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in flat spaces.
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Introduction.

A minimal variety in a Riemannian space is defined as a variety
which realizes an extremal of the volume integral, and is characterized,
from a stand-point of the differential geometry in the small, by the
property that the mean curvature vanishes. Although many pro-
perties of such spaces immersed in an enveloping space are known, it
seems to me that their intrinsic properties have not been yet discussed.

In this paper we investigate the intrinsic properties of minimal
hypersurfaces in flat spaces. At the beginning of Section 3, the tensors
$S_{p)ij}$ are defined in terms of the curvature tensor and they play an
important r\^ole throughout the paper. The first two sections are
devoted to explain how the tensors are derived. In Section 3, by
means of these tensors, the coefficients of the second fundamental form
are written in terms of the curvature tensor, and then, from the
Gauss equation, we obtain the identities which are satisfied by the
components of the curvature tensor of a minimal hypersurface.

In Section 4, the classification theorem of minimal hypersurfaces
is obtained with the aid of the tensors $S_{p)ij}$ , and then we get the im-
bedding theorem of a Riemannian space as a minimal hypersurface in
a flat space.

There exists a special class of minimal hypersurfaces, which will
be called to be of type $M^{\infty}$ and for which we can not determined the
coefficients of the second fundamental form by the general method used
in Section 3. Any minimal surface of ordinary space belongs to this
class. In the final two sections, we shall treat the Einstein spaces,
conformally flat spaces, and 3-dimensional spaces as simple examples
of such an exceptional case.
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\S 1. Minimal hypersurfaces of type $M^{1}$ .
We consider a minimal hypersurface $V^{n}$ in a flat space and denote

by $H_{ij}$ the second fundamental tensor of $V^{n}$ . Then $H_{ij}$ satisfies the
so-called Gauss equation:

(1.1) $R_{hijk}=e(H_{hj}H_{ik}-H_{hk}H_{ij})$ , $(e=\pm 1)$ ,

where $R_{hijk}$ is the curvature tensor of $V^{n}$ . It is well known that
the necessary and sufficient condition for $V^{n}$ to be a minimal hyper-
surface is that the mean curvature vanishes, that is,

(A) $g^{ij}H_{ij}=0$ ,

where $g^{ij}$ is the fundamental tensor of $V^{n}$ .
Transvecting (1.1) by $g^{hk}$ and making use of $(A_{0})$ , we have

(B) $R_{ij}=-eH_{ia}H_{jb}g^{ab}$ ,

where $R_{ij}$ is the Ricci tensor of $V^{n}$ . It can be easily verified by
direct substitution from $(B_{1})$ that

$H_{ij}H_{ak}R^{a_{l}}=H_{ij}H_{al}R^{a_{\hslash}}$ .
Interchanging $j$ and 1, and subtracting the resulting equation from
the above, we have as a consequence of (1.1)

(1.2) $H_{ij}H_{ak}R_{l}^{a}-H_{il}H_{ak}R_{j}^{a}=eR_{ailj}R_{k}^{a}$ .
Transvection of (1.2) by $g^{kl}$ yields, in virture of $(B_{1})$ ,
(C) $R^{ab}H_{ab}H_{ij}=S_{ij}\equiv e(R_{iajb}R^{ab}-R_{ia}R^{a_{j}})$ .
Moreover, transvection of $(C_{1})$ by $R^{ij}$ leads at once to
(D) $(R^{ab}H_{ab})^{2}=S_{ij}R^{ij}\equiv S$ .

In the following we shall assume that the quantity $S$ does not
vanish and say that such a $V^{n}$ is of type $M^{1}$ . Since we can put
$S=0^{-2}$ , it follows from $(D_{1})$ that $R^{ab}H_{ab}=\sigma^{-1}$ , and hence we can rewrite
(C) as
(E) $H_{ij}=\sigma S_{ij}$ .
As a result we can deduce the expression of $H_{ij}$ in terms of the
curvature tensor of $V^{n}$ . By means of the defining expression of $S_{jj}$

we can immediately show that $H_{ij}$ as above determined satisfies the
characteristic property $(A_{0})$ .

Substituting In (1.1) from $(E_{1})$ , we obtain
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(F) $R_{hijk}=\sigma^{2}(S_{hj}S_{ik}-S_{hh}S_{ij})$ .
Consequently the curvature tensor of $V^{n}$ , which is of type $M^{1}$ and
is imbedded in a flat space as a minimal hypersurface, must satisfy
the equation $(F_{1})$ .

\S 2. Minimal hypersurfaces of type $M^{2}$ .
If the quantity $S$ of $V^{n}$ as defined by $(D_{1})$ vanishes, then it follows

from $(C_{1})$ and $(D_{1})$ that the tensor $S_{ij}$ must vanish and $H_{ij}$ satisfies
the equation

(A) $R^{ab}H_{ab}=0$ .
In this case, when we transvect (1.1) by $R^{hj}$ and make use of $(A_{1})$

and $S_{ij}=0$ , the equation

(B) $R_{ia}R_{j}^{a}=-eH_{ia}H_{jb}R^{ab}$

is deduced. Transvecting (1.2) by $R^{kl}$, we have by virtue of $(B_{2})$

(C) $R_{2)}^{ab}H_{ab}H_{ij}=S_{2)ij}$ ,

where by definition
$R_{9)ij}=R_{ia}R_{j}^{a}$, $S_{2)ij}=e(R_{iajb}R_{2)}^{ab}-R_{ia}R_{2)j}^{a})$ .

Moreover transvection of $(C_{2})$ by $R_{2)}^{ij}$ yields

(D) $(R_{J)}^{ab}H_{ab})^{2}=S_{2)ij}R_{2)}^{ij}\equiv S_{2}$ .
In the rest of this section we restrict our considerations to a $V^{n}$ for
which $S_{ij}=0$ and $S_{2}\neq 0$ , and we say that such a $V^{n}$ is of type $M^{2}$ .
In this case, since we can put $S_{2}=(0_{2})^{-2}$ , it follows from $(D_{2})$ that
$R_{\Delta}^{\iota_{)}b})H_{ab}=(\sigma_{2})^{-1},and$ hence equations $(C_{2})$ are written as

(E) $H_{ij}=\sigma_{2}S_{2)ij}$ .
Thus $H_{ij}$ Is expressible in terms of the curvature tensor of $V^{n}$ . It
is not difficult to verify that $H_{ij}$ as just defined satisfies the equations
(A) and $(A_{1})$ . Inserting the expression $(E_{2})$ of $H_{ij}$ in (1.1), we have

(F) $R_{hijk}=(0_{2})^{2}(S_{2)hj}S_{2)ik}-S_{2)hk}S_{2)ij})$ ,

this having the meaning similar to $(F_{1})$ .
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\S 3. Algebraic properties of minimal
hypersurfaces in a flat space.

In this section we shall generalize the treatments of minimal
hypersurfaces as described in the preceeding sections. For this pur-
pose it is convenient to introduce the tensors $R_{p)ij}$ and $S_{p)ij}$ as follows:

$R_{p)ij}=R_{ia}R_{p-1)^{a}j}$ , $R_{1)ij}=R_{ij}$ ,

$S_{p)ij}=e(R_{iajb}R_{p)}^{ab}-R_{p+1)ij})$ , $S_{1)ij}=S_{ij}$ ,

$S_{p}=S_{p)ij}R_{p)}^{ij}$, $S_{1}=S$ ,

where the index $p$ takes the values 1, 2, 3, $\cdots$ It is obvious that $R_{p)ij}$

and consequently $S_{p)ij}$ are both symmetric tensors. Also we can easily
derive equations
(3.1) $R_{p)ij}R_{q)^{ij}}=R_{r)ij}R_{s)^{ij}}$ , $(p+q=r+s)$ ,

(3.2) $g^{ij}S_{p)ij}=0$ ,

(3.3) $S_{p)ij}R_{q)^{ij}}=S_{q)ij}R_{p)}^{ij}$ .
In consequence of $(B_{1})$ the tensors $R_{p)ij}$ are expressed in terms of $H_{ij}$

as
(3.4) $R_{p)ij}=(-e)^{P}a_{2_{\circ p-22p- 1^{j}}}p-1$ .
Substituting from (1.1) and (3.4) in the defining expression of $S_{p)ij}$ ,
we have

(3.5) $S_{p)ij}=(-e)^{P}eH_{2}Hp+1ij$ ,

where by definition

$H_{2}=H_{a_{2p}^{0}}^{a}H^{a}.\cdots H^{a}p_{-2}H_{a_{2}^{2}}^{a}pp+1a_{0}^{1}a_{2p^{-1}p-1}^{2}$ ’
$H_{1}=H_{a}^{a}$ .

The discussions of the first and second sections lead us to the following
definition.

DEFINITION. If a Riemannian space $V^{n}$ is such that the equations

$S_{1)ij}=\cdots=S_{\gamma-1)ij}=0$ , $S_{r}\neq 0$

are satisfied, then $V^{n}$ is said to be of type $M^{r}$, regardless $V^{n}$ is a
minimal hypersurface in a flat space or not.

In the following we shall treat a minimal hypersurface $V^{n}$ of
type $M^{r}$. From (3.5) it follows that

(3.6) $S_{\gamma}=(-1)^{r}eH_{2\gamma+1}H_{ij}R_{r)^{ij}}$ .
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Hence, for $V^{n}$ of type $M^{r}$, we have in consequence of $(A_{0}),$ $(3.5)$ and
(3.6),

(3.7) $H_{1}=H_{3}=\cdots=H_{2r-1}=0$ , $H_{2\gamma+1}\neq 0$ ,
(3.8) $R_{r)}^{ij}H_{ij}\neq 0$ ,
From (3.3) and (3.5) it follows that

$S_{r)ij}R_{p)}^{ij}=(-1)^{r}eH_{2\gamma+1}R_{p)^{ij}}H_{ij}=S_{p)ij}R_{r)}^{ij}$ ,

and hence, for $V^{n}$ of type $M^{r}$, we have by virtue of (3.7)

$(A_{p})$ $R_{p)}^{ij}H_{ij}=0$ , $(p=1,\cdots, r-1)$ .
Now we shall find the similar expression of $H_{ij}$ of $V^{n}$ with $(E_{1})$

and $(E_{2})$ . The equation (3.4) gives

$(B_{r})$ $R_{\gamma)ij}=-eH_{ib}aH_{j}\cdot R_{\gamma-1)}^{ab}$

Transvecting (1.2) by $R_{\gamma-1)}^{hl}$ and making use of $(B_{\gamma})$ , we obtain

$H_{ij}H_{ak}R_{l}^{a}R_{r-1)}^{kl}=eR_{ailj}R^{a_{k}}R_{\gamma-1)}^{kl}-eR_{j}^{a}R_{\gamma-1)ai}=S_{r)ij}$ ,

from which it follows that
$(C_{r})$ $H_{ij}R_{\gamma)}^{ab}H_{ab}=S_{r)ij}$ .
Furthermore transvection by $R_{r)}^{ij}$ gives

$(D_{r})$ $(R_{\gamma)}^{ab}H_{ab})^{2}=S_{r}$ .
Since, by hypotheses $S_{\gamma}\neq 0$ , we can put $S_{\gamma}=(0_{r})^{-2}$, then $(C_{r})$ is written
in the form

$(E_{r})$ $H_{ij}=o_{\gamma}S_{\gamma)ij}$ .
As a result we have the expression of $H_{ij}$ in terms of the curvature
tensor of $V^{n}$ . From (3.2) and (3.3) it is clear that $H_{ij}$ as defined
satisfies $(A_{p})(p=0,1,\cdots, r-1)$ . Substituting in (1.1) from $(E_{r})$ , we get
$(F_{\gamma})$ $R_{hijk}=(0_{r})^{2}(S_{\gamma)hj}S_{\gamma)ik}-S_{\gamma)hk}S_{\gamma)ij})$ .
These facts permit us to state

THEOREM 1. If a $V^{n}$ is of type $M^{r}$ and a minimal hypersurface
of a flat space, then the equation $(F_{p})$ is satisfied and the coefficients
$H_{ij}$ of the second fundamental form of $V^{n}$ are expressed as $(E_{r})$ in
terms of the curvature tensor of $V^{n}$ .

It is to be remarked that there exists such a Riemannian space
that the tensors $S_{p)ij}$ vanish for all indices $p$. As an example, we
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have any Einstein space and hence any 2-dimensional Riemannian
space, as easily verified by direct calculation with the aid of the
equation $R_{ij}=(R1n)g_{ij}$. We shall say that such a space is of type $M^{\infty}$ ,
for which the above theorem can not be applied.

\S 4. Classification of minimal hypersurfaces in a flat space.

The principal normal curvatures $\rho_{a}$ of a hypersurface $V^{n}$ are
defined as the roots of the determinantial equation

$|\rho g_{ij}-H_{ij}|=0$ .
Let $\lambda_{a)}^{j}$ be the orthogonal ennuple determined by the equation

$(\rho_{a}g_{ij}-H_{ij})\lambda_{a)}^{j}=0$

Then the tensors $g_{i\mathfrak{j}}$ and $H_{ij}$ are respectively written in the following
forms:

$g_{ij}=\sum_{a\Leftrightarrow 1}^{n}e_{a}\lambda_{a)i}\lambda_{a)j}$ , $H_{ij}=\sum_{a-1}^{n}e_{a}\rho_{a}\lambda_{a)j}\lambda_{a)j}$ , $(e_{a}=\pm 1)$ ,

from which we have

$H_{p}=H_{a_{2}^{1}}^{a}H_{a_{3}^{2}}^{a}\cdots H_{a_{1}^{p}}^{a}=\sum_{a- 1}^{n}(\rho_{a})^{p}$ .

Therefore (3.7) are expressed in terms of $\rho_{a}$ as

$\sum_{a- 1}^{n}(\rho_{a})^{l\}}=0$ , $(p=1,3,\cdots, 2r-1)$ ,

(4.1)

$\sum_{a=1}^{n}(\rho_{a})^{2\gamma+1}=0$ .

We put $P_{\alpha}=\sum_{a=1}^{n}(\rho_{a})^{\alpha}$ and denote by $p_{\alpha}$ the elementary symmetric function

of degree $\alpha(\alpha=1,\cdots, n)$ with respect to $\rho_{a}$. Following the theory of
the symmetric polynomials, these polynomials $P_{a}$ can be written in
terms of $p_{a}$ by means of the Newton formula [1] as follows:

(4.2) $P,$ $+\sum_{\beta=1}^{oi-1}(-1)^{\beta}p_{\beta}P_{\alpha-\beta}+(-1)^{a\}}\alpha p_{a}=0$ , $(\alpha=1,2,\cdots)$ ,

where by definition

(4.3) $p_{\alpha}=0$ , $(\alpha>n)$ .
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Making use of (4.2) and applying the mathematical inductions, we can
readily prove the following

LEMMA. If $P_{1}=P_{3}=\cdots=P_{2}=0p-1$ ’ then $p_{1}=p_{3}=\cdots=p_{2}p-1=0$ , and
$P_{2}p+1=(2p+1)p_{\lrcorner}7p+1$

For a minimal hypersurface $V^{n}$ of type $M^{r}$, it follows from (4.1)

and the lemma that

$p_{1}=p_{3}=\cdots=p_{2\gamma-1}=0$ , $p_{2\gamma+1}\neq 0$ .
But, it follows from (4.3) that $p_{2r+1}=0(2r+1>n)$ , so that we have

THEOREM 2 (CLASSIFICATION THEOREM). The only type numbers
$M^{r}$ of minimal hypersurfaces of an $(n+1)$-dimensional flat space are
equal to $M^{1},\cdots,$ $Mt(2p+1\leqq n)$ or $M^{\infty}$ . For a $V^{n}$ of type $M^{r}(r=finite$

or infinite), the equations

$p_{1}=p_{3}=\cdots=P_{2r-1}=0$ , $p_{2\gamma+l}\neq 0$

are satisfied, where $p_{\alpha}(\alpha\leqq n)$ are the elementary symmetric functions of
degree $\alpha$ with respect to the principal normal curvatures of $V^{n}$ and by
definition $p_{a}=0(\alpha>n)$ .

\S 5. Imbedding of Riemannian spaces in flat spaces
as minimal hypersurfaces.

From Theorem 1 it follows that a necessary condition for a Rie-
mannian n-space $V^{n}$ of type $M^{r}$ to be imbedded in a flat space as a
minimal hypersurface is that the equation $(F_{r})$ be satisfied, and then
the solution $(H_{ij})$ of the system of the equations $(A_{0})$ and (1.1) is
uniquely determined by $(E_{r})$ .

It is well known that a $V^{n}$ can be imbedded in a flat $(n+1)$-space,
if and only if there exist $H_{ij}$ which satisfies the Gauss and Codazzi
equations. The equation $(F_{r})$ is equivalent to the Gauss equation.
On the other hand, substitution from $(E_{r})$ in the Codazzi equation,
that is,

(5.1) $H_{ij,k}-H_{ik,j}=0$

yields

(5.2) $S_{r)ij}\frac{\partial\log o_{r}}{\partial x^{l_{f}}}-S_{r)ik}\frac{\partial\log\sigma_{r}}{\partial x^{j}}+S_{r)ij,k}-S_{r)ik,j}=0$ .

T. Y. Thomas [2] proved that if the matrix $(H_{ij})$ is of rank $\geqq 4$ , then
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the Codazzi equation is a consequence of the Gauss equation. This
theorem and the above results enable us to establish the

THEOREM 3 (IMBEDDING THEOREM). Let $V^{n}$ be a Riemannian n-
space of type $M^{r}$ and the rank of the matrix $(S_{r)ij})$ be more than 3.
The necessary and sufficient condition that $V^{n}$ be imbedded in a flat
space as a minimal hypersurface is that the equation $(F_{r})$ be satisfied.
On the other hand, if the matrix is of rank 2 or 3, then the further
condition (5.2) must be added.

If the matrix $(S_{r})ij)$ is of rank 1, then it follows from $(F_{r})$ that
the curvature tensor vanishes, so that we have a contradiction to the
assumption $S_{r}\neq 0$ . This fact permits us to state

THEOREM 4. There exists no minimal hypersurface of type $M^{r}$ in
a flat space for which the matrix $(S_{r)ij})$ is of rank 1.

\S 6. Einstein spaces as minimal hypersurfaces in flat spaces.

As already remarked at the end of Section 3, any Einstein space
is of type $M^{\infty}$ , and so Theorem 3 can not be applied to the space.
However, C. B. Allendoerfer gave a necessary and sufficient condition
that an Einstein space of $n(\geqq 4)$-dimensions having non-vanishing
scalar curvature $R$ may be imbedded in a flat $(n+1)$-space [3]. Then
he deduced the equation

$H_{hj}H_{jk}=\frac{eR}{n(n-2)}g_{hi}g_{jk}$

(6.1)

$+\frac{en}{2R(n-2)}(R_{a)hj}^{b}R_{b)^{a}ik}-2R_{h)^{a}ib}R_{j)ka}^{b})$ ,

from which $H_{ij}$ are determined. When an Einstein $V^{n}$ is a minimal
hypersurface in a flat space, then we have from (6.1) by transvection
with $g^{hi}$

(6.2) $R^{abc_{i}}R_{abcj}=\frac{n-1}{n^{2}}eR^{2}g_{ij}$ .

Therefore we obtain
THEOREM 5. Let $V^{n}(n\geqq 4)$ be an Einstein space zuhose scalar

curvature $R$ does not vanish. If $V^{n}$ is imbedded in a flat space as a
minimal hypersurface, then the equation (6.2) is satisfied.
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\S 7. Minimal hypersurfaces of 3-dimensions, and those
which are conformal to a flat space.

We consider a conformally flat space $V^{n}(n\geqq 4)$ . The curvature
tensor is expressed as
(7.1) $R_{hijk}=g_{hj}l_{ik}-g_{hk}l_{ij}+g_{ik}l_{hj}-g_{ij}l_{hk}$ ,

where we have put

$l_{ij}=\frac{1}{n-2}(R_{ij}-\frac{R}{2(n-1)}g_{ij})$ .
It is well known that any 3-dimensional space satisfies (7.1). We now
first treat the spaces for which (7.1) is satisfied, and which are not
necessarily minimal hypersurfaces.

From (7.1) and the defining expression of $S_{ij}$ it follows that

(7.2) $S_{ij}=\frac{en}{n-2}(\alpha g_{ij}+\beta R_{ij}-R_{2)ij})$ ,

where by definition

$\alpha=\frac{1}{n}(R_{2)a}^{a}-\frac{R^{2}}{n-1})$ , $\beta=\frac{R}{n-1}$ .

If $S_{ij}$ vanishes, then (7.2) gives

(7.3) $R_{2)ij}=\alpha g_{ij}+\beta R_{ij}$ .
We shall generally prove the following equations:

(7.4) $R_{pij}$
)

$=\alpha_{p-1}g_{ij}+\beta_{p- 1}R_{ij}$ , $(p\geqq 2)$ .
Indeed, if we suppose that (7.4) holds good, then we obtain from the
definition of $R_{p+1)ij}$

$R_{p+1)ij}=\alpha pR+\beta R_{2)}$ .
Substitution from (7.3) gives

$R_{p+1)ij}=\alpha_{p}g_{ij}+\beta_{p}R_{ij}$ ,

where we have put

(7.5) $\alpha_{p}=\alpha\beta_{p-1}$ , $\beta_{p}=\alpha_{p-1}+\beta\beta_{p-1}$ .
Hence (7.4) has been established and we now have the relation (7.5).

As a consequence of (7.4) and (7.5), we have $S_{p)ij}=0(p=2,\cdots)$ , provided
$S_{ij}=0$ . (We have already seen this fact for a $V^{3}$ at the end of
Section 4.)
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When we denote the Ricci principal directions by $\lambda_{a)i}$, the tensors
$g_{ij}$ and $R_{ij}$ are expressible as follows:

$g_{ij}=\sum_{a=1}^{n}e_{a}\lambda_{a)i}\lambda_{a)j}$ , $R_{lj}=\sum_{a=1}^{n}e_{a}\tau_{a}\lambda_{a)j}\lambda_{a)j}$ , $(e_{a}=\pm 1)$ ,

where $\tau_{a}$ are the mean curvatures of $V^{n}$ for the direction $\lambda_{a)}^{i}$. In-
serting these in (7.3), it can be seen that $\tau_{a}$ must satisfy

(7.6) $\tau_{j^{2}}=\frac{1}{n}\{\sum_{a- 1}^{n}\tau_{a}^{2}-\frac{1}{n-1}(\sum_{a=1}^{n}\tau_{a})^{2}\}+\frac{\tau_{i}}{n-1}\sum_{a\infty 1}^{n}\tau_{a}$ ,

from which it is readily concluded that there exist only two following
cases:

(1) All of the mean curvatures $\tau_{j}$ are equal. In this case $V^{n}$

is clearly an Einstein space, so that, according to a theorem due to
J. A. Schouten and D. J. Struik [4], $V^{n}$ is of constant curvature.

(2) $\tau_{1}=\cdots=\tau_{r}=\tau,$ $\tau_{r+\iota}=\cdots=\tau_{n}=\tau^{\prime},$ $\tau\neq\tau^{\prime},$ $(1\leqq r<n)$ , and $\tau$ and $\tau^{\prime}$

satisfy the relation
$(n-r-1)\tau+(r-1)\tau^{\prime}=0$ .

Gathering the above results we have
THEOREM 6. If a $V^{n}$ is of 3-dimensions or conformally flat $(n\geqq 4)$ ,

and such that the tensor $S_{ij}$ vanishes, then all of the tensors $S_{p)ij}$ vanish,
and the equation (7.3) holds good. Such a $V^{n}$ is of constant curvature
or such that the mean curvaturses $\tau_{i}$ are related as given by (2) above.

We return to the consideration of a $V^{3}$ or a conformally flat
$V^{n}(n\geqq 4)$ , which is not of constant curvature (the case (2)) and may
be imbedded in a flat space as a minimal hypersurface. It was shown
by the present author [5] that the tensor

$K_{ij}=nl_{ij}-lg_{ij}$ , $(l=l^{i_{i}})$ ,

has the property that the determinant $|K_{ij}|$ does not vanish and

$K_{ij}H_{hk}-K_{hk}H_{ij}=0$ .
From these facts it follows easily that there exists a scalar $\pi\neq 0$ ,
satisfying the equation

(7.7) $H_{ij}=\pi K_{ij}$ .
Substitution in (1.1) from (7.7) gives

(7.8) $R_{hijk}=\pi^{2}(K_{hj}K_{ik}-K_{hk}K_{ij})$ ,
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from which we obtain a necessary condition for a $V^{ll}$ under considera-
tion to be a minimal hypersurface as follows:

(7.9) $\left|\begin{array}{ll}R_{abcd} & K_{ac}K_{bd}-K_{ad}K_{bc}\\R_{hijk} & K_{hj}K_{ik}-K_{hk}K_{ij}\end{array}\right|=0$ .

Conversely, if (7.9) is satisfied, then there exist non-trivial $p$ and $q$

such that

$pR_{hijk}=q(K_{hj}K_{ik}-K_{hk}K_{ij})$ .
It is easily verified by means of $|K_{ij}|\neq 0$ that $p$ does not vanish, so
that we can obtain the quantity $\pi$ satisfying (7.8) and further define
$H_{ij}$ by (7.7), which is the solution of the system of equations (1.1) and
(A). Consequently, making use of a theorem due to T. Y. Thomas
mentioned in Section 5, we are led to conclusion that

THEOREM 7. Let $V^{n}(n\geqq 4)$ be conformal to a flat space and not
of constant curvature. The necessary and sufficient condition that $V^{n}$

be imbedded in a flat space as a minimal hypersurface is that the deter-
minant $|K_{ij}|\neq 0$ and (7.9) hold good.

On the other hand, for a $V^{3}$ , the Codazzi equation should be taken
into account. Substituting in (5.1) from (7.7), we get

(7.10) $K_{iJ_{X}^{\frac{\partial 10}{\partial}}}^{g_{k}\underline{\pi}}-K_{ik}\frac{\partial 10}{\partial x}g_{j}\underline{\pi}+K_{ij,k}-K_{ik,j}=0$ .
For a $V^{3}$ conformal to a flat space, (7.10) is written in a simpler
form. Since

$K_{ij,k}-K_{ik.j}=(R_{ij,k}-R_{ik.j}+\frac{1}{4}R_{j}g_{ik}-\frac{1}{4}R_{k}g_{ij})$

$+l_{j}g_{ik}-l_{k}g_{ij}$ ,

and the term in parentheses vanishes for such a $V^{8}$ , (7.10) is now
reducible to the following:

(7.11) $K_{ij}\frac{\partial\log\pi}{\partial x^{h}}-K_{ik}\frac{\partial\log\pi}{\partial x^{j}}=g_{ij}\frac{\partial l}{\partial x^{k}}-g_{ik}\frac{\partial l}{\partial x^{j}}$ .

Department of Mathematics,
Kyoto University.
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