On the radial order of subharmonic functions.

F.W. GEHRING

(Received Sept. 29, 1956)

The purpose of this note is to show how the following theorem, due to Seidel and Walsh [2], can be deduced directly from an important maximal theorem of Hardy and Littlewood [1].

SEIDEL-WALSH THEOREM. Suppose that f(z) is analytic and univalent in |z| < 1. Then, for almost all θ ,

$$f'(z) = o\{(1 - |z|)^{-1/2}\}$$

uniformly as $z \rightarrow e^{i\theta}$ in each Stolz domain.

For $0 < \alpha < \pi/2$ and r > 0, let $S_{\alpha}(r, \theta)$ denote the open "tear drop" domain bounded by the two tangents, drawn from $re^{i\theta}$ to the circle $|z| = r\sin\alpha$, and the more distant part of the circle $|z| = r\sin\alpha$, between the points of contact. The Hardy-Littlewood theorem can be stated as follows.

HARDY-LITTLEWOOD THEOREM. Suppose that w(z) is non-negative and subharmonic in $|z| \leq 1$, that $0 < \alpha < \pi/2$, that p > 1, and that

$$W(\theta) = LUB w(z), \quad z \in S_{\alpha}(1, \theta).$$

Then

$$\int_{-\pi}^{\pi} W^p(heta) d heta \leq C \int_{-\pi}^{\pi} w^p(e^{i heta}) d heta$$
 ,

where $C = C(\alpha, p)$ depends only on α and p.

We obtain the Seidel-Walsh theorem as a consequence of the following result.

THEOREM 1. Suppose that w(z) is non-negative and subharmonic in |z| < 1, that p > 1, and that

$$\iint_{|z|<1} w^p(z) dx dy < \infty, \quad z = x + iy.$$

Then for almost all θ ,

 $w(z) = o\{(1 - |z|)^{-1/p}\}$

uniformly as $z \rightarrow e^{i\theta}$ in each Stolz domain.

PROOF FOR THEOREM 1. It is sufficient to show, for each $0 < \alpha < \pi/2$, that there exists a set $E = E(\alpha)$ of θ 's with measure 2π such that, for θ in E,

(1)
$$(1-|z|)w^p(z) = o(1)$$

uniformly as $z \rightarrow e^{i\theta}$ in $S_{\alpha}(1, \theta)$.

Fix
$$0 < \alpha < \pi/2$$
 and, for $1 - \frac{1}{2} \cos \alpha = \delta < r < 1$ and each θ , let

 $U(r, \theta) = LUB w(z)$,

where the least upper bound is taken over all z subject to the restriction

2)
$$z \in S_{\alpha}(1, \theta) \text{ and } |z-e^{i\theta}| \geq 1-r.$$

Next pick $0 < \beta < \pi/2$ and ρ so that

$$\tan \beta = 2 \tan \alpha, \quad (1 - \rho) = \frac{1}{2} (1 - r) \cos \alpha,$$

and let

$$W(\rho, \theta) = LUB w(z), \quad z \in S_{\beta}(\rho, \theta).$$

Any z which satisfies condition 2) must lie in $S_{\beta}(\rho, \theta)$ and hence

$$U(r,\theta) \leq W(\rho,\theta)$$

for all θ . From the Hardy-Littlewood theorem we obtain

$$\int_{-\pi}^{\pi} U^p(r, heta) d heta \leq \int_{-\pi}^{\pi} W^p(
ho, heta) d heta \leq C_1 \int_{-\pi}^{\pi} w^p(
ho e^{i heta}) d heta$$
 ,

where $C_1 = C(\beta, p)$, and integrating with respect to r we conclude that

where $C_{_2} \!=\! 2C_{_1}/\!\cos\!lpha$. From the Fubini theorem it follows that

$$\lim_{r\to 1}\int_r^1 U^p(r,\theta)rdr=0$$

for θ in $E = E(\alpha)$, a set with measure 2π . For each fixed θ , $U(r, \theta)$ is non-decreasing in r,

$$U^p(r,\theta)r(1-r) \leq \int_r^1 U^p(r,\theta)rdr$$
,

and we conclude, for θ in E, that

(3)
$$\lim_{r\to 1} (1-r) U^{p}(r,\theta) = 0.$$

Since 3) implies 1) the proof for Theorem 1 is complete.

PROOF FOR SEIDEL-WALSH THEOREM. A familiar argument [2] allows us to assume that the image of |z| < 1 under $\zeta = f(z)$ has finite area or that

$$\int \int_{|z|<1} |f'(z)|^2 dx dy < \infty, \quad z=x+iy.$$

Set w(z) = |f'(z)| and the desired conclusion follows from Theorem 1 with p=2.

The following result is a sharpened form of a theorem due to Tsuji [3].

THEOREM 2. Suppose that f(z) is analytic in |z| < 1, that p > 0, and that

$$\iint_{|z|<1} |f(z)|^p dx dy < \infty, \quad z=x+iy.$$

Then, for almost all θ ,

$$f(z) = o\{(1 - |z|)^{-1/p}\}$$

uniformly as $z \rightarrow e^{i\theta}$ in each Stolz domain.

PROOF FOR THEOREM 2. Set $w(z) = |f(z)|^{p/2}$ and apply Theorem 1.

University of Michigan

References

- [1] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math., 54 (1930), pp. 81-116.
- [2] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Trans. Amer. Math. Soc., 52 (1942), pp. 128-216.
- [3] M. Tsuji, On the radial order of a certain regular function in a unit circle, J. Jap. Math. Soc., 6 (1954), pp. 336-342.