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1. Introduction

In this note we shall study the cohomology modulo p of the
p-fold symmetric product &,(S") of an u-sphere S™ (#=1), where p
is an odd prime. Let Z, denote the group of integers modulo p.
As usual, denote by &° the reduced p-th power, by 4, the Bockstein
homomorphism and by — the cup product. Then our main result
is stated as follows:

THEOREM 1. We have H(S,(S"); Z,)~ Z,. Denote by h a generator
of HY(S,(S"); Z,). Then a set of genmerators for the cohomology group
H*(©S,(S™); Z,) can be formed with all elements of the following four
types:

O L ) ) 0=s=n/2), (III) 4,P ) Q1=5<n/2),

(IV) A @< qg<<p), where h*=h—h—---—<h (q factors).

Define B(n,p) as a set of all elements of the above types (1)~(1V)
or (I)~(111) according as n is even or odd. Then B(n,p) is linearly
independent.

We shall also calculate the cup products and the reduced powers
in H*(©,(5"); Z,) (§5).

Our proof depends on the results about the cohomology of the
p-fold cyclic product B,(S*) of S", which I have obtained in the
paper [4],Y together with the technique which was used by Steenrod
to prove Theorem 4.8 in his paper [7]

Throughout this paper, the coefficient group is always Z,, and
hence we shall hereafter omit to mention it.

2. Symmetric, cyclic, cartesian products

Denote by ©, the symmetric group of the letters 1,2,.---,p. Let
t&©, be an element defined by #(j)=j+1 modp (j=1,2,--,p), and

1) 1 denotes the unit cohomology class.
2) Numbers in square brackets refer to the bibliography at the end of the paper. "
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denote by 3, the subgroup generated by ¢

Given a Hausdorff space K, each element a =&, yields a trans-

formation @ in the p-fold cartesian product %X,(K) of K:
a(3‘71><xz><"'szo):xm(n><x¢:w(z)><"'><xw(p) (xLEK)'

Thus 8, and @p' may be regarded as transformation groups acting

on ¥,(K). By definition, the p-fold cyclic product 8,(K) (or symmetric

product S,(K)) of K is the orbit space® O®F,(K), 8,) (or OF,(K), S,))

over ¥,(K) relative to 8, (or &,).

We assume in the following that K is a finite simplicial complex.
Then, as was shown in [38,4], ¥,(K) may be regarded as a finite
simplicial complex having the following property: every transfor-
mation @ is simplicial, and if a simplex of X,(K) is mapped onto
itself by @ then it remains point-wise fixed under @ Therefore
8,, (or &,) operates naturally on the alternating cochain complex

{C"(X,(K)), 0}. The special cohomology group % 1Hr(%p(K )) (or v 1H(%z,(K )
is defined as the cohomology group of the cochain complex {C"(%,(K))?,
8} (or {C"(X,(K))®», 6}).» Then, according to Liao [2] the following
isomorphisms hold:

L H'(B,(K) = HEK),
(2.1)
L*: H(@,K) =~ % H'E,K)),
where I,* and I,* are induced by the projections
7, X,(K) = B,(K), =, :X,(K)— S, (K)

respectively.
Let us now consider the inclusion homomorphisms

i,=i(0,8,) : CEE)N*» c CE(K)),
iz = i(0, @p) . Cr(%p(K))Gp - Cr(%p (K)) ’
ia = i(Sp? @p) : CT(%p (K))@p - CT(%p (K))Bp ’

3) Let Y be a Hausdorff space on which a group /" acts. Then the orbit space
O(Y,I") over Y relative to I' is defined as a space obtained from Y by identifying
each point ye& Y with its image y(») (y&l).

4) Let I' be a group operating on an additive group A. Then we denote by
AT’ the subgroup of A which consists of all a= A for which y(@)=a for all y&I.
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and the transfer homomorphisms
T,=T(8,0) : CEK) — CEE)%,
T,=7(5,0) : CE(K) — CE&E/K))®,
T,=T(S,, 8,): CEE))>» — CEJ(K)®".

Denote by af: C'(%,(K))—C'(%,(K)) the cochain map induced by a.
Then it is easily seen that

p—-1
l1T1:Etlg’ i, T,= Za#’
=0 wE@p

(2.2)
T3T1 = Tz ’ i1i3= iz ’

Ti,=(p—-1)!=-1.

The cochain maps i, 7, and i, induce respectively the homomor-
phisms i : ¥ H'®,(K))— H'E,(K), if: & H'E,(K))— H'G,(K)) and
i¥: @51HT(%Z,(K))~» 32;I]r{"(%p(]{)). The following relations are obvious.
2.3) ip=nr, #L=zr, Ln=il,
where

7, ¢ By(K) — G, (K)
is the projection, and =} (i=1,2,8) denotes the homomorphism
induced by =,.

Using the homomorphisms T: H’(%,,(K))Q%IHT(&I,(K)), TY:

HE,(K)— % H'(E,(K)) and T*: ¥ H@&K)— 7 HE/(K)) induced
by T,, T, and 7, respectively, define homomorphisms ¢;* (=1, 2, 3)
as follows:

¢ =I1"'"TF  :+ H'E/(K) — H(3B,(K)),

¢y =1¥'T% P H'E(K) — H(G,(K)),

¢r =0T : H'(8,(K)) — H(S,(K)).
Then it follows from (2.2) and that

5) As for the transfer homomorphism, see p. 254 of the book [2] of Cartan-
Eilenberg. 0 denotes the zero group.
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p-1

”#¢f:2ti*y 7’:2*9{)2:2“*’

=0 wE@p

2.4)

* % *__ * _
ProF =05, miny =ny, pFny =—1,

where a*: H"(X,(K))— H"(X,(K)) denotes the homomorphism induced
by @. The last relation leads to

PROPOSITION 1. =} is isomorphic into and ¢; is onto.

For each k2 (1<k<p), define 6,=S, by 6,(j)=kj modp (7=1,2,
-y p). Then we have

Hence 6, defines a map

b 1 ByK) > B,(K)

such that 7r1l9_k=5k7r1. Since 7r35k=n3, the commutativity holds in the
diagram
o

iy 3

H'(S,(K))

Namely we have (1L—65) ny =0, and this proves the following® :

LEMMA 1. The image of =¥ is contained in the kernel of (1—5;‘)
for every kB (1< k<<p).
Write

p-1
o=2 " r=1—¢
i=0
as in [8] and consider the cochain map 6% induced by 6,. Then it
follows directly from that we have

Oioc =00, ©0F=081+¢+ ...+t ¥,
2.6)
Ofr=t(L+ 8+ -+ 1710} (k=1 mod p, 1 <i<p).

6) Compare with the proof of Theorem 4.8 in
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3. The homomorphisms £, and o

Let D, (K)={xxxx---xXx|x<= K} denote the diagonal of X,(K), and
0,(K) the image of D,(K) by the projection z,. To study H*(8,(K)),
I have defined in [4] the homomorphisms

E, : H(K)— H*(3,(K), b,(K))

for all g, >0. The construction of £, is based on the following
diagram:

T 0*
Epyt H'(K) <— H'(0,(K)) —> H™'(8,(K), d,(K))
ue
—> H+ (8 (K), b,(K)) for g=2a+1,
v ' o
Eiy: H'(K) <— H'(0,(K)) —> H"(8,(K), 2,(K))

u ]
—> H™(B,(K), b,(K)) —> H"*"(8,(K), 2,(K))
for g=2a+2.
We now explain the meaning of the homomorphisms which have
not yet been defined.

df is the homomorphism induced by the composite d, of the
diagonal map d, and the projection =, (i.e. d,(x) =¥ X xX -+ X %)).

0% is the coboundary homomorphism in the cohomology exact
sequence of (8,(K), d,(K)).

For p=o0 and r, define *H"(X,(K), D,(K)) as the cohomology group

of the cochain complex {¢cC'(X,(K), D,(K)), 0}. It is easily seen
that

I* : HT('Sp(K)’ bp(K)) ~ "Hr(ap(KL @p(K)) ’

where I* is induced by the projection z,. Write o=t or ¢ according
as p=o0 or 7, and consider homomorphisms

rp : pHT(%p(K)i mp(K)) "”Ef{r”(%p([{% SJ10(1())3

¥, H(X,(K), Dy(K)) - H'E,(K), D,(K))
defined by

7 ,({ou}) = {0u} , ¥,({ru}) = {ou} ,
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where u < C"(8,(K), b,(K)) and {v} denotes the appropriate cohomology
class containing the cocycle v. Then we write

p=1""r r 10 H'(8,(K), D,(K))— H " *(8,(K), d,(K)),
p=T*1y,r,1% 1 H(B,(K), 0,(K)) — H™*'(8,(K)» 2,(K)),
uw=pu---p (a factors).
Since Ek(bp(K))Cbp(K), the map 6, induces the homomorphism
0r 1 H'(3,(K), d,(K)) = H'(B,(K), 0,(K)).

PROPOSITION 2. 0FFE,,,,=k'Eypr,y 0FFEs s =k 'Ey.,
It is easily seen that this Proposition is a consequence of the
following:

LEMMA 2. 0¥u=Fkud*, 0Xv=F0¥, 0%3*=0o*

PROOF. Since 6, is the identity on 9,(K), the last relation is
obvious by the well-known property of ¢*. The first two are proved
as follows:

It follows from (2.6) that 6, maps oC"(%,(K), D,(K)) in itself.
Therefore 6, induces the homomorphism

Orpt PH'(%,(K), Dy(K)) — *H'(X,(K), Dy(K)).

Similarly ¢ induces the homomorphism #,. (Note that ¢,=the iden-
tity.) It follows easily from (2.6) and the definitions of r,,y, that

616,0'71 = rrﬁk,r(l + tr_'_ st t¢“1)7 0k,rra’ = raak,a ’
ﬁk,aWzizwaﬁk,f(l_‘_tr_‘_“' +t’tc'_1)’ trro‘:To‘ *
On the other hand, it is obvious that
0., 1% =1%6% .
Therefore we have
6% 1 25;:‘1*_12’77’,,1* =1*10, rr ¥ =1*""r 6, (A +¢ +- -+ )y, I*
=kI* U7 O 7 ¥ =EI* 7 7,00 T = RT* 'y i T%0% = kub

and similarly 0~7§v=ku5,§. g. e. d.

Let j*: H'(3,(K), b,(K)) — H'(3,(K)) denote the injection homo-
morphism. Then we have

PROPOSITION 8. Let q=2s(p—1)+¢ (¢=0,1; s=0, -+1, +2,...).
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Then if j*E,(c) (c & H'(K)) is in the image of =3 : H*(S,(K))— H*(3,(K)),
then j*E,(c)=0.

PROOF. Let j*E(c) ExfH*(S/(K)). Then it follows from Lemma
1 and Proposition 2 that

0=(1—05)*E (c) =j*Efc) —J*F E(c)
=]*E(c)—kY*E(c)=1—k*)j*E/[c),
where g=2a+¢ and 1<k <<p.
Assume now that j*E,(c)==0. Then k*=1 modp. Take as k
especially a primitive root of the prime p. Then we see that « is

a multiple of p—1. Thus ¢=2s(p—1)+¢ which contradicts the as-
sumption of the Proposition. Therefore j*E, (c)=0. q.e. d.

4. Proof of Theorem 1.

From now on we consider only the case K=S", and give a proof
of Mheorem 1. First we recall some results of [4] about H*(3,(S™)).
Let e, denote a generator of H™(S™). Write

a,=j*E,_.(e,) & H'(8,(5S™) n+2<r=<pn).

For a set {m,m, -, m} of ¢ (1=<qg<<p) different integers such that
1<m,<p (i=1,2,.,q), define

Gug(Myy My -y M) & H™(8,(S™))
by
e, Xey X Xe,) (e, X6, XX, & H(X,(S™)),

(4.1) C;—é€, if i:ml? mz)' M ) mq ’
=] otherwise.

The following has been proved in [4] (See Theorems (8.1), (18.2)
and (11.1).)

PROPOSITION 4. The above a, and g,, (m,m,--,m;) are not zero,
and a set of generators for H*(B,(S™) can be formed with all such ele-
ments, together with the wunit cohomology class 1; H(8,(S"))~Z, is

generated by g,(1)=---=g.(p) (=g); The kernel of =¥ is generated by all
a, m+2=vr<<pm); and we have

(4'2) g)s(g):("_1)s+lan—|—zs(p—1)r Apan row = @niomry *
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Since r; =n¥ry, the following is clear from and Proposition 3.

LEMMA 8. If z¥(b)=0 (b= H*(S,(S™)), then =} (b) belongs to a
subgroup F of H*(B,(S™) generated by a set of all elements of type
s ostp-nre (€=0,1).

Now we proceed to prove Theorem 1.

It is known that H"(S,(K)) has a subgroup isomorphic with
H'(K). Hence it follows that H"(S,(S™)==0. On the other hand,
¢; is onto by [Proposition 1. Therefore it follows from
4 that ¢f: H*(B,(S")~ H"(S,(S™). Namely we have

4.8) H"(S,(S™)~ Z, "

which is the first part of Theorem 1.
Write

4.4) h=9¢;(2)=+0,

then % is a generator of H"(S,(S") and

(4.5) g=—m;(h)

is obvious by (2.4).
Using the naturality of &*® and 4,, it follows from and
(4.2) that

(4.6)

n'r-QDS(k) = ( _1)San+zs(p—1):*zo ’

nzédpg)s(h) z(—l)san+2s(p—1)+1:l:0 (S>O) .
By (2.4) and [4.5), we have
nf(h)=nltx}(h)= —n7(g)= —m ¢¥(en X1 X -+ X1)
p—-1
=—0%(,x1x..-x1) (c*=D¢t%),
i=0
and, by the product formulas of &°® and — [7], we obtain readily
Pile,x1x--x1)=0 for s>0;
(6*(e, x1x - x1))t=¢q! Cle, X+ xe,x1x:.-x1) for even z,

where the summation is extended over all elements ¢, xc¢, X+ X¢,
such that, for a subset {,<<i,<<---<<i)} of {1,2,--, 0}, ¢;=e, if j=1,

7) 1 have proved in a generalization of this fact: If K is (#—1)-connected,
then the integral cohomology group H4(&p(K); Z) is isomorphic with He(K; Z) for
g=r+1.
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i,-+yi, and =1 otherwise. Consequently, using the naturality of
P54, and —, it follows that

¥ Pi(h)=0, =¥d,P*(h)=0 (s=>0);
(4.7)
my (h) =(—1)g! (e, <+ xXe,x1x ... x1) for even .

Now it is easily seen from (4.6) and (4.7) that the set B(x, p) is
linearly independent. Thus we have proved the third part of

MTheorem 1l

It follows from Proposition 8 that the image group =} ¢* H*(3,(S™)
is contained in a subgroup generated by all elements of the follow-
ing types:

1, @uiosin-1) 1<s=<n/2), iosp-1y+1 (1= 5s<<n/2)
EndMyMy-ymy)  (1=g<<p).

Therefore we obtain by [Proposition 1] and (2.4) that the image group
H*(S,(S™) =0FH*(B,(S™) =orztor H*(8,(S™) is contained in a sub-
group generated by all elements of the following types:

1’ ¢§ean+2s(p—-1) (1 gsgn/z)’ ¢§ean+23(p—1)+1 (1 :<: S <n/2) ’
¥ Gngmyym,y--ymy) L=g<<p).

However it follows from [(4.2), [4.5), (2.4) and that
O Unsasto-1y = (— 1) 145 P (&) = (—1)°F P*n}(h)
=(=1y¢SzF P (h) = (1) P(R)},
(4.8)
O Aursstp-1y 1 = (—1)7105 4, P*(g) = (—1)"¢3 4, P°x ¥ (h)
=(=1)¢Sn 4, P (h) =(—1)"""4,P*(h) 5>
$:8u(m)=¢3g=h=P"(h).

Therefore, to complete the proof of the second part of MTheorem 1,
it is sufficient to show that ¢}g,,(m,m,---,m) (2<g<<p) is a linear
combination of the elements described in Theorem 1l
Let g, (m, my--ym)=0¢(c, Xc, X+ X¢c,) as in (4.1). Then it fol-
lows from (2.4) that
n;¢3*gnq(m1, Mg+ =y M)

=R PR(C, X €y X oo X Cp)
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= > a*(c, Xc, X+ Xcp)

<o,
=ql(p—q)! Sle.x--xe,x1x-.-x1) for even g,
=0 for odd #».
Hence, together with (4.7), we obtain
T O3 Gng(M1y Mgy =y M)
=(—1)%p—q)! z¥(h?) for even #,
=0 for odd #.
Since A?=0 if » is odd, it follows that

”?(qs;gnq(mu Myye+y mq) _(_1)q (p'_Q) ! hq) =0

for any s This and show that ¥(¢) g,y My M) —
(=1 (p—q)! A% is contained in the subgroup F. Therefore, by (2.4)
and (4.8), we see that ¢}Xg,. (m,m, -y m,)—(—1) (p—q)! h? is contained
in the subgroup ¢¥F of H*(8,(S")) generated by all elements of
types P(h), 4,%°(h). This completes the proof of the second part.

5. Supplement

We have
THEOREM 2. For any s,1>0, the following hold:

he PR =0, hed,Pi(h)=0,
Pih)y~PUh)=0, P (h)—4,P"h)=0,
4 P k)4, Pi(h) =0,

P PUR) = (—1) -1y, CP*R)
Ped, P ) =(—1)ip-Cidp, P (R) -

PROOF. These are obtained by the naturality of —, 4, and &°
from the corresponding results in H*(8,(S™) which I have proved
in [4]. (See Theorems (11.8) and (13.2).)

Since the proof is similar, we shall only give an account of that
of the last relation. It follows from (4.6) and Theorem (13.2) in [4]
that

xgegasdpg)t(h) = ( - 1)t£-psdn+ 2t(p~1)+1
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= ( - l)tt(p—l)csaﬂA— a(s+)(p-1)+1
=(—1)7¥yp-nCsdpy P (R)

Hence we obtain by Proposition 1 that P4, P (k) = (—1),,,_,C,4, P ().
By the product formula, we have

COROLLARY P(h1)=0 (s>0,9=2).

Compare the cohomology modp of &,(S") with that of the
Eilenberg-Maclane space K(Z,#n), and use the (-theory due to J-P.
Serre. (See [1] and [6]) Then we obtain directly

THEOREM 3. If n is sufficiently large, the p-component of the
homotopy group =,(S,(S™)) is zero for i<<n+2p*—38, and is isomorphic
with Z, for i=n-+2p*—38.

Institute of Polytechnics
Ogsaka City University
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