$, where d denotes the degree of the Alexander polynomial of k. On the other hand $d \leqq 2 G(k)$. Hence it follows $d=2 G(k)$. Thus the proof of Theorem 1.1 is completed.

§ 6. Proof of corollary 1.2.

It is well known ${ }^{16}$) that the Alexander polynomial of k_{0} is the product of those of k_{1} and k_{2}. Hence $d_{0}=d_{1}+d_{2}$, where d_{i} denote the degrees of the Alexander polynomials of k_{i}. Let K_{i} be the images of the regular projections of k_{i} onto E. From the assumption, there is a circle C on E such that C meets with K_{0} at only two points P and Q, where P and Q are not crossing points and these lie on two sides of the boundary of a region r_{k}. C divides E into two parts E_{1} and E_{2}, and $s=C \cap r_{k}$ divides r_{k} into two regions r_{k}^{\prime} and $r_{k}{ }^{\prime \prime}$. Let E_{1} and E_{2} contain $r_{k}{ }^{\prime}$ and $r_{k}{ }^{\prime \prime}$ respectively. Let $\left(E_{1} \cap K_{0}\right) \cup s=K_{1}^{\prime}$ and $\left(E_{2} \cap K_{0}\right) \cup s=K_{2}^{\prime}$. Since K_{i}^{\prime} are equivalent to K_{i}, we shall write K_{i} instead of $K_{i}{ }^{\prime}$. Denoting the number of the crossing points and that of the standard loops of K_{i} by n_{i} and m_{i} respectively, the genera $G\left(k_{i}\right)$ are given by

$$
\begin{equation*}
G\left(k_{i}\right)=\frac{n_{i}-m_{i}+1}{2} \quad \text { for } i=1,2 . \tag{6.1}
\end{equation*}
$$

Now it is obvious that

$$
\begin{equation*}
n_{0}=n_{1}+n_{2} . \tag{6.2}
\end{equation*}
$$

To compute m_{0}, let us classify the regions into which E is divided by K_{i}, into two classes, called black and white, where the unbounded region always belongs to the black class. Then it is easy to show that

$$
\begin{equation*}
m_{0}=m_{1}+m_{2}-1 \tag{6.3}
\end{equation*}
$$

Hence it follows from (6.1), (6.2) and (6.3) that

$$
\begin{aligned}
2 G\left(k_{0}\right) & \leqq n_{0}-m_{0}+1 \\
& =n_{1}+n_{2}-\left(m_{1}+m_{2}-1\right)+1 \\
& =\left(n_{1}-m_{1}+1\right)+\left(n_{2}-m_{2}+1\right) \\
& =2 G\left(k_{1}\right)+2 G\left(k_{2}\right) \\
& =d_{1}+d_{2} \\
& =d_{0} .
\end{aligned}
$$

16) For example, see [1].
[^4]Hôsei University.

References

[1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc., 30 (1928), pp. 275-306.
[2] F. Frankel und L. Pontrjagin, Ein Knotensatz mit Anwendung auf die Dimensionstheorie, Math. Ann., 102 (1930).
[3] K. Reidemeister, Knotentheorie, Julius Springer, (1932).
[4] H. Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S. Ber. Heidelberg. Akad. Wiss., (1949).
[5] H. Seifert, Über das Geschlecht von Knoten, Math. Ann., 110 (1935), pp. 571-592.

[^0]: 1) A knot means a polygonal simple closed (oriented) curve in Euclidean three dimensional space E^{3}.
 2) See [3].
[^1]: 4) c_{i}-corner of r_{j} means the corner of r_{j} meeting at c_{i}.
 5) In fact, it is impossible that $j=k$, or $k=l$, or $l=m$, or $m=j$. If $i=k$, we can transform K into K^{\prime} which does not contain such a crossing point c_{i}. See [3],
 6) See [1].
 7) A loop means a simple closed curve.
 8) See [5].
[^2]: 9) A dot over the symbol denotes the set of boundary points.
[^3]: 10) That the converse is also true, is pointed out by Prof. H. Terasaka.
[^4]: Since $d_{0} \leqq 2 G\left(k_{0}\right)$, we have $d_{0}=2 G\left(k_{0}\right)$.
 q.e.d

 Corollary 1.3 is immediately obtained from Corollary 1.2,

