On an absolute constant in the theory of quasi-conformal mappings. ${ }^{1)}$

By Akira Mori. 十

(Received Dec. 9, 1955)

1. A topological mapping $w=T(z)$ of a planer region D onto another such region Δ is called a quasi-conformal mapping with the parameter of quasi-conformality K, or, simply, a K-QC mapping, if
(i) it preserves the orientation of the plane; and
(ii) for any quadrilateral $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ contained in D together with its boundary, the inequality

$$
\bmod T\left(\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right) \leqq K \bmod \Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right),
$$

holds, where K is a constant $\geqq 1$. (See Mori [3], [4] and also Ahlfors [1].)

Let $w=T(z)$ be a K-QC mapping of $|z|<1$ onto $|w|<1$ such that $T(0)=0$. Then, as is already known, this mapping can be regarded as a topological mapping of $|z| \leqq 1$ onto $|w| \leqq 1$. (See Ahlfors [1], Mori [3], [4].) And, if z_{1}, z_{2} are arbitrary two points on $|z| \leqq 1$, we have

$$
\begin{equation*}
\left|T\left(z_{1}\right)-T\left(z_{2}\right)\right| \leqq C\left|z_{1}-z_{2}\right|^{\kappa}, \tag{1}
\end{equation*}
$$

where C is a numerical constant.
To the author's knowledge this was first proved by Yûjôbô [6], though under a narrower definition than that given above, the author proved it with $C=48$. (Mori [3], [4]). Though with C depending on K, ($C=12^{K^{2}}$), Ahlfors proved (1) under the same definition. Further, Lavrentieff is reported to have proved (1) in a paper to which the author has not access (Lavrentieff [2]), so the author does not know with what C and under what definition Lavrentieff proved it.

[^0]The purpose of this paper is to show that 16 is the best possible value of C (as a constant not depending on K); i.e., to prove the following

Theorem. Let $w=T(z)$ be an arbitrary K-QC mapping of $|z|<1$ onto $|w|<1$, such that $T(0)=0$. Then

$$
\begin{equation*}
\sup _{K, T, z_{1} \neq z_{2}} \frac{\left|T\left(z_{1}\right)-T\left(z_{2}\right)\right|}{\left|z_{1}-z_{2}\right|^{-1}}=16 \quad\left(\left|z_{1}\right| \leqq 1, \quad\left|z_{2}\right| \leqq 1\right) . \tag{2}
\end{equation*}
$$

(However, there is no mapping T which attains this value 16.)
2. Preliminaries. Let A be an annulus ${ }^{2}$. We always suppose that neither of the two complementary continua of the annulus is not reduced to one point (including the point at infinity). Then we can map A conformally onto a circular annulus $q<|\zeta|<1$, $(0<q<1)$. We call $\log (1 / q)$ the " modulus" of A and denote it by $\bmod A$. Then, it is easily proved, that for any K-QC mapping $w=T(z)$ of a planer region D onto another such region and for any annulus $A \subset D$, we have

$$
\begin{equation*}
\frac{1}{K} \bmod A \leqq \bmod T(A) \leqq K \bmod A \tag{3}
\end{equation*}
$$

(See Mori [3], [4].)
Next, we enumerate some known facts concerning the moduli of annuli. (For proofs, see Teichmüller [5].)
(I) (Grötzsch) For any real number P such that $1<P<+\infty$, we denote by G_{P} the annulus whose two complementary continua are respectively $\{z ;|z| \leqq 1\}$ and $\{z ; P \leqq \Re z \leqq+\infty, \mathcal{Y} z=0\}$. (G_{P} is called Grötzsch's extremal region.) Then, if one of the complementary continua of an annulus A contains $\{z ;|z| \leqq 1\}$, and if the other contains $z=\infty$ and also a point on $|z|=P$, we have

$$
\begin{equation*}
\bmod A \leqq \bmod G_{P}, \tag{4}
\end{equation*}
$$

and moreover the equality holds if and only if A is an annulus obtained by a revolution of G_{P} around the point $z=0$.
(II) (Teichmüller) For any real number P such that $1<P<+\infty$, we denote by H_{P} the annulus whose two complementary continua are

[^1]respectively $\{z ;-1 \leqq \Re z \leqq 0, \mathfrak{J} z=0\}$ and $\{z ; P \leqq \Re z \leqq+\infty, \mathfrak{J} z=0\}$. (H_{P} is called Teichmüller's extremal region.) Then, if one of the complementary continua of an annulus A contains both $z=0$ and $z=-1$, and if the other contains $z=\infty$ and also a point on $|z|=P$, we have $\bmod A \leqq \bmod H_{P}$,
and moreover the equality holds if and only if A is H_{P}.
(III) We write
\[

$$
\begin{aligned}
& \bmod G_{P}=\log \Phi(P), \\
& \bmod H_{P}=\log \Psi(P) .
\end{aligned}
$$
\]

Then the following facts hold.

$$
\begin{equation*}
\Psi(P)=[\Phi(\sqrt{1+P})]^{2}, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
P<\Phi(P)<4 P, \quad \Phi(P) / P \uparrow 4 \quad \text { as } \quad P \rightarrow+\infty,{ }^{3)} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
P<\Psi(P)<16 P+8 . \quad \Psi(P) / P \rightarrow 16 \quad \text { as } \quad P \rightarrow+\infty . \tag{8}
\end{equation*}
$$

3. For any real number λ such that $0<\lambda \leqq 2$, we denote by A_{λ} the annulus whose two complementary continua are respectively $\left\{z ;|z|=1,|\arg z| \leqq \sin ^{-1} \begin{array}{l}\lambda \\ \\ 2\end{array}\right\}$ and $\{z ;-\infty \leqq \Re z \leqq 0, \Im z=0\}$, and write $\bmod A_{\lambda}=\log X(\lambda)$.

Then we have
Lemma 1. Let A be an annulus on the z-plane, and Γ, Γ^{\prime} be respectively the two complementary continua of A. Then, if

$$
\begin{gathered}
\operatorname{diam} .(\Gamma \cap\{|z| \leqq 1\}) \geqq \lambda>0, \\
\Gamma^{\prime} \ni z=0, z=\infty,
\end{gathered}
$$

we have
(9)

$$
\bmod A \leqq \bmod A_{\lambda}
$$

[^2]and moreover the equality holds if and only if A is an annulus obtained by a revolution of A_{λ}, around the point $z=0$.

Lemma 2. We have

$$
\begin{align*}
& X(\lambda)=\Phi\left(\frac{2}{\lambda} \sqrt{2+\sqrt{4-\lambda^{2}}}\right) \tag{10}\\
&=\Phi\left(\frac{2}{\sqrt{2-\sqrt{4-\lambda^{2}}}}\right), \\
&\left.\lambda X(\lambda) \uparrow 16 \quad \text { as } \quad \lambda \rightarrow+0 .{ }^{4}\right)
\end{align*}
$$

Proof of Lemma 1 and Lemma 2. We may assume, without loss of generality, that Γ contains $z=1$ and also a point z_{0} such that $\left|z_{0}\right| \leqq 1,\left|z_{0}-1\right| \geqq \lambda$; because, if not so, we can transform A into such one by a suitable transformation of the form $Z=\alpha z,(|\alpha| \geqq 1)$ without varying $\bmod A$.

We construct the Riemann surface F of the analytic function $\zeta=\sqrt{z}$ above the z-plane. Denote by B the annulus which is obtained by excluding the two replicas of Γ from F. Then, since B contains the two replicas of A and since, moreover, each of them separates the boundary continua of B, we have

$$
\begin{equation*}
\bmod A \leqq \frac{1}{2} \bmod B \tag{12}
\end{equation*}
$$

(See Teichmüller [5])
Now, we shall try to maximize $\bmod B$. We map F onto the whole w-plane by the composition of the two transformations $\zeta^{2}=z$, $w=i \frac{1-\zeta}{1+\zeta}$. Then, the whole part of F lying above $|z|<1$, is mapped onto the upper half-plane of the w-plane, the two points lying above $z=1$ are transformed respectively to $w=0, \infty ; z=0$ is transformed to $w=i$, and $z=\infty$ is transformed to $w=-i$. Let the images of z_{0} be $w_{0}=\rho_{0} e^{i \varphi_{0}},\left(0 \leqq \varphi_{0} \leqq \pi\right)$ and $w_{0}^{\prime}=\rho_{0}{ }^{\prime} e^{i \varphi_{0}^{\prime}},\left(0 \leqq \varphi_{0}{ }^{\prime} \leqq \pi\right)$. We then have

$$
0<\lambda \leqq\left|z_{0}-1\right|=\left|\left(\frac{i-\rho_{0} e^{i \varphi_{0}}}{i+\rho_{0} e^{i \varphi_{0}}}\right)^{2}-1\right|=\frac{4 \rho_{0}}{1+2 \rho_{0} \sin \varphi_{0}+\rho_{0}^{2}} .
$$

[^3]Consequently, since $\sin \varphi \geqq 0$ for $0 \leqq \varphi \leqq \pi$, we have

$$
0<\lambda \leqq \begin{gathered}
4 \rho_{0} \\
1+\rho_{0}^{2}
\end{gathered}
$$

whence follows

$$
\begin{equation*}
\rho_{1} \leqq \rho_{0} \leqq \rho_{2}, \tag{13}
\end{equation*}
$$

where

$$
\rho_{1}=\frac{2-\sqrt{4-\lambda^{2}}}{\lambda}, \quad \rho_{2}=\frac{2+\sqrt{4-\lambda^{2}}}{\lambda} .
$$

Similarly, we can prove

$$
\begin{equation*}
\rho_{1} \leqq \rho_{0}{ }^{\prime} \leqq \rho_{2} . \tag{14}
\end{equation*}
$$

It follows easily from (13) and (14) that one of the images of the two replicas of Γ lying on F on the w-plane contains $w=0$ and a point on $|w|=\rho_{1}$, and that the other contains $w=\infty$ and a point on $|w|=\rho_{2}$. Hence we have, by (II) in 2,

$$
\begin{equation*}
\bmod B \leqq \log \Psi\binom{\rho_{2}}{\rho_{1}}=\log \Psi\binom{\left(2+\sqrt{ } 4-\lambda^{2}\right)^{2}}{\lambda^{2}} ; \tag{15}
\end{equation*}
$$

where the equality holds if and only if the two images of Γ are respectively

$$
-\rho_{1} \leqq \Re w \leqq 0, \quad \Im w=0
$$

and

$$
\rho_{2} \leqq \Re w \leqq+\infty, \quad \Im w=0
$$

or

$$
-\infty \leqq \mathfrak{F} w \leqq-\rho_{2}, \quad \Im \mathfrak{J} w=0
$$

and

$$
0<\Re w \leqq \rho_{1}, \quad \Im w=0
$$

The condition for equality in (15) may be also stated as follows. It holds, if and only if Γ is a minor arc $\overparen{z_{0} z_{1}}$ of the unit circle, with $z_{0}=1,\left|z_{0}-z_{1}\right|=\lambda$. There exist two such minor arcs $: \overparen{z_{0} z_{1}}$. We denote
by $\Gamma_{\lambda}^{(1)}$ one of them, which lies in the upper half-plane and by $\Gamma_{\lambda}^{(2)}$ the other.

Now, we consider the case where Γ coincides either with $\Gamma_{\lambda}^{(1)}$ or with $\Gamma_{\lambda}^{(2)}$. We rotate the z-plane around $z=0$, until the middle point of Γ coincides with $z=1$. Then, in formula (12): $\bmod A \leqq \frac{1}{2} \bmod B$, the equality holds if and only if Γ^{\prime} is mapped onto $|Z|=\sqrt{q}$ by the conformal mapping which maps B onto a circular annulus $q<|Z|<1$. (See Teichmüller [5].) As is easily seen, this happens if and only if Γ^{\prime} is the negative real axis. Consequently, since we have in such a case

$$
\bmod A=\frac{1}{2} \bmod B=\frac{1}{2} \log \Psi\left(\frac{\left(2+\sqrt{4-\lambda^{2}}\right)^{2}}{\lambda^{2}}\right)
$$

and also $A=A_{\lambda}$, we have

$$
\begin{equation*}
\log X(\lambda)=\bmod A_{\lambda}=\frac{1}{2} \log \Psi\left(\frac{\left(2+\sqrt{4-\lambda^{2}}\right)^{2}}{\lambda^{2}}\right) \tag{16}
\end{equation*}
$$

Now, (9) follows immediately from (12), (15) and (16). Furthermore, it is easily observed from the facts obtained until now, that the equality in the formula (9) holds if and only if A is the annulus obtained by a revolution of A_{λ} around the point $z=0$. Next, (10) follows from (16) and (6). (10) being proved, we have

$$
\begin{equation*}
\left.\lambda X(\lambda)=2 \sqrt{ } 2+\sqrt{ } 4-\lambda^{2} \cdot \frac{\Phi\left(\frac{2}{\lambda} \sqrt{ } 2+\sqrt{ } 4-\lambda^{2}\right.}{}\right) \frac{\frac{2}{\lambda} \sqrt{2+\sqrt{ } 4-\lambda^{2}}}{} . \tag{17}
\end{equation*}
$$

Now, since $\frac{2}{\lambda} \sqrt{2}+\sqrt{4-\lambda^{2}}$ is a decreasing function of λ, the second fraction in the right-hand side is a decreasing function of λ by (7). As $2 \sqrt{2+\sqrt{4-\lambda^{2}}}$ decreases also when λ increases, $\lambda X(\lambda)$ is a decreasing function of λ. Therefore we have, by (6) and (17),

$$
\lambda X(\lambda) \uparrow 16 \quad \text { as } \quad \lambda \rightarrow+0
$$

which proves (11).
4. Proof of the theorem. First, we prove that

$$
\begin{equation*}
\sup _{K, T, z_{1} \neq z_{2}} \frac{\left|T\left(z_{1}\right)-T\left(z_{2}\right)\right|}{\left|z_{1}-z_{2}\right|^{\prime}} \leqq 16 . \tag{18}
\end{equation*}
$$

For this purpose, it suffices to show

$$
\begin{equation*}
\left|T\left(z_{1}\right)-T\left(z_{2}\right)\right|<16\left|z_{1}-z_{2}\right|_{K}^{1}, \tag{19}
\end{equation*}
$$

for an arbitrary K-QC mapping $w=T(z)$ of $|z|<1$ onto $|w|<1$ such that $T(0)=0$ and for arbitrary two points z_{1}, z_{2} such that $\left|z_{1}\right| \leqq 1$, $\left|z_{2}\right| \leqq 1, z_{1} \neq z_{2}$. We set $T\left(z_{1}\right)=w_{1}, T\left(z_{2}\right)=w_{2}$.
. In case $\left|z_{1}-z_{2}\right| \geqq 1,(19)$ is trivial. So we may assume that $0<\left|z_{1}-z_{2}\right|<1$. Now, $w=T(z)$ can be extended to a K-QC mapping from $|z|<+\infty$ to $|w|<+\infty$. (See Ahlfors [1], Mori [3], [4].) We denote by A the annulus $\left\{z ; \frac{1}{2}\left|z_{1}-z_{2}\right|<\left|z-\frac{z_{1}+z_{2}}{2}\right|<\frac{1}{2}\right\}$. Then we have

$$
\bmod A=\log \frac{1}{\left|z_{1}-z_{2}\right|}
$$

and consequently, by the fact stated at the beginning of $\mathbf{2}$,

$$
\begin{equation*}
\log \frac{1}{\left|z_{1}-z_{2}\right|^{1} K} \leqq \bmod T(A) \tag{20}
\end{equation*}
$$

Now, we shall estimate the right-hand side of this formula. Suppose first that
$1^{\circ} \quad\left|\begin{array}{c}z_{1}+z_{2} \\ 2\end{array}\right| \leqq \begin{aligned} & 1 \\ & 2\end{aligned}$.
Then, A is contained in $|z|<1$, and so $T(A)$ is contained in $|w|<1$, and a fortiori, in $\left|w-w_{1}\right|<2$. Consequently, one of the complementary continua of $T(A)$ contains both w_{1} and w_{2}, and the other contains $\left\{w ;\left|w-w_{1}\right| \geqq 2\right\}$. Therefore, we have by (I) in 2

$$
\bmod T(A) \leqq \log \Phi\left(\frac{1}{\left|w_{1}-w_{2}\right|}\right)
$$

Consequently we have, by (20) and (7),

$$
\frac{1}{\left|z_{1}-z_{2}\right|_{K}^{1}} \leqq \Phi\left(\frac{2}{\left|w_{1}-w_{2}\right|}\right)<\frac{8}{\left|w_{1}-w_{2}\right|}
$$

whence (18) follows.
Next, suppose that
2°

$$
\left|\frac{z_{1}+z_{2}}{2}\right|>\frac{1}{2} .
$$

Then A does not contain $z=0$, and so $T(A)$ does not contain $w=0$. So that one of the complementary continua of $T(A)$ contains both $w=0$ and $w=\infty$, and the other contains both w_{1} and w_{2}. Therefore, we have by Lemma 1

$$
\bmod T(A) \leqq \log X\left(\left|w_{1}-w_{2}\right|\right)
$$

Consequently, by (20) and (11), we have

$$
\frac{1}{\left|z_{1}-z_{2}\right|_{K}^{1}} \leqq X\left(\left|w_{1}-w_{2}\right|\right)<\frac{16}{\left|w_{1}-w_{2}\right|},
$$

whence (19) follows immediately.
Thus we have proved (18).
Next, let us prove

$$
\begin{equation*}
\sup _{K, T, 2_{1} \neq z_{2}} \frac{\left|T\left(z_{1}\right)-T\left(z_{2}\right)\right|}{\left|z_{1}-z_{2}\right|^{1}} \geqq 16 \tag{21}
\end{equation*}
$$

For any small positive number s, we denote by $A_{s}^{(z)}$ the annulus $\{z ;|z|<+\infty\}-\{z ;-\infty<\Re z \leqq 0, \mathfrak{J} z=0\}-\{z ;|z|=1,|\arg z| \leqq s / 2\}$. We map the planar region $\{z ;|z|<+\infty\}-\{z ;-\infty<\mathfrak{R} z \leqq 0, \mathfrak{J} z=0\}$ conformally onto the planar region $\{Z ;|Z|<1\}$ on the Z-plane by a regular function $Z=f(z)$ in such a manner that $z=0$ and $z=-\infty$ correspond to $Z=-1$ and $Z=1$ respectively. Then the image of $|z|=1$ is the part of the imaginary axis of the Z-plane contained in $|Z|<1$, and consequently the image of the arc $\{z ;|z|=1,|\arg z| \leqq s / 2\}$ is a segment on the imaginary axis, whose middle point is $Z=0$. We denote the length of this segment by l. Then we can easily obtain

$$
\lim _{s \rightarrow 0} l=\begin{align*}
& l \tag{22}\\
& s
\end{align*} .
$$

The image of $A_{s}^{(z)}$ is the annulus obtained by excluding this segment from $|Z|<1$. We denote this image by $A_{s}^{(Z)}$.

Next, we map $A_{s}^{(Z)}$ conformally onto a circular annulus $A_{s}^{(\zeta)}$: $\gamma<|\zeta|<1$ on the ζ-plane by a regular function $\zeta=\varphi(Z)$. We can easily obtain

$$
\lim _{l \rightarrow 0} \begin{align*}
& \gamma \tag{23}\\
& l
\end{aligned}=\begin{aligned}
& 1 \\
& 4
\end{align*} .
$$

Then we map $A_{s}^{(\zeta)}$ onto a circular annulus $A_{s}^{(\omega)}: \gamma^{1}<|\omega|<1$ on the ω-plane by the K-QC mapping $\omega=\tau(\zeta)=|\zeta|^{\frac{1}{K}} e^{i \arg \zeta}$.

Further, we map $A_{s}^{(\omega)}$ conformally onto $A_{s}^{(W)}$ which is the annulus obtained by excluding from $|W|<1$ a segment lying on the imaginary axis of the W-plane whose middle point is $W=0$. We denote by $W=\psi(\omega)$ the mapping function and by l^{*} the length of this segment. We can easily obtain

$$
\begin{equation*}
\lim _{\gamma \rightarrow 0} \frac{l^{*}}{\gamma_{K}^{1}}=4 . \tag{24}
\end{equation*}
$$

Now, as is easily ascertained, two boundary points of $A_{s}^{(Z)}$ lying on its slit which are in the same position in the Z-plane are transformed by the composite mapping $W=\psi(\tau(\varphi(Z)))$ to two boundary points of $A_{s}^{(W)}$ lying on its slit in the same position in the W-plane. Consequently $W=\psi(\tau(\phi(Z)))$ can be regarded as a continuous function in $|Z|<1$, and hence this mapping can be regarded as a K-QC mapping of $|Z|<1$ onto $|W|<1$. (See Ahlfors [1], Mori [3], [4].) By this extended mapping $W=\psi(\tau(\varphi(Z)))$, the part of the imaginary axis contained in $|Z|<1$ is transformed into the part of the imaginary axis contained in $|W|<1$.

Next we map $|W|<1$ conformally onto the planar region $\{w ;|w|$ $<+\infty\}-\{w ;-\infty<\mathfrak{R} w \leqq 0, \mathfrak{J} w=0\}$ by a regular function $w=g(W)$ in such a manner that $W=-1$ and $W=1$ correspond respectively to $w=0$ and $w=-\infty$. Then, the part of the imaginary axis contained in $|W|<1$ corresponds to the unit circle on the w-plane, and con-
sequently, $A_{s}^{(W)}$ is transformed into a planar annulus $A_{s}^{(w)}$ obtained by excluding from $\{w ;|w|<+\infty\}-\{w ;-\infty<\mathfrak{R} w \leqq 0$, $\mathfrak{J} w=0\}$ an arc lying on $|w|=1$ which is symmetric with respect to the real axis. We denote by s^{*} the length of this arc. Then we can easily obtain

$$
\begin{equation*}
\lim _{l^{*} \rightarrow 0} \frac{s^{*}}{l^{*}}=4 \tag{25}
\end{equation*}
$$

We denote by $w=T_{s}(z)$ the mapping from $A_{s}^{(z)}$ onto $A_{s}^{(w)}$ which is obtained by combining the above-mentioned five mappings one after another. Then $w=T_{s}(z)$ is a K-QC mapping in $A_{s}^{(z)}$. As is easily ascertained, two boundary points of $A_{s}^{(z)}$ lying on the negative real axis in the same position in the z-plane are transformed by $w=T_{s}(z)$ to two boundary points of $A_{s}^{(w)}$ lying on the negative real axis in the same position in the w-plane. On the other hand, since $f(z)$ and $g(W)$ are regular in $\{z ;|z|<+\infty\}-\{z ;-\infty<\mathfrak{R} z \leqq 0, \mathfrak{F} z=0\}$ and in $\{W$; $|W|<1\}$ respectively, and since, as was shown above, $\psi(\tau(\phi(Z)))$ can be regarded as a K-QC mapping in $|Z|<1, w=T_{s}(z)$ can be regarded as a K-QC mapping of $\{z ;|z|<+\infty\}-\{z ;-\infty<\mathfrak{R} z \leqq 0, \mathfrak{J} z=0\}$ onto $\{w ;|w|<+\infty\}-\{w ;-\infty<\mathfrak{R} w \leqq 0, \mathfrak{J} w=0\}$. Therefore $w=T_{s}(z)$ can be regarded as a K-QC mapping of $|z|<+\infty$ onto $|w|<+\infty$.

Next, as was remarked above, the unit circle on the z-plane is transformed into the part of the imaginary axis contained in $|Z|<1$ by $Z=f(z)$. The interval on the imaginary axis contained in $|Z|<1$ is transformed into $\{W ;|\mathfrak{F} W|<1, \mathfrak{R} W=0\}$ by $W=\psi(\tau(\varphi(Z)))$, and the part of the imaginary axis contained in $|W|<1$ is transformed into the unit circle on the w-plane by $w=g(W)$. Consequently $|z|<1$ is mapped onto $|w|<1$ by $w=T_{s}(z)$.

Now, we have obviously

$$
\sup _{K, T, z_{1}+z_{2}} \frac{\left|T\left(z_{1}\right)-T\left(z_{2}\right)\right|}{\left|z_{1}-z_{2}\right|_{K}^{1}} \geqq \frac{s^{*}}{s^{\frac{1}{K}}} \cdot
$$

On the other hand, we have, by (22), (23), (24) and (25),

$$
\lim _{s \rightarrow 0} \frac{s^{*}}{s^{\frac{1}{K}}}=16^{1-\frac{1}{K}} .
$$

(21) follows immediately from these two formulas.

References.

[1] Ahlfors, L. V.: On quasi-conformal mappings, J. d'Anal. Math., III, (1953/54), pp. 1-58.
[2] Lavrentieff, M.: A fundamental theorem of the theory of quasi-conformal mappings of two-dimensional regions, Izv. Akad. Nauk. SSSR. Ser. mat. 12, 1948.
[3] Mori, A.: On quasi-conformality and pseudo-analyticity (Japanese), Sûgaku, 7 (1955), pp. 75-89.
[4] Mori, A.: On quasi-conformality and pseudo-analyticity, (to appear).
[5] Teichmüller, O.: Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math., 3 (1938), pp. 621-678.
[6] Yûjôbô, Z.: On pseudo-regular functions, Comment. Math. Univ. St. Pauli, 1 (1953), pp. 67-80.

[^0]: 1) The author of this paper, A. Mori suddenly died on July 5, 1955 at the age of 30 . This paper was edited by Z. Yûjôbô after a manuscript of A. Mori (written in Japanese) found after his death.
[^1]: 2) We call " annulus" any doubly connected planar region.
[^2]: 3) We mean, by this, that $\Phi(P) / P$ is an increasing function of $P,(P>0)$ and moreover

 $$
 \lim _{P \rightarrow+\infty}(\Phi(P) / P)=4
 $$

[^3]: 4) We mean, by this, that $\lambda X(\lambda)$ is a decreasing function of $\lambda,(0<\lambda \leqq 2)$ and moreover $\lim _{\lambda \rightarrow+0} \lambda X(\lambda)=16$.
