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On Umezawa’s criteria for univalence.

By Maxwell O. READE1)

(Received Dec. 26, 1956)

1. In an interesting paper of recent date, Umezawa [5] obtained
sorce new criteria that a function analytic in a certain domain should
be univalent there. Those $cr_{\backslash }$iteria all involve the change in direction
of the tangent vector to the image of the boundary.

In this note we extend slightly some of Umezawa’s results, and
we give what we believe are simpler proofs yielding slightly more
precise results. We use a device introduced by Umezawa, and a result

due to Kaplan and Umezawa, to show that the function $\int_{0}^{z}e^{-\zeta^{2}}d\zeta$ is

univalent for $|z|<1.51$ ; this improves upon estimates due to Nehari
[2] and Rogozin [4].

We shall make use of the results obtained by Kaplan [1] in a
recent paper in which he introduced univalent close-to-convex functions.

2. The following result is Umezawa’s fundamental lemma [5; $p$ .
213]. Our proof avoids Umezawa’s geometric argument and shows
that Umezawa’s result is equivalent to Kaplan’s fundamental result
[1; p. 173].

THEOREM I. Let $f(z)$ be analytic inside and on the simple closed
analytic curve $\Gamma$ , and let $f^{\prime}(z)$ have no zeros on $\Gamma$ . If
(1) $\int_{\Gamma}d\arg df(z)=2\pi$ ,

and if for all arcs $C$ on $\Gamma$ we have

(2) $\int_{c}d\arg df(z)>-\pi$ ,

then $f(z)$ is univalent inside $\Gamma$ , and the image of $\Gamma$ a simple close-to-
convex curve.

1) The research reported here was performed under a grant from the National
Science Foundation.
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PROOF. Let 9 denote the domain inside $\Gamma$ , and let $z=g(t)$ be an
analytic function that maps 9 conformally onto $|t|<1$ . A simple
calculation shows that $F(t)\equiv f(g(t))$ has the following properties. If
$t=e^{;\psi}$, then

(3) $\int_{0^{\pi}}^{2}\Re(1+e^{i\phi}\frac{F^{\prime\prime}(e^{i\phi})}{F(e^{\prime}\emptyset)})d\emptyset=\int_{\Gamma}d\arg df(z)=2\pi$ .

For all $ 0\leqq\phi_{1}<\phi_{2}\leqq 2\pi$, we have

(4) $|_{\phi^{2}}^{\phi_{1}}$ gz $(1+e^{i\phi}F_{F^{\prime\prime}}()()\frac{e^{i\phi}}{e^{;}\emptyset})d\emptyset=\int_{c}d\arg df(z)>-\pi$ .

Since $f^{\prime}(z)$ has no zeros on $\Gamma$ , it follows that $F^{\prime}(t)$ has no zeros
on the circle $|t|=1$ . Also, from (3) we obtain

$\int_{11|=1}\frac{F^{\prime\prime}(t)}{F(t)}dt=0$ ,

from which conclude that $F^{\prime}(t)$ has no zeros for $|t|\leqq 1$ (and hence
$f^{\prime}(z)$ has no zeros in $\overline{\mathscr{D})}$). From (4) and the fact that $F^{\prime}(t)\neq 0$ for
$|t|\leqq 1$ , we can conclude [1; pp. 175-176] that $F(t)$ is a close-to-convex
univalent function for $|t|\leqq 1$ , and therefore the image of $\Gamma$ under
$f(z)$ is a close-to-convex curve. This completes the proof.

As Umezawa points out, because (1) holds we can replace (2) by
the condition that

$\int_{c}d\arg df(z)<3\pi$

hold for all arcs $C$ on $\Gamma$ .
$CoROLLARY$. Under the hypothesis of the preceding theorem, if

$z_{0}\in \mathscr{D})$, then the image curve of each level line of the Green’s function
$G(z, z_{0})$ for $g$), with pole $z_{0}$ , is again a close-to-convex curve.

PROOF. Let $z=g(t)$ be the mapping function noted above. Then
the image of a level line $ G(z, z_{0})=\lambda$ under $f(z)$ is the image of a certain
circle in $|t|<1$ under $F(t)$ , and these we have shown to be close-to-
convex curves [3; p. 60].

In the light of the preceding results, it may be of some interest
to state, without proof, the following equivalent form of Umezawa’s
fundamental lemma.

THEOREM II. Let $\mathscr{Q}$) be a simply connected domain, zuhich is not
the whole $\dot{p}$lane, and let $f(z)$ be a function that is analytic with non-
vanishing derivative in 9. Let $z_{0}\in 9$, and let $ G(z, z_{0})=\lambda$ be the level
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lines of the Green’s function for 9. If $f(z)$ satisfies the following condi-
tions for all level lines of $G(z, z_{0})$ ,

$\int_{G(z,zo)=\lambda}d\arg df(z)=2\pi$ ,

and

$\int_{c}d\arg df(z)>-\pi$

for each arc $C$ on $ G(z, z_{0})=\lambda$ , then $f(z)$ is univalent in 9 and maps 9
onto a close-to-convex domain.

We remark, without going into details, that by the same methods
as used in the proofs above, we can show that Umezawa’s Theorem
3 [5 ; p. 215] is equivalent to his Theorem A [5; p. 212], and hence
the image of $\Gamma$ in his first theorem is a curve that is convex in one
direction. We also call attention to early papers of Paatero, in which
similar topics are discussed in great detail [3].

3. Now we shall employ a device introduced by Umezawa along
with Theorem I [5; p. 214] in order to determine a radius of univ-

alence for the function $\Phi(z)\equiv\int_{0}^{z}e^{-\zeta^{2}}d\zeta$ .
Suppose it is known that $\Phi(z)$ maps the circle $|z|=R$ onto a simple

close-to-convex curve; we must determine a value for $R$ such that the
relation (2) holds for all arcs on $|z|=R$. First, an easy calculation
shows that the zeros of

$\Psi(Re^{i\theta})\equiv\Re(1+Re^{i\theta}\frac{\Phi^{\prime\prime}(Re^{i\theta})}{\Phi^{\prime}(Re^{i\theta})})$

occur for $\theta\pm\alpha_{f}$ $\pi\pm\alpha$ , where $0<2\alpha<\frac{\pi}{2}$ and $\cos 2\alpha=\frac{1}{2R^{2}}$ . Hence

we must assume that $2R^{2}\geqq 1$ . Another easy calculation shows that
$\Psi(Re^{i\theta})$ is negative for $-\alpha<\theta<\alpha$ , and for $\pi-\alpha<\theta<\pi+\alpha$ , and posi-
tive on the other two arcs of the circle $|z|=R$. Now in order to
satisfy (2) for the circle 1 $z|=R$, it is certainly sufficient that

(5) $\int_{-\alpha}^{\alpha}\Psi(Re^{i\theta})d\theta=\int_{\pi-\alpha}^{\pi+\alpha}\Psi(Re^{i\theta})d\theta>-\pi$

and

(6) $\int_{-\alpha}^{\pi+a}\Psi(Re^{i\theta})d\theta>-\pi$ ,
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hold. We find that the integrals in (5) are equal to $ 2\alpha-2R^{2}\sin 2\alpha$ .
Hence (5) beconles

(7) Arctan$\sqrt{4R^{4}-1}-\sqrt{R^{4}-1}>-\pi$ .
Another calculation shows that if (7) holds, then so does (6). Hence
the largest value of $R$ for which (7), and hence (5), holds is that for
which equality is achieved in (7). This last fact, plus the fact that
$\Phi^{\prime}(z)$ has no zeros, allows us to apply Theorem I, with $\Gamma$ the circle
$|z|=R$, to obtain the following result.

THEOREM III. The function $\int_{0}^{z}e^{-\zeta^{2}}d\zeta$ is univalent and close-to-

convex for $|z|<R$, where $R$ is the largest positive root of the following
equation:

Arctan $\sqrt{4R^{4}-1}-\sqrt{4R^{t}-1}=-\pi$ .
We find that $R=1.51$ , approximately. This is slightly larger than

a recent estimate of $R=\sqrt{\frac{\pi}{2}}$ due to Rogozin [4], which in turn is

larger than Nehari’s $R=\sqrt{}\frac{\sqrt{\pi^{2}+1}[2]}{2}$

mined a radius of univalence which is that for close-to-convexity, and
since the image of $|z|=R$ is an analytic curve, it appears that the
true value of the radius of convexity is somewhat larger than the
value we have found. It would also be of some interest to determine
a larger domain of univalence of $\Phi(z)$ ; this can certainly be done using
Umezawa’s fundamental lemma (Theorem I above).

4. We close with the observation that Umezawa’s criteria for
univalence of analytic functions defined in an annulus can be extended
a little, much in the manner we have generalized some of his other
results. We plan to return to that point on another occasion.

The University of Michigan
Ann Arbor, Michigan
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