Remark on my paper: On Skolem's theorem.

By Gaisi Takeuti

(Received Dec. 10, 1956)

It was proved in my paper [1] that if the system of axioms of Fraenkel-von Neumann of the set-theory is consistent, then system remains consistent after addition of the axiom that every set is a univalent image of ω. This result was established by Theorems 1, 2 of that paper. I should like to remark now that from the proof of these theorems follows immediately also the following result:
"Let Γ_{1} be any consistent system of axioms in Gentzen's $L K$, representing mathematically a certain domain D of elements. Then Γ_{1} remains consistent after addition of the system of axioms of the theory of natural numbers, and the axiom that every element of D is a univalent image of a natural number.

I shall formulate this result more precisely in the following lines, and indicate how to prove it.

We begin with Γ_{a}, the system of axioms of "arithmetic" consisting of axioms of the theory of natural numbers except the axiom of mathematical induction. In this paper, Γ_{a} means the following axioms:

```
\(\forall x(x=x)\)
\(\forall A \forall x \forall y(x=y \vdash(A(x) \mapsto A(y)))\) (See [3], § 1 for the notation \(\forall A\).)
\(\forall x \forall y \forall z(x<y \wedge y<z\) - \(x<z)\)
\(\forall x \forall y>(x=y \wedge x<y)\)
\(\forall x \forall y\left(x<y \vdash x^{\prime}<y \bigvee x^{\prime}=y\right)\)
\(\forall x\left(x<x^{\prime}\right)\)
\(\forall x(0<x \bigvee 0=x)\)
\(\forall x(x+0=x)\)
\(\forall x \forall y\left(x+y^{\prime}=(x+y)^{\prime}\right)\)
\(\forall x \forall y(x+y=y+x)\)
\(\forall x \forall y \forall z((x+y)+z=x+(y+z))\)
\(\forall x \forall y(x<y \mapsto \exists z(0<z \wedge x+z=y))\)
\(\forall x \forall y(x \cdot y=y \cdot x)\)
\(\forall x \forall y \forall z((x+y) \cdot z=x \cdot z+y \cdot z)\)
```

```
\(\forall x\left(x \cdot 0^{\prime}=x\right)\)
\(\forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z))\)
\(\forall x\left(j\left(g_{1}(x), g_{2}(x)\right)=x\right)\)
\(\forall x \forall y\left(g_{1}(j(x, y))=x \wedge g_{2}(j(x, y))=y\right)\)
\(\forall x\left(0<x \vdash g_{2}(x)<x\right)\)
\(\forall x\left(0^{\prime}<x \vdash g_{1}(x)<x\right)\)
\(\forall x \forall y\left(y<x \vdash j(x, y)=x^{2}+y\right)\)
\(\forall x \forall y\left(x \leqq y \vdash j(x, y)=y^{2}+y+x\right)\)
```

Then, we have the following theorem.
Theorem. Let Γ_{1} be consistent axioms in LK and satisfy the equality axioms with regard to $=$. (See [1] for equality axioms) Moreover, we assume that none of special variables, functions and predicates other than $=$ is contained in Γ_{1} and Γ_{a} at the same time. Then the following axioms are consistent in LK.
$\Gamma_{1}{ }^{e_{1}()}$ (See [2], § 7 for the notation $\Gamma_{1}{ }^{e_{1}()}$) where $e_{1}()$ is a predicate not contained in Γ_{1} nor Γ_{a}.
$e_{1}(s)$ for every special variable s in Γ_{1}.
$\forall x_{1} \cdots \forall x_{k} e_{1}\left(f\left(x_{1}, \cdots, x_{k}\right)\right)$ for every function f in Γ_{1}.
$\forall x(x=x)$
$\forall A \forall x \forall y(x=y \mapsto(A(x) \mapsto A(y)))$
$\forall x>\left(e_{1}(x) \wedge n(x)\right)$, where $n()$ is a predicate not contained in Γ_{1} nor Γ_{a}. $n(0)$
$\forall x\left(n(x) \longmapsto n\left(x^{\prime}\right) \wedge n\left(g_{1}(x)\right) \wedge n\left(g_{2}(x)\right)\right)$
$\forall x \forall y(n(x) \wedge n(y) \vdash n(x+y) \wedge n(x \cdot y) \wedge n(j(x, y)))$
$\Gamma_{a}{ }^{n()}$
$\forall A \forall x\left(A(0) \wedge \forall x\left(A(x) \vdash A\left(x^{\prime}\right)\right) \wedge n(x) \vdash A(x)\right)$
$\forall x \exists y\left(n(y) \wedge x=f_{0}(y)\right)$, where f_{0} is a function not contained in Γ_{1} nor Γ_{a}.

For the proof of this theorem we use the following three lemmas.
Lemma 1. Let Γ_{1} and Γ_{2} be two consistent systems of axioms and let $\Gamma_{i}(i=1,2)$ satisfy the equality axioms with regard to $\stackrel{i}{=}$. Moreover, we assume that none of special variables, functions and predicates is contained in Γ_{1} and Γ_{2} at the same time. Let $e_{1}(), e_{2}()$ be two predicates not contained in Γ_{1} nor Γ_{ε}. Then the following system of axioms $\tilde{\Gamma}$ is consistent.

```
\(\Gamma_{1}{ }_{1}{ }^{e^{( }()}\)
\(\Gamma_{2}{ }^{e_{2}()}\)
\(e_{1}\left(s^{1}\right)\) for every special variable \(s^{1}\) contained in \(\Gamma_{1}\).
```

$e_{2}\left(s^{2}\right)$ for every special variable s^{2} contained in Γ_{2}.
$\forall x_{1} \cdots \forall x_{k} e_{1}\left(f^{1}\left(x_{1}, \cdots, x_{k}\right)\right)$ for every function f^{1} contained in Γ_{1}.
$\forall x_{1} \cdots \forall x_{k} e_{2}\left(f^{2}\left(x_{1}, \cdots, x_{k}\right)\right)$ for every function f^{2} contained in Γ_{2}.
$\forall x_{1} \cdots \forall x_{k}\left(e_{2}\left(x_{1}\right) \bigvee \cdots \vee e_{2}\left(x_{k}\right) \vdash f^{1}\left(x_{1}, \cdots, x_{k}\right)=s^{1}{ }_{0}\right)$ for every function f^{1}
contained in Γ_{1}, where s_{0} is a fixed special variable contained in Γ_{1}.
$\forall x_{1} \cdots \forall x_{k}\left(e_{1}\left(x_{1}\right) \bigvee \cdots \vee e_{1}\left(x_{k}\right) \mapsto f^{2}\left(x_{1}, \cdots, x_{k}\right)=s^{2}{ }_{0}\right)$ for every function f^{2} contained in Γ_{2}, where s^{2} is a fixed special variable contained in Γ_{0}.
$\forall x_{1} \cdots \forall x_{i}\left(p^{1}\left(x_{1}, \cdots, x_{i}\right) \mapsto e_{1}\left(x_{1}\right) \wedge \cdots \wedge e_{1}\left(x_{i}\right)\right)$ for every predicate p^{1} contained in Γ_{1}.
$\forall x_{1} \cdots \forall x_{i}\left(p^{2}\left(x_{1}, \cdots, x_{i}\right) \mapsto e_{2}\left(x_{1}\right) \wedge \cdots \wedge e_{2}\left(x_{i}\right)\right)$ for every predicate p^{2} contained in Γ_{2}.
$\forall x\left(e_{1}(x) \bigvee e_{2}(x)\right)$
$\forall x>\left(e_{1}(x) \wedge e_{2}(x)\right)$.
Lemma 2. Under the same hypothesis as in Lemma 1, $\tilde{\Gamma}$ satisfies the equality axioms with regard to $=$, provided that $a=b$ is defined to $b e\left(e_{1}(a) \wedge e_{1}(b) \wedge a \stackrel{\imath}{=} b\right) \bigvee\left(e_{2}(a) \wedge e_{2}(b) \wedge a \stackrel{\ominus}{=} b\right)$.

Lemma 3. $\quad \Gamma_{a}$ is consistent in $L K$.
We need not dwell upon the proof of these lemmas which are immediate. Our Theorem is deduced as follows.

In virtue of Lemma 3, Γ_{a} can be used as Γ_{2} in Lemma 1; we use Γ_{1} in our Theorem as Γ_{1} in Lemma 1. Then we can follow, in virtue of Lemmas 1, 2, the proof of Theorems 1, 2 in [1] in regarding Γ_{0} in [1] as $\tilde{\Gamma}$ and $e()$ in [1] as $e_{2}()$. We obtain thus our Theorem, in considering $n(a)$ in [1] as $n(a)$ in our Theorem.

References

[1] G. Takeuti: On Skolem's theorem. J. Math. Soc. Japan, 9 (1957).
[2] : On a generalized logic calculus. Jap. J. Math., 23 (1953), pp. 39-96; Errata to 'On a generalized logic calculus'. Jap. J. Math., 24 (1954), pp. 149-156.
[3] -: A metamathematical theorem on functions. J. Math. Soc. Japan, 8 (1956) pp. 65-78.

