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Affine connections in a quaternion manifold and
transformations preserving the structure.
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Let $M$ be an almost complex manifold with an affine connection
with respect to which the almost complex structure is covariant
constant and with an irreducible homogeneous holonomy group. We
have proved, in a previous paper [6], that if the largest connected
group $A_{0}(1\psi)$ of affine transformations in $M$ does not preserve the
structure, the manifold $M$ must admit a quaternion structure and
there exists a homomorphism of $A_{0}(M)$ into the special orthogonal
group $SO(3)$ , where by a quaternion structure we mean a pair $(\phi_{i}^{h}$,
$\psi_{i^{h}})$ of two almost complex structures such that $\phi_{i}^{a}\psi_{a^{h}}+\psi_{i^{a}}\phi_{a}^{h}=0$ .

On the other hand, we have studied in another paper [7] affine
connections on almost complex, quaternion and Hermitian manifolds.
In particular we have shown that, on a quaternion manifold, (1) it
is possible to introduce an affine connection, called a $(\phi, \psi)$-connection,
with respect to which $\phi_{i}^{\hslash},$ $\psi_{i^{h}}$ are both covariant constant, that (2)
$(\phi, \psi)$ -connections are uniquely determined by their torsion tensors;
and that (3) in the set of all $(\phi, \psi)$ -connections there exist three
special connections whose torsion tensors are constructed by the
almost complex structures and their Nijenhuis tensors.

Now, since transformations preserving the almost complex
structure are not necessarily affine (consider, for example, the pro-
jective transformations in a complex projective space) it might be
interesting to study transformations preserving the quaternion
structure. Are such transformations affine transformations with
respect to some $(\phi, \psi)$ -connection ? This question will be answered
in the affirmative by showing that they are affine transformations
just with respect to the three special connections mentioned above.

1. Transformations

In this section we discuss infiuences of general transformations
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upon geometric objects in a manifold. Conditions for a transfor-
mation to be affine will be given.

We consider an n-dimensional differentiable manifoldl) $1\psi$ of class
$C^{\infty}$ covered by coordinate neighborhoods and a differentiable homeo-
morphism or a transformation $f$ of $M$ onto itself. If $f(p)=q,$ $(p$,
$q\in M)$ , we take coordinate neighborhood $U$ of $p$ and $V$ of $q$ endowed
with respective local coordinates $x^{h}$ and ’ such that $f(U)=V$, then
the homeomorphism $f$ is represented by differentiable functions

(1.1) $;_{\chi^{h}}=f^{h}(x^{1}, x^{2},\cdots, x^{n})$ with $|\frac{\partial f^{h}}{\partial x^{i}}|\neq 0$ .

Let $I2$ be a geometric object. We regard (1.1) as a transforma-
tion of coordinates: $(x^{h})\rightarrow(^{\prime}x^{h})$ , and calculate the components in $V$ of
$\Omega$, then we get a new geometric object $ff2$ in the manifold. We call
$ f\Omega$ thus obtained the transform of $\Omega$ by $f$ If $\Omega=f\Omega$, we say that 42
is invariant under $f$, or that $f$ preserves 9.

We shall give some examples.
(1) Let us consider a general tensor field $T$, say, of the type

$(1,1)$ whose components in $U$ are $T_{i}^{h}$. Then the transform $fT$ of $T$

by $f$ has components $fT_{i}^{h}$ in $V$ given by

(1.2) $fT_{i}^{h}=\frac{\acute{o}^{r_{X^{h}}}}{\partial x^{\alpha}}\frac{\partial x^{b}}{\partial x^{i}}T_{b^{a}}$ .

The differential of $f$ introduced by Chevalley [1] is nothing but this
correspondence $T\rightarrow fT$ described above with local coordinates.

(2) The partial derivatives $\partial_{j}T_{t^{h}}$ in each coordinate neighbor-
hood $U$ give a new geometric object. The transform of this new
object by $f$ is, by definition, giveI] in each coordinate neighborhood
$V=f(U)$ , by the partial derivatives $\partial_{j}(fT_{i}^{h})$ of the transform $fT$ of
$T$. The following theorem is easy to prove.

THEOREM 1.1 If a tensor field $T$ is invariant under a transforma-
tion $f$, so is the field of its partial derivatives.

(3) Let us consider an affine connection $\Gamma$ whose components in
$U$ are $\Gamma_{ji}^{h}$ . Then the transform $ f\Gamma$ of $\Gamma$ by $f$ is, by definition, an
object whose components in $V$ are given by

1) In this paper by “ differentiable “ we mean “ differentiable of class $ C\infty$ ” and
we shall also restrict ourselves to connected mani folds satisfying the second axiom
of countability. In such a manifold one can always introduce an affine connection.
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(1.3) $f\Gamma_{jt}^{h}=\frac{\partial^{\prime}x^{h}}{\partial x^{a}}(\frac{\partial x^{c}}{\partial x^{j}}\frac{\partial x^{b}}{\partial x^{i}}\Gamma_{c^{a}b}+\frac{\partial^{2}x^{a}}{\partial x^{j}\partial x^{i}})$ .
Now if we denote by $\nabla$ the operation of the covariant differentiation
with respect to the affine connection $\Gamma$ and by $\nabla^{T}$ the tensor field
whose components in $U$ are $\nabla_{J}^{T_{i}^{h}}$, then the transform of $\Gamma$ is char-
acterized as the uniquely determined affine connection $’\tau$ such that,
for any tensor field $T^{2)}$ ,
(1.4) $f(\nabla^{T)^{\prime}\nabla(fT)}=$

$’\nabla$ denoting the operation of the covariant differentiation with re-
spect to ’ If $\Gamma=f\Gamma,$ $f$ is called an affine transformation (with re-
spect to the given affine connection $\Gamma$ ) $[5,9]$ . From this definition
follows:

THEOREM 1.2. In order that a transformation $f$ be affine with respect
to an affine connection $\Gamma$, it is necessary and sufficient that $f$ and the
operation of the covariant differentiation with respect to $\Gamma$ be commutative:

$f(\nabla T)=\nabla(fT)$ for any tensor field $T^{2)}$ .
Moreover we have
THEOREM 1.3. If $T$ is a tensor field invariant by $f$ and is covariant

constant with respect to an affne connection $\Gamma$, then $T$ is also covariant
constant with respect to the transform $ f\Gamma$ of $\Gamma$ by $f$

In fact, we have

$’\nabla\tau=’\nabla(fT)=f(\nabla^{T)=0}\cdot$

Now we consider the torsion tensor of the transform of an
affine connection $\Gamma$ :

$\prime s_{ji}^{h}=\frac{1}{2}(f\Gamma_{ji}^{h}-f\Gamma_{ij}^{h})$ in $V$ .
Substituting (1.3) into the above we find easily

$\prime s_{ji^{h}}=fS_{ji^{h}}$ , $(S_{ji^{h}}=\Gamma_{[j^{h}i]})$ .
So we have
THEOREM 1.4. If $S$ is the torsim tensor of an affne connection $\Gamma$,

the torsion tensor of $ f\Gamma$ is $fS$ .
From Theorem 1.3 and Theorem 1.4 we have

THEOREM 1.5. Let $T^{1},$ $T2$ $Tp$ be tensor fields such that two affine
2) This holds if (1.4) does for any vector field.
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cmnectims, with respect to which $T,\ldots,$$T1p$ are all covariant constant, are
identical if and only if their respective torsion tensors coincide. Then in
order that a transformatim preserving $T^{1p}$$T$ be affine with respect to

an affine connection with respect to which $T^{1},\ldots,$ $Tp$ are covariant constant,
it is necessary and sufficient that the transformation preserve the torsion
tensor of the connection. In particular, if we can introduce a symmetric

affine connection with respect to which $T^{\iota\ldots,p}T$ are covariant constant, $a$

transformation preserving $T^{1},\cdots,$ $T^{p}$ is always an affine transformation with
respect to the symmetric affne connection.

As an immediate consequence of this theorem, every transfor-
mation preserving the Riemannian metric is an affine transformation
with respect to the Riemannian connection, since the metric con-
nection without torsion is uniquely determined. It is, however, to
be noted that a metric-preserving transformation is not necessarily
affine with respect to a general metric connection. Since a metric
connection is uniquely determined by its torsion tensor, Theorem 1.5
is also valid in this case.

2. Affine connections in quaternion manifolds [7].

We first summarize the results of [7, Chap. 3].
We consider a $4m$-dimensional manifold admitting a quaternion

structure $(\phi_{\iota}^{h}, \psi_{i}^{h})^{3)}$ defined by two almost complex structures of
class $ c\rightarrow$ such that

(2.1) $\phi_{i}^{a}\phi_{a}^{h}=\psi_{i^{a}}\psi_{a^{h}}=-\delta_{i}^{h}$ , $\phi_{i}^{a}\psi_{a^{h}}+\psi_{i^{a}}\phi_{a}^{h}=0$ ,
where $h,$ $i,$ $ j,\cdots$ run over the range $1,\cdots,$ $4m,$ $(n=4m)$ . If we put $\kappa_{\iota}^{h}=$

$\phi_{i}^{a}\psi_{a^{h}}$, then $\kappa_{i}^{h}$ is also an almost complex structure and $\phi_{i}^{h},$ $\psi_{i^{h}},$ $\kappa_{i}^{h}$

are anti-commutative with one another and

(2.2) $\phi_{i}^{a}\psi_{a^{h}}=-\psi_{i^{a}}\phi_{a}^{h}=\kappa_{i}^{h},$ $\psi_{i^{a}}\kappa_{a}^{h}=-\kappa_{i}^{a}\psi_{a^{h}}=\phi_{i}^{h},$ $\kappa_{i}^{a}\phi_{a}^{h}=-\phi_{i}^{a}\kappa_{a}^{h}=\psi_{i^{h}}$ ,
from which it is easily seen that if any statement is proved about
$\phi_{i}^{h},$ $\psi_{i^{h}},$ $\kappa_{i}^{\hslash}$ then an analogous statement is established by exactly the
same reasoning by replacing everywhere $\phi_{i}^{h},$ $\psi_{\iota^{h}},$ $\kappa_{i}^{h}$ by $\psi_{\iota^{h}},$ $\kappa_{i}^{h},$ $\phi_{i}^{h}$ , or

3) Since a geometric object is defined by its components in each local coordinate
neighborhood, we denote it by its components in a certain coordinate neighborhood.
We follow the notations in Schouten [8] as a rule.
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$\kappa_{i}^{h},$ $\phi_{i}^{\hslash},$ $\psi_{i}^{\hslash}$ respectively.
In terms of these almost complex structures, we define linear

operators acting on tensor fields.
DEFINITION. Let $P_{ji}^{h}$ be a tensor field. We define the operators

$\Phi_{1},$ $\Phi_{2},$ $\Phi_{o}’’\Phi_{4}$ by

$\Phi_{1}P_{jl}^{h}=\frac{1}{2}(P_{ji}^{h}-\phi_{i}^{b}P_{jb}^{a}\phi_{a}^{h})$ , $\Phi_{2}P_{ji^{h}}=\frac{1}{2}(P_{ji}^{h}+\phi_{i}^{b}P_{jb}^{a}\phi_{a}^{h})$ ,

$\Phi_{3}P_{ji}^{h}=\frac{1}{2}(P_{ji}^{h}-\phi_{j}^{c}\phi_{i}^{b}P_{cb}^{h})$ , $\Phi_{4}P_{ji}^{h}=\frac{1}{2}(P_{ji}^{h}+\phi_{J^{c}}\phi_{i}^{b}P_{cb}^{h})$ .

We define further $\Psi_{s}$ and $K_{s}(1\leqq s\leqq 4)$ in the same way by replacing
$\phi_{i}^{h}$ by $\psi_{t^{h}}$ and $\kappa_{i}^{\hslash}$ respectively.

These operations satisfy various relations, but we mention here
only those used later.

(2.3) $\Phi_{s}(1\leqq s\leqq 4)$ commute with me another and $\Phi_{1}\Phi_{2}=0,$ $\Phi_{3}\Phi_{4}=0$ .
(2.4) $\Phi_{1},$ $\Phi_{2},$ $\Psi_{1},$ $\Psi_{2},$ $K_{1},$ $K_{2}$ commute with me another and $\Phi_{3},$ $\Phi_{4},$ $\Psi_{3},$ $\Psi_{4}$ ,

$K_{3},$ $K_{4}$ do also.

(2.5) $(\Psi_{3}+K_{3})\Phi_{3}=\Phi_{3}$

(2.6) Let $N_{ji}^{\hslash}(\phi)$ be the Niienhuis tensor formed with $\phi_{i}^{h}$ ;

$N_{ji^{h}}(\phi)=\frac{1}{2}(\phi_{\lceil j^{a}}\partial_{|a|}\phi_{il}^{h}-\phi_{rj^{a}}\partial_{iJ}\phi_{a}^{h})$ ;

then we have $\Phi_{2}N_{ji^{h}}(\phi)=\Phi_{3}N_{ji^{h}}(\phi)=N_{ji^{h}}(\phi)$

If $\Phi_{1}P_{ji^{h}}=0(\Phi_{2}P_{ji^{h}}=0)$ we say that $P_{ji}^{h}$ is hybrid (pure) in $i$ and
$h$ with respect to $\phi_{i}^{h}$ and if $\Phi_{3}P_{ji}^{h}=0(\Phi_{4}P_{ji^{h}}=0)$ we say that $P_{ji}^{h}$ is
hybrid (pure) in $j$ and $i$ with respect to $\phi_{i}^{h}$ .

Now let $\Gamma_{ji}^{h}$ be an affine connection in a quaternion manifold.
If $\phi_{i}^{h}$ and $\psi_{i^{h}}$ are both covariant constant:

(2.7) $\nabla_{J}\phi_{t}^{h}=\nabla_{j}\psi_{i^{h}}=0$ (and consequently $\nabla_{J^{\mathcal{K}_{i}^{h}}}=0$),

where $\nabla$ denotes the operation of the covariant differentiation, then
$\Gamma_{ji}^{h}$ is called a $(\phi, \psi)$ -cmnectim. We know that it is always possible
to introduce a $(\phi, \psi)$ -connection in a quaternion manifold and that
the torsion tensor $S_{ji}^{h}$ of a $(\phi, \psi)$ -connection $\Gamma_{J^{h_{i}}}$ satisfies

(2.8) $2\Phi_{2}\Phi_{3}S_{ji^{h}}=N_{ji^{h}}(\emptyset),$ $2\Psi_{2}\Psi_{3}S_{ji^{h}}=N_{n^{h}}(\psi),$ $2K_{2}K_{3}S_{ji}^{h}=N_{fl^{h}}(\kappa)$ ,
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where $N_{ft^{h}}(\phi),$ $N_{ji^{h}}(\psi),$ $N_{ji^{h}}(\kappa)$ are the Nijenhuis tensors formed with
$\phi_{i}^{h},$ $\psi_{i}^{h},$ $\kappa_{i}^{h}$ respectively. Conversely

THEOREM A. Let $S_{ji}^{h}$ be a tensor field in a quaternim manifold.
If $S_{ji^{h}}$ is skew-symmetric in its lower indices and satisfies (2.8), then there
exists me and only me $(\phi, \psi)$ -cmnectim whose torsim tensor is just $S_{ji^{h}}$ .

Among $(\phi, \psi)$ -connections, we can find connections of some speci-
fied character:

THEOREM B. It is possible to find, in a quaternim manifold, three
$(\phi, \psi)$ -connectims $\Gamma_{j^{h}i}^{1},$ $\Gamma_{j^{h}i}^{2},$ $\Gamma_{j^{h}i}^{3}$ whose respective torsim tensors $S_{ji^{h}}^{1},$ $S_{ji^{h}}^{2},$ $S_{ji^{h}}^{3}$

are
$S_{ji^{h}}^{1}=\Phi_{3}(N_{ji^{h}}(\psi)+N_{ji^{h}}(\kappa)),$ $S_{ji^{h}}^{2}=\Psi_{3}(N_{ji^{h}}(\kappa)+N_{ji}^{h}(\phi))$ ,

$S_{ji^{h}}^{3}=K_{3}(N_{ji^{h}}(\emptyset)+N_{ji}^{h}(\psi))$ .
Now starting from these connections we are going to construct

a new $(\phi, \psi)$ -connection. The $\Gamma_{J^{h_{i}}}^{0}$ defined by

$\Gamma_{j^{h}i}^{0}=\frac{1}{3}(\Gamma_{j^{h}i}^{1}+\Gamma_{j^{h}?}^{2}+\Gamma_{j^{h}i}^{3})$ :

is an affine connection and satisfies
$0$ 1 1 2 3

$\nabla_{J}^{\phi_{i}^{h}=(\nabla_{j}\phi_{i}^{h}+\nabla_{J}^{\phi_{i}^{h}+\nabla_{J}\phi_{i}^{h})=0}}\overline{3}$

$0$ 1 1 2 3

$\nabla_{j}\psi_{i^{h}}=(\nabla_{j}\psi_{i^{h}}+\nabla_{j}\psi_{i}^{h}+\nabla_{j}\psi_{i}^{h})=0\overline{3}$

and consequently it is a $(\phi, \psi)$ -connection. The torsion tensor $S_{ji^{h}}^{0}$

of $\Gamma_{ji}^{0_{h}}$ is

$;_{ji}h=\frac{1}{3}(S_{ji}^{h}+S_{ji}^{h}+S_{ji}^{h})123$

$=\frac{1}{3}((\Psi_{3}+K_{3})N_{ft^{h}}(\phi)+(K_{3}+\Phi_{3})N_{ji^{h}}(\psi)+(\Phi_{3}+\Psi_{3})N_{ji^{h}}(\kappa))$ .

From (2.4), (2.5) and (2.6) we see
$(\Psi_{3}+K_{3})N_{ji}^{h}(\phi)=(\Psi_{3}+K_{3})\Phi_{3}N_{ji^{h}}(\phi)$

$=\Phi_{3}N_{ji^{h}}(\emptyset)=N_{ji}^{h}(\phi)$ ,

from which and formulas obtained from this by cyclic permutations
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of $(\phi_{i}^{h}, \psi_{i^{h}}, \kappa_{i}^{h})$ , we find

(2.9) $S_{ji^{1\iota}}^{0}=\frac{1}{3}(N_{ji^{h}}(\emptyset)+N_{ji^{h}}(\psi)+N_{ji^{\hslash}}(\kappa))$

THEOREM 2.1. It is possible to introduce, in a quaternim manifold,
$a(\phi, \psi)$ -cmnectim $\Gamma_{j^{h}i}^{0}$ whose torsim tensor $S_{ji}^{\hslash}0$ is given by (2.9).

The torsion tensors of these four $(\phi, \psi)$-connections are expressed
in terms of the structure and the Nijenhuis tensors formed with
three almost complex structures. In case any two of the three
Nijenhuis tensors vanish identically, the third vanishes automatically,
and the torsion tensors of these connections vanish too. In such a
case, these four $(\phi, \psi)$ -connections are all symmetric and coincide
with one another. Conversely if there exists a symmetric $(\phi, \psi)$ -con-
nection, then it is unique and three Nijenhuis tensors all vanish
identically. For these reasons we call them the canonical connectims
in a quaternion manifold.

3. Transformations preserving the structure

In this section, we shall prove, applying the results of \S 1 to a
quaternion manifold, that transformations preserving the structure
are necessarily affine with respect to the four canonical connections
(Theorem 3.3). The group $Q(M)$ of all transformations preserving
the structure will be proved to be a Lie group with respect to the
natural topology (Theorem 3.4), and then the maximum dimensions
of $Q(M)$ and the space admitting the group $Q(M)$ of the maximum
dimensions will be discussed.

We consider, in a quaternion manifold, a differentiable transfor-
mation $f$ preserving the quaternion structure:

$f\phi_{i}^{h}=\phi_{i}^{h},$ $f\psi_{t^{h}}=\psi_{\iota^{h}}$ (and consequently $f\kappa_{i}^{h}=\kappa_{i}^{h}$).

We consider an arbitrary $(\phi, \psi)$ -connection $\Gamma_{j\iota}^{h}$ with torsion
tensor $S_{ji^{\hslash}}$ . Since $\phi_{i}^{h}$ and $\psi_{i}^{h}$ are both invariant by $f$ and are both
covariant constant, they are covariant constant also with respect to

$f\Gamma_{ji}^{h}$ , by virture of Theorem 1.3, so that $f\Gamma_{j^{h}i}$ is also a $(\phi, \psi)$ -con-
nection. Following Theorem 1.4, the torsion tensor of $f\Gamma_{ji}^{h}$ is $fS_{ji}^{h}$.
Thus

THEOREM 3.1. Let $\Gamma_{ji}^{h}$ be a $(\phi, \psi)$ -cmnectim with torsim tensor $S_{ji^{\hslash}}$

and $f$ be a transformatim which preserves the quaternion structure. Then
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$f\Gamma_{ji}^{h}$ is a $(\phi, \psi)$ -cmnectim with torsim tensor $fS_{ji^{h}}$ .
Moreover if $f$ is an affine transformation: $f\Gamma_{ji}^{h}=\Gamma_{j^{h}i}$ , then we

have $fS_{ji^{h}}=S_{ji^{h}}$ . If, conversely, $f$ preserves the torsion tensor:
$fS_{ji^{h}}=S_{ji^{h}}$, then the $(\phi, \psi)$ -connection $f\Gamma_{ji}^{h}$ must have the torsion
tensor $S_{ji^{h}}$ , so we have $f\Gamma_{ji}^{h}=\Gamma_{ji}^{h}$ and consequently $f$ is an affine
transformation. We have thus proved

THEOREM 3.2. Let $\Gamma_{ji}^{h}$ be a $(\phi, \psi)$ -connectim with torsim tensor $S_{ji^{h}}$

and $f$ be a transformatim which preserves the quaternim structure. Then
in order that $f$ be an affine transformatim with respect to $\Gamma_{ji}^{h}$ , it is
necessary and sufficient that $f$ preserve the torsim tensor $S_{ji}^{h}$ .

This is nothing but a special case of Theorem 1.5.
Since the invariance of $\phi_{\iota}^{h}$ by $f$ implies the invariance of the

field of its partial derivatives, it follows that a transformation
preserving $\phi_{i}^{h}$ also preserves the Nijenhuis tensor $N_{ji^{h}}(\phi)$ formed
with $\phi_{i}^{h}$ . Therefore a transformation leaving the quaternion struc-
ture invariant preserves the torsion tensors of the four canonical
connections. Thus by Theorem 3.2 we have

THEOREM 3.3. A transformatim preserving the quaternim structure
is always an affine transformatim with respect to any me of the four
canmical connectims.

Let us take one of the four canonical connections, say, $\Gamma_{ji}^{h}0$ in
a quaternion manifold $M$. We denote by $A(M)$ the group of all

affine transformations with respect to $\Gamma_{j^{h}i}^{0}$ and by $Q(M)$ that of all
transformations preserving the quaternion structure. $A(M)$ is a Lie
group with respect to the natural topology [3]. Theorem 3.3 implies
that $Q(M)$ is a subgroup of $A(M)$ and is obviously closed, so that
$Q(M)$ is a Lie group.

THEOREM 3.4. $Q(M)$ is a closed subgroup of $A(M)$ and thus a Lie
group.

Now we denote by $Q_{p}(M)$ and $A_{p}(1\psi)$ the isotropy subgroups at
a point $p$ of $Q(M)$ and $A(M)$ respectively. Then $Q(M)$ is contained
in $A(M)$ . To each transformation $f$ of $A_{p}(1\psi)$ corresponds a linear
transformation $\tilde{f}$ in the tangent space $T_{p}$ at $p$. This correspondence
$\rho;f\rightarrow\tilde{f}$ gives an isomorphism of $A,(M)$ onto a subgroup $A_{p}$ of the
general linear group $L(n)$ in $T_{p}$ , called the linear isotropy grmp of
$A(M)$ at $p$. $\rho$ gives also an isomorphism of $Q_{p}(M)$ onto a subgroup
$\tilde{Q}_{p}$ of $\tilde{A}_{p}$ , called the linear isotropy group of $Q(M)$ at $p$.

Now we take a complex coordinate system in the complexification
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$T_{p^{C}}$ of $T_{p}$ and we transform $\phi_{i}^{h}$ and $\psi_{i}^{h}$ into their normal forms [6] :

$(\phi_{i}^{h})\rightarrow(I_{i}^{h})=\left(\begin{array}{ll}i\delta_{\lambda^{\kappa}} & 0\\0 & -i\delta_{\lambda^{\overline{\kappa}}}\end{array}\right),$ $(\psi_{i^{h}})\rightarrow(J_{t^{h}})=\left\{\begin{array}{llll}0 & 0 & 0 & -\delta_{s^{r}}\\0 & 0 & \delta_{s^{r}} & 0\\0 & -\delta_{s^{r}} & 0 & 0\\\delta_{s^{r}} & 0 & 0 & 0\end{array}\right\}$ ,

where $\kappa\lambda=1,$
$\ldots,$

$2m,\overline{\kappa}=\kappa+2m,$ $r,$ $s=1,\cdots,$ $m$. Then all the transfor-
mations leaving $I_{i}^{h},$ $J_{i^{h}}$ and $T_{p}$ invariant constitute the quaternion
linear group $QL(m, C)$ , so that $Q_{p}$ is a subgroup of the real repre-
sentation $QL(m, R)$ of $QL(m, C)$ . Thus we have

THEOREM 3.5. The isotropy subgroup of $Q(M)$ at any point of the
manifold is isomorphic with its linear isotropy group which is a subgroup
of $QL(m, R)$ .

Now we consider an n-dimensional quaternion manifold $(n=4m)$

which admits a group, with the maximum dimensions, of transfor-
mations preserving the quaternion structure.

Since $QL(m, C)$ consists of non-singular matrices of the form

$\{\overline{0B}A0$
$-B\overline{A}00$

$B\overline{A}00-\overline{B}A^{0}0\}$ ,

$A,$ $B$ being both complex matrices of degree $m$ and $\overline{A}$ denoting the
complex conjugate of $A$, we have

$\dim QL(m, R)=\dim QL(m, C)=4m^{2}$ ,

so that at any point $p$,

$\dim Q_{p}(M)=\dim\tilde{Q}_{p}\leqq\dim QL(m, R)=4m^{l}$ .
Since $Q(M)$ takes, in our case, the maximum dimensions, we suppose

that at some point $p,\tilde{Q}_{p}$ takes the dimension $4m^{2}$ and then $\tilde{Q}_{p}=$

$QL(m, R)$ . Now since we have in general

$\dim Q(M)\leqq\dim Q_{p}(M)+\dim M$ ,

we assume further that
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$\dim Q(l\psi)=\dim Q_{p}(M)+\dim M=4m(m+1)$ .
For any point $q$ of $M$, we have

$\dim Q_{q}(M)\geqq\dim Q(M)-\dim M=4m^{2}$ .
But we must have $\dim Q_{q}(M)\leqq 4m^{2}$ , and therefore we see that, at
any point $q$ of $M,$ $Q_{q}(M)=QL(m, R)$ . Since $QL(m, R)$ contains a trans-
formation represented by the matrix $(-\delta_{i}^{h})$ , we can find in $Q_{p}(M)$ a
transformation $\sigma_{p}$ which gives a symmetry at $p$ in some neighbor-
hood of $p$. It follows that $Q(M)$ acts on $M$ transitively and the
canonical connection is complete [5].

Furthermore $\tilde{Q}_{p}$ contains, for example, a transformation repre-
sented by the matrix $(2\delta_{i}^{h})$ , so the torsion and curvature tensors of
a canonical connection should vanish identically [4], because $Q(M)$ is
a group of affine transformations with respect to the canonical
connection and leaves the torsion and curvature tensors invariant.
Thus the canonical connection is locally flat and the four canonical
connections coincide, hence the quaternion structure is integrable [7].

On the other hand, we know [2, p. 50] that a complete, simply-
connected, homogeneous affinely connected manifold is uniquely de-
termined by its local properties. Hence if $M$ is simply-connected,
$M$ is equivalent to the whole coordinate space with the vanishing
connection $\Gamma_{ji}^{h}=0$ .

Gathering the results we obtain
THEOREM 3.6. Let $M$ be an n-dimensimal simply-connected manifold

$(n=4m)$ with a quaternim structure. Suppose that $M$ is endowed with
me of the four canmical cmnectims and admits a grmp $Q(M)$ of trans-
formatims preserving the quaternim structure with the maximum dimen-
sims. Then this maximum dimensim is $n(n/4-\vdash 1)$ and the quaternim
structure is integrable. Moreover, the manifold with this canmical cm-
nectim is equivalent to the coordinate space with the vanishing cmnectim
$\Gamma_{ji}^{h}=0$ and the group $Q(M)$ is given by linear equatims:

$y^{h}=x^{i}A_{i^{h}}+A^{h}$ with $(A_{i}^{h})\in QL(m, R)$ .

Tokyo Metropolitan University
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