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Class formations 1V.

(Infinite extension of the ground field)

By Yukiyosi KAWADA

(Received Mayj10, 1957)

Let K, be an infinite algebraic extension of the rational number
field (or of the p-adic number field). We may expect that a kind of
analogy of class field theory would hold for finite abelian extensions
over K¥. In 1986-87 M. Moriya has established in his papers
such a theory over K for those finite abelian extensions K*/K¥
for which the degrees [K*: K] are relatively prime to each one of
a certain set of prime numbers determined by KJF. Recently M.
Mori considered the same problem (in local case) from a different
point of view and obtained similar results as in the theory of
Moriya without any restriction on the degrees of abelian extensions
K*|KY.

The purpose of the present paper is to consider an analogous
problem in the framework of class formation theory. Let {A(K);
K& &) be a given class formation over a ground field k2, where &
is the set of all finite extensions of %, contained in a fixed infinite
normal algebraic extension £2/k, and A(K) is the abelian group at-
tached to K (K& &). Furthermore, we assume that every A(K) is a
compact topological group. Now let K¥ be an arbitrary infinite
extension of %, contained in £. Then let us take & ={K*; KYc K*
cf, [K*: K}]<<eo} and let A*(K*) be the inverse limit group of
{A(k); B, K}. Our main result is that {A*(K¥); K*& &*} is a class
formation over the ground field K¢ (Theorem 1). We can apply this
result also to the cases of local and global class field theory by
taking a suitable class formation in each case 7). In
particular, our results coincide with that of M. Mori in local case.
In a previous paper the author considered the same problem in
a class formation after the method of M. Moriya. In §6 we shall
consider the relation between our present method and that used
before in [4]
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1. Let %k, be a given ground field, £ be a fixed infinite normal
algebraic extension of %k, and &={K; k,c KC &, [K: k] <<co}. Let us
assume that to each K& & an additive group A(K) is attached so
that {A(K); K& &) satisfies the axioms (Fl-4, C 1,2) of a class for-
mation (see §1 or [6] §1,1). We put a further axiom:

T. FEach A(K) is a compact topological group such that (i) each
i A(R)—AK) (kC K; k, K& ) is continuous and (i) for each normal
extension K|k (k, K& R) 0 =G=G(K|[k) operates continuously on A(K).

Then it is easy to see that for each bkl (& I &) N, : A())— A(R)
is a continuous homomorphism. (For normal K/&, Ny ,a is defined by

ri (Dpeq 00))-

Now let us take an arbitrary infinite extension Ky of %, con-

tained in £ as the ground field and put

1) K*={(K*; K¥YcK*c 2, [K*: K¥] <<+ oo}.

Each K* < &* is the union of {K;; K;&8&, K;cK*}: K*=\,K;. To
each pair K;c K, the norm-mapping
Ny,/l Ny WK : A(K, )""A(Kx)

is a continuous homomorphism. Hence we can define the inverse
limit group of {A(K)), N, ;}, where we define the partial order 2<<su
by K,cK,. Then we put

2) A*(K*)=inv-lim; A(K)) .

We denote the projection by N;: A*(K*)—A(K)) so that N, ,-N =N,
for 2<x holds.

THEOREM 1. Let {AK); K & 8} be a class formation over the ground
field k, which satisfies the axiom T. Let K{ be an arbitrary infinite
extension of k, contained in 2. Let us define & and A*(K*) (K* & &%)
by (1) and (2). Then {A*(K*); K* & &*} is a class formation over the
ground field K¥ with the axiom T. '

(PROOF) (i) F 1. Let K*cL* (K* L*<&8&*) and L*=K* (0,,-,0,).
Each 6; satisfies an irreducible equation f;(X)=0 (f=1,---,7) so that
_all the coefficients of f; (i=1,---,#) belong to some finite extension
K, of k. We denote then 2,=2,(L*/K*). Let K*=\,K,(K,&®)
and let us put L,=K; (0,,--,6,). Then we have L*=\,L, and [L,:
K,]=[L: K] for 2>2, Since gpLx'KfNKu/Ka:NL#/LA°§0Lﬂ»’<ﬂ holds for
2,<2<<u, we can define ¢z : A¥(K*)—A*(L*) by the limit of 1K

Since each Pr, K, is a monomorphism, the limit ¢} . is also a mono-
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morphism. F 2. Clearly the transitivity relation ¢¥. x.=o¢¥. 100 x+
for K¥*cL*c M* is satisfied. F 8. Suppose that L*/K* is normal
with the Galois group G=G (L*/K*). Then we may take 2,=2,(L*/K*)
such that L,/K; is normal for any 2>>1, and the Galois group G(L,/K})
is canonically isomorphic to G. We have A*(L*)°=inv-lim A(L)%=
oF e A¥(K*). F 4. can be proved similarly.

(ii) We shall prove C1:

3) H'\(G, A*(L*))=0

for normal extension L*/K* with the Galois group G=G(L*/K*). Let
us consider an arbitrary I-cocycle f*(o) = A(L*) (6 =G) of G over
A(L*), 0 that of *(z) —f*(ot)+f *(c) =0 holds. We define £,(c) =N, f*(o)
which is a 1-cocycle of G over L; (A>>2). Since H'(G, A(L)))=0 we
can find aq,& A(L;) such that f,(c)=(e—1)a; (6 =G) holds. We denote
the set of all such gs by B,. Clearly B, is a closed set in A(L)
and satisfies N,,B,CB; (for A<<z). Hence inv-lim B,=B* is not
empty (see e.g. Lefschetz p. 32, Theorem (39.1)) and any element
a* in B* satisfies f*(0)=(c—1)a* (¢&G). This fact proves (8).

To prove C 2. we need the following Lemma:

LEMMA. Let {AK); K& be a class formation. Let k, [, K& &
be such that K|k is normal with the Galois group G, kcl and INK=k.
Let L=KI be the compositum. We denote by Ex, the fundamental 2-
cohomology class of H* (G, A(K)) and similarly for &,,. Then the norm-
mapping N : H (G, A(L))— H*(G, A(K)) is an isomorphism. Moreover,
if G is cyclic, we have

(4) NL/K EL/Z:EK/k D

(PROOF) We shall prove (4) for cyclic group G. In a class
formation the norm-residue symbol (@, L//) =G is defined for a & A(/)),
and we have the formula

5) (@, L|l) = (N0, K[E) .

Let f.u(o,7) be a 2-cocycle from the class &,, then o= (e, L//) is char-
acterized by @+ N,,A(L)=f./(G, 0)+N,,A(L) (where f(G, o) means
> ca f(r, 0)). Similarly o=(b, K/k) is characterized by b+ Ng,A(K)=
Fxn(Gy 0) + N A(K). Now let G be cyclic and Ny &rp=mlgp. This
implies Ny fi1(G, 0) + N AK) =mf e p(Gy 0) + N A(K).  Let us choose

1) Added in Proof. The formula (4) holds for any group G. See, Algebraic
Theory of Numbers (in Japanese), Kyoritu-Syuppan, (1957), Appendix,
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a generator of G as o, then we have mo=0¢ from (6) and hence m=1.
This proves the relation (4).

For general G let N« &, ,=még,. Since H*(G, A(L)) = H*G, A(K))
o~ ZnZ (n=[G:1]) it suffices to prove (m,n)=1. Suppose that there
exists a prime number p such that p divides (m,#n). Then take a
subgroup H of G of order p. Let L' and K’ be the subfields of L
and K respectively which correspond to A in the sense of the Galois
theory. Then L=KI' and K'=KNL' hold. Since Resgyé, =&
and Resgy Exp="CEknr We Wo'uld have N x &, =N xoResgy €., =Resg o
N,k Erp=méx =0 by the condition p|m. This is a contradiction to
(4). Hence we have (m,n)=1, q.e.d.

Now let f*(s,7) be a standard 2-cocycle of G over A*(L*):
of *(0, ) —f *(00, 7) + £ *(05 07) — f *(p, 0) =0. We denote N, f*(q, 7) =10, 7)
& A(L) which is a 2-cocycle of G over A(L) (A>2,).

(¢) We shall prove first that if f,~0 in H*G, A(L;) holds for
some 2 (>>1,) then f* ~0 holds in H*G, A*(L*)). This can be done
quite similarly as in the case of H'(G*, A*(L*)). Namely, from
Lemma follows that f,~0 for all x (>4;). Let B, be the subset of
A(L,)x -+ xA(L,) (n-times) consisting of g,(0)SA(L,) (6 <G); f,(0,7)
=0g,(r)—&,(0t) +g,(0). Then N,;B,CB, (#>2) holds. Since each B,
is a closed subset and hence compact, the inverse limit of {B,} is
not empty. Take {g*(o)} arbitrarily in this limit set, then we have
*(o, v) =0g*(r) — g*(07) + £%(0) (0, 7 =G), i. €. f¥~0.

(8) Let us fix 2 (2, arbitrarily and consider the homomor-
phism N,;: H*G, A*(L*))— H*G, A(L))). Firstly, N, is a monomor-
phism by (a). Secondly, let «a,& H*G, A(L))), then from Lemma
follows that there exists «,& H*(G, A(L,)) (A<<p) such that N, ,a, =
«, holds. Let B, be the subset of A(L, x:--xA(L,) (#’-times) con-
sisting of standard 2-cocycles {f,(s, )} of G over A(L,) which belong
to a,. Then we have N,,B,Cc B, and we can prove the existence
of a class a* in H*(G, A*(L*)) such that N,a*=a«, holds. This proves
that N, is an epimorphism. Therefore, N, gives the isomorphism
H (G, A¥(L*))2H* (G, A(L))=2Z/nZ, which proves C 2. for {A*(L*);
L* = 8%

(iii) T. Since each A(K) is compact the inverse limit group
A*(L¥) is also compact. The continuity of ¢ . and of the automor-
phism ¢ EG=G(L*/K*) for normal L*/K* follows easily from the
general properties on inverse limit groups, q.e.d.
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2. Let {A(K); K& &) be a class formation with axiom T. Let
(@, K) (KE&, a=A(K)) be the generalized norm-residue symbol (see
[4], (I5)) which takes value in the Galois group I'(K) of the maximal
abelian extension Ay of K (in £). We denote by F(K) (cI'(K)) the
image, and by &) (cA(K)) the kernel of the generalized norm-
residue mapping:

(6) Vi a (CAK)— (@ K) (ET(K)).

THEOREM 2. Let us assume the axiom T. Then the generalized
norm-residue mapping ¥ : A(K)—T'(K) is continuous. Moreover, we have
S(K)=I'(K) and

(7) AK)[S(K)2<T'(K)

algebraically and topologically.

(PrROOF) Let U(L) be the subgroup of I'(K) corresonding to a
finite abelian extension L/K in the sense of (infinite) Galois theory.
Then to prove the continuity of ¥, it is sufficient to see that
T(UL)) is open for every L with KcLcCAg,[L: K]<<+o. By
definition ¥z"(U(L)) =N ,xA(L) which is a subgroup of A(K) of finite
index. Since N, is continuous and A(L) is compact, ¥ (U(L)) is
compact and open.

Since J(K) is dense in I'(K), J(K)=I'(K) follows from the con-
tinuity of ¥, and the compactness of A(L). Finally (7) follows
easily from these properties, g.e. d.

3. We come back to the case of the infinite extension of the
ground field, and we use the same notations as in §1. Let L*/K*
be normal and K*=\; K;, L*=\, L, such that L,/K, (A>1,) is nor-
mal whose Galois group is canonically isomorphic to G=G(L*/K*).
Since A*(K*)=inv-lim; A(K;) by means of the mappings N, ,: A(K,)
—A(K) A<p), a* = A*(K*) can be represented by a*=inv-lim,q,
(¢, & A(K))) such that N, ,ae,=a; holds. By the translation theorem
we have (¢, L,/K)=(a,L,/K,. Then we define the norm-residue
symbol by

(8) (@, L*|K*)=(a;, L,|K;)  (A>2)) -

THEOREM 8. In case of Theorem 1 we can define the norm-residue
symbol (a*, L|K*) for normal extension L*|K* (K*, L* & &%, a* & A*(K¥))
by (8) which takes value in the Galois group G of L*|K*. The mapping
Uyt a*—(a*, K*) induces the (algebraic and topological) isomorphism
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) A*(K*)[R*(K*) < T'(K™)

where &*(K*)=inv-lim, &(K)).

The proof is easy and we omit it here.

4. We shall give here two simple applications of Theorem 1.

(I) Kummer extensions. . Let {A(K); K& &} be the class forma-
tion for Kummer extensions (see [4], §8). Namely, we assume K1:
the characteristic of the ground field %, is 0. K2: &, contains all
the roots of unity, K 8: for every K, k2 such that 4, K& & and K/k
is normal, N, K=k holds. Then we can take A(K)=(K*QQ/Z))",
where K* means the multiplicative group of K and N means the
compact character group. Let v, , for 2<<u be the injection: K; &)
(Q/Z)—=K;R(Q|Z), then as in the proof of Theorem 8.2 in [4], we
have

Nu,l x:lo’,ﬂb’l,,u
for yc A(K,). Hence we have
(10) A¥(K*) =inv-lim; A(K) 22 ((K*)*®@/Z)"

canonically. On the other hand, it is easy to see that if & satisfies
the conditions K 1,2,8 then &* over the ground field K¥ (which is
an infinite algebraic extension of k) also satisfies the conditions K
1,2,8. Hence the class formation over K¥ which is constructed by
Theorem 1 is nothing new and is only a special case of the general
class formation theory for Kummer extensions.

(IT) p-extensions over a field of characteristic p. Let &, be a
field of characteristic p and 2 be the maximal p-extension of £,
Let

AK)=((V/® VR Z)"

where V. means the additive group of all Witt’s vectors over K.
Then {A(K); K& &) is a class formation with the Axiom T (see
§5). In case K,CcK, we have for x< A(K))

N,u,v(x) :)(0’50‘3'#
by the natural injection v, , : (Vi /£ Vfc,l)®(Q(”)/Z)~+(VK”/J’VKﬂ)(X)(Q(P)/Z).

It follows then for an infinite extension K*=\, K,
A*(K*) =inv-lim; A(K) 22 (Vi/@ Vi) Q@[ Z) -

Therefore, the class formation over the ground fleld K¥ which is
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an infinite extension of %, gives us nothing new other than the
general theory of p-extensions.

5. We shall apply Theorem 1 to local and global class field
theory.

(ITI) Let &, be a p-adic number field, £ be its algebraic closure
and & be the set of all finite extensions of %, contained in £. If
we put A(K)=K* (the multiplicative group of K) and ¢4 ,: k—K as
the injection, then by the local class field theory {A(K); K& &)} is
a class formation. Here A(K) is locally compact and is not compact
with respect to the natural topology.

We shall introduce another topology (see Artin Chapter 9).
Namely, let U be the set of all (closed) subgroups of finite indices
and we take U as the fundamental system of neighborhoods of the
unity in K*. This new topology is weaker than the mnatural one,
and K* is totally bounded. Let K* be the completion of K*, then
K* is a compact group. Let Z*=[], Z, be the direct pruduct of all
p-adic integers which is a compact additive group. The additive
group Z of integers can be naturally imbedded in Z* so that Z*¥ is
the completion of Z. It is easy to see that Z*/Z has the property
of unique divisibility by any integer n. Now let U be the unit
group of K*, then K*/Ux<Z (additive group) and K*/Uz2Z* (additive
group). Hence we have

11) Ki{K 2Z'Z  (additive group).
Let us take for each K& &
(12) AYK)=K?*.

THEOREM 4. Let k, be a p-adic number field. Then {A{K): K& &)
defined by is a class formation with the axiom T. Moreover, A*(K)
is isomorphic (both algebraically and topologically) to the compact Galois
group I'(K).

(PROOF) 1t is easy to see that F 1-4 are satisfied in this case.
Next, let K/k be a normal extension with the Galois group G. Let
us congsider the exact sequence of G-homomorphisms:

1-K*—-K*—K{K*—1.

By (11) the group K*/K* has the property of unique divisibility and
hence H"(G, K*/K*)=1 for all » & Z. Therefore, from the fundamental
exact sequence of cohomology groups we have H'(G, K*)~<H"(G, K*)
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(r&Z). Hence A*K)=K* satisfies the axioms C1,2. It is easy to
verify T, q.e.d.

Hence we can apply Theorem 1 and we get

THEOREM 5. Let K§ be an infinite algebraic exlension of a p-adic
number field and let &% be defined by (1). Let K*&8&* and K*=
U K (K, & 8), and

(13) AHK*)=inv-lim K}

with respect to N, ;: K}—K} for 2<up. Then {AYK*); K*& &%} is a
class formation with the axiom T. Moreover, A*(K*) is isomorphic to the
compact Galois group I'(K*).

REMARK. (i) If we take simply A*(K*)=inv-lim;, K} instead of
A¥(K*), then {A*(K*); K* = &%} does not satisfy the axioms C 1, 2.

(ii) If we apply the general results in class formation theory
we obtain the theorems in M. Mori [9].

(IV) Let k, be an algebraic number field of a finite degree, £
its algebraic closure and & be the set of all finite extensions of &,
contained in 2. If we put A(K)=C(K) (the idele class group of K)
and ¢ ,: C(k)—C(K) be the natural injection, then by class field
theory {A(K); K& &) is a class formation. In this case C(K) is
locally compact and we cannot apply Theorem 1 directly.

Let the volume of an idéle a={a,} of K be defined by Vi(a)=
1L w, («,) where w, means the normal valuation. By the product
formula V,((«¢))=1 for a principal idele (a)&=P(K), so that the
volume of an idéle class d@ can be defined. Let C°%K) be the sub-
group of all idele classes of K with volume 1. Then it is known
that C°(K) is a compact group.

Let K/k be a normal extension with the Galois group G. Con-
sider the exact sequence of G-homomorphisms

¢ 14
1— CYUK) > C(K) > R* >1.

Here V means the mapping a— V(@) and R* means the multiplica-
tive group of positive real numbers. Since R* has the property of
unique divisibility by any integer n we have H"(G, C'(K))H (G,
CK)) r&2).

For any extension kc/ we see immediately V. (N, a)=V,(q) for
ac=C(/) and Vg, 0)=V(@)** for §&C(k). Using these properties
it is easy to prove the following theorem.
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THEOREM 6. Let k, be an algebraic number field of a finite degree.
Let us take

(14) AYK)=C(K)

then {A¥K); K& &) is a class formation with the axiom T.
Since AHK) is compact we can apply Theorem 1 to our class

formation. Let K be an infinite algebraic extension of %, and &*
be defined by (1). Let K*& &R and K*=\, K, (K,&&). Let us put

(15) A¥K*)=inv-lim, C"(K)

with respect to N, ,: C'(K,)—C°(K;) (A<#). Then from Theorem 1
follows that {AYK*); K* &= &*} is a class formation with the axiom
T. Let us put

(16) A*(K*)=inv-lim, C(K})

with respect to N, ,: C(K,)—C(K) (A<u).

THEOREM 7. Let K be an infinite algebraic number field. Let $*
be defined by (1) and A*(K*) by (16). Then {A*(K*); K* & 8®*} is a
class formation.

(PROOF) It is easy to prove F 1-4. To prove C1,2 it suffices
to see that for a normal extension L*/K* with the Galois group G
the sequence

¢ |4
1—— AW L*) —> A¥(L*) —> R" —> 1

is exact. Here ¢ means the injection and V is defined as follows.
Let a* < A*(L*), a*=inv-lim, q;, d,&C(L,) such that N,,ad,=a; for
A<u. Since VLA(aA)vaﬂ(a,,) we can define V(Aa'*)zVLl(ﬁ,l). Then
a*=CY(L*) is equivalent to V(da*)=1, so that A*K*) is the kernel
of the homomorphism V. _

It remains to prove that the image of V is R*. Let us choose
a cofinal increasing sequence {L,;n=1,2,---} such that L*=\,L,
holds. Let p, be an infinite prime divisor of L, such that p,,, is
an extension of p, Let E, be the set of all ideles a={a,} of L,
such that «,=1 except p, and a, &R, and let D, be the set of all

idele classes of L, containing some a&E, Then D, is a group
isomorphic to R* and we have a decomposition C(L,)=CL,) X D.,.
Moreover, N, ,C"L,,,)cC°(L,), Ny, (D) =D, hold. Hence for any
given number A& R" we can take a,&C(L,) successively such that
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V. (@)=2 and N, ,(a,.)=a, hold. This shows the existence of
a*=inv-lim a, EA*(K*) such that V(a*)=2a1 Hence the mapping V
is onto, g.e. d.

(V) Let &, be a formal power series field of one variable over
a finite field, or an algebraic function field of one variable with a
finite constant fleld. In these cases the situation is quite similar

to the case (III). However we shall not treat these cases here in
detail.

6. Finally we shall consider the relation between our present
method (projective method) and the former method (inductive method)
used in [4] Let us use the same notations as in §1, namely, let
Ki=\U,k (k;& &) and let

A¥=inv-lim A(k,) (=A*(KY))

be the inverse limit group with respect to the homomorphisms
NM:A(ku)»A(kA) (A<<p). Let

B¥=dir-lim A(k,)

be the direct limit group with respect to the homomorphisms
%,A(Z%Mkl)iA(ka)'-*A(k,,) (A<p). We denote by ¢,: A(k)— By the
canonical injection such that ¢,.¢,;=¢, (A<<x) holds.

Now let [k;: k]=N,, N,=p" DM, (p, M;)=1 and we put N(K, /k,)=
[1,7” r=supr(l)=<co). We decompose N(K{/k)=N*N, where N*=
[1p~ and N,=[]"p" (r<<ec). Then we call N* and N, the infinite
and finite part of N(K/k,) respectively. Let m be any positive
integer. Then we can decompose m=m*m, such that (m, N*)=1 and
every prime factor of m* divides N¥*. We call then m, the F-part
of m.

Next, we remind the definition of a characteristic subgroup H
of By in [4} A subgroup H of By is called a characteristic
subgroup if (i) [By: Hl=n<e, (i) (n, N*)=1, (iii) H,=N_,}(H)
(u>1>v for a suitable v=v(H)) where H, (CA(k)) is defined by
o, (H)=9¢,(A(k))N H and (iv) H, corresponds to an abelian extension
of &,

Now let A(KY) be the lattice consisting of all closed subgroups
of A¥ of finite indices which contain &K) and let B(K¥) be the
lattice consisting of all characteristic subgroups of By To each
HEWKY) we assign
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V(H) :A\>J @10 N,(H)

where v=y(H) is taken sufficiently large as in (i) of the proof of
Theorem 1.

THEOREM 8. Let HEWKY) then V(H)SB(KY). The mapping
v WK,)—BK,) is a lattice-homomorphism of W(K¥) onto B(KE) such
that [BS: V(H)] is the F-part of [As: H].

(PROOF) (i) Let HE=U(K,). Then there exists an abelian ex-
tension K* of K¥ such that the Galois group G(K*/K¥)is isomorphic
to A¥/H. The group ¥(H) is then just the subgroup corresponding
to K* in our former paper (see, p. 109, (34)). Hence [B;: ¥(H)]
is the F-part of [K*: K{]=[Af: H].

(ii) That ¥ is a lattice-homomorphism of A(K¥) onto B(K¥) fol-
lows from the known results both in projective and inductive theory

(see [3], p. 111, (4.5) and p. 168), q. e. d.
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