Remark on my paper: On Skolem's theorem.

By Gaisi TAKEUTI

(Received Dec. 10, 1956)

It was proved in my paper [1] that if the system of axioms of Fraenkel-von Neumann of the set-theory is consistent, then system remains consistent after addition of the axiom that every set is a univalent image of ω . This result was established by Theorems 1, 2 of that paper. I should like to remark now that from the proof of these theorems follows immediately also the following result:

"Let Γ_1 be any consistent system of axioms in Gentzen's *LK*, representing mathematically a certain domain *D* of elements. Then Γ_1 remains consistent after addition of the system of axioms of the theory of natural numbers, and the axiom that every element of *D* is a univalent image of a natural number.

I shall formulate this result more precisely in the following lines, and indicate how to prove it.

We begin with Γ_a , the system of axioms of "arithmetic" consisting of axioms of the theory of natural numbers except the axiom of mathematical induction. In this paper, Γ_a means the following axioms:

$$\forall x(x=x)$$

 $\forall A \forall x \forall y (x = y \leftarrow (A(x) \vdash A(y))) \text{ (See [3], §1 for the notation } \forall A.)$ $\forall x \forall y \forall z (x < y \land y < z \vdash x < z)$ $\forall x \forall y (x < y \vdash x' < y) \quad x < y)$ $\forall x \forall y (x < y \vdash x' < y \lor x' = y)$ $\forall x (x < x')$ $\forall x (0 < x \lor 0 = x)$ $\forall x (x + 0 = x)$ $\forall x \forall y (x + y' = (x + y)')$ $\forall x \forall y (x + y = y + x)$ $\forall x \forall y (x < y \vdash \exists z (0 < z \land x + z = y))$ $\forall x \forall y (x < y \vdash \exists z (0 < z \land x + z = y))$ $\forall x \forall y (x \cdot y = y \cdot x)$ $\forall x \forall y (x \cdot y = y \cdot x)$ $\forall x \forall y \forall z ((x + y) \cdot z = x \cdot z + y \cdot z)$

 $\begin{array}{l} \forall x(x \cdot 0' = x) \\ \forall x \forall y \forall z((x \cdot y) \cdot z = x \cdot (y \cdot z)) \\ \forall x(j(g_1(x), g_2(x)) = x) \\ \forall x \forall y(g_1(j(x, y)) = x \land g_2(j(x, y)) = y) \\ \forall x(0 < x \vdash g_2(x) < x) \\ \forall x(0' < x \vdash g_1(x) < x) \\ \forall x \forall y(y < x \vdash j(x, y) = x^2 + y) \\ \forall x \forall y(x \leq y \vdash j(x, y) = y^2 + y + x) \end{array}$

Then, we have the following theorem.

THEOREM. Let Γ_1 be consistent axioms in LK and satisfy the equality axioms with regard to =. (See [1] for equality axioms) Moreover, we assume that none of special variables, functions and predicates other than = is contained in Γ_1 and Γ_a at the same time. Then the following axioms are consistent in LK.

 $\Gamma_1^{e_1()}$ (See [2], §7 for the notation $\Gamma_1^{e_1()}$) where $e_1()$ is a predicate not contained in Γ_1 nor Γ_a .

e₁(s) for every special variable s in Γ_1 . $\forall x_1 \dots \forall x_k e_1(f(x_1, \dots, x_k))$ for every function f in Γ_1 . $\forall x(x=x)$ $\forall A \forall x \forall y(x=y \mapsto (A(x) \mapsto A(y)))$ $\forall x \bigtriangledown (e_1(x) \land n(x)), \text{ where } n() \text{ is a predicate not contained in } \Gamma_1 \text{ nor } \Gamma_a.$ n(0) $\forall x(n(x) \mapsto n(x') \land n(g_1(x)) \land n(g_2(x)))$ $\forall x \forall y(n(x) \land n(y) \mapsto n(x+y) \land n(x \cdot y) \land n(j(x, y)))$ $\Gamma_a^{n(\cdot)}$ $\forall A \forall x(A(0) \land \forall x(A(x) \mapsto A(x')) \land n(x) \mapsto A(x))$ $\forall x \exists y(n(y) \land x = f_0(y)), \text{ where } f_0 \text{ is a function not contained in } \Gamma_1$

nor Γ_a .

For the proof of this theorem we use the following three lemmas.

LEMMA 1. Let Γ_1 and Γ_2 be two consistent systems of axioms and let Γ_i (i=1,2) satisfy the equality axioms with regard to $\stackrel{i}{=}$. Moreover, we assume that none of special variables, functions and predicates is contained in Γ_1 and Γ_2 at the same time. Let $e_1(), e_2()$ be two predicates not contained in Γ_1 nor Γ_2 . Then the following system of axioms $\tilde{\Gamma}$ is consistent.

 $\Gamma_1^{e_1()}$

 $\Gamma_{2}^{e_{2}()}$

 $e_1(s^1)$ for every special variable s^1 contained in Γ_1 .

G. Takeuti

 $e_{2}(s^{2})$ for every special variable s^{2} contained in Γ_{2} .

 $\forall x_1 \cdots \forall x_k e_1(f^1(x_1, \cdots, x_k))$ for every function f^1 contained in Γ_1 .

 $\forall x_1 \cdots \forall x_k e_2(f^2(x_1, \cdots, x_k))$ for every function f^2 contained in Γ_2 .

 $\forall x_1 \cdots \forall x_k (e_2(x_1) \lor \cdots \lor e_2(x_k) \mapsto f^1(x_1, \cdots, x_k) = s^1_0)$ for every function f^1 contained in Γ_1 , where s^1_0 is a fixed special variable contained in Γ_1 .

 $\forall x_1 \cdots \forall x_k (e_1(x_1) \lor \cdots \lor e_1(x_k) \mapsto f^2(x_1, \cdots, x_k) = s^2_0)$ for every function f^2 contained in Γ_2 , where s^2_0 is a fixed special variable contained in Γ_0 .

 $\forall x_1 \cdots \forall x_i (p^1(x_1, \cdots, x_i) \vdash e_1(x_1) \land \cdots \land e_1(x_i))$ for every predicate p^1 contained in Γ_1 .

 $\forall x_1 \cdots \forall x_i (p^2(x_1, \cdots, x_i) \mapsto e_2(x_1) \land \cdots \land e_2(x_i))$ for every predicate p^2 contained in Γ_2 .

 $\forall x(e_1(x) \lor e_2(x))$

 $\forall x \not \neg (e_1(x) \land e_2(x)).$

LEMMA 2. Under the same hypothesis as in Lemma 1, $\tilde{\Gamma}$ satisfies the equality axioms with regard to =, provided that a=b is defined to be $(e_1(a) \wedge e_1(b) \wedge a \stackrel{!}{=} b) \vee (e_2(a) \wedge e_2(b) \wedge a \stackrel{!}{=} b)$.

LEMMA 3. Γ_a is consistent in LK.

We need not dwell upon the proof of these lemmas which are immediate. Our Theorem is deduced as follows.

In virtue of Lemma 3, Γ_a can be used as Γ_2 in Lemma 1; we use Γ_1 in our Theorem as Γ_1 in Lemma 1. Then we can follow, in virtue of Lemmas 1, 2, the proof of Theorems 1, 2 in [1] in regarding Γ_0 in [1] as $\tilde{\Gamma}$ and e() in [1] as $e_2()$. We obtain thus our Theorem, in considering n(a) in [1] as n(a) in our Theorem.

References

- [1] G. Takeuti: On Skolem's theorem. J. Math. Soc. Japan, 9 (1957).
- [2] ———: On a generalized logic calculus. Jap. J. Math., 23 (1953), pp. 39-96;
- Errata to 'On a generalized logic calculus'. Jap. J. Math., 24 (1954), pp. 149-156. [3] _____: A metamathematical theorem on functions. J. Math. Soc. Japan, 8 (1956) pp. 65-78.