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Introduction.

It was found out in several cases that Hasse’s zeta functions of
algebraic curves or of abelian varieties over an algebraic number
field can be expressed by Hecke’s L-functions with “ Gr\"ossencharak-
tere “ of that field.1) It deserves our attention that these phenomena
have always presented themselves in connection with arithmetic of
abelian extensions of that number field. However, since the relation
of Hasse’s functions with abelian extensions was not so direct in
the proofs of these results, which have been done from different
angles, it would be desirable to clearify the relation between Hasse’s
functions and abelian extensions attached to abelian varieties in
question, treating all cases from a unified point of view. This is
the first problem. In pursuing this problem, I have succeeded in
obtaining a new interpretation of Hasse’s functions in general, and
in characterizing under which particular conditions the above pheno-
mena take place.

On the other hand, “ Gr\"ossencharaktere ” can be interpreted as
characters of id\‘ele class groups, so it seems natural that they have
some connection with abelian varieties related to abelian extensions
of the basic fields. However, as class field theory shows, it is not
the id\‘ele class group, but the factor group of it by the connected
component of the identity, that can be interpreted by the Galois
group of the maximally abelian extension. The above phenomena
suggest conversely the possibility of an interpretation of characters
of id\‘ele class group by something connected with abelian extensions.
To find out such an interpretation is a problem, first proposed by
A. Weil [4], which seems no less important than the above.

1) Weil [9], Deuring [1], Taniyama [3]. There are also cases first treated by
Eichler, where this does not hold.
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I shall solve.this last problem in this paper for a special type
of characters, called characters of type $(A_{0})$ by A. Weil [4]. The
problem of interpretation of characters which are not of type $(A_{0})$

has a quite different feature, and will be entirely left open. The
characters of type $(A_{0})$ correspond to certain representations of the
Galois group of the maximally abelian extension of the basic field,
and can be characterized by some properties of these representations.
On the other hand, we can compute the zeta function of an abelian
variety with the help of certain representations of the Galois group
of the field obtained by division of periods of this abelian variety.
When this variety has sufficiently many complex multiplications,
these representations have the properties characterizing characters
of type $(A_{0})$ . This gives a proof of the conjecture of Hasse in case
of complex multiplications, under somewhat weaker conditions than
in my former paper [3]. This theory reveals more intimate relation
of Hasse’s functions, ” Grossencharaktere ” of type $(A_{0})$ and abelian
extensions.

Moreover, the above relation between representations of the
Galois groups and of the general Hasse’s functions gives a new
relation between these functions and the zeta functions of infinitely
many finite extensions of the basic field. This relation holds for a
little more general type of L-functions, including L-functions with
characters of type $(A_{0})$ , and may be considered to express, in a
sense, the decomposition law of prime ideals in the infinitely many
fields attached to these functions.

All this shows furthermore that Hasse’s zeta functions of general
abelian varieties are closely connected with the infinite normal, non-
abelian extensions obtained by division of periods of these varieties.
Hence these functions may have a quite different nature from those
in our special cases, and we still stand far from the solutions of
Hasse’s conjecture in the general case, although these normal exten-
sions have some remarkable properties as expressed in our axioms
below.

The main method used in the present paper is due to A. Weil
[4], where he has shown that we can associate to every character
of type $(A_{0})$ a system of local representations ( $i$ . $e$ . representations
into $\mathfrak{P}$-adic completions of a number field) of the id\‘ele class group.
This idea of local representation is a quite adequate one, because,
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first, we can pass from id\‘ele class group to the Galois group very
naturally by its means, and second, the Galois group and $\mathfrak{P}$-adic
unit group have similar topologies, while the usual character of the
Galois group is necessarily of finite order. Moreover, we can connect
these local representations with “ l-adic representations ” of the ring
of endomorphisms of abelian varieties, which is the essential base
of the proof of conjecture of Hasse in the present paper.

In \S 1, I shall give a characterization of characters of id\‘ele
class groups of type $(A_{0})$ . In \S 2, the above mentioned relation of
L-functions with characters of type $(A_{0})$ and an infinite product of
zeta functions of number fields will be given. In \S 3, I shall first
reformulate the result in \S 1 in a form which may be applied
directly to the proof of conjecture of Hasse. This reformulation
allows moreover a generalization, and an infinite product relation
like that in \S 2 for the generalized L-function will be obtained. In
\S 4, it will be shown that this generalization contains the case of
Hasse’s zeta functions of general abelian varieties. \S 4 implies
furthermore the proof of the conjecture of Hasse in case of suffici-
ently many complex multiplications mentioned above.

Notations and terminologies. Basic results assumed to be
known.

The following notations and terminologies will be used through-
out the paper, often without references. As to the basic concepts
discussed here, the reader is referred to Weil’s papers [4], [6]. Termi-
nologies and basic notations concerning algebraic geometry used in
\S 4 will be the same as those of so-called Weil-school in algebraic
geometry. As to basic results recalled in \S 4, see Weil [7], [8],
Shimura [2] and Taniyama [3].

$Q$ denotes the rational number field, $R$ the real number field, $C$

the complex number field and $Z$ the ring of rational integers. $|\alpha|$

denotes the usual absolute value of a complex number $\alpha$ . $\sigma_{0}$ denotes
the complex conjugate automorphism of $C$, or of any subfield of $C$ :
$\sigma_{0}\alpha=\overline{\alpha},$ $\alpha\in C$.

If $M$ is a square matrix, $detM$ denotes the determinant of $M$.
$E$ denotes always a unit matrix. The degree of $E$ will be clear
from the context.
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All groups treated in this paper are considered as topological
groups with their proper topologies, maybe discrete. The words
isomorphism, homomorphism, representation of groups are accord-
ingly used in the sense of topological groups. In particuar, represen-
tation means an algebraic homomorphism which is continuons. The
word character is used in the wider sense, $i$ . $e$ . representation into the
multiplicative group $C^{\star}$ of $C$.

Let $k$ be a field. Then $k^{\star}$ denotes the multiplicative group of
all non-zero elements of $k$. $\overline{k}$ denotes the algebraic closure of $k$,
and $A_{k}$ the maximal abelian extension of $k$ in $\overline{k}$. If $k^{\prime}$ is a Galois
extension of $k$ (finite or infinite), then $G(k^{\prime}/k)$ denotes the Galois
group of $k^{\prime}$ over $k$, endowed with Krull’s topology. In particular,
we write $G_{k}=G(A_{k}/k)$ : the Galois group of the maximal abelian
extension of $k$ over $k$. If $k^{\prime}$ is a finite extension of $k,$ $N_{k^{\prime}/k}$ denotes
the relative norm from $k^{\prime}$ to $k$, and $[k^{\prime} : k]$ the degree of $k^{\prime}$ over $k$.

Algebraic number field is always considered as contained in $C$.
Let $k$ be an algebraic number field of finite degree. Then $H(k)$

denotes the set of all isomorphisms of $k$ into $C$. If $k^{\prime}$ is a finite
extension of $k,$ $H(k^{\prime}/k)$ denotes the set of all isomorphisms of $k^{\prime}$ into
$C$ over $k$. $N$ denotes always the absolute norm of ideals. For any
$\alpha$ in $k^{\star},$ $(\alpha)$ denotes the principal ideal of $\alpha$ . Let $\mathfrak{m}$ be an integral
ideal of $k$ . Then $G(m)$ denotes the group of all ideals of $k$, prime
to $\mathfrak{m}$ . Let $K$ be also an algebraic number field, then the Galois
closure of $k$ and $K$ means the smallest absolutely normal field in $C$,
containing $k$ and $K$. Let $k^{\prime}$ be any normal extension of $k$, and $\psi*$

be a representation of the group $G(k^{\prime}/k)$ into some group. The
kernel of $\psi^{*}$ being a closed subgroup of $G(k^{\prime}/k)$ , it corresponds to a
subfield of $k^{\prime}$ containing $k$, by Galois theory. $k^{\prime}$ being as above, let
as be a prime divisor in $k^{\prime}$ of a prime ideal $\mathfrak{p}$ of $k$. Then the
decompositim group of $\mathfrak{P}$ over $k$ (consisting of all $\sigma$ in $G(k^{\prime}/k)$ such
that $0\mathfrak{P}=\mathfrak{P}$) is denoted by $G(\mathfrak{P})$ . We shall denote by $\sigma_{\mathfrak{P}}$ any one of
the Frobenius automorphisms of $\mathfrak{P}$ over $k,$ $i$ . $e$ . $\sigma_{\mathfrak{P}}$ is an element in $G(\mathfrak{P})$

inducing on the residue field of le’ $mod$ . $\mathfrak{P}$ the automorphism $\xi\rightarrow\xi^{N\mathfrak{p}}$.
If $G(k^{\prime}/k)$ is abelian, we can write $\sigma_{\mathfrak{p}}$ instead of $\sigma_{\mathfrak{P}}$ . Inertia group of
$\mathfrak{p}$ over $k$ is the subgroup of $G(\mathfrak{P})$ consisting of all $\sigma$ in $G(\mathfrak{P})$ which
induce the identity antomorphism on the residue field. Then $\mathfrak{p}$ is
said to be unramified in $k^{\prime}$ if the group $G(\mathfrak{P})$ operates faithfully on
the residue field of $k^{f}mod$ . $\mathfrak{P}$, $i$ . $e$ . the inertia group of $\mathfrak{P}$ is the
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identity. $\psi^{\star}$ being as above, $\mathfrak{p}$ is unramified in the field correspond-
ing to the kernel of $\psi^{\star}$ if and only if $\psi^{\star}(\sigma_{\mathfrak{P}})$ does not depend on
the choice of $\sigma_{\mathfrak{P}}$ for any one of $\mathfrak{P}$. Let $S$ be a set of ideals in $k$.
Then the word density of prime ideals in $S$ is used in Kronecker’s
sense, $i$ . $e$ . it means the limit

$\Delta(S)=\lim_{s\rightarrow 1+0}(-\sum N\mathfrak{p}^{-s}/\log(s-1))$ ,

if this limit exists, the sum $\sum N\mathfrak{p}-s$ being taken over all prime
ideals $\mathfrak{p}$ in S. The density of the set of all prime ideals of the first
degree is 1. Also, the density of prime ideals in each ideal class
modulo an integral ideal $\mathfrak{m}$ (“ Strahlklasse “ $mod$ . $\mathfrak{m}$ ) is definite, and
equal for all classes. Now, Tschebotareff’s density theorem asserts
that, for any finite normal extension $h^{\prime\prime}$ of $k$ , and for any element
$\sigma$ in $G(k^{\prime\prime}/k)$ , the density of the prime ideals $\mathfrak{p}$ of $k$ of the first
degree such that $\sigma$ is a Frobenius automorphism of a prime divisor
of $\mathfrak{p}$ in $k^{\prime\prime}$ , is definite and positive. The word almost all, used for a
set of ideals in $k$, means “ all but a finite number of”. Then the
set of all $\sigma_{\mathfrak{P}}$ for all prime divisors $\mathfrak{P}$ of almost all prime ideals $\mathfrak{p}$ of the
first degree in $k$ is everywhere dense in $G(k^{\prime}/k)$, as is immediately seen
from Tschebotareff‘s density theorem.

$\mathfrak{p},$ $I,$ $\mathfrak{h}_{i}$ denote always prime ideals in some algebraic number fields,
and corresponding latin letters $p,$ $l,$ $h_{i}$ denote rational primes divisible res-
pectively by $\mathfrak{p},$ $l,$ $\mathfrak{h}_{i}$ , unless the other indications are explicitely given.

Let $k$ be as above, and $v$ be a valuation of $k$. Equivalent valu-
ations will be considered as the same. $k_{v}$ denotes the completion of
$k$ with respect to $v$, and $v$ is considered to be extended to $k_{v}$ . If $v$

is discrete, we use $\mathfrak{p}$ to denote either the corresponding prime ideal
in $k$, or valuation ideal in $k_{v}$ , or equivalence class of $v$, and write
$k_{\mathfrak{p}}$ instead of $k_{v}$ . In particular, $Q_{p}$ denotes a $p$-adic number field.
The normalized exponential valuation corresponding to $\mathfrak{p}$ is denoted
by $\nu_{\mathfrak{p}}$ . Then, an element $\alpha$ in $k_{\mathfrak{p}}$ such that $\nu_{\mathfrak{p}}(\alpha)=0$ is called a unit
in $k_{\mathfrak{p}}$ , or $\mathfrak{p}$ -unit. All $\mathfrak{p}$ -units form a multiplicative group, the $\mathfrak{p}$ -unit
group, in $k_{\mathfrak{p}}^{\star}$, which is denoted by $U_{v}$ . Any element $\alpha$ such that
$\nu_{\mathfrak{p}}(\alpha)\geqq 0$ is called $\mathfrak{p}$ -integral. We define similarly units and integral

elements in $\overline{Q}_{p}$ . All congruences are used in the sense of valuation
theory.

Id\‘ele group of $k$ is denoted by $I_{k}$ . There is a canonical isomor-
phism of the multiplicative group $k^{\star}$ into $I_{h}$ , which is denoted by $l$.
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The principal id\‘ele grovp $\ell k$ “‘ is denoted by $P_{k}$ . The canonical isomor-
phism of $k_{v}^{\star}$ into $I_{k}$ is denoted by $C_{v}$ , and also by $c_{\mathfrak{p}}$ if $v$ corresponds
to $\mathfrak{p}$. $C_{k}$ denotes the id\‘ele class group $I_{k}[P_{k}$ of $k$. $D_{k}$ denotes the
connected component of 1 in $C_{k}$ . Then the factor group $C_{k}^{\prime}=C_{k}/D_{k}$

is compact and totally disconnected. Class field theory assures now
the existence of canoytical isomorphism of $C_{k}^{\prime}$ onto the Galois group $G_{k}$ of
$A_{k}$ over $k$. By this isomorphism, the image of $t_{\mathfrak{p}}(U_{\mathfrak{p}})$ into $C_{k}^{\prime}$ (by the
natural homomorphism) corresponds to the inertia group of $\mathfrak{p}$, and
the image of $C_{\mathfrak{p}}(\pi_{\mathfrak{p}}U_{\mathfrak{p}})$ into $C_{k}^{\prime}$ corresponds to the set of all the Fro-
benius automorphisms $\sigma_{\mathfrak{p}}$ of $\mathfrak{p}$, where $\pi_{\mathfrak{p}}$ denotes a p-prime element
in $k(i. e. \nu_{\mathfrak{p}}(\pi_{\mathfrak{p}})=1)$ .

If an id\‘ele $a$ in $I_{k}$ is written as $a=(a_{v})$ , $a_{v}$ denotes the v-com-
ponents of $a$. Let $k^{\prime}$ be a finite extension of $k$ and $a^{\prime}=(a_{v}^{\prime},)$ be in
$I_{k},$ . Then the norm $N_{k/k}(a^{\prime})$ of $a^{\prime}$ is defined by $N_{k/k}(a^{\prime})=(a_{v})\in I_{k}$ such
that $a_{v}=\prod N_{(v)}(a_{v}^{\prime},)$ , where the product is taken over all extensions
$v^{\prime}$ of $v$ to $k^{\prime}$, and $N_{(v’)}$ denotes the norm of $k_{v}^{\prime}$ , into $k_{v}$ . $(a)$ will
denote the ideal of an id\‘ele $a=(a_{v})$ defined by

$(a)=\prod_{\mathfrak{p}}\mathfrak{p}^{\nu}\mathfrak{p}^{(\alpha}\mathfrak{p}^{)}$ . Then

for any $a$ in $I_{k}$ , the positive real number

$||a||=N((a))^{-1}$ [I $|a_{v_{\lambda}}|^{\eta_{\lambda}}$

is called the volume of $a$, where $v_{\lambda}$ runs over all Archimedean $v$, and
$k_{v_{\lambda}}$ is identified with $R$ or $C$ as the case may be, and $\eta_{\lambda}=[k_{v_{\lambda}}:R]$ .
Then we have $||\iota\alpha||=1$ for any $\alpha$ in $k^{\star}$ , so we can speak of volumes
of id\‘ele classes. $C_{k}^{0}$ denotes the subgroup of $C_{k}$ of all elements with
volume 1, then $C_{k}$ is isomorphic to the direct product $R\times C_{k}^{0}$ of $C_{k^{0}}$

and the additive group of $R$.
Representation $\psi$ of $C_{k}$ is identified with representation of $I_{k}$

induced by $\psi$, and, if $\psi$ takes the value 1 on $D_{k}$ , it is also identified
with that of $C_{k}^{\prime}=C_{k}/D_{k}$ induced by $\psi$. In this latter case, $\psi$ deter-
mines also a representation of the Galois group $G_{k}$ under the identi-
fication of $C_{k}^{\prime}$ with $G_{k}$ by class field theory. This representation of
$G_{k}$ is denoted by $\psi^{\star}$ . Now, a representation $\psi$ of $C_{k}$ is called
unramified at $\mathfrak{p}$ if $\psi(\ell_{\mathfrak{p}}(U_{\mathfrak{p}}))=1$ . When $\psi(D_{k})=1,$ $\psi$ is unramified at $\mathfrak{p}$

if and only if $\psi^{\star}(\sigma_{\mathfrak{p}})$ does not depend on the choice of $\sigma_{\mathfrak{p}},$

$i$ . $e$ . $\mathfrak{p}$ is
unramified in the field corresponding to the kernel of $\psi^{\star}$ . $\psi$ is
called unramified at real Archimedean $v$ if $\psi(c_{v}(-1))=the$ identity
element.

As to the following, special references are made to Weil [4]. For
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any integral ideal $\mathfrak{m}$ in $k,$ $I(\mathfrak{m})$ denotes the subgroup of $I_{k}$ consisting
of all $a=(a_{v})$ such that $a_{\mathfrak{p}}=1$ for all prime factors $\mathfrak{p}$ of $\mathfrak{m}$ , and $a_{v}=1$

for all Archimedean $v$. Then $I^{0}(\mathfrak{m})$ denotes the subgroup of $I(\mathfrak{m})$

consisting of all $a$ in $I(\mathfrak{m})$ such that the ideal $(a)=1$ . Then the
factor group $I(\mathfrak{m})/I^{0}(\mathfrak{m})$ is canonically isomorphic to the ideal group
$G(\mathfrak{m})$ . Now let a representation $\psi$ of $C_{k}$ be unramified at all $\mathfrak{p}$ in
$G(\mathfrak{m})$ . Then $\psi$ takes the value 1 on $I^{0}(\mathfrak{m})$ , hence $\psi$ induces a repre-
sentation of $G(\mathfrak{m})$ , which is denoted by $\tilde{\psi}$ . Notice that the subgroup
$I(\mathfrak{m})P_{k}$ is everywhere dense in $I_{k}$ (as is seen from approximation
theorem for valuations), hence $\psi$ is determined uniquely by $\tilde{\psi}$ .
Conversely, a representation $\tilde{\psi}$ of $G(\mathfrak{m})$ into a complete group $\Gamma$ can be
obtained from a representation of $C_{k}$ into $\Gamma$ in this manner if and only
if the following holds: Given any neighbourhood $V$ of the identity
element of $\Gamma$, there is a natural number $n$ and a positive number $\epsilon$

such that $\tilde{\psi}((\alpha))\in V$ for all $\alpha\in k^{\star}$ satisfying $\alpha\equiv 1mod$ . $\mathfrak{m}^{n}$ , and
$|\sigma\alpha-1|<\epsilon$ for all isomorphisms $\sigma$ in $H(k)$ .

All this holds in particular for a character $\psi$ of $C_{k}$ . Moreover,
a character $\chi$ of $C_{k}$ must be of the form $\chi(a)=\chi_{1}(a)||a||\rho$ where $\chi_{1}$

is a character with absolute value 1 and $\rho$ is a uniquely determined
real number, which is called the real part of $\chi$. Any $\chi$ is unramified
at almost all $\mathfrak{p}$ . If we denote by $\mathfrak{h}_{1},\ldots,$ $\mathfrak{h}_{t}$ the exceptional prime
ideals where $\chi$ is ramified, then, for each $\mathfrak{h}_{i}$ , there is the smallest
natural number $c_{i}$ such a that $\chi(f_{\mathfrak{h}_{i}}(\alpha))=1$ for all $\alpha$ in $k_{f)_{i}}$ satisfying
$\alpha\equiv 1mod$ . $\mathfrak{h}_{i}^{ci}$. Then an integral ideal $\uparrow=\mathfrak{h}_{1}^{c1}\cdots \mathfrak{h}_{t}^{ct}$ is called the con-
ductor of $\chi$. Let $\chi\sim$ be, as above, the corresponding character of
$G(f)$ . Notice that $|x\sim(\mathfrak{a})|=N\mathfrak{a}^{-\rho}$ for any $\mathfrak{a}$ in $G(f)$ . Now, there is a
character $X$ of $k^{\star}$ such that $X(\alpha)=x\sim((\alpha))$ for any $\alpha$ in $k^{\star}$ satisfying
$\alpha\equiv 1mod$ . $f$. We shall then say, following A. Weil, that a character
$\chi$ of $C_{k}$ is of type $(A_{0})$ if the corresponding character $X$ of $k^{\star}$ has
the following form:

$(^{\star})$

$X(\alpha)=\pm\prod_{\sigma\in H(k)}\sigma\alpha^{n(\sigma)}$

where $n(\sigma)$ are integers, and $\pm$ may depend on $\alpha$ . Notice that the
real part $\rho$ of such $\chi$ is a half integer, $i$ . $e$ . $2_{\beta}$ is an integer, and
also that $n(\sigma)$ must satisfy a certain condition. Conversely, if there
is a character $\chi\sim$ of ideal group $G(\mathfrak{m})$ such that $\chi\sim((\alpha))=X(\alpha)$ for any
$\alpha\equiv 1$ $mod$ . $\mathfrak{m}^{n}$ with a suitably fixed $n$ , where $X(\alpha)$ is of the form
$(^{\star})$ with integers $n(\sigma)$ independent of $\alpha$ , then $\chi\sim can$ be obtained from
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a character $\chi$ of $C_{k}$ of type $(A_{0})$ in the above exposed manner.
A character $\chi$ of $C_{k}$ is said to be of finite order if some power

of $\chi$, say $\chi^{n}$ , is the unit character, $i$ . $e$ . $\chi^{n}(a)=1$ for all $a\in I_{k}$ .
If $\chi$ is a character of $C_{k}$ of type $(A_{0})$, the values $x\sim(\mathfrak{a})$ of all ct

in $G(f)$ lie in a certain algebraic number field $K$ of finite degree.
Notice that $K$ need not contain $k$. For any valuation $w$ in $K$, $\chi\sim$

may also be cosidered as a representation of $G(\mathfrak{m})$ into the comple-
tion $K_{w}^{\star}$ , where $\mathfrak{m}$ is a multiple of $f$ to be determined later. Then
the above criterion shows that this representation determines a
representation $\chi_{w}$ , such that $\chi\sim=x_{w}\sim$ on $G(\mathfrak{m})$ , if we take $\mathfrak{m}=f$ when
$w$ is Archimedean, and $\mathfrak{m}=fl$ when $w$ is associated with a prime
ideal I of $K$. In the latter case $\chi_{w}$ is written as $\chi_{I}$ . From the
definition, $\chi_{I}$ is unramified at each $\mathfrak{p}$ in $G(\mathfrak{f}l)$ . Since $K_{I}^{\star}$ is totally
disconnected, $\chi_{I}$ takes the value 1 on the connected component $D_{k}$ , so
that $\chi_{I}$ is also a representation of $C_{k}^{\prime}$, and it determines the repre-
sentation $\chi_{I}^{\star}$ of the Galois group $G_{k}$ . Moreover, since $C_{k}^{\prime}$ is compact,
the image $x_{I}(C_{k}^{\prime})=x_{I}^{*}(G_{k})$ lies in the unit group $U_{I}$ of $K_{I}^{\star}$ . If $w$ is
Archimedean, $\chi_{w}$ is written as $\chi^{\tau}$ or as $\chi^{\sigma_{0}r}$ with corresponding iso-
morphisms $\tau,$ $\sigma_{0^{T}}$ in $H(K)$ . Notice that $\chi^{\tau}$ may also be defined by
$\chi^{\tau}\sim(\mathfrak{a})=\tau^{\sim}x(\mathfrak{a})$ for $\mathfrak{a}\in G(\uparrow)$ .

\S 1. Characterization of characters of type $(A_{0})$ .
1. Let $k$ be an algebraic number field of finite degree.
Let $\chi$ be a character of $C_{k}$ of type $(A_{0})$, with conductor $f$, real

part $-\rho$ , and associated character $X$ of $k^{\star}$ defined by

(1) $X(\alpha)=\pm\prod_{\sigma\in H(k)}\sigma\alpha^{n(\sigma)}$ .
We shall denote by $K$ an algebraic number field of finite degree,
containing all values $x\sim(\mathfrak{a})$ of the associated character $\chi\sim$ of the ideal
group $G(f)$ . Then $K^{\prime}$ will denote the Galois closure of $k$ and of $K$.
Since a suitable power of ideals in $k$ can be represented as principal
ideals, the ideal $(x\sim(\mathfrak{a}))$ in $K^{\prime}$ must have the form $(x\sim(\mathfrak{a}))=\prod_{\sigma}\sigma \mathfrak{a}^{n(\sigma)}$ for

all ideals a in $G(f)$ , where all $\sigma \mathfrak{a}$ are considered as ideals in $K^{\prime}$ .
For any $\tau$ in $HK^{\prime}$ ), $\chi^{\tau}$ is also of type $(A_{0})$ , with the same con-

ductor $f$ as $\chi$. Let $-\rho^{\prime}$ be the real part of $\chi^{\tau}$. Then, since $\chi\sim((\gamma))$ is
rational for any rational number $r$ satisfying $r\equiv 1mod$ . $f$, we see
that $N((\gamma))^{\rho}=|x\sim((r))|=|\tau^{\sim}x((r))|=N((\gamma))^{\rho^{\prime}}$, where $N((r))$ is the norm of
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$(r)$ considered as an ideal in $k$. This shows $\rho=\rho^{\prime},$ $i$ . $e$ . $\chi$ and $\chi^{\tau}$ have
the same real part. In particular, we have $|\tau^{\sim}x(\mathfrak{p})|=N\mathfrak{p}^{\rho}$ for any $\mathfrak{p}$

in $G(f)$ and any $\tau$ in $H(K^{\prime})$ . Observe finally that, if we put $n_{0}=$

${\rm Min}_{\sigma}n(\sigma),$
$\chi\sim(\mathfrak{p})N\mathfrak{p}^{-n_{0}}$ is an algebraic integer in $K$ for any $\mathfrak{p}$ in $G(f)$ .

Let $l$ be a prime ideal in $K$ and $\chi_{I}$ the representation of $C_{k}$ into
the unit group $U_{I}$ in $K_{I}^{\star}$ associated with $\chi$. Denote by $k(\chi, l)$ the
subfield of $A_{k}$ corresponding to the kernel of the representation $\chi_{I}^{\star}$

of $G_{k}$ induced by $\chi_{I}$ . This $k(x, 1)$ is nothing but the field attached to
$\chi$ and $J$ by A. Weil [4]. If $\mathfrak{p}$ is in $G(\overline{\uparrow}l),$

$\chi_{I}$ is unramified at $\mathfrak{p}$, hence
$\mathfrak{p}$ is unramified in $k(x, l)$ . Moreover, from the definition, we see
$\chi_{I}^{\star}(\sigma_{\mathfrak{p}})=\chi_{I}(f_{\mathfrak{p}}\pi_{\mathfrak{p}})=x\sim(\mathfrak{p})$ for any $\mathfrak{p}$ in $G(fl)$ , where $\pi_{\mathfrak{p}}$ denotes a $\mathfrak{p}$-prime
element in $k_{\mathfrak{p}}^{\star}$ .

2. Let again $k$ and $K$ be algebraic number fields of finite degree,
and $K^{\prime}$ be the Galois closure of $k$ and $K$. Let $S$ be a set of prime
ideals of $K$ with positive density $\delta$. We shall consider a system $\{\psi_{I}^{\star}\}$

of representations $\psi_{I}^{\star}$ of the Galois group $G_{k}$ into $U_{I}\subset K_{I}^{\star}$ , where $\{$

runs through all prime ideals in S. We denote by $k(\psi, l)$ the subfield
of $A_{k}$ corresponding to the kernel of $\psi_{I}*$ . Now, we assume that the
following four conditions $(CA_{I})-(CA_{IV})$ are satisfied:

$(CA_{I})$ There is an integral ideal $\mathfrak{m}$ of $k$ with the property that
$\mathfrak{p}$ is unramified in $k(\psi, \mathfrak{l})$ for any $\mathfrak{p}$ in $G(\mathfrak{m})$ and for any I in $S$ such
that $\mathfrak{p}$ lies in $G(\mathfrak{m}l)$ .

This means that the value $\psi_{I}^{\star}(\sigma_{\mathfrak{p}})$ is independent of the choice of
$\sigma_{\mathfrak{p}}$ for each $\mathfrak{p}$ in $G(ml)$ .

$(CA_{II})\psi_{I}^{\star}(\sigma_{\mathfrak{y}})$ belongs to $K$ and is independent also of I in $S$ such
that $\mathfrak{p}$ belongs to $G(\mathfrak{m}l)$ .

We shall denote this common value of $\psi_{I}^{\star}(\sigma_{\mathfrak{p}})$ by $\tilde{\psi}(\mathfrak{p})$ , and also
put $\tilde{\psi}(\mathfrak{a})=\prod_{\mathfrak{p}}\tilde{\psi}(\mathfrak{p})^{c}\mathfrak{p}$ for any ideal $\mathfrak{a}=\prod_{\mathfrak{p}}\mathfrak{p}^{c_{\mathfrak{p}}}$ in $G(\mathfrak{m})$ .

$(CA_{III})$ We have

$|\tau\tilde{\psi}(\mathfrak{p})|=N\mathfrak{p}^{\rho}$

for all $\mathfrak{p}$ in $G(\mathfrak{m})$ and for all $\tau$ in $H(K)$ , where $\rho$ is a fixed half
integer independent of $\mathfrak{p}$ and of $\tau$.

$(CA_{IV})$ There is a natural number $n_{0}$ such that $\tilde{\psi}(\mathfrak{p})N\mathfrak{p}^{n_{0}}$ are
algebraic integers in $K$ for all $\mathfrak{p}$ in $G(\mathfrak{m})$ .

Finally we impose one more condition, which is a temporary one:
$(A)$ The principal ideal $(\tilde{\psi}(\mathfrak{p}))$ in $K^{\prime}$ can be expressed in the

form
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(2) $(\tilde{\psi}(\mathfrak{p}))=\prod_{\sigma\in H(k)}\sigma \mathfrak{p}^{n(\sigma.0)}$ ,

for all $\mathfrak{p}$ in $G(\mathfrak{m})$ , where $n(\sigma, \mathfrak{p})$ are rational integers, which may
depend $m\mathfrak{p}$ as well as $\sigma$. Notice that $n(\sigma, \mathfrak{p})$ need not be uniquely
determined by $\mathfrak{p}$ and $\sigma$ unless $\mathfrak{p}$ is of the first degree.

As we have seen in 1, the system $\{\chi_{I}^{\star}\}$ obtained from a character
$\chi$ of $C_{k}$ of type $(A_{0})$ satisfies these conditions, with $\mathfrak{m}=f,\tilde{\psi}(\mathfrak{p})=x\sim(\mathfrak{p})$

and $S=the$ set of all prime ideals in $K$. Our aim is now to prove the
converse, $i$ . $e$ . to show that our conditions $(CA_{I})-(CA_{IV})$ characterize
the character of type $(A_{0})$ , in the language of the Galois group $G_{k}$.

If we take the natural number $n_{0}$ in the condition $(CA_{IV})$ and
put $\varpi=\tilde{\psi}(\mathfrak{p})N\mathfrak{p}^{n_{\gamma}}$ for any $\mathfrak{p}$ in $G(\mathfrak{m})$ , then $\varpi$ , and also $\overline{\varpi}$, are algebraic
integers in $k$. From the condition $(CA_{III})$ , we have $\varpi\cdot\overline{\varpi}=|\varpi|^{\underline{)}}=$

$N\mathfrak{p}^{9}\rho+2n_{0}$ hence any prime factor of ixy must divide Np, so that any
prime factor of $\tilde{\psi}(\mathfrak{p})$ (with positive or negative exponent) must
divide Np. We thus see that, if the conditions $(CA_{I})-(CA_{IV})$ are
satisfied, and if $k$ is suitably large, $e$ . $g$. if $k=K^{\prime}$ , the condition $(A)$

is antomatically satisfied. Moreover, as we shall see later, $(A)$ is
logically dependent on $(CA_{I})-(CA_{IV})$ for any field $k$. We have added
this condition $(A)$ for the convenience of the proof.

3. $\psi_{I}^{\star}$ determines a representation $\psi_{I}$ of $C_{k}^{\prime}=C_{k}/D_{k}$ into $U_{I}$ .
Then conditions $(CA_{I}),$ $(CA_{II})$ are equivalent to the following: $\psi_{I}$ is
unramified at each $\mathfrak{p}$ in $G(\mathfrak{m}l)$ , and $\psi_{I}(t_{\mathfrak{p}}(\pi_{\mathfrak{p}}))=\tilde{\psi}(\mathfrak{p})$ for any p-prime
element $\pi_{\mathfrak{p}}$ in $k_{\mathfrak{p}}^{96}$ , for each $\mathfrak{p}$ in $G(\mathfrak{m}l)$ .

More generally, let $\mathfrak{p}$ be prime to $l$. From the continuity of the
representation $\psi_{\iota^{\circ f}\mathfrak{p}}$ of $k_{\mathfrak{p}}^{\star}$ , we see that there is a natural number $c$

such that $\alpha\equiv 1mod$ . $\mathfrak{p}^{c}(\alpha\in k^{\star})$ implies $\psi_{I}\circ c_{\mathfrak{p}}(\alpha)\equiv 1mod$ . I. For such
$\alpha,$

$\alpha^{p^{n}}$ converges to 1 in $k_{\mathfrak{p}}^{\star}$ as $ n\rightarrow\infty$ , so that $\psi_{\iota^{of}\mathfrak{p}}(\alpha)^{p^{n}}$ must converge
to 1 in $K_{I}^{\star}$ as $ n\rightarrow\infty$ , which is however not the case unless $\psi_{I}\circ\iota_{\mathfrak{p}}(\alpha)$

$=1$ , because I does not divide $p$. Thus, for any $\mathfrak{p}$ in $G((l))$ , there is
the smallest non-negative integer $c(\mathfrak{p}, \downarrow)$ such that $\alpha\equiv 1mod$ . $\mathfrak{p}^{c(\mathfrak{p}.\iota)}$

implies $\psi_{I}\circ f\mathfrak{p}(\alpha)=1$ . We have clearly $c(p, I)=0$ if $\mathfrak{p}$ is in $G(ml)$ , where
the congruence $\alpha\equiv 1$ $mod$ . $\mathfrak{p}^{0}$ indicates $\alpha\in U_{I}$ . Then we put $f(l)=$

$\mathfrak{p}\in G((\ell))\prod \mathfrak{p}^{c(0,I)}$ . This $\mathfrak{s}(I)$ is an integral ideal in $k$. Since the number of

classes of $U_{I}$ modulo $\mathfrak{p}^{c(\mathfrak{p},\iota)}$ is finite, the images of $\alpha\in U_{1}$ by $\psi_{I^{\circ f}\mathfrak{p}}$

are roots of unity in $K_{1}$ . Hence we have

(3) $\psi_{\iota}(a)=\epsilon\tilde{\psi}((a))$ for $a=(a_{\mathfrak{p}})$ in $I((l))$ such that $(a)\in G(\mathfrak{m})$ ,
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where $\epsilon$ is a root of unity in $K_{I}$ depending only on the classes of
$a_{\mathfrak{p}}mod$ . $\mathfrak{p}^{c(\mathfrak{p},I)}$ for prime factors $\mathfrak{p}$ of $\mathfrak{m}$ prime to 1. We shall denote
by $W(I)$ the number of roots of unity $\epsilon$ which appear in (3) for
some $a\in I((l))$ such that $(a)\in G(\mathfrak{m})$ . We shall now show that $W(I)$

are bounded for infinitely many I in S.
Let $\mathfrak{h}_{1},\ldots,$ $\mathfrak{h}_{m}$ be all the prime factors of $\mathfrak{m}$ in $k$, and put $h=$

$h_{1}\cdots h_{m},$ $c(\mathfrak{h}_{i}, I)=c_{i}$ . Denote then by $W^{\prime}(I)$ the number of $\epsilon$ which
appear in (3) for some $a=(a_{\mathfrak{p}})\in I((l))$ such that $a_{\mathfrak{y}_{i}}\equiv 1mod$ . $\mathfrak{h}_{i}(i=$

$1,\ldots,$ $m$). Clearly, $W(I)/W^{\prime}(I)$ are bounded for all $f$ in $S,$ $i$ . $e$ . $\leqq\prod_{i=1}^{7\prime l}N\mathfrak{h}_{i}$ .
If we take $t$ large enough, we have $a_{\mathfrak{h}_{i}}^{h^{l}}\equiv 1mod$ . $\mathfrak{h}_{i^{c_{i}}}$ for $a\in I((l))$

such that $a_{\iota)_{i}}\equiv 1mod$ . $\mathfrak{h}_{i}(i=1,\ldots, m)$ . This shows that $\epsilon^{h}t=1$ for any
$\epsilon$ corresponding to these $a,$

$i$ . $e$ . $W^{\prime}(\mathfrak{l})$ divides $h^{t}$ ; here $t$ may depend
on I. Now take a natural number $t_{0}$ so large that we have $[K(\zeta) : K]$

$>2/\delta$ for a primitive $h^{t_{0}}$ -th root of unity $\zeta$ ( $\delta$ is the density of S).
Class field theory shows that the set of prime ideals of the first
degree in $K$, which split completely in the abelian extension $K(\zeta)$ ,
has the definite density $[K(\zeta):K]^{-1}$ . Hence there are infinitely many
$l$ in $S$ (at least with density $\delta/2$ ), which split in $K(\zeta)$ into prime
ideals of higher degrees, that is to say, there are infinitely many 1
in $S$ such that $K_{I}$ do not contain $\zeta$. For such 1, $W^{\prime}(I)$ must be
smaller than $h^{t}$ “ Thus we have seen that the number $W(I)$ are bounded
for infinitely many prime ideals I of the first degree in S. We shall
denote by $S^{\prime}$ a set of infinitely many prime ideals I of the first
degree in $K$ such that $W(f)$ are smaller than a given bound, and
moreover such that $l$ are prime to $\mathfrak{m}$ and unramified in $K^{\prime}$ . We
shall then denote by $\mathcal{E}$ the group of roots of unity generated by
all roots of unity in $K^{\prime}$ and by all 6 in (3) for all I in $S^{\prime}$ ; this $\mathcal{E}$

is clearly a finite group.

4. We want to prove now that $\tilde{\psi}(\mathfrak{a})$ has the form $\prod_{\sigma}\sigma \mathfrak{a}^{n(\sigma)}$ with

$n(\sigma)$ independent of $\mathfrak{a}$ . For this purpose, observe the integers $n(\sigma, \mathfrak{p})$

in $(A)$ . From $(CA_{III})$ , we see $(\tau\tilde{\psi}(\mathfrak{p})\cdot\sigma_{0}\tau\tilde{\psi}(\mathfrak{p}))=N\mathfrak{p}^{2\rho}=\prod_{\sigma\in H(k)}0\mathfrak{p}^{2\rho}$ for any

$\mathfrak{p}$ in $G(\mathfrak{m})$ and for any $\tau$ in $H(K^{\prime})$ . If $\mathfrak{p}\in G(\mathfrak{m})$ is of the first degree,
and unramified over $Q$, then $\sigma \mathfrak{p}$ and $0^{\prime}\mathfrak{p}$ have no common prime factor
in $K^{\prime}$ if $\sigma\neq\sigma^{\prime}$ , so that the expression for $\tilde{\psi}(\mathfrak{p})$ in $(A)$ is unique, $i$ . $e$ .
$n(\sigma, \mathfrak{p})$ are uniquely determined by $\sigma,$

$\mathfrak{p}$ . Hence we have

(4) $ n(\sigma, \mathfrak{p})+n(\tau^{-1}\sigma_{0}r\sigma \mathfrak{p})=2\rho$
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for all $\sigma$ in $H(k),$ $\tau$ in $H(K^{\prime})$ . Moreover, $(CA_{IV})$ shows that $ n(\sigma, \mathfrak{p})\geqq$

$-n_{0}$ if $n(\sigma, \mathfrak{p})$ are uniquely determined. Notice that if a set of
integers $\{n(\sigma, \mathfrak{p})|\sigma\in H(k)\}$ satisfies the condition (4), then we have
$|\tau\alpha^{\prime}|=|N_{k/Q}\alpha|\rho$ where $\alpha^{\prime}=\prod\sigma\alpha^{n(\sigma,\mathfrak{p})},$ $\alpha\in k^{\star}$ .

For general $\mathfrak{p}$ , this last relation maybe does not hold. But in
any case, let $\mathfrak{p}_{\perp},\cdots,$ $\mathfrak{p}_{g}$ be all the prime factors of $p$ in $K^{\prime}$ , and $K_{i}$ the
decomposition field of $\mathfrak{p}_{i}$ over $Q$. Then, a suitable power of $\mathfrak{p}_{1}$ , say
$\mathfrak{p}_{1}^{f}$, can be represented as principal ideal $(\pi_{1})$ with $\pi_{1}$ in $K_{1}$ : $\mathfrak{p}_{1}^{f}=(\pi_{1})$ .
Clearly, for any $\tau$ in $H(K^{\prime}),$ $\tau \mathfrak{p}_{1}=\mathfrak{p}_{1}$ if and only if $\tau\pi_{1}=\pi_{1}$ . It is also
clear that, if $\tau \mathfrak{p}_{1}=\mathfrak{p}_{i}$ , then $\pi_{i}=\tau\pi_{1}\in K_{i}$ does not depend on the choice
of such $\tau$ and $\mathfrak{p}_{i}^{f}=(\pi_{i})$ . Now, let $\mathfrak{p}=(\mathfrak{p}_{1}\cdots \mathfrak{p}_{j})^{e}$ be the prime decom-
position of $\mathfrak{p}$ in $K^{\prime}$ . If we put $\pi=(\pi_{1}\cdots\pi_{j})^{e}$ accordingly, $\pi$ belongs to
$k,$ $\mathfrak{p}^{f}=(\pi)$ and $|\tau\pi^{\prime}|=N\mathfrak{p}^{f\rho}$ for any $\tau$ in $H(K^{\prime})$ , where $\pi^{\prime}=\prod_{\sigma}\sigma\pi^{n(\sigma,\mathfrak{p})}$ and

$n(\sigma, \mathfrak{p})$ are integers in any expression of $\tilde{\psi}(\mathfrak{p})$ in $(A)$ . Thus $\tilde{\psi}(\mathfrak{p}^{f})\pi^{\prime-1}$

$=\eta$ is a unit in $K^{\prime}$ , and we have $|\tau\eta|=1$ for any $\tau$ in $H(K^{\prime})$ , so that
$\eta$ is a root of unity in $K^{\prime},$ $i$ . $e.\tilde{\psi}(\mathfrak{p}^{f})=\eta\pi^{\prime}=\eta\prod_{\sigma}\sigma\pi^{n(\sigma,\mathfrak{p})}$ with a root of

unity $\eta$ in $K^{\prime}$ .
Let now $\{n_{\nu}(\sigma)|\sigma\in H(k)\}$ be systems of rational integers $ n_{\nu}(\sigma)\geqq$

$-n_{0}$, satisfying

(5) $ n_{\nu}(\sigma)+n_{\nu}(\tau^{-1}\sigma_{0}\tau\sigma)=2\rho$

for any $\sigma\in H(k)$ and $\tau\in H(K^{\prime})$ . Since $n_{\nu}(\sigma)$ must be $\leqq 2\rho+n_{0}$ , the
number of these systems is finite. Let then $T_{\nu}$ be the set of all
principal prime ideals $\mathfrak{p}$ of the first degree in $G(\mathfrak{m})$ , unramified over
$Q$, such that $n(\sigma, \mathfrak{p})=n_{\nu}(\sigma)$ for all $\sigma$, and put $T=\cup T_{\nu}$ . From what

$\nu$

we have remarked above, these $T_{\nu}$ are mutually disjoint, and $T$

contatins almost all principal $\mathfrak{p}$ of the first degree in $k$. We shall
denote by $<T_{\nu}>$ the subgroup of $G(\mathfrak{m})$ generated by $\mathfrak{p}$ in $T_{\nu}$. Then
the finiteness of the number of $T_{\nu}$ brings forth the following result:

For any natural number $n,$ $S((n))$ denotes the subgroup of $G((n))$

consisting of all $\mathfrak{a}$ in $G((n))$ representable as $\mathfrak{a}=(\alpha)$ with $\alpha$ in $k^{\star}$

satisfying $\alpha\equiv 1mod$ . $n$, then the factor group $\mathfrak{S}(n)=G((n))/S((n))$ is
the ”Strahlklassengruppe” modulo $(n)$ in $k$. We denote by $G_{0}((n))$

the set of all principal ideals is $G((n))$ , and put $\mathfrak{S}_{0}(n)=G_{0}((n))/S((n))$ .
Then we denote by $\mathfrak{T}_{\nu}(n)$ the image of the subgroup $<T_{\nu}>\cap G((n))$

into $\mathfrak{S}_{0}(n)$ by the natural homomorphism. We shall denote moreover
by $\mathfrak{S}_{0^{\prime}}(n)$ the multiplicative group of all the prime residue classes
$mod$ . $(n)$ in $k$. There is a natural homomorphism of $\mathfrak{S}_{0^{\prime}}(n)$ onto
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$\mathfrak{S}_{0}(n)$ , whose kernel consists of all classes containing a unit in $k$.
We shall then denote by $\mathfrak{T}_{\nu^{\prime}}(n)$ the inverse image of $\mathfrak{T}_{\nu}(n)$ in $\mathfrak{S}_{0^{\prime}}(n)$ .
Assume now for a moment that, for each $\nu$ , there are infinitely
many prime numbers $l_{i}^{(\nu)}(i=1,2,\ldots)$ such that $\mathfrak{T}_{\nu}(l_{i}^{(\nu)})\neq \mathfrak{S}_{0}(l_{\iota^{(\nu)}}),$ $i$ . $e$ .
$\mathfrak{T}_{\nu^{\prime}}(l_{\iota^{\nu}}^{()})\neq \mathfrak{S}_{0^{\prime}}(l_{i}^{(\nu)})$ . Let $m_{t}^{(\nu)}$ be a product of a finite number $t$ of
different $l_{i}^{(\nu)}$ , say, $m_{t}^{(\nu)}=l_{1}^{(\nu)}\cdots l_{t^{(\nu)}}$ . Then, since $\mathfrak{S}_{0^{\prime}}(m_{t}^{(\nu)})$ is isomorphic
to a direct product $\mathfrak{S}_{0^{\prime}}(l_{1}^{(\nu)})\times\cdots\times \mathfrak{S}_{0^{\prime}}(l_{t^{(\nu)}})$ , and since the index [ $\mathfrak{S}_{0^{\prime}}(l_{i^{(\nu)}})$ :
$\mathfrak{T}_{\nu^{\prime}}(l_{\iota^{(\nu)}})]\geqq 2$, we have, $[\mathfrak{S}_{0}(m_{t}^{(\nu)}):\mathfrak{T}_{\nu}(m_{t}^{(\nu)})]=[\mathfrak{S}_{0^{\prime}}(m_{t}^{(\nu)}):\mathfrak{T}_{\nu^{\prime}}(m_{t}^{(\nu)})]\geqq 2^{t}$ . Hence,
if we denote by $T_{t^{(\nu)}}$ the set of prime ideals in the inverse image of
$\mathfrak{T}_{\nu}(m_{t}^{(\nu)})$ in $G((m_{t}^{(v)}))$ , the density of $T_{t}^{(\nu)}$ is definite and is at most $2^{-t}$ .
Notice that the union $\bigcup_{\nu}T_{t^{\nu}}^{()}$ contains almost all principal prime

ideals of the first degree in $k$, for any $ t=1,2,\ldots$ , hence it has a
non-zero definite density. But the number of sets $T_{\nu}$ being finite,
the density of $\cup T_{c^{(\nu)}}$ must become arbitrarily small if we take $t$

$\nu$

suitably large, which is a contradiction. Thus we have proved that
there is at least one $\nu$, for which $\mathfrak{T}_{\nu}(l)=\mathfrak{S}_{0}(l)$ hold for all but a finite
number of prime number $l$.

We shall take a fixed one $T_{\nu}$ with this property, and denote this
$T_{\nu},$ $<T_{\nu}>,$ $n_{\nu}(\sigma)$ by $T_{0},$ $<T_{0}>,$ $n(\sigma)$ respectively. With these $n(\sigma)$ we
put
(6) $ X(\alpha)=\prod_{\sigma\in H(k)}\sigma\alpha^{n()}\sigma$

for $\alpha\in k^{\star}$ . Since $n(\sigma)$ satisfiy (5), we have $|\tau X(\alpha)|=|N_{k/Q}\alpha|\rho$ for any
$\tau\in H(K^{\prime})$ . Clearly this $X$ is a representation of $k^{\#}$ with discrete
topology into $(K^{\prime})^{\star}$ .

5. We need a new topology of $k^{*}$ . Let $v$ be a valuation of $Q$

and $v_{1},\cdots,$ $v_{g}$ be all the extensions of $v$ to $k$. Then the weakest topo-
logy of $k$ stronger than each topology of $k$ determined by $v_{i}(i=1,\ldots, g)$

will be called the $v$-topology of $k$. This topology is metrisable, and
makes $k$ a topological field. Then the completion $k_{v}$ of $k$ with respect
to the v-topology is an algebra over Q., and is isomorphic to the
direct sum $k_{v_{1}}+\cdots+k_{v_{g}}$ as topological algebras. Hence the canonical
isomorphism of $k_{v^{\star_{1}}}\times\cdots\times k_{v_{g}^{\star}}$ into $I_{k}$ determines an imbedding

$v$ of $k^{\star}$

into $I_{k}$ . Then $c_{v}$ is bicontinuous with respect to v-topology of $k$ and
the topology of $c_{v}(k^{\star})$ induced by that of $I_{k}$ . Let $w$ be an extension
of $v$ to $K^{\prime}$ . Then $\alpha\rightarrow\sigma\alpha(\alpha\in k^{\star})$ is continuous with respect to v-
topology of $k$ and the topology of $K^{\prime}$ determined by $w$, for any $\sigma$ in
$H(k)$ , hence the mapping $X$ defined in (6) is a representation of $k^{\star}$
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into $K^{r\star}$ with respect to these topologies. When $v$ is determined by
a prime number $l$, we speak of l-topology, and write $k_{l},$

$C_{l}$ instead of
$k_{v},$

$f_{V}$ . Notice that an element $\alpha$ in $k^{\star}$ is near to 1 with respect to
l-topology if and only if $\alpha\equiv 1$ $mod$ . $l^{i}$ with a high power li of $l$.
We. put finally $(\alpha)_{\iota}=(\ell_{\iota}\alpha)$ for $\alpha$ in $k^{\star}$ , $i$ . $e$ . $(\alpha)_{l}=q_{1}^{\nu_{1}(\alpha)}\cdots q_{g}^{\nu_{g}(\alpha)}$ , where
$q_{1},\ldots,$ $q_{g}$ denotes all the prime divisors of $l$ in $k$ and $\nu_{i}=\nu_{\eta_{i}}$ .

Now take a prime ideal I in $K$ in the set $S$, such that 1is prime
to $\mathfrak{m}$ . Put then

$\Psi_{1}(\alpha)=\psi_{\iota}(\ell_{l}(\alpha))\cdot\tilde{\psi}((\alpha)_{l})^{-1},$ $\alpha\in k^{\star}$ .
This $\Psi_{\mathfrak{l}}$ is a representation of $k^{\star}$ with l-topology into $K_{I}^{\star}$ , as we
have $\tilde{\psi}_{I}((\alpha)_{\iota})=1$ for $\alpha\equiv 1mod$ . I. Moreover, from (3) in 3, and from
$\psi_{I}(f(\alpha))=1$ , we see
(7) $\Psi_{I}(\alpha)=\pm\epsilon\tilde{\psi}((\alpha))^{-1}$ ,

for any $\alpha$ prime to $\mathfrak{m}$ , where $\epsilon$ is a root of unity depending only
on the class of $\alpha$ $mod$ . $\uparrow(I)$ , and $\pm$ depends on the signatures of $\alpha$

at real primes. This shows in particular that $|\tau\Psi_{I}(\alpha)|=|N_{k/Q}\alpha|\rho$ for
such $\alpha$, and for any $\tau$ in $H(K^{\prime})$ . Notice that, if I is in $S^{\prime},$ $6$ belongs
to the finite group $\mathcal{E}$ (defined at the end of 3). Observe also that, if
the ideal $(\alpha)$ belongs to $<T_{0}>$ , the principal ideal $(\Psi_{I}(\alpha))=(\tilde{\psi}((\alpha)))^{-1}$

must be $=\prod_{\sigma}\sigma(\alpha)^{-n(\sigma)}$. Hence, for these $(\alpha),$ $\Psi_{I}(\alpha)X(\alpha)$ is a unit in
$K^{\prime}$, all conjugates of which have the same absolute value 1, $i$ . $e.$ , it
is a root of unity $\epsilon^{\prime}$ in $K^{\prime}$ :

(8) $\Psi_{I}(\alpha)=\epsilon^{\prime}X(\alpha)^{-},$ $\alpha\in k^{\star}$ , such that $(\alpha)\in<T_{0}>$ .
We shall now prove that (8) holds for any $\alpha$ prime to $\mathfrak{m}$ . For

this purpose, let $\mathfrak{p}$ be any prime ideal in $G(\mathfrak{m})$ . Take a number $\pi$

in $k^{\star}$ such that $\mathfrak{p}^{f}=(\pi)$ with a natural number $f$, and $\tilde{\psi}(\mathfrak{p}^{f})=\eta\pi^{\prime}=$

$\eta\prod_{\sigma}\sigma\pi^{n(\sigma.\mathfrak{p})}$ with a root of unity $\eta$ in $K^{\prime}$ (cf. 4). Put $\pi^{\prime\prime}=X(\pi)\pi^{r-1}$ ,

and assume for a moment that $\pi^{\prime\prime}$ is not a root of unity. Then,
none of a finite number of elements $\pi^{\prime\prime}-\epsilon$ for all $e\in e$ should not
be $0$ . The set $S^{\prime}$ (at the end of 3) being infinite, we can find an 1
in $S^{\prime}$ such that $l$ is prime to $\pi$ and to all these $\pi^{\prime\prime}-\epsilon$, and the image
$\mathfrak{T}_{0}(l)$ of $<T_{0}>\cap G((l))$ into $\mathfrak{S}_{0}(l)$ is equal to $\mathfrak{S}_{0}(l)$ (cf. the end of 4).
From the last assumption, there is a principal ideal $(\alpha.)$ in $<T_{0}>$

such that $\alpha\pi\equiv 1mod$ . $l$. $\pi$ being prime to $\mathfrak{m}$, we see from (7) and (8)

$\Psi_{I}(\alpha\pi)X(\alpha\pi)=\epsilon^{\prime}\Psi_{\iota}(\pi)X(\pi)=\pm\epsilon^{\prime}\epsilon\tilde{\psi}(\mathfrak{p}^{f})^{-1}x_{(\pi})=\pm\epsilon^{\prime}\epsilon\eta^{-1}\pi^{\prime\prime}$ ,
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where $\epsilon^{\prime},$

$\epsilon,$ $\eta$ belong to the group $\mathcal{E}$, hence $\epsilon_{0}=\pm\epsilon^{\prime}\epsilon\eta$ also lies in $\mathcal{E}$.
Let $l^{\prime}$ be a prime factor of I in $K^{\prime}$ . Since $\alpha\pi\equiv 1mod$ . $l$, the number
$(\alpha\pi)^{\iota^{t}}$ converges to 1 with respect to l-topology as $ t\rightarrow\infty$ , so that the
value $(\epsilon_{0}\pi^{\prime\prime})^{\iota^{t}}=\Psi_{I}((\alpha\pi)^{\iota^{t}})\cdot X((\alpha\pi)^{\iota^{t}})$ must converge to 1 in $K_{I^{\prime}}$, because
$\Psi_{I},$ $X$ are representation of $k$ ““ with l-topology into $K_{I}4$ . But as we
have $\beta^{NI^{\prime}}\equiv\beta mod$ . $i^{\prime}$ for any I’-integral $\beta$ in $K_{I^{\prime}}$, this convergence of
$(\epsilon_{0}\pi^{\prime\prime})^{\iota^{t}}$ must imply that $e_{0}\pi^{\prime\prime}\equiv 1mod$ . $l^{\prime},$ $i$ . $e$ . $I^{\prime}$ must divide $\pi^{\prime\prime}-\epsilon_{0}^{-1}$ .
This contradicts however the assumption that $l$ is prime to all
$\pi^{\prime\prime}-\epsilon$ for $\epsilon\in \mathcal{E}$. We have thus proved that $\pi^{\prime\prime}=X(\pi)\pi^{\prime-1}$ is a root of
unity, hence $(\tilde{\psi}(\mathfrak{p}^{f}))=\prod_{\sigma}\sigma \mathfrak{p}^{f\cdot n(\sigma)}$ . In other words, integers $n(\sigma, \mathfrak{p})$ in the

conditim $(A)$ may be taken as $n(\sigma)$ , independent of $\mathfrak{p}$ . Thus we have
arrived at the result aimed at the beginning of 4.

This implies in particular that (8) holds for any $\alpha$ in $k^{\star}$ , prime
to $\mathfrak{m},$

$i$ . $e$ . $\Psi_{I}(\alpha)X(\alpha)=e_{I}^{\prime}(\alpha)$ , and $e\{(\alpha)$ is a root of unity in $K^{\prime}$ . Denote
by $\mathcal{E}_{0}$ the (finite) group of roots of unity in $K^{\prime}$ . Then, $\Psi_{I}(\alpha)X(\alpha)$

induces a representation into $\mathcal{E}_{0}$ of the subgroup of $k^{\star}$ with induced
l-topology, consisting of all $\alpha$ prime to $\mathfrak{m}$ . Hence there is a power
lc of $l$ such that $\alpha\equiv 1mod$ . $l^{c}$ implies $\epsilon\{(\alpha)=1$ for an $\alpha$ prime to $\mathfrak{m}$ .
On the other hand, we see from (7) that $\Psi_{I}(\alpha)=\tilde{\psi}((\alpha))^{-1}$ for totally
positive ( $i$ . $e$ . positive at each real prime) $\alpha$ satisfying $\alpha\equiv 1mod$ . $\uparrow(I)$ .
Thus $\tilde{\psi}((\alpha))=X(\alpha)$ for any totally positive $\alpha\equiv 1mod$ . $\uparrow(I)l^{c}$. Since $\tilde{\psi}$ ,
$X$ does not depend on I, this is true for any I in S. Hence, if we
denote by $f$ the greatest common divisor of all $f(I)l^{c}$ for $l\in S$, then
we have $\tilde{\psi}((\alpha))=X(\alpha)$ for any totally positive $\alpha$ prime to $\mathfrak{m}$ satisfy-
ing $\alpha\equiv 1mod$ . $f,$ $i$ . $e.\tilde{\psi}((\alpha))=\pm X(\alpha)$ for any $\alpha$ in $k^{\star}$ satisfying $\alpha\equiv 1$

$mod$ . $\mathfrak{m}f$. As was recalled in ” Notations and terminologies...,” this
shows that there is a character $\chi$ of $C_{k}$ of type $(A_{0})$ , such that the
associated character of $k^{\star}$ is exactly equal to our $X$, and the asso-
ciated ideal character $\chi\sim$ of $G(\mathfrak{m})$ is exactly equal to $\tilde{\psi}$ . Then, since
$\psi_{I}$ and $\chi_{I}$ coincide on the dense set $I(\mathfrak{m})P_{k}$ of $I_{k}$ , we have $\psi_{I}=\chi_{I}$ for
each $l\in S$. Thus we have obtained the desired result, under the
assumption of the condition $(A)$ .

6. Now, we shall drop this condition $(A)$ , and assume that $\{\psi_{I}^{\star}\}$

satisfies only $(CA_{I})-(CA_{IV})$ . Let $k^{\prime}$ be an absolutely normal field of
finite degree containing $k$ and $K(e. g. k^{\prime}=K^{\prime})$ . If we put $\psi\{(a^{\prime})=$

$\psi_{I}(N_{k^{\prime}/k}a^{\prime})f_{0}r$ an id\‘ele $a^{\prime}$ in $I_{k},$ , then $\psi${ is a representation of $C_{k}$ ,

into $U_{1}$ , since we have $N_{k/k}P_{k},$ $\subset P_{k}$ from the definition of $N_{k/k}$ . Let
$\mathfrak{P}$ be a prime ideal of $k^{\prime}$ such that $N_{h/k}\mathfrak{P}=\mathfrak{p}^{f}$ is prime to $\mathfrak{m}$, and $\pi$
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be a $\mathfrak{P}$-prime element in $k_{\mathfrak{P}}^{\prime}$ . Then, from the definition, $\psi${ is unrami-
fied at $\mathfrak{P}$ and $\psi_{(}^{\prime}(\ell_{\mathfrak{P}}(\pi))=\psi_{(}(f\mathfrak{p}(N_{(\mathfrak{P})}\pi))=\psi(\mathfrak{p})^{f}$, where $N_{(\mathfrak{P})}$ denotes the norm
of $k_{\mathfrak{P}}^{r}$ into $k_{\mathfrak{p}}$ . This shows that the system $\{\psi i^{\star}\}$ of representations
$\psi i^{\star}$ of $G_{k}$ , determined by $\psi_{I}^{\prime}$ satisfies the conditions $(CA_{I})-(CA_{IV})$ ,
with $\tilde{\psi}^{\prime}(\mathfrak{P})=\tilde{\psi}(N_{k’/k}\mathfrak{P})$ and the same $\rho$. Moreover, it satisfies $(A)$

automatically. Hence, from the above results (in 5), we have $(\tilde{\psi}^{\prime}(\mathfrak{P}))$

$=\prod_{\tau\in H(k)}\tau \mathfrak{P}^{n^{\prime}(\tau)}$ with integers $n^{\prime}(\tau)$ independent of $\mathfrak{P}$. In particular, for

any automorphism $\varphi$ of $k^{\prime}$, we have $(\tilde{\psi}^{\prime}(\varphi \mathfrak{P}))=\prod_{\tau}\tau\varphi \mathfrak{P}^{n^{\prime}(\tau)}$ . When $\varphi$ is

in $G(k^{\prime}/k)$ , we have moreover $\tilde{\psi}^{\prime}(\varphi \mathfrak{P})=\tilde{\psi}(N_{k’/k}\varphi \mathfrak{P})=\tilde{\psi}(\mathfrak{p})^{f}=\tilde{\psi}^{\prime}(\mathfrak{P})$ , so that
$\prod_{\tau}\tau\varphi \mathfrak{P}^{n^{\prime}(\tau)}=\prod_{\tau}\tau \mathfrak{P}^{n^{\prime}(\tau)}$ . If we take as $\mathfrak{P}$ a prime ideal of the first

degree prime to $\mathfrak{m}$ , and unramified over $Q$, then we see $n^{\prime}(\tau)=n^{\prime}(\tau\varphi)$

for any $\tau$ in $H(k^{\prime})$ and $\varphi$ in $G(k^{\prime}/k)$ . This means that $n^{\prime}(\tau)$ is deter-
mined uniquely by the isomorphism $\sigma$ of $k$ into $k^{\prime}$ induced by $\tau$

so we may write $n^{\prime}(\tau)=n(\sigma)$ . Then, for any $\mathfrak{p}$ in $G(\mathfrak{m})$ , we have
$\tilde{\psi}(\mathfrak{p})^{f}=\tilde{\psi}^{\prime}(\mathfrak{p})=\prod_{\sigma\in H(k)}\prod\sigma\varphi \mathfrak{P}^{n(\sigma)}=\prod_{\sigma\varphi\in G(k^{\prime}/k)\in H(k}\sigma_{)}\mathfrak{p}^{fn(\sigma)}$ .

Thus we have shown that $\tilde{\psi}(\mathfrak{p})=\prod_{\sigma}\sigma \mathfrak{p}^{n(\sigma)}$ with integers $n(\sigma)$ , and the

condition $(A)$ is always satisfied for the system $\{\psi_{I}^{\star}\}$ satisfying
$(CA_{I})-(CA_{IV})$ . Summing up, we have obtained the following result:

THEOREM 1. Let $k$ be an algebraic number field of finite degree,
and $\{\chi_{\iota}^{\star}\}$ be the system of representatims of the Galois groups $G_{k}=G(A_{k}/k)$

determined by a character $\chi$ of $C_{k}$ of type $(A_{0})$ . Then, the conditims
$(CA_{I})-(CA_{IV})$ in 2 are satisfied with $\psi_{I}^{\star}=x_{I}^{\star},$ $\mathfrak{m}=\mathfrak{f},\tilde{\psi}(\mathfrak{p})=x\sim(\mathfrak{p})$ and $S=$

the set of all prime ideals. Conversely, let $K$ be another algebraic number
field of finite degree, and $S$ be a set of prime ideals in $K$ with positive
density. If a system $\{\psi_{\mathfrak{l}}^{\star}\}$ of representatims $\psi_{I}^{\star}$ of $G_{k}$ into $U_{I}\subset K_{I}^{\star},$ $I$

running through $S$, satisfies the conditims $(CA_{I})-(CA_{IV})$ , then there is
one (and only one) character $\chi$ of $C_{k}$ of type $(A_{0})$ with the property that
$\psi_{I}^{\star}$ is exactly equal to the representatim $\chi_{I}^{\star}$ associated with $\chi$ for each $l$

$in$ S.

\S 2. $L$-functions with characters of type $(A_{0})$ .
7. Notations will be the same as in 1, \S 1. First we shall

observe the smallest possible field $K_{0}$ among $Ks$ , $i$ . $e$ . the field $K_{0}$

generated over $Q$ by all values $\chi\sim(\mathfrak{p})$ for $\mathfrak{p}$ in $G(f)$ . Notice that
$\chi\sim(\mathfrak{p})\cdot\sigma_{0}\chi\sim(\mathfrak{p})=\tau\chi\sim(\mathfrak{p})\cdot\sigma_{0}\tau_{\mathcal{X}}^{\sim}(\mathfrak{p})=N\mathfrak{p}^{2\rho}$ is a rational number, hence, for any
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$\tau$ in $H(K_{0}),$ $\tau(x\sim(\mathfrak{p})\sigma_{0}\chi\sim(\mathfrak{p}))=N\mathfrak{p}^{2}\rho$ From this we see that $\tau\sigma_{0}\chi\sim(\mathfrak{p})=\sigma_{0}\tau\chi\sim(\mathfrak{p})$

holds for any $\tau$ in $H(K_{0})$ and any $\mathfrak{p}$ in $G(f)$ . Thus, $K_{0}$ is a totally
imaginary quadratic extension of a totally real field, if $K_{0}$ is not a
real field. When $K_{0}$ is real, we have $\chi\sim(\mathfrak{p})=\pm N\mathfrak{p}^{\rho}$, and then, com-
paring ideal decomposition of both sides for $\mathfrak{p}$ of the first degree,
we see that $\rho$ is an integer, hence all $\chi\sim(\mathfrak{p})$ are rational and $K_{0}=Q$.

Hereafter, until the end of this \S 2, we shall impose on $\chi$ the
following condition:

(I) $\chi$ is of infinite order, and all values $x\sim(\mathfrak{p})$ for $\mathfrak{p}$ in $G(|’)$ are
algebraic integers in $K_{0}$ . Moreover, when $K_{0}=Q$, all $x\sim(\mathfrak{p})$ are posi-
tive.

Clearly, the first condition in (I) holds if and only if all $n(\sigma)\geqq 0$

and $\rho>0$. The second condition implies that $\tau\in H(K)\prod\{\tau\tilde{\chi}(\mathfrak{p})^{n}-1\}>0$ in

any case $(n>0)$ , since either $K_{0}$ is totally imaginary or $K_{0}=Q$ and
$\chi\sim(\mathfrak{p})=N\mathfrak{p}^{\rho}>1$ . Notice that, in the former case, $K$ is also totally
imaginary.

Remember that the representation $\chi_{I}$ associated with $\chi$ is un-
ramified at each prime ideal $\mathfrak{p}$ in $G(fl)$ , and $x\sim(\mathfrak{p})$ are I-units for such
$\mathfrak{p}$ . Notice also that, when $\mathfrak{p}$ divides $l,$ $x\sim(\mathfrak{p})$ is prime to I if and only
if $\sigma \mathfrak{p}$ are prime to { (as ideals in $K^{\prime}$ ) for all $\sigma$ in $H(k)$ satisfying
$n(\sigma)>0$. Let now $q_{1},\ldots,$ $q_{r}$ be all prime factors of $l$ in $k$ such that
$x\sim(q_{i})$ is divisible by I, and $q_{1}^{\prime},\cdots,$ $q_{s^{\prime}}$ be all the remainning prime
factors of $l$ in $k,$ $i$ . $e$ . such that $x\sim(q_{i^{\prime}})$ is a I-unit. Then, for any $\sigma$

satisfying $n(\sigma)>0,$ $\sigma(q_{1}\cdots q_{r})$ is divisible by I, while $\sigma(q_{1^{\prime}}\cdots q_{s^{\prime}})$ is
prime to I. Hence, for an element $\alpha$ in $k^{\star}$ , $\alpha\equiv 1$ $mod$ . $(q_{1}\cdots q_{r})^{i}$

implies $\prod_{\sigma}\sigma\alpha^{n(\sigma)}\equiv 1mod$ . P. This shows that there is a represen-

tation $\chi${ of $C_{k}$ into $U_{I}$ , determined by the character $\chi$ of $G(\mathfrak{f}q_{1}\cdots q_{r})$ .
$\chi_{I}$ and $\chi${ being the same on the dense subgroup $P_{k}I(\mathfrak{f}l)$ of $I_{k}$, we see
$x\{=x_{I}$ Since $\chi_{1}^{\prime}$ is unramified at $q_{i^{\prime}},$

$\chi_{I}$ is unramified at any $\mathfrak{p}$ in $G(f)$ ,
either prime to $l$ or not, such that $\chi\sim(\mathfrak{p})$ is prime to I.

Let now $U_{0}$ be the direct product Ii $U_{I}$ of I-unit groups in K*

for all $l$ in $K$, and $\omega$ be a character of $U_{0}$. If we denote by $t0_{I}$ the
character induced by $\omega$ on $U_{I}$ , considered as a subgroup of $U_{0}$ , then
$\omega_{I}=1$ for almost all I. More precisely, there is an integral ideal
$b=I_{1}^{m_{1}}\cdots I_{t}^{m_{t}}$ of $K$ such that $\omega_{I}=1$ for I prime to $b$, and that $\omega_{I_{i}}(\alpha)=1$

for any $\alpha\equiv 1mod$ . $\downarrow_{i}m_{i}$ In this case, $\omega$ will be called definable mdulo
$b$. If $\omega$ is definable modulo $b,$ $\omega$ is also definable modulo any multi-
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ple of $b$. Notice that the number of characters of $U_{0}$ definable
modulo $b$ is exactly equal to the Euler function $\varphi(b)=Nb\prod_{i}(1-$

$($ NI, $)^{-}$ ), $i$ . $e$ . the number of prime residue classes $mod$ . $b$, and the
values of such characters are $\varphi(b)$ -th roots of unity.

Assigning to each id\‘ele $a$ in $I_{k}$ an element $\chi_{0}(a)=(\chi_{I}(a))$ of $U_{0}$

with I-components $\chi_{I}(a)$ , we obtain a representation $\chi_{0}$ of $C_{k}$ , or of
$C_{k}$ , into $U_{0}$ . Put $\chi_{\omega}=\omega\circ\chi_{0}$. Then $\chi_{\omega}$ is a character of $C_{k}$ of finite
order, so that it determines a cyclic extension $k(x, \omega)$ of $k$, by class
field theory. The compositum of these $k(\chi, \omega)$ for all characters $\omega$

of $U_{0}$ is equal to the subfield of $A_{k}$ corresponding to the kernel of
the representation $\chi_{0}^{\star}$ of $G_{k}$, and this field is nothing but the abelian
extension $k(\chi)$ of $k$ attached to $\chi$ by A. Weil [4].

It is trivial to notice that, when $\omega$ is definable modulo $b,$
$\chi_{\omega}$ is

unramified at each $\mathfrak{p}$ in $G(f)$ such that $x\sim(\mathfrak{p})$ is prime to $b$. Thus, if
we denote by $[b]$ the product of all $\mathfrak{p}$ in $G(\mathfrak{f})$ such that $x\sim(P)$ is not
prime to $b$, then $\chi_{\omega}$ determines a character $x_{\omega}$ of the ideal group
$G(f[b])$ in $k$. However, this $\chi_{\omega}\sim$ is in general not primitive, $i$ . $e$ . it
may be extended to a larger group than $G(\uparrow[b])$ in some cases.

8. Let $L_{b}(s;\omega)=\prod_{\mathfrak{p}\in G(f\lfloor b\rceil)}(1^{\sim}-\chi_{\omega}(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}$ be Hecke’s L-function in
$k$ with this character $\chi_{\omega}\sim$ of $G(\uparrow[b])$ , and put

(9) $L_{b}(s)=\prod_{\omega}L(s;\omega)$ ,

where $\omega$ runs over all the $\varphi(b)$ characters of $U_{0}$ definable modulo $b$.
Put furthermore
(10) $L_{\chi}(s)=\prod L_{b}(s)$ ,
$b$ running over all integral ideals of $K$. We must now examine the
absolute convergence of this infinite product in some right half s-
plane.

First we observe $L_{b}(s)$ . For each $\mathfrak{p}$ in $G(f[b])$ , we shall denote
by $f(\mathfrak{p}, b)$ the smallest natural number such that $x_{\omega}\sim(\mathfrak{p}^{f(\mathfrak{p},b)})=1$ for all
$\omega$ definable modulo $b,$ $i$ . $e$ . such that $x\sim(\mathfrak{p})^{f(\mathfrak{p},b)}\equiv 1mod$ . $b$. Such num-
ber exists certainly since $b$ is prime to $x\sim(\mathfrak{p})$ . Then, a well-known
relation between characters of a finite abelian group shows:

$L_{b}(s)=\prod_{\mathfrak{p}\in G(\mathfrak{s}[b])}\prod_{\omega}(1^{\sim}-\chi_{\omega}(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}=\prod_{\mathfrak{p}}(1-N\mathfrak{p}^{-f(\mathfrak{p},b)s})^{-\varphi(b)/f(\mathfrak{p},b)}$ .

We shall now put, for any $\mathfrak{p}$ in $G(f)$ ,
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$L^{(\mathfrak{p})}(s)=\prod_{b}(1-N\mathfrak{p}^{-f(\mathfrak{p},b)s})^{-\varphi(b)/f(\mathfrak{p},b)}$ ,

where $b$ runs over all integral ideals in $K$ such that $\mathfrak{p}$ belongs to
$G(\mathfrak{f}[b])$ , $i$ . $e$ . $x\sim(\mathfrak{p})_{s}$ is prime to $b$. Then, we shall evaluate the positive
term series

(11) $\sum_{0}=\sum_{b}\frac{\varphi(b)}{f(\mathfrak{p},b)(N\mathfrak{p})^{f(\mathfrak{p},b)\sigma}}<\sum_{n=1}^{\infty}(\sum^{\prime}\varphi(b))N\mathfrak{p}^{-n\sigma}$

where $\sigma$ denotes the real part of the complex number $s$, and the
sum $\sum^{\prime}\varphi(b)$ in parenthesis in the right hand side is taken over all
$b$ such that $\mathfrak{p}$ belongs to $G(f[b])$ and $f(\mathfrak{p}, b)$ divides $n$. These condi-
tions are equivalent to $x\sim(\mathfrak{p})^{n}\equiv 1$ $mod$ . $b$, so that $b$ runs over all
integral divisors of $x\sim(\mathfrak{p})^{n}-1$ . Notice that $x\sim(\mathfrak{p})^{n}-1$ is a non-zero
integers in $K$, from the condition (I). Hence, if we denote by $\Phi(\mathfrak{p}, n)$

this sum $\sum^{\prime}\varphi(b)$ , we have $\Phi(\mathfrak{p}, n)=|N_{K/Q}(\chi\sim(\mathfrak{p})^{n}-1)|$ . From the remark
below the condition (I), we see therefore

$\Phi(\mathfrak{p}, n)=N_{x/Q}(x\sim(\mathfrak{p})^{n}-1)=\prod_{\tau\in H(K)}\{\tau^{\sim}\chi(\mathfrak{p})^{n}-1\}$ .
In particular, $\Phi(\mathfrak{p}, n)$ have the same order of magnitude as $N\mathfrak{p}^{na_{\rho}}$ for
$ n\rightarrow\infty$ , where $d=[K:Q]$ . This implies that the series in the right
hand side in (11) converges absolutely for $\sigma>d\rho$. Hence the infinite
product for $L^{(\mathfrak{p})}(s)$ converges absolutely for $\sigma>d\rho$ . We see moreover
that the infinite producut

1I II $(1-N\mathfrak{p}^{-f(\mathfrak{p},)s}b)^{-\varphi(b)/f(\mathfrak{p},b)}$

converges absolutely for $\sigma>d\rho+1$ . Consequently we can change the
order of product, and we have

$L_{\chi}(s)=\prod_{\mathfrak{p}\in G(f)}L^{(\mathfrak{p})}(s)$ .
9. Putting $u=N\mathfrak{p}^{-s}$, we have

$\frac{d}{du}\log L^{(\mathfrak{p})}(s)=\sum_{n=1}^{\infty}\Phi(\mathfrak{p}, n)u^{n-1}$

$=\sum_{n\Rightarrow 1}^{\infty}(\prod_{\tau\in H(K)}(\tau^{\sim}x(\mathfrak{p})^{n}-1))u^{n-1}$

$=\sum_{t=0}^{d}(-1)^{d-t}\sum_{i_{1}\cdots i_{i}}\sum_{n}(\tau_{i_{1}}^{\sim}\chi(\mathfrak{p})\cdots\tau_{i_{t}}^{\sim}\chi(\mathfrak{p}))^{n}u^{n-1}$ ,

or
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$L^{(\mathfrak{p})}(s)=\prod_{t=\cup}\prod_{i_{1}\cdots t_{t}}(1-\tau_{i_{1}}^{\sim}\chi(\mathfrak{p})\cdots\tau_{it^{\sim}}\chi(\mathfrak{p})N\mathfrak{p}^{-s})^{(-1)^{(}}l-t+1$

where $\{\tau_{i1},\ldots, \tau_{t_{t}}\}$ runs over all combinations of all isomorphisms
$\tau_{1},\ldots,$ $\tau_{d}$ in $H(K)$ .

Put now $\chi_{1t}\sim_{i\cdots i}(\mathfrak{a})=\tau_{i1}\chi\sim(\mathfrak{a})\cdots\tau_{i\iota^{\sim}}\chi(\mathfrak{a})$ for ideals $\mathfrak{a}$ in $G(f)$, then $\chi_{1t}\sim_{i\cdots i}$ is
a character of $G(\uparrow)$ , associated with the character $\chi_{i\cdots i_{t}}=\chi^{\tau_{i_{1}}}\cdots\chi^{\tau_{i_{b}}}1$ of
$C_{k}$ of type $(A_{0})$ . We have thus proved the following theorem:

THEOREM 2. Let $\chi$ be a character of $C_{k}$ of type $(A_{0})$ , satisfying the
additional conditim (I). Let $L_{b}(s)$ be the function defined in (9). Then
the infinite product of $L_{b}(s)$ , taken over all integral ideals $b$ in $K$, can
be expressed by L-functions with conjugates-product characters $\chi_{t_{1}\cdots i_{t}}$ of $\chi$

in the following manner:

$\prod_{b}L_{b}(s)=\prod_{t=0}^{tl}\prod_{t}L(s, \chi_{i_{1}\cdots t_{t}})^{(-1)^{(\ddagger-t}}i_{1}\cdots i$

where $d=[K:Q],$ $\{i_{1},\ldots, i_{t}\}$ runs over all combinatims of 1, $\ldots$ , $d$ and
$L(s, \chi_{i_{1}\cdots i})=\prod_{{}^{t}\iota\in G(f)}(1^{\sim}-x_{i_{1}\cdots i_{t}}(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}$ .

Notice that this function $L(s, \chi_{i_{1}\cdots i_{t}})$ may also be imprimitive,
$i$ . $e$ . the conductor of $\chi_{i_{1}\cdots i_{t}}$

may be a proper divisor of $f$. For ex-
ample, when $t=0,$ $L(s, 1)$ is the zeta-function of $k$, from which those
factors due to prime divisors of $f$ are omitted.

Remark also that, if we denote by $k(b)$ the compositum of cyclic
extensions $k(\chi, \omega)$ for all $\omega$ definable modulo $b$, then $L_{b}(s)$ is the zeta
function of $k(b)$ , raised to the power $\varphi(b)/[k(b):k]$ and from which
those factors due to prime divisors of $f[b]$ are omitted. Hence
Theorem 2 may be considered, in a sense, to express the decom-
position-law of prime ideals of $k$ in $k(b)$ for infinitely many $k(b)$ ,
in the language of associated zeta-functions.

\S 3. Reformulation and Generalization.

10. We use the same notations as before, and consider a
character $\chi$ of $C_{k}$ of type $(A_{0})$ , not necessarily satisfying the condi-
tion (I) in 7.

$l$ being a rational prime, the completion $K_{\iota}$ of $K$ may be con-
sidered as an algebra of degree $d=[K:Q]$ over $Q_{l}$ . Then the re-
presentation $\chi\sim$ of $G(\uparrow)$ into $K^{\star}$ determines uniquely a representation
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$\chi_{l}$ of $C_{k}$ into the multiplicative group of regular elements in $K_{l}$ .
Clearly, this $\chi_{l}$ is also a representation of $C_{k^{\prime}}=C_{k}/D_{k}$. Let now
$\xi\rightarrow R_{l}(\xi)$ be a regular representation of $K_{l}$ with respect to a fixed
basis of $K_{\iota}$ over $Q_{l}$, which is certainly a continuous mapping from
$K_{l}$ with l-topology into the full linear group of degree $d$ over $Q_{\iota}$.
If we put $M_{l}(a)=R_{\iota}(\chi_{l}(a)),$ $M_{\iota}$ is a representation of $C_{k}$ into that
group. Since $\chi_{l}(a)$ are l-units, $M_{l}$ is a l-adic unimodular representation,
$i$ . $e$ . a representation with l-adic integral coefficients and l-adic unit
determinants. $M_{\iota}$ being also a representation of $C_{k^{\prime}}$ , it induces an
l-adic unimodular representation $M_{l}^{\star}$ of the Galois group $G_{k}$. Then
the field $k(M, l)$ corresponding to the kernel of $M_{\iota^{\star}}$ is the compositum
of fields $k(x, I)$ for all prime divisors I of $l$ in $K$.

11. We now propose to characterize the character of $C_{k}$ of type
(A) by properties of representations $M_{l}^{\star}$ thus obtained. Let $\{M_{l}^{\star}\}$

be a system of l-adic unimodular representations $M_{l}^{\star}$ of the Galois
group $G(\overline{k}/k)$ of $\overline{k}$ over $k$, with the same degree $d$ for all rational
primes $l$. We shall denote by $k(M, l)$ the subfield of $\overline{k}$ corresponding
to the kernel of $M_{l}^{\star}$ . We shall also denote by $\mathfrak{P}$ any one of prime

divisors in $\overline{k}$ of a prime ideal $\mathfrak{p}$ of $k$, and by $\overline{G}(\mathfrak{a})$ the set of $au$

prime divisors 8 of $\mathfrak{p}$ for all $\mathfrak{p}$ in $G(\mathfrak{a}),$ $\mathfrak{a}$ being an integral ideal of
$k$. Now, assume that the following conditions $(CA_{I}^{\prime})-(CA_{V}^{\prime})$ are
satisfied:

$(CA_{I}^{\prime})$ There is an integral ideal $\mathfrak{m}$ in $k$ with the property that

8 is unramified in $k(M, l)$ for any $\mathfrak{P}$ in $\overline{G}(\mathfrak{m}l)$ and for any $l$.
This means that the matrix $M_{\iota}^{\star}(\sigma_{\mathfrak{P}})$ is independent of the choice

of Frobenius automorphism $\sigma_{\mathfrak{P}}$ for each as in $G(ml)$ .
We denote by $Q^{\prime}$ the field consisting of all matrices of the form

$rE,$ $r\in Q,$ $E$ being the unit matrix.
$(CA_{II}^{\prime})$ The matrices $M_{l}^{\star}(\sigma_{\mathfrak{P}})$ for all 8 in $\overline{G}(\mathfrak{m}l)$ generate over

$Q^{\prime}$ a semi-simple commutative algebra $d_{\iota}$ of finite degree over $Q$.
Moreover, the correspondence $M_{l}^{*}(\sigma_{\mathfrak{P}})\rightarrow\leftarrow M_{q^{\star}}(\sigma_{\mathfrak{P}})$ for all 8 in $\overline{G}(\mathfrak{m}lq)$

determines an isomorphism of $d_{\iota}$ onto $d_{q}$ , for all pair $(l, q)$ of
rational primes.

This implies in particular that the characteristic equation of
$M_{\iota}(\sigma_{\mathfrak{P}})$ for 8 in $\overline{G}(r\mathfrak{n}l)$ must have rational coefficients.

$(CA_{III}^{\prime})$ The characteristic equation of $M_{l}(\sigma_{\mathfrak{P}})$ has rational coeffi-
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cients and is independent of $l$ for all $l$ such that $\mathfrak{P}$ belongs to $\overline{G}(\mathfrak{m}l)$ .
We shall denote by $\varpi_{1}(\mathfrak{p}),\ldots,$ $\varpi_{d}(\mathfrak{p})$ all the characteristic roots of

$M_{\iota}^{\star}(\sigma_{\mathfrak{P}})$ (with proper multiplicities) for such $l$. (These characteristic
roots are certainly determined only by $\mathfrak{p}$, not depending on the choice
of $\mathfrak{P}\cdot$ )

$(CA_{IV}^{\prime})$ We have
$|\varpi_{i}(\mathfrak{p})|=N\mathfrak{p}^{\rho}$ $(i=1,\ldots, d)$

for all $\mathfrak{p}$ in $G(\mathfrak{m})$ , where $\rho$ is a half integer independent of $\mathfrak{p}$ and
of $i$.

$(CA_{V}^{\prime})$ There is a natural number $n_{0}$ such that $\varpi_{i}(\mathfrak{p})N\mathfrak{p}^{n_{0}}$ are
algebraic integers for all $\mathfrak{p}$ in $G(\mathfrak{m})$ and for all $i$.

It is trivial to notice here that the system $\{M_{l}^{*}\}$ obtained from
a character $\chi$ of type $(A_{0})$ satisfies these conditions, where algebras
$d_{\iota}$ in $(CA_{II}^{\prime})$ are isomorphic to the field $K_{0}$ generated over $Q$ by all
$x\sim(\mathfrak{p})$ .

In general, we see from $(CA_{II}^{\prime})$ that $M_{l}^{\star}(\sigma_{\mathfrak{P}})$ commutes with
$M_{l}^{\star}(\sigma_{\mathfrak{P}},)$ for all $\mathfrak{P}\mathfrak{P}^{\prime}$ in $G(ml)$ . Since such $\sigma_{\mathfrak{P}}s$ are everywhere dense
in $G(\overline{k}/k)$ , the image $M_{\iota}^{\star}(G(\overline{k}/k))$ must be an abelian group, i. e. the
field $k(M, l)$ is an abelian extension of $k$. The system $\{M_{l}^{\star}\}$ can
therefore be considered as a system of representations of abelian
group $G_{k}=G(A_{k}/k)$, and we may write $\sigma_{\mathfrak{p}}$ instead of $\sigma_{\mathfrak{P}}$ .

Since commutative semi-simple algebra is a direct sum of fields,
condition $(CA_{II}^{\prime})$ implies also that all matrices $M_{l}^{\star}(\sigma_{\mathfrak{p}})$ can be decom-
posed (in $Q_{l}$ ) simultaneously into direct sum:

$\left(\begin{array}{llll}M_{\iota}^{\star_{1}}(\sigma_{\mathfrak{p}}) & & & \\ & . & & \\ & & . & M_{l,t}^{*-}(\sigma_{\mathfrak{p}})\end{array}\right)$

for all $\mathfrak{p}\in G(\mathfrak{m}l)$ , in such a way that all $M_{\iota,t}^{\star}(\sigma_{\mathfrak{p}})$ with a fixed $i$

generate over $Q^{\prime}$ a field of finite degree over $Q$. Then, $\sigma_{\mathfrak{p}}$ being
dense in $G_{k}$ , all matrices $M_{\iota}^{\star}(\sigma),$ $\sigma\in G_{k}$ , can be decomposed corre-
spondingly into the direct sum of $M_{l}^{\star_{1}}(\sigma),\ldots,$ $M_{l,t}^{\star}(\sigma)$ , and, for any one
of fixed $i$, the system $\{M_{l,i}^{\star}(\sigma)\}$ satisfies all conditions $(CA_{I}^{\prime})-(CA_{V}^{\prime})$ .

It is hence sufficient to consider the case where the algebras $d_{\iota}$

in $(CA_{II}^{\prime})$ are isomorphic to an algebraic number field $K$ of finite
degree. We can fix here an isomorphism $/1_{l}$ of $d_{\iota}$ onto $K$ in such
a way that $\mu_{l}(M_{l}(\sigma_{\mathfrak{p}}))=\mu_{q}(M_{q}(\sigma_{\mathfrak{p}}))$ for all $\mathfrak{p}$ in $G(mlq)$ and for all pairs
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$(l, q)$ . We shall write this common value $\mu_{l}(M_{l}(\sigma_{\mathfrak{p}}))$ by $\tilde{\psi}(\mathfrak{p})$ . Clearly,

all $M_{l}^{\star}(\sigma_{\mathfrak{p}})$ , hence also all $M_{l}^{\star}(\sigma)^{v}$, can be transformed (in $\overline{Q}_{\iota}$ ) simul-
taneously into diagonal forms:

$M_{\iota}^{\star}(\sigma)=\left(\begin{array}{llll}\psi_{\iota^{\star_{1}*}}.(\sigma) & & & \\ & . & & \\ & & . & \psi_{\iota}^{i\epsilon_{tl}\star}(\sigma)\end{array}\right)$ .

Then, $\tilde{\psi}(\mathfrak{p})\rightarrow\psi_{\iota,\iota}^{\star\star}(\sigma_{\mathfrak{p}})=\varpi_{i}(\mathfrak{p})$ for $\mathfrak{p}$ in $G(ml)$ , gives an isomorphism $\mu_{l,i}$

of $K$ into $\overline{Q}_{l}$ , hence it determines also a prime divisor $l_{i}$ of $l$ in $k$.
If we put $\psi_{I_{i}}^{\star^{-}}=t\iota_{l,i}^{1}\circ\psi_{\iota}^{\star_{i^{\#}}},$

$\psi_{I_{i}}^{\star}$ is a representation of $G_{k}$ into $K_{I_{l^{-}}}^{\prime}$ . In
this way, we obtain a system of representations $\psi_{I}^{\star}$ of $G_{k}$ into $K_{I}^{*}$ ,
which satisfies evidently all conditions $(CA_{I})-(CA_{IV})$ in \S 1. Hence
$\{\psi_{I}^{\star}\}$ corresponds to a character $\chi$ of $C_{k}$ of type $(A_{0})$ . It is also
evident that our $\{M_{\iota}^{\star}\}$ can be obtained from this $\chi$ in the manner
described in 10. Thus theorem 1 can be reformulated in the follow-
ing form:

THEOREM 1’ Let $\{M_{\iota^{\epsilon}}\}$ be a system of l-adic unimodular represen-
tations $M_{\iota}^{\star}$ of the Galois group $G(\overline{k}/k)$ with the same degree $d$ for all
rational primes $l$. Then $\{M_{f}^{\star}\}$ satisfies the conditims $(CA_{I}^{\prime})-(CA_{V}^{\prime})$ if
and only if it is a direct sum of systems $\{M_{l,j}^{\star}\}$ of representatims of the
abelian grmp $G_{k}$, each obtained from a character $\chi_{i}$ of $C_{k}$ of type $(A_{0})$

in the manner described in 10.
12. Let now our character $\chi$ of type $(A_{0})$ satisfy the condition

(I) in 7, and $M_{l}^{\star}$ be as is 10. Consider then the matrix $M_{1}^{\star}(\sigma_{q})$ for
prime ideal $q$ dividing $l$. Let $I_{i}$ be, as in 11, the prime divisor of $l$

in $K$ determined by the imbedding of $K$ into $\overline{Q}_{\iota}$ given by $x\sim(\mathfrak{p})\rightarrow\varpi_{i}(\mathfrak{p})$

$=\psi_{l,i}^{*\star}(\sigma_{\mathfrak{p}})$ . Then, $\varpi_{i}(q)$ is a unit in $\overline{Q}_{\iota}$ if and only if $x\sim(q)$ is prime
to $\downarrow i$ When that is so, $\chi_{I_{i}}$ is unramified at $q,$

$i$ . $e$ . $q$ is unramified
in $k(x, I_{i})$ , and we have $\chi_{I_{i}}(\sigma_{q})=x\sim(q)$ , or $\psi_{\ell,i^{\star}}^{\star}(\sigma_{\eta})=\varpi_{i}(q)$ (as was seen
in 7). Changing the numbering for each $q$ if necessary, we assume
that $\varpi_{1}(q),\cdots,$ $\varpi_{r}(q)$ are units and $\varpi_{r+1}(q),\cdots,$ $\varpi_{d}(q)$ lie in the valuation
ideal in $\overline{Q}_{\iota}$. Notice that, although we may have $1_{i}=I_{j}$ for some $i\neq j$,
the sets $\{I_{1},\cdots, 1_{\gamma}\}$ and $\{1_{7+1},\ldots, l_{a}\}$ are mutually disjoint. Hence, for
each $q$ dividing $l$, the representation $M_{\iota^{\star}}$ is decomposed in $Q_{l}$ into
the direct sum of representations $M_{l}^{\prime}$ and $M_{l}^{\prime\prime}$ of respective degrees
$\gamma,$ $d-r$, in such a way that the characteristic roots of $M_{l}^{\prime}(\sigma_{\mathfrak{q}})$ are
exactly $\varpi_{1}(q),\ldots,$ $\varpi_{\gamma}(q)$ . It is then clear that $q$ is unramified in the
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subfield of $A_{k}$ corresponding to the kernel of $M_{\iota}^{\prime}$ .
13. Hereafter, until the end of \S 3, we shall consider a general

system $\{M_{l}^{\vee}\cdot\}$ of l-adic representations of $G(\overline{k}1k)$ with the same degree
$d$ for all $l$, and use the same notations as in the beginning of 11.
Assume that $\{M_{\iota}^{\star}\}$ satisfies the conditions $(CA_{I}^{\prime}),$ $(CA_{III}^{\prime}),$ $(CA^{r_{IV}})$ with
$\rho>0,$ $(CA_{V}^{\prime})$ with $n_{0}=0$ , but not necessarily $(CA^{\prime_{II}})$ . Then all $\varpi_{i}(\mathfrak{p})$

are algebraic integers different from roots of unity. Assume fur-
thermore the following conditions $(B_{I}),$ $(B_{II})$ are satisfied:

$(B_{I})$ $\prod_{i\Leftarrow 1}^{l}\varpi_{i}(\mathfrak{p})(>0$ for all $\mathfrak{p}$ in $G(\mathfrak{m})$ .
We may consider that $\varpi_{\iota}(\mathfrak{p})$ are contained in $\overline{Q}_{\iota}$. Then, for any

one of prime divisors $q$ in $k$ of $l$, we change if necessary the
numbering of $\varpi_{i}(q)$ so that $\varpi_{1}(q),\cdots,$ $\varpi_{r}(q)$ are units, while $\varpi_{r+1}(q),\cdots$ ,
$\varpi_{a}(q)$ lie in the valuation ideal of $\overline{Q}_{l}$ , where $r=r(q)\leqq d$ and $r(q)$

may depend on $q$ . Denote by $\mathfrak{Q}$ any prime divisor of $q$ in $k$. Then
our next condition reads:

$(B_{II})$ Restricted to the decomposition group $G(\mathfrak{O})$ of $\mathfrak{Q}$ over $k$,
$M_{\iota}^{\star}$ can be transformed in $Q_{\iota}$ into the form

$M_{\iota}^{\star}(\sigma)=(M_{\iota_{\star}}^{\prime}(\sigma)$ $M_{l}^{0,}(\sigma)$ $)$

simultaneously for all $\sigma$ in $G(\mathfrak{Q})$ , where $M_{\iota}^{\prime},$ $M_{l}^{\prime\prime}$ have respective
degrees $r,$ $d-r$. Moreover, if we denote by $k(M_{l}^{\prime})$ the subfield of
$k(M, l)$ corresponding to the kernel of $M_{\iota}^{\prime}(\sigma)$ , $q$ is unramified in
$k(M_{l}^{\prime})$ , and the characteristic roots of $M_{l}^{\prime}(\sigma_{\mathfrak{Q}})$ are exactly $\varpi_{1}(q),$ $\ldots$ ,
$air(q)$ .

Clearly the condition $(B_{II})$ is or is not satisfied irrespective of
the choice of prime divisors $\mathfrak{Q}$ of $q$ . As was seen in 12, the
system $\{M_{\iota}^{\star}\}$ obtained from a $\chi$ satisfying (I) satisfies also these
conditions $(B_{I}),$ $(B_{II})$ . Our aim is now to generalize the result in \S 2
to our system $\{M_{\iota}^{\star}\}$ .

We shall first consider the group $U_{\iota}(d)$ of all l-adic unimodular
matrices of degree $d$, and the direct product $U(d)=\prod_{\iota}U_{l}(d)$ for all $[$.
$b=l_{1}^{c_{1}}\cdots l_{t^{c_{i}}}$ being any natural number, we shall denote by $U^{(b)}(d)$ the
subgroup of $U(d)$ consisting of all $M=(M)$ such that $M_{l_{i}}\equiv Emod$ .
$l_{i}^{c_{i}}(i=1,\ldots, t)$ . Then the set $\{U^{(b)}(d)\}(b=1,2,\ldots)$ forms a fundamental
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system of neighborhoods of the identity in $U(d)$ , so that any re-
presentation of $U(d)$ into full linear group over $C$ is essentially a
representation of the factor group $1\ddagger(b)=U(d)/U^{(b)}(d)$ . We shall denote
by $\lambda_{b}$ the natural homomorphism of $U(d)$ onto $\mathfrak{U}_{(b)}$ . Notice that $\mathfrak{U}_{(b)}$

may be considered as the group of all matrices of degree $d$ over
the residue ring $Z/bZ$ of rational integers modulo $b$, with deter-
minants having inverses in the ring $Z/bZ$.

Denote by $\mathfrak{L}_{b}$ a vector space of dimension $d$ over $Z/bZ$, then $U_{(b)}$

can be considered as a transformation group of $\mathfrak{L}_{b}$. We shall call
a vector in $\mathfrak{L}_{b}$ proper when the ideal (in $Z/bZ$ ) generated by all
components of it is equal to whole $z1bZ$. Let now $\mathfrak{x}_{0}$ be any fixed
one of proper vectors in $\mathfrak{L}_{b}$ . Clearly, $1\lambda_{(b)}$ transforms $\mathfrak{x}_{0}$ into proper
vectors, and all proper vectors are obtained from $\mathfrak{x}_{0}$ in this way.
Therefore, if we denote by $\mathfrak{V}_{(b)}$ the subgroup of all elements in $\mathfrak{U}_{(b)}$ ,
transforming $\mathfrak{x}_{0}$ into itself, the cosets of $U_{(b)}$ modulo $\mathfrak{V}_{(b)}$ correspond

one-to-one to all proper vectors in $\mathfrak{L}_{b}$. Let now $\tilde{D}_{b}$ be the repre-
sentation of $11_{(b)}$ , “ induced ” (in the sense of the theory of group
characters) by the unit representation ( $i$ . $e$ . all values are 1) of $\mathfrak{V}_{(b)}$ ,
and $\delta\sim_{b}$ the character of $\tilde{D}_{b}$ , $i$ . $e$ . the character induced by the unit
character of $\mathfrak{V}_{(b)}$ . Clearly, $\sim_{b}\delta$ is a non-negative valued rational
character independent of the choice of proper $f_{0}$ . Moreover, it is
evident that $D_{b}$ is the representation of $U_{(b)}$ as a permutation group
of all proper vectors in $\mathfrak{L}_{b}$ . We shall put here $D_{b}=\tilde{D}_{b}\circ\lambda_{b},$ $\delta_{b}=\delta\circ\lambda_{b}\sim_{b}$ ,
which are respectively representations and characters of $U(d)$ .

For the later use, we must compute the sum $\sum_{j=0}^{\infty}\delta_{\iota^{j}}(M)$ for $M=$

$(M_{q})$ in $U(d)$ , such that no characteristic root of $M_{q}$ is 1. Then, for
a suitably large $i,$ $\lambda_{l^{i}}(M)$ fixes no proper vectors in $\mathfrak{L}_{\iota^{i}}$ , so that
$\delta_{l^{i}}(M)=0$ . Clearly $\delta_{\iota^{j}}(M)=0$ for all $j\geqq i$. Now the set of all vectors
in $\mathfrak{L}_{\iota^{i}}$ , whose all components are divisible by $l^{j}(j\leqq i)$ can be identified
with $\mathfrak{L}_{\iota^{i-j}}$, hence $\mathfrak{L}_{t^{\iota}}$ may be considered, under this identification, as
a direct union of all proper vectors in $\mathfrak{L}_{\iota^{j}}$ for $j=0,1,\ldots,$ $i$. The sum
$\sum_{j=1}^{\infty}\delta_{\iota^{j}}(M)=\sum_{j=1}^{i}\delta_{\iota^{j}}(M)$ is then equal to the number of all vectors in

$\mathfrak{L}_{l^{i}}$ , left invariant by the transformation $\lambda_{\iota^{i}}(M)$ , hence it is equal to
the highest power of $l$ dividing $det(M_{\iota}-E)$ .

14. We shall now come back to our l-adic representation $M_{l}^{*}$

of $G(\overline{k}/k)$ . Putting $M^{\star}(\sigma)=(M_{l}^{\star}(\sigma))$ for $\sigma\in G(\overline{k}/k)$ , we obtain a repre-
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sentation $M^{\star}$ of $G(\overline{k}/k)$ into $U(d)$ . Then, $\lambda_{b}\circ M^{\star}$ is a representation

of $G(\overline{k}/k)$ into $\mathfrak{U}_{(b)}$ , and the field $k(M, \lambda_{b})$ corresponding to the kernel
of $\lambda_{b}\circ M^{\epsilon}$ is a finite normal extension of $k$.

For prime ideal $\mathfrak{p}$ of $k$ in $G(\mathfrak{m}),$ prime to $b$, we put

$\psi_{b}(\mathfrak{p}^{n})=\delta_{b}(M^{*}(\sigma_{\mathfrak{P}}^{n}))$ ,

the right hand side being clearly independent of the choice of $\sigma_{\mathfrak{P}}$ , and

also of prime divisors $\mathfrak{P}$ of $\mathfrak{p}$ in $\overline{k}$. This $\psi_{b}$ coincides on $G(\mathfrak{m}b)$ with
the ideal character of $k$ associated with the character $\delta\sim_{b}$ of the
Galois group $G(k(M, \lambda_{b})/k)$ in the sense of Artin’s theory of L-functions.

When $\mathfrak{p}$ divides $b$ , we define $\psi_{b}(\mathfrak{p}^{n})$ in a little different manner.
Put $b=p^{c}\cdot b_{0}=p^{c}l_{1}^{c_{1}}\cdots[_{c^{c_{t}}}$ , where $l_{i}\neq p$. Let $U^{\prime}$ be the direct product

$U_{p}(r)\times\Gamma IU_{l}(d)\iota\neq p$ where $r=r(\mathfrak{p})$ is as in $(B_{II})$ . Then define $U^{\prime(b)}$ as the

subgroup consisting of all $M=(M_{p}^{\prime}, M_{l})$ of $U^{\prime}$ satisfying $M_{l_{i}}\equiv Emod$ .
$l_{\iota^{c_{i}}}$ and $M_{p^{\prime}}\equiv Emod$ . $p^{c}$. The factor group $\mathfrak{U}t_{b)}=U^{\prime}/U^{\prime(b)}$ can be con-
sidered as a transformation group of the space $\mathfrak{L}_{b^{\prime}}=\mathfrak{L}_{b_{0}}+\mathfrak{L}_{p^{c}}^{r}$ , where
$\mathfrak{L}_{b_{0}}$ is as before and $\mathfrak{L}_{v^{c}}^{\prime}$ is a vector space of dimesion $r$ over $Z/p^{c}z$.
Now a representation $\tilde{D}_{b^{\prime}}$ and a character $\delta^{\prime}\sim_{b}$ of $\mathfrak{U}^{\gamma_{(b)}}$ and a character
$\delta_{b^{\prime}}$ of $U^{\prime}$ are defined in the same way as $\tilde{D}_{b},$ $\delta\sim_{b},$

$\delta_{b}$. Then, for $\sigma$ in
$G(\mathfrak{P})$ , we put $M^{\prime}(\sigma)=(M_{p^{\prime}}(\sigma), M_{\iota^{\star}}(\sigma))\in U^{\prime}$ , where $M_{p^{\prime}}(\sigma)$ is a matrix
defined in $(B_{II})$ . Here, we put

$\psi_{b}(\mathfrak{p}^{n})=\delta_{b^{\prime}}(M^{\prime}(0_{\mathfrak{B}}^{n}))$

for $\mathfrak{p}$ in $G(\mathfrak{m})$ dividing $b$, the right hand side being independent of
the choice of $\sigma_{\mathfrak{B}}$ and of as by the condition $(B_{II})$ .

Notice that, if $b,$ $b^{\prime}$ are coprim natural numbers, then the space
$\mathfrak{L}_{bb}$ , is isomorphic to the direct sum $\mathfrak{L}_{b}+\mathfrak{L}_{b},$ , and the representation
$D_{bb^{\prime}}$ is equivalent to the tensor product $D_{b}\otimes D_{b},$ , hence we have
$\delta_{bb},$ $=\delta_{b}\delta_{b},$ . The same is also true for $\delta_{bb}^{\prime}$ , for any $\mathfrak{p}$ dividing $b$ or $b^{\prime}$ .
This shows that $\psi_{bb’}(\mathfrak{p}^{n})=\psi_{b}(\mathfrak{p}^{n})\psi_{b^{\prime}}(\mathfrak{p}^{n})$ for any $\mathfrak{p}$ in $G(\mathfrak{m})$ . From this

we see $\sum_{b=1}^{\infty}\psi_{b}(\mathfrak{p}^{n})=\prod_{l}(\sum_{i=0}^{\infty}\psi_{\iota^{i}}(\mathfrak{p}^{n}))$ . On the other hand, from our first
assumption, no characteristic root $\varpi_{i}(\mathfrak{p})$ of $M_{\iota^{\star}}(\sigma_{\mathfrak{P}})$ , and of $M_{l}^{\prime}(\sigma_{\mathfrak{P}})$ ,
is root of unity. Hence, from the remark at the end of 13, $\sum_{i=1}^{\infty}\psi_{\iota^{i}}(\mathfrak{p}^{n})$

is the highest power of $l$ dividing $\det(M_{\iota}^{\star}(\sigma_{\mathfrak{P}}^{n})-E)=\prod_{i=1}^{d}(\varpi_{i}(\mathfrak{p})^{n}-1)$ or

$\det(M_{l}^{\prime}(\sigma_{\mathfrak{P}}^{n})-E)=\prod_{i=1}^{r}(\varpi_{i}(\mathfrak{p})^{n}-1)$ according as $\mathfrak{p}$ is prime to $l$ or not.
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But we have $i=r+1\prod^{tl}(\varpi_{i}(\mathfrak{p})^{n}-1)\equiv(-1)^{l-r}(mod$ . $p$ from $(B_{II})$, so that the

highest power of $p$ dividing $\prod_{i=1}^{r}(\varpi_{i}(\mathfrak{p})^{n}-1)$ is equal to that dividing

$\prod_{i=1}^{d}(\varpi_{t}(\mathfrak{p})^{n}-1)$ ; we have therefore

$\sum_{b=1}^{\infty}\psi_{b}(\mathfrak{p}^{n})=|\Gamma_{\leftarrow i=\perp}^{dt}I(\varpi_{i}(\mathfrak{p})^{n}-1)|=\Gamma^{l}I(\varpi_{i}(\mathfrak{p})^{n}-1)i$

for all $\mathfrak{p}$ in $G(\mathfrak{m})$ ; here the second equality follows from $(B_{I})$ , as
$|\varpi_{i}(\mathfrak{p})|=N\mathfrak{p}^{\rho}>1$ .

15. With our “ character “
$\psi_{b}$, we define a “ L-function ” $L_{b}(s)$

as follows:

(12) $\log L_{b}(s)=\sum_{\mathfrak{p}\in G(m)}\sum_{n-1}^{\infty}\psi_{b}(\mathfrak{p}^{n})n^{-1}N\mathfrak{p}^{-ns}$ .
Observe that this $L_{b}(s)$ is different form Artin’s L-series attached
to the group character $\sim_{b}\delta$ only by components due to prime factors
of $\mathfrak{m}b$. Then, we form again an infinite product

(13) $L_{M}(s)=\prod_{b=1}^{\infty}L_{b}(s)$ ,

and auxiliary series for $\mathfrak{p}$ in $G(\mathfrak{m})$ ,

$\log L^{(\mathfrak{p})}(s)=\sum_{n=1}^{\infty}\sum_{b=1}^{\infty}\psi_{b}(\mathfrak{p}^{n})n^{-1}N\mathfrak{p}^{-ns}$

$=\sum_{n-1}^{\infty}$ (II$=1d(\varpi_{i}(\mathfrak{p})^{n}-1)$ ) $n^{-1}N\mathfrak{p}^{-ns}$ .
In the same way as in \S 2, we see that the series

$\sum_{\mathfrak{p}\in G(m)}\sum_{n\supset 1}^{\infty}\sum_{b=1}^{\infty}\psi_{b}(\mathfrak{p}^{n})n^{-1}N\mathfrak{p}^{-ns}$

converges absolutely in some right half s-plane, and we have

$L_{M}(s)=\prod_{\mathfrak{p}\in G(m)}L^{(\mathfrak{p})}(s)$ .
Again by the same calculation as in \S 2, we obtain a similar result:

THEOREM 3. Let $\{M_{l}$
““

$\}$ be a system of representatims of $G(\overline{k}/k)$

with the same degree $d$ for all $l$, satisfying the conditims $(CA_{I}^{\prime}),$ $(CA_{III}^{\prime})$ ,
$(CA_{IV}^{\prime})$ with $\rho>0,$ $(CA_{V}^{\prime})$ with $n_{0}=0,$ $(B_{I})$ and $(B_{II})$ . Let $L_{b}(s)$ be the
functims defined in (12) with $\psi_{b}$ obtained from $M_{l}^{\star}$ in the above exposed
manner. Then we have the following relatim:
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$\prod_{b=1}^{\infty}L_{b}(s)=\prod_{t=0}^{d}\prod_{i_{1}\cdots i_{t}}L(s, ai_{1}\cdots i_{t})^{(-1)^{a-\iota}}$

between these $L_{b}(s)$ and “ L-functions” $L(s, \varpi_{i_{1}\cdots t_{t}})$ defined by

$L(s, \varpi_{i_{1}\cdots i_{t}})=\prod(1-\varpi_{i_{1}}(\mathfrak{p})\cdots\varpi_{i_{t}}(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}\mathfrak{p}\in G(m)$

where $\varpi_{1}(\mathfrak{p}),\cdots,$ $\varpi_{a}(\mathfrak{p})$ are all the characteristic roots of $M_{l}^{\star}(\sigma_{\mathfrak{P}})$ .
Observe that, when $M_{\iota^{\star}}$ is obtained from a character $\chi$ of type

(A) satisfying (I), we have

$\prod_{b\downarrow a}L_{\mathfrak{y}}(s)=\prod_{b|a}L_{b}(s)$

for any natural number $a$, where $L_{b}(s)$ are functions defined in (9)
\S 2. (This is an immediate consequence of the above considerations.)
Hence Theorem 3 is indeed a generalization of Theorem 2.

16. As the reader may have noticed, Theorem 3 still holds if
we weaken the last condition in $(B_{II})$ (on characteristic roots of
$M^{\prime}(\sigma_{\mathfrak{Q}}))$ to the following one: For each $n$ , the highest power of $l$

dividing $\det(M_{\iota}^{\prime}(\sigma_{\mathfrak{Q}}^{n})-E)$ and that dividing $\prod_{i=1}^{l}((\varpi_{i}(q)^{n}-1)$ are equal,

where the degree of $M_{\iota}^{\prime}$ may be arbitrary. But this generalization
is somewhat an apparent one, as may be seen from the following
lamma:

LEMMA. Let $P(X)=X^{r}+\sum_{i=1}^{\prime}a_{i}X^{r-i},$ $Q(X)=X^{s}+\sum_{j=1}^{8}b_{j}X^{s-j}$ be two
polynomials in $Q_{p}[X]$ with $p$-adic integral coefficients $a_{i},$ $b_{j}$, and let
$\{\omega_{1},\ldots, \omega_{r}\},$ $\{\eta_{1},\ldots, \eta_{s}\}$ be respectively all the roots of $P(X)=0,$ $Q(X)=0$

in $\overline{Q}_{p}$ (with proper multiplicities). Let $P(X)=P_{0}(X)P_{1}(X),$ $Q(X)=$

$Q_{0}(X)Q_{1}(X)$ be decompositions of $P(X),$ $Q(X)$ in $Q_{p}[X]$ into products
of polynomials $P_{i}(X),$ $Q_{i}(X)$, with highest coefficients 1 $(i=0,1)$ , such
that all roots of $P_{0}(X),$ $Q_{0}(X)$ are units, while all roots of $P_{1}(X)$ ,
$Q_{1}(X)$ lie in the valuation ideal, in $\overline{Q}_{p}$ . Denote by $||\xi||$ the normalized
valuation of $\xi$ in $\overline{Q}_{p}$ . Let finally a finite number of elements $\alpha_{1},\ldots$ ,
$\alpha_{m}$ of $\overline{Q}_{2}$, be given. Now, assume that the relation $||\prod_{i}F(\omega_{i})||=$

$||\prod_{j}F(\eta_{j})||$ holds for any polynomial $F(T)=\sum_{i=1}^{t}c_{i}T^{t-i}$ with rational

integral coefficients $c_{i}$ such that $||c_{0}||=1,$ $||c_{t}||=1$ , satisfying $F(\alpha_{i})\neq 0$

for $i=1,\cdots,$ $m$. Then we have $P_{0}(X)=Q_{0}(X)$ . On the other hand, if
the relation $||\prod_{:}F(\omega_{i})||\leqq||\prod_{j}F(\eta_{j})||$ holds for any $F(T)$ with rational



358 Y. TANIYAMA

integral coefficients, satisfying $F(\alpha_{i})\neq 0(i=1,\ldots, m)$ , then $Q(X)$ divides
$P(X)$ .

This lemma is a generalization of lemma 12, n’68 in Weil’s
book [8]. We shall give a proof of the first part. The second part
is proved similarly.

PROOF. $F(T)$ being as above, put $A(F)=\prod_{i}F(\omega_{i}),$ $B(F)=\prod_{j}F(\eta_{j})$ .
Then, $||A(F)||$ and $||,B(F)||$ are continuous functions of coefficients
$c_{0},\cdots,$ $c_{t}$ of $F(T)$ with respect to the $p$-adic topology of $Q$. Let
$G(T)=\sum_{i=0}^{t}d_{i}T^{t-i}$ be a polynomial in $Z[T]$ such that $||d_{0}||=||d_{t}||=1$ ,
and $G(\alpha_{i})=0$ for some $\alpha_{i}$ . Then, take $F(T)$ as above, and put
$G_{n}(T)=G(T)+p^{n}F(T)$ , which is certainly in $Z[T]$ and $||d_{0}+p^{n}c_{0}||=$

$||d_{t}+p^{n}c_{t}||=1$ if $n\geqq 1$ . Moreover, $G_{n}(\alpha_{j})\neq 0(j=1,\cdots, m)$ if we take
$n$ large enough, as $F(\alpha_{j})\neq 0$ by assumption. Thus we have $||A(G_{n})||$

$=||B(G_{n})||$ for large $n$, and, since $G_{n}(T)$ converges to $G(T)$ as $ n\rightarrow\infty$

(in $p$-topology), we have $||A(G)||=||B(G)||$ . Hence we can drop the
condition that $F(\alpha_{j})\neq 0$ . Now, it is clear that $||A(F)||=||B(F)$ Il holds
for all $F(T)$ with rational coefficients $c_{0},\ldots,$ $c_{t}$, whose denominators
are prime to $p$, such that $||c_{0}||=1,$ $||c_{t}||=1$ . Since such rational
numbers are everywhere dense in the valuation ring $O_{p}$ of $Q_{p}$ , and
since rational numbers $c$ such that $||c||=1$ are everywhere dense in
the unit group of $Q_{p}$ , we have $||A(F)||=||B(F)||$ for all $F(T)$ in
$O_{p}[T]$ such that $||c_{0}||=||c_{t}||=1$ . Then, let $\beta$ be any unit in $\overline{Q_{t\}}}$ with

degree $t$ over $Q_{p}$ , and $F(T)=T^{t}+\sum_{i=1}^{t}c_{i}T^{t-i}$ be the irreducible poly-

nomial of $\beta$ over $Q_{p}$ . Then $F(T)\in O_{p}[T]$ and $||c_{t}||=1$ . If we put
$\varphi(\beta)=||\prod_{i}(\beta-\omega_{i})||,$ $\psi(\beta)=||\prod_{j}(\beta-\eta_{j})||$

, we have $||A(F)||=\varphi(\beta)^{t},$ $||B(F)||$

$=\psi(\beta)^{t}$, so that from the relation $||A(F)||=||B(F)||$ follows $\varphi(\beta)=\psi(\beta)$ .
Let now $\alpha$ be any one of $\omega_{i}$ , or $\eta_{j}$, which is a unit in $\overline{Q}_{p}$ . Let $d,$ $e$

be the multiplicities of $\alpha$ in $\{\omega_{1},\cdots, \omega_{r}\},$ $\{\eta_{1},\ldots, \eta_{s}\}$ respectively. Put
then $\lambda=\prod(\alpha-\omega_{i}),$ $\mu=\prod(\alpha-\eta_{j})$ , where products are taken for $\omega_{i}\neq\alpha$,
and $\eta_{j}\neq\alpha$, with their proper multiplicities. Choose $\beta$ so that $\beta\equiv\alpha$

$mod$ . $p^{n}$ with sufficiently large $n$, then $\beta$ is a unit in $\overline{Q}_{p}$. If $n$ is
large enough, we have I $\alpha-\omega_{i}||=||\beta-\omega_{i}||$ and I $\alpha-\eta_{j}||=||\beta-\eta_{j}||$ for
$\omega_{i}\neq\alpha,$ $\eta_{j}\neq\alpha$ . Hence we see $\varphi(\beta)=||\lambda||||\beta-\alpha||^{a}$ and $\psi(\beta)=||\mu||||\beta-\alpha||^{e}$ ,
so that $||\beta-\alpha||^{d-e}=||t\ell/\lambda||$ . Since $\lambda,$ $\mu$ are independent of $n$ and of $\beta$ ,
and since we can take $\beta$, so that I $\beta-\alpha||$ becomes arbitrarily small,
we must have $d=e$. As this holds for any root $\alpha$ of $P_{0}(X)=0$ , or
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$Q_{0}(X\gamma=0$, the first part of the lemma is proved.–

To verify the last assertion in the condition $(B_{II})$ , it is sufficient

from this lemma to show the relation I $\prod_{i=1}^{d}F(\varpi_{i}(q))||=||\det F(M_{\iota}^{\prime}(\sigma_{\mathfrak{Q}}))||$

for all polynomials $F(T)=\sum_{i=0}^{t}c_{t}T^{i-i}$ in $Z[T]$ such that $||c_{0}||=||c_{t}||=1$ ,

satisfying $F(\alpha_{i})\neq 0$ for a finite number of elements $\alpha_{1},\ldots,$ $\alpha_{m}$ in $\overline{Q_{l}}$ .
Because, as $M_{\iota}^{\prime}(\sigma_{\mathfrak{Q}})$ is l-adic unimodular, all the characteristic roots
of it are units in $\overline{Q}_{\iota}$, hence if this relation holds, they coincide with
those part of $\{\varpi_{1}(q),\ldots, \varpi_{a}(q)\}$ which are units in $\overline{Q_{l}}$, taking multi-
plicities into account.

\S 4. Application to abelian varieties. The conjecture of Hasse.

17. Let A be an abelian variety of dimension $n$ defined over a
field $\kappa$ with characteristic $p$ (maybe $0$ or a prime number). If $\mathfrak{g}$ is
any set of points on $A$ , we shall understand by the field generated
by $\mathfrak{g}$ over $\kappa$ the smallest field in rc containing $\kappa$ over which all points
in $\mathfrak{g}$ are rational. We shall denotes by $g(m;A)$ the group of all
points on $A$ , whose orders divide $m$. If $m$ is prime to $p,$ $g(m;A)$

have exactly $m^{2n}$ points, while $g$( $p^{i}$ ; A) have $p^{ir}$ points, where $r$ is
an integer independent of $i$, and we have $0\leqq r\leqq n$. Hence the field
generated by $g(m;A)$ over rc is a finite algebraic $extensi0n$ of $\kappa$.
We shall denote furthermore by $\mathfrak{g}(l;A)$ the group of all points on
$A$ , whose orders are some powers of a rational prime $l,$ $i$ . $e$ . $\mathfrak{g}(l;A)=$

$\bigcup_{i=1}^{\infty}g$( $l^{i}$ ; A). Then $\mathfrak{g}(l;A)$ is isomorphic to a direct sum of $2n$ or $r$

additive groups $(Q/Z)_{l}$ of l-adic numbers modulo 1, according as
$l\neq p$ or $l=p$. When we fix an isomorphism of $\mathfrak{g}(l;A)$ onto the direct
sum of $(Q/Z)_{l}$, we shall speak of “ l-adic coordinates “ of the group
$\mathfrak{g}(l;A)$ . Since any automorphism $\sigma$ in $G(\overline{\kappa}/\kappa)$ permutes points of
$g(m;A)$ among themselves, $\sigma$ induces an automorphism of the group
$\mathfrak{g}(l;A)$ . Hence the group $G(\overline{\kappa}1^{\kappa})$ can be represented, as a transfor-
mation group of $\mathfrak{g}(l;A)$ , with l-adic coordinates of it. We shall
denote by $M_{\iota}^{\star}(\sigma)$ this representation matrix, which is clearly J-adic
unimodular, and of degree $2n$ or $r$ according as $l\neq p$ or $l=p$. It
should be noticed that this representation $M_{l}^{\star}$ is certainly continuous,
that is to say for any natural number $i$, there is a finite algebraic
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extension $\kappa^{\prime}$ of rc such that $M_{l}^{\star}(\sigma)\equiv Emod$ . $l^{i}$ for all $\sigma$ in $G(\overline{\kappa}/\kappa^{\prime})$ .
(We have only to take as $\kappa^{\prime}$ the field generated by $g(l^{i}$ ; A) over $\kappa.$ )
Denote then by $\kappa(A, l)$ the subfield of $\overline{\kappa}$ corresponding to the kernel
of $M_{l}^{\star}$ . This $\kappa(A, l)$ is clearly equal to the field generated by $\mathfrak{g}(l;A)$

over $\kappa$ . We shall denote finally by $\kappa(A)$ the compositum of all fields
$\kappa(A, l)$ .

Let us recall here some properties of endomorphisms of abelian
varieties. (cf. Weil [8]).

$\propto t(A)$ denotes as usual the ring of endomorphisms of $A$ , and
$d_{0}(A)$ denotes the tensor product $d(A)\otimes Q$. $d_{0}(A)$ is a semi-simple
algebra of degree at most $4n^{2}$ over $Q$, and .,4(A) is an order of
$d_{0}(A)$ . Moreover, if $d_{0}(A)$ contains a commutative semi-simple
algebra $C$ of degree $2n$ over $Q$, the commutor of $C$ in $d_{0}(A)$ coincides
with $C$ itself (cf. Weil [5] p. 12). Since any endomorphism $\mu$ of A
induces an endomorphism of the group $\mathfrak{g}(l;A),$ $d(A)$ can be repre-
sented with l-adic coordinates of $\mathfrak{g}(l;A)$ , and the representation
matrix $M_{l}(\mu)$ is an l-adic integral matrix of degree $2n$ or $r$ according
as $l\neq p$ or $l=p$. This representation $M_{l}$ is faithfull for any $l\neq p$.
Moreover, for $\iota\neq p$, the characteristic equation of $M_{l}(\mu)$ has rational
integral coefficients, and is independent of $l$. When $\mu$ is defined over
$\kappa$ , we put $\nu(\mu)=[\kappa(x) : \kappa(\mu x)]$ if this degree is finite, and put $\nu(\mu)=0$

in other case, where $x$ denotes a generic point of A over $\kappa$ . Then
we have $\nu(\mu)=\det M_{l}(\mu)$ for $l\neq p$. Moreover, $\nu(l^{4})\neq 0$ if and only if
the kernel of $\mu$ is a finite group. We call $\int J$ separable if the field
$\kappa(x)$ is separable over $\kappa(\mu x)$ . If $\nu(\mu)\neq 0$ and $\mu$ is separable, $\nu(t\ell)$ is
equal to the number of points $b$ in the kernel of $\int J$ , hence the highest
power of $l$ dividing $\nu(\mu)$ is exactly equal to the number of points $b$

in $\mathfrak{g}(l;A)$ such that $\mu b=0$ . But this number of points is equal to
the highest power of $l$ dividing $\det M_{\iota}(\mu)$ , as the definition of $M_{l}$

shows. Hence if $\mu$ is separable and $\nu(\mu)\neq 0$ , the highest power of $[$

dividing $\nu(\mu)$ and that dividing $\det M_{\iota}(\mu)$ are the same also for $t=p$.
Finally, we can extend this representation $M_{l}$ to the algebra $d_{0}(A)$

in the obvious manner.
When $\kappa$ is the finite field of $p^{f}$ elements, the mapping $\xi\rightarrow\xi^{p^{f}}$ is

an automorphism of the universal domain, which leaves all elements
in $\kappa$ invariant. Hence this automorphism determines an endomor-
phism $\pi_{A}$ of $A$ , defined over $\kappa$. From the definition, $\kappa(x)$ is purely
inseparable of degree $p^{fn}$ over $\kappa(\pi_{A}x)$ . We see furthermore that, for
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any $\mu$ in $d(A)$ , $\mu$ is separable if and only if $\mu$ is prime to $\pi_{A}$
$i$ . $e$ .

the left ideal $d(A)\mu+d(A)\pi_{A}$ in $d(A)$ , generated by $\mu$ and $\pi_{A}$ is
equal to $d(A)$ . Notice that, if any endomorphism $\mu$ is defined over
$\kappa$ we have $\mu\pi_{A}=\pi_{A}l^{l}$ . Let now $\varpi_{1}(A),\ldots,$ $\varpi_{2n}(A)$ be the characteristic
roots of the matrix $M_{\iota}(\pi_{A})$ for $l\neq p$, then the zeta-function $Z_{A}(u)$ of
A over $\kappa$ is of the form:

$ Z_{A}(u)=\prod_{t=0}^{n}\prod_{i_{1}\cdot\cdot 4_{t}}(1-\varpi_{t_{1}}(A)\cdots\varpi_{\iota_{\iota}}(A)u)^{(-1)^{t+1}}\angle\circ$

(cf. Taniyama [3]).

18. When the field $\kappa$ is an algebraic number field $k$ of finite
degree, the system of representations $M_{\iota}^{\star}$ (for all l) of the group
$G(\overline{k}/k)$ defined as above satisfies the conditions stated in Theorem 3,
as we shall show in the following.

First we shall consider Frobenius automorphisms $\sigma_{\mathfrak{P}}$ over $k$ of
prime divisors $\mathfrak{P}$ in A. For this purpose, we use the reduction of
A modulo $\mathfrak{p},$ $\mathfrak{p}$ denoting the prime ideal in $k$ divisible by $\mathfrak{P}$ (cf.
Shimura [2], Taniyama [3]). Then, for almost all $\mathfrak{p}$, the variety A(p)
obtained from A by the reduction modulo $\mathfrak{p}$ is also an abelian variety,
defined over the residue field $k(\mathfrak{p})$ of $p^{f}=N\mathfrak{p}$ elements. In this case,
$\mathfrak{p}$ is said to be non-exceptional for A. We can extend the process of
reduction $mod$ . $\mathfrak{p}$ to that of reduction $mod$ . $\mathfrak{P}$. If $\mathfrak{p}$ is non-exceptional,
this latter process of reduction $mod$ . $\mathfrak{P}$ induces a homomorphism of
the group $\mathfrak{g}(l;A)$ onto $\mathfrak{g}(l;A(\mathfrak{p}))$ , which is an isomorphism for $l\neq p$.
It induces also an isomorphism of the ring $d(A)$ into $d(A(\mathfrak{p}))$ . Notice
that, if we take another prime divisor $\mathfrak{P}^{\prime}$ of $\mathfrak{p}$, these isomorphisms
of $\mathfrak{g}(l;A)$ or of .,4(A) will be thereby altered in general, unless all
points or endomorphisms in question are defined over $k$. We shall
fix here the l-adic coordinates of $\mathfrak{g}(l;A)$ and of $\mathfrak{g}(l;A(\mathfrak{p}))$ , by which
our representations $M_{l}^{\star},$ $M_{l}$ are defined. Now, since any $\sigma_{\mathfrak{P}}$ induces
on the residue field $\overline{k}(\mathfrak{P})$ the antomorphism $\xi\rightarrow\xi^{p^{f}}$ (over $k(\mathfrak{p})$ ), we
see $M_{\iota}^{\star}(\sigma_{\mathfrak{P}})=M_{\iota,\mathfrak{P}}^{-1}M_{l}(\pi_{A(\mathfrak{p})})M_{l,\mathfrak{B}}$ for any $l\neq p$, where $M_{l,\mathfrak{B}}$ denotes the
transformation matrix between the original l-adic coordinates of
$\mathfrak{g}(l, A(\mathfrak{p}))$ and that of $\mathfrak{g}(l;A(\mathfrak{p}))$ induced by the l-adic coordinates of
$g(l;A)$ by the reduction $mod$ . $\mathfrak{P}$. Here notice that $\pi_{A(\mathfrak{p})}$ is determined
uniquely by $\mathfrak{p}$, and $M_{l}$ ,as is determined uniquely by $\mathfrak{P}$, so that $M_{l}^{\star}(\sigma_{\mathfrak{B}})$

does not depend on the choice of $\sigma_{\mathfrak{B}}$ . This means that $\mathfrak{p}$ is unramified
in the field $k(A;l)$ for any $l\neq p$, if $\mathfrak{p}$ is non-exceptional for $A$ ,
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Hereafter, we shall write $\pi_{\mathfrak{p}}\varpi_{i}(\mathfrak{p})$ instead of $\pi_{A(\mathfrak{p})}\varpi_{i}(A(\mathfrak{p}))$ .
Denote by $\mathfrak{m}$ the product of all prime ideals $\mathfrak{p}$ in $k$, which are

not non-exceptional for A. As such $\mathfrak{p}$ are finite in number, $\mathfrak{m}$ is
certainly an integral ideal of $k$. Then, we have seen that, for any
$\mathfrak{p}$ in $G(\mathfrak{m}l)$ , $\mathfrak{p}$ is unramified in $k(A;l),$ $i$ . $e$ . the condition $(CA_{I}^{\prime})$ is
satisfied in our case. As was recalled above, the characteristic
equation of $M_{\iota}(\pi_{\mathfrak{p}})$ , hence also that of $M_{\iota}^{\star}(\sigma_{\mathfrak{P}})$ , have rational integral
coefficients independent of $l\neq p$, which proves the condition $(CA_{III}^{\prime})$ .
Now the so called Riemann hypothesis for the congruence zeta
function of a curve (Weil [7]) shows that we have $|\varpi_{i}(\mathfrak{p})|=p^{f/2}=N\mathfrak{p}^{1/2}$

for $i=1,\ldots,$ $2n$ (cf. Taniyama [3], \S 3). This implies the condition
$(CA^{J_{IV}})$ with $\rho=1/2>0$ . Recall also that $\varpi_{i}(\mathfrak{p})$ are algebraic integers,
from which the condition $(CA_{V}^{\prime})$ follows with $n_{0}=0$ . Recall moreover
that $\prod_{i}\varpi_{i}(\mathfrak{p})=\det M_{l}(\pi_{\mathfrak{p}})=\nu(\pi_{\mathfrak{p}})>0$, which is nothing but the condition
$(B_{I})$ . We have therefore only to verify the condition $(B_{II})$ .

We must therefore consider $M_{v^{\star}}(\sigma)$ for $\sigma$ in the decomposition
group $G(\mathfrak{P})$ of $\mathfrak{P}$ over $k$. Recall that the group $g$($p^{i}$ ; A) has exactly
$p^{2in}$ elements, and the group $g(p^{i} ; A(\mathfrak{p}))$ has $p^{ir}$ elements, where $r=r(\mathfrak{p})$

is independent of $i$. Moreover, by the reduction modulo as, $g$( $p^{i}$ ; A)
is mapped onto $g(p^{i} ; A(\mathfrak{p}))$ for all $i$. Hence, if $\mathfrak{g}_{\mathfrak{P}}(p;A)$ denotes the
kernel of the homomorphism of $\mathfrak{g}(p;A)$ onto $\mathfrak{g}(p;A(\mathfrak{p}))$ determined
by the reduction $mod$ . $\mathfrak{P},$ $\mathfrak{g}_{\mathfrak{P}}(p;A)$ is isomorphic to the direct sum
of $2n-r$ groups $(Q/Z)_{p}$ , and is a direct component of $\mathfrak{g}(p;A)$ . In
other words, there is a subgroup $\mathfrak{g}_{\mathfrak{P}}^{\prime}(p;A)$ of $\mathfrak{g}(p;A)$ , mapped iso-
morphically onto $\mathfrak{g}(p;A(\mathfrak{p}))$ by the reduction $mod$ . $\mathfrak{P}$, such that
$\mathfrak{g}(p;A)=\mathfrak{g}_{\mathfrak{P}}^{\prime}(p;A)+\mathfrak{g}_{\mathfrak{P}}(p;A)$ (direct sum). Clearly, this kernel $\mathfrak{g}_{\mathfrak{P}}(p;A)$

is left invariant as a whole by any $\sigma$ in $G(\mathfrak{P})$ . Thus, if we take
$p$-adic coordinates in $\mathfrak{g}(p;A)$ according to the direct decomposition
$\mathfrak{g}(p;A)=\mathfrak{g}_{\mathfrak{P}}^{\prime}(p;A)+\mathfrak{g}_{\mathfrak{P}}(p;A),$ $M_{2)}^{\star}(\sigma)$ must have the form:

$M_{p}^{\star}(\sigma)=(M_{p_{\star^{\prime}}}(\sigma)$ $M_{p}^{0,}(\sigma))$

for any $\sigma$ in $G(\mathfrak{P})$ . Here, $M_{p^{\prime\prime}}(\sigma)$ is of degree $ 2n-\gamma$, and is a repre-
sentation of $G(\mathfrak{P})$ with $p$-adic coordinates in $\mathfrak{g}_{\mathfrak{P}}(p;A)$ , while $M_{p^{\prime}}(\sigma)$ is
equal to the representation of the Galois group of the residue field
$\overline{k}(\mathfrak{P})$ over $k(\mathfrak{p})$ (induced by $G(\mathfrak{P})$ ) with $p$-adic coordinates in $\mathfrak{g}(p;A(\mathfrak{p}))$

determined by those of $\mathfrak{g}_{\mathfrak{B}}^{\prime}(p;A)$ by the above isomorphism. Then,
just as above, we see that $M_{p^{\prime}}(\sigma_{\mathfrak{P}})$ does not depend on the choice of
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$\sigma_{\S!}$ , so that $\mathfrak{p}$ is unramified in the subfield $k(M_{p^{\prime}})$ of $k(A;p)$ corre-
sponding to the kernel of $M_{p^{\prime}}$ .

Here, we shall use the lemma in 16. $||\alpha||$ denotes as there the
normalized valuation in the field $Q_{2},$ . Then, as was recalled in 17,
for any separable endomorphism $\mu$ of A such that $\nu(\mu)\neq 0$ , we have
$||\det M_{p}(ll)||=||\nu(\mu)||$ . Let now $F(T)=\sum_{i=0}^{t}c_{i}T^{t-i}$ be any polynomial with
rational integral coefficients such that $||c_{0}||=||c_{t}||=1$ . It is clear that
$F(\pi_{\mathfrak{p}})=\sum c_{i}\pi_{\mathfrak{p}}^{t-i}$ belongs to $d(A(\mathfrak{p}))$ . If $\nu(F(\pi_{\mathfrak{p}}))=0$ , then $\det(M_{\iota}(F(\pi_{\mathfrak{p}})))$

$=0$ for any $l\neq p$, hence we have $F(\varpi_{i}(\mathfrak{p}))=0$ with some $\varpi_{i}(\mathfrak{p})$ . Hence,
if $F(\varpi_{i}(\mathfrak{p}))\neq 0$ for $i=1,\ldots,$ $2n$, then $\nu(F(\pi_{\mathfrak{p}}))\neq 0$ . Moreover, since $||c_{t}||=1$ ,
$F(\pi_{\mathfrak{p}})$ is prime to $\pi_{\mathfrak{p}}$ so that $F(\pi_{\mathfrak{p}})$ is separable. We have therefore,
for any $F(T)$ such that $F(\varpi_{i}(\mathfrak{p}))\neq 0,$ $||\det F(M_{p}(\pi_{\mathfrak{p}}))||=||\det M_{p}(F(\pi_{\mathfrak{p}}))||$

$=||\nu(F(\pi_{\mathfrak{p}}))||=||\det M_{l}(F(\pi_{\mathfrak{p}}))||=||\prod_{i=1}^{2n}F(\varpi_{t}(\mathfrak{p}))||$ , where $l\neq p$. From the

remark following the lemma, we thus see that the characteristic
roots of $M_{p^{\prime}}(\sigma_{\mathfrak{P}})=M_{p}(\pi_{\mathfrak{p}})$ are exactly those characteristic roots of
$M_{l}(\pi_{\mathfrak{p}})$ , which are units in $\overline{Q}_{p}$ , taking multiplicities into account. This
completes the verification of the condition $(B_{II})$ .

Hasse’s zeta function $\zeta_{A}(s)$ of A over $k$ is defined by

$\zeta_{A}(s)=\prod_{\mathfrak{p}\in G(\mathfrak{m})}Z_{\mathfrak{p}}(s)$
,

where $Z_{\mathfrak{p}}(s)$ denotes the zeta function $Z_{A(\mathfrak{p})}(u)$ of A(p) over $k(\mathfrak{p})$ with
$u=N\mathfrak{p}^{-s}$. Then we have

$\zeta_{A}(s)=\prod_{\mathfrak{p}\in a(\mathfrak{m})}\prod_{t=0}^{2n}\prod_{t}(1-\varpi_{t_{1}}(\mathfrak{p})\cdots\varpi_{\iota_{t}}(\mathfrak{p})N\mathfrak{p}^{-s})^{(-1)^{t+1}}i_{1}\cdots i$

This shows that $\zeta_{A}(s)$ is nothing but the function $L_{M}(s)$ defined by
(18) in 15, for our system $\{M_{\iota}^{\star}\}$ of representations with l-adic co-
ordinates in $\mathfrak{g}(l;A)$ . Thus we have seen that $\zeta_{A}(s)$ can be expressed
as an infinite product of “ L-functions ” determined as in \S 3.

19. We shall give an application of Theorem 1’ to the proof of
the conjecture of Hasse for $\zeta_{A}(s)$ in case of complex multiplication.

Let A be as in 18, and we make following assumptions:
$(CM_{I})$ The algebra $d_{0}(A)$ contains a commutative semi-simple

subalgebra $C$ of degree $2n$ over $Q$.
$(CM_{II})$ Any endomorphism in $C\cap d(A)$ is defined over $k$.
Let a prime ideal $\mathfrak{p}$ in $k$ be non-exceptional for A. By the
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rednction modulo $\mathfrak{p},$ $C$ is mapped isomorphically into the algebra
$d_{0}(A(\mathfrak{p}))$ , and any endomorphism in this image of $C$ is defined over
$k(\mathfrak{p})$ . Hence $\pi_{\mathfrak{p}}$ commutes with all elements in the image of $C$, which
is a commutative semi-simple subalgebra of degree $2n$ of $d_{0}(A(\mathfrak{p}))$ ,
so that $\pi_{\mathfrak{p}}$ must be contained in this image. That is to say, there
is an element $\pi$ in $C$, mapped to $\pi_{\mathfrak{p}}$ by the reduction modulo $\mathfrak{p}$. Now,
$\mathfrak{P}$ being a prime divisor of $\mathfrak{p}$ in $\overline{k,}$ we have $M_{l}^{\star}(\sigma_{\mathfrak{P}})=M_{\iota,\mathfrak{P}^{1}}^{-}M_{l}(\pi_{\mathfrak{p}})M_{\iota,\mathfrak{P}}$

as was seen in 18, and it is clear that $M_{l}(\pi)=M_{\iota,\mathfrak{P}}^{-1}M_{\iota}(\pi_{\mathfrak{p}})M_{\iota,\mathfrak{P}}$ . We
have therefore $M_{l}^{\star}(\sigma_{\mathfrak{P}})=M_{l}(\pi)$ . Remember that $M_{\iota}$ is a faithfull
representation of $d_{0}(A)$ , so that all matrices $M_{\iota}(\sigma_{\mathfrak{B}})$ for all $\mathfrak{P}$ in
$G(\mathfrak{m}l)$ generates over $Q^{\prime}$ an algebra $\leftrightarrow q_{l}$ , which is isomorphic to the
subalgebra of $C$ generated over $Q$ by all $\pi$ (for all $\mathfrak{p}$ in $G(ml)$ ), and
an isomorphism is given by $ M_{\iota}^{\star}(\sigma_{\mathfrak{P}})\rightarrow\leftarrow\pi$. Hence the condition $(CA_{II}^{\prime})$

in 11, is satisfied. Since all other conditions $(CA^{\prime})$ have been verified
in 18, Theorem 1’ shows now that our system $\{M_{l}^{\star}\}$ is obtained from
a finite number of characters $\chi_{1},\ldots,$ $\chi_{s}$ of $C_{k}$ of type $(A_{0})$ . This implies
in particular that, for any combination $(i_{1},\cdots, i_{t})$ of $1,\ldots,$ $2n$, there is
a character $\chi_{i_{1}\cdots i_{t}}$ of $C_{k}$ of type $(A_{0})$ such that $\chi_{i_{1}\cdots i_{i}}(\mathfrak{p})=\varpi_{i_{1}}(\mathfrak{p})\cdots\varpi_{i_{t}}(\mathfrak{p})$

for any $\mathfrak{p}$ in $G(\mathfrak{m})$ . Hence we have proved the following theorem.
THEOREM 4. Let A be an abelian variety defined over an algebraic

number field $k$ of finite degree, satisfying the conditims $(CM_{I})$ and $(CM_{II})$ .
Then the zeta function $\zeta_{A}(s)$ of A over $k$ can be expressed in the follow-
ing form

$\zeta_{A}(s)=\prod_{t\subset 0}^{2n}\prod_{i_{1}\cdots i_{t}}L(s;x_{i_{1}\cdots i_{t}})^{(-1)^{b}}$

with L-functims $L(s, \chi_{i_{1}\cdots i_{t}})$ attached to characters $\chi_{i_{1}\cdot\cdot/\iota_{t}}$ of $C_{k}$ of type
$(A_{0})$ , with defining module $\mathfrak{m}$

(i. e. $L(s;x_{\iota\cdots i})=\prod(1-\chi_{i\cdots i}(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}$ )
$1c1t\mathfrak{p}\in G(\mathfrak{m})$

In particular, the conjecture of Hasse holds for our $\zeta_{A}(s)$ .
Remark that the corresponding result holds for a complete non-

singular curve $C$ defined over $k$, if a jacobian variety $J$ of $C$ and a
canonical mapping of $C$ into $J$ are defined over $k$, and the conditions
$(CM_{I}),$ $(CM_{II})$ are satisfied for $A=J$. This is immediately seen from
the known relation of zeta function of $C$ and the characteristic roots
of $M_{l}(\pi_{\mathfrak{p}})$ . (cf. Weil [8] n’69; as to the explicite formula for the
zeta function of $C$, see Taniyama [3], \S 4, Theorem 1’).
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The author once obtained the same result by another method,
in case where $C$ is a field of degree $2n$, and $k$ contains all algebraic
conjugates of C. Under these assumptions, all endomorphisms in
$C\cap d(A)$ is defined over $k$. $($ cf. Taniyama [3]. \S $4.)^{2)}$ But even in this
case, our present condition $(CM_{II})$ is in general much weaker than
this former condition in [8]. Moreover, although the case of general
$C$ could also be treated by the method in [3] if $k$ is sufficiently large,
our present method would be preferred as more direct and giving
more insight.

20. We shall give an example, first treated by A. Weil by a
quite different method.

Let $C$ be a plane algebraic curve defined by an equation
$\alpha x^{n}+\beta y^{m}=1$ ,

where $n,$ $m$ are natural numbers and $\alpha,$
$\beta$ are non-zero algebraic

integers. Denote by $d$ the greatest common divisor of $m$ and $n$,
and put $m=m_{1}d,$ $n=n_{1}d$. Then the geuns $g$ of $C$ is given by $2g=$

$(n-1)(m-1)-(d-1)$ . If we put $\omega_{ij}=x^{i}y^{j-n+1}dx$, the set $\{\omega_{ij}\}$ for all
$i\geqq 0,$ $j\geqq 0$ such that $(i+1)n_{1}+(j+1)m_{1}\leqq n_{1}m_{1}d-1$ form a base of the
space $D(C)$ of all differentials of the first kind of C. Let $\zeta\eta$ be
respectively n-th and m-th roots of unity. Then the correspondence
$\mu_{0}$ ; $(x, y)\rightarrow(\zeta x, \eta y)$ of $C$ onto itself induces an endomorphism $\mu$ of a
jacobian variety $J$ of a complete non-singular model of C. If we
denote by $S(\mu_{0})$ the representation matrix of $\mu_{0}$ with respect to the
base $\{\omega_{tj}\}$ of $D(C),$ $S(\mu_{0})$ is a diagonal matrix with diagonal elements
$\zeta^{i+1}\eta^{J+1}$ . Hence, if $n$ and $m$ are coprime, we see immediately that $\mu$

(for all $\zeta$ and $\eta$ ) generate over $Q$ a commutative semi-simple algebra
of degree $2g$. We can assume that $J$ is defined over the field $Q(\alpha, \beta)$ .
Then $\mu$ is defined over the field $Q(\alpha, \beta, \zeta, \eta)$ . Hence our Theorem is
applicable to this case taking $k\supset Q(\alpha, \beta, \zeta, \eta)$ so that a canonical
mapping is defined over $k^{3)}$

University of Tokyo.
2) A passage in the proof of proposition 3 in [3] (p. 38, t. 22) would indicate

that $N\mathfrak{P}^{\prime}=(\iota\pi_{\mathfrak{B}}/)\cdot(\overline{\downarrow\pi_{\mathfrak{P}^{\prime}}})$ determines the ideal decomposition of $(\iota\pi_{\mathfrak{P}^{\prime}})$ , which is in fact
not the case, since both $\mathfrak{p}_{l}$ and $\overline{\mathfrak{p}}_{i}$ may divide $\iota\pi_{\mathfrak{P}^{\prime}}$ . It is easy however to amend
this point and obtain the desired result. See author’s forthcoming paper in collabo-
ration with G. Shimura.

3) It may be not difficult to obtain the same result by this method in case
where $n,$ $m$ , are not coprime, considering also this $S(\mu_{0})$ . But I have not examined
this case in detail.
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