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On an absolute constant in the theory of
quasi-conformal mappings.1)

By Akira MORI.

(Received Dec. 9, 1955)

I. A topological mapping $w=T(z)$ of a planer region $D$ onto
another such region $\Delta$ is called a quasi-conformal mapping with the
parameter of quasi-conformality $K$, or, simply, a K-QC mapping, if

(i) it preserves the orientation of the plane; and
(ii) for any quadrilateral $\Omega(z_{1}, z_{2}, z_{3}, z_{4})$ contained in $D$ together

with its boundary, the inequality

$mod T(\Omega(z_{1}, z_{2}, z_{3}, z_{4}))\leqq Kmod \Omega(z_{1}, z_{2}, z_{3}, z_{4})$ ,

holds, where $K$ is a constant $\geqq 1$ . (See Mori [3], [4] and also Ahlfors
[1].)

Let $w=T(z)$ be a K-QC mapping of $|z|<1$ onto $|w|<1$ such that
$T(O)=0$ . Then, as is already known, this mapping can be regarded as
a topological mapping of $|z|\leqq 1$ onto $|w|\leqq 1$ . (See Ahlfors [1], Mori
[3], [4].) And, if $z_{I},$ $z_{2}$ are arbitrary two points on $|z|\leqq 1$ , we have

(1) $|T(z_{1})-T(z_{2})|\leqq C|z_{1}-z_{2}|K^{1}$

where $C$ is a numerical constant.
To the author’s knowledge this was first proved by Y\^uj\^ob\^o [6],

though under a narrower definition than that given above, the author
proved it with $C=48$ . (Mori [3], [4]). Though with $C$ depending on $K$,
$(C=12^{K^{2}})$ , Ahlfors proved (1) under the same definition. Further,
Lavrentieff is reported to have proved (1) in a paper to which the
author has not access (Lavrentieff [2]), so $tlle$ author does not know
with what $C$ and under what definition Lavrentieff proved it.

1) The author of this paper, A. Mori suddenly died on July 5, 1955 at the age of 30.
This paper was edited by Z. Y\^uj\^ob6 after a manuscript of A. Mori (written in Japanese)
found after his death.
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The purpose of this paper is to sbow that 16 is the best possible
value of $C$ (as a constant not depending on $K$); $i$ . $e.$ , to prove the
following

THEOREM. Let $w=T(z)$ be an arbitrary K-QC mapping of $|z|<1$

onto $|w|<1$ , such that $T(O)=0$ . Then

(2)
$\sup_{K,T,z_{1}\neq z_{2}}-\underline{|T(z_{1^{1}}}$

)
$-T_{1}(z_{2})_{-}||z-z_{2}K1=16$ $(|z_{1}|\leqq 1, |z_{2}|\leqq 1)$ .

(However, there is no mapping $T$ which attains this value 16.)

2. Preliminaries. Let $A$ be an annulus2). We always suppose
that neither of the two complementary continua of the annulus is
not reduced to one point (including the point at infinity). Then we
can map $A$ conformally onto a circular annulus $q<|\zeta|<1,$ $(0<q<1)$ .
We call $\log(1/q)$ the “ modulus “ of $A$ and denote it by $mod A$ . Then,
it is easily proved, that for any K-QC mapping $w=T(z)$ of a planer
region $D$ onto another such region and for any annulus $A\subset D$, we
have

(3) $\frac{1}{K}mod A\leqq mod T(A)\leqq Kmod A$ .

(See Mori [3], [4].)
Next, we enumerate some known facts concerning the moduli of

annuli. (For proofs, see Teichm\"uller [5].)
(I) (Gr\"otzsch) For any real number $P$ such that $ 1<P<+\infty$ , we

denote by $G_{P}$ the annulus whose two complementary continua are
respectively $\{z;|z|\leqq 1\}$ and $\{z;P\leqq \mathfrak{R}z\leqq+\infty, \mathfrak{J}z=0\}$ . ( $G_{P}$ is called
Grotzsch’s extremal region.) Then, if one of the complementary con-
tinua of an annulus $A$ contains $\{z;|z|\leqq 1\}$ , and if the other contains
$ z=\infty$ and also a point on $|z|=P$, we have

(4) $mod A\leqq mod G_{P}$ ,

and moreover the equality holds if and only if $A$ is an annulus ob-
tained by a revolution of $G_{P}$ around the point $z=0$ .

(II) (Teichm\"uller) For any real number $P$ such that $ 1<P<+\infty$ ,
we denote by $H_{P}$ the annulus whose two complementary continua are

2) We call “ annulus ‘’ any doubly connected planar region.
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respectively $\{z;-1\leqq \mathfrak{R}z\leqq 0, \mathfrak{J}z=0\}$ and $\{z;P\leqq \mathfrak{R}z\leqq+\infty, \mathfrak{J}z=0\}$ .
( $H_{P}$ is called Teichm\"uller’s extremal region.) Then, if one of the
complementary continua of an annulus $A$ contains both $z=0$ and $z=-1$ ,
and if the other contains $ z=\infty$ and also a point on $|z|=P$, we have

(5) $mod A\leqq mod H_{P}$ ,

and moreover the equality holds if and only if $A$ is $H_{P}$ .
(III) We write

$mod G_{P}=\log\Phi(P)$ ,

$mod H_{P}=\log\Psi(P)$ .
Then the following facts hold.

(6) $\Psi(P)=[\Phi(\tau/\overline{1+P})]^{2}$ ,

(7) $P<\Phi(P)<4P$ , $\Phi(P)/P\uparrow 4$ as $P\rightarrow+\infty 3$ )

(8) $P<\Psi(P)<16P+8$ . $\Psi(P)/P\rightarrow 16$ as $ P\rightarrow+\infty$ .

3. For any real number $\lambda$ such that $0<\lambda\leqq 2$, we denote by
$A_{\lambda}$ the annulus whose two complementary continua are respectively

$\{z;|z|=1,$ $|\arg z|\leqq\sin^{-1}\lambda 2\}$ and $\{z;-\infty\leqq \mathfrak{R}z\leqq 0, \mathfrak{J}z=0\}$ , and write

$mod A_{\lambda}=\log X(\lambda)$ .
Then we have

LEMMA 1. Let $A$ be an annulus on the z-plane, and $\Gamma,$
$\Gamma^{\prime}$ be

respectively the two complementary continua of A. Then, if
diam. $(\Gamma\cap\{|z|\leqq 1\})\geqq\lambda>0$ ,

$\Gamma^{\prime}\ni z=0,$ $ z=\infty$ ,

we have

(9) $mod A\leqq mod A_{\lambda}$ ,

3) We mean, by this, that $\Phi(P)/P$ is an increasing function of $P$, $(P>0)$ and
moreover $\lim_{P\rightarrow+\infty}(\Phi(P)/P)=4$ .
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and moreover the equality holds if and only if $A$ is an annulus obtained
by a revolution of $A_{\lambda}$ , around the point $z=0$ .

LEMMA 2. We have

(10) $x_{(\lambda)=\Phi}(\frac{2}{\lambda}\mapsto^{2+\sqrt{}})$

$=\Phi(\frac{2}{r_{2\overline{-\sqrt 4\overline{-\lambda^{2}}}}})$ ,

(11) $\lambda X(\lambda)\uparrow 16$ as $\lambda\rightarrow+0.4$)

PROOF OF LEMMA 1 AND LEMMA 2. We may assume, without loss
of generality, that $\Gamma$ contains $z=1$ and also a point $z_{0}$ such that
$|z_{0}|\leqq 1,$ $|z_{0}-1|\geqq\lambda$ ; because, if not so, we can transform $A$ into such
one by a suitable transformation of the form $Z=\alpha z,$ $(|\alpha|\geqq 1)$ without
varying $mod A$ .

We construct the Riemann surface $F$ of the analytic function
$\zeta=\sqrt{z}$ above the z-plane. Denote by $B$ the annulus which is obtained
by excluding the two replicas of $\Gamma$ from $F$. Then, since $B$ contains
the two replicas of $A$ and since, moreover, each of them separates
the boundary continua of $B$, we have

(12) $mod A\leqq$ $1mod B$ .
2

(See Teichm\"uller [5])
Now, we shall try to maximize $mod B$. We map $F$ onto the

whole w-plane by the composition of the two transformations $\zeta^{2}=z$ ,

$w=i\frac{1-\zeta}{1+\zeta}$ . Then, the whole part of $F$ lying above $|z|<1$ , is mapped

onto the upper half-plane of the w-plane, the two points lying above
$z=1$ are transformed respectively to $w=0,$ $\infty$ ; $z=0$ is transformed to
$w=i$, and $ z=\infty$ is transformed to $w=-i$. Let the images of $z_{0}$ be
$w_{0}=\rho_{0}e^{i\varphi_{0}},$ $(0\leqq\varphi_{0}\leqq\pi)$ and $w_{0}^{\prime}=\rho_{0}^{\prime}e^{i\varphi_{0}^{\prime}},$ $(0\leqq\varphi_{0}^{\prime}\leqq\pi)$ . We then have

$0<\lambda\leqq|z_{0}-1|=|(\frac{i-\rho_{0}e^{i\varphi_{0}}}{i+\rho_{0}e^{i\varphi_{0}}})^{2}-1|=\frac{4\rho_{0}}{1+2\rho_{0}\sin\varphi_{0}+\rho_{0}^{2}}$

4) We mean, by this, that $\lambda X(\lambda)$ is a decreasing function of $\lambda$ , $(0<\lambda\leqq 2)$ and
moreover $\lim\lambda X(\lambda)=16$ .

$\lambda\rightarrow+0$
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Consequently, since $\sin\varphi\geqq 0$ for $ 0\leqq\varphi\leqq\pi$ , we have

$0<\lambda\leqq- 4\rho_{0_{-}}$

$1+\rho_{0}^{2}$

whence follows

(13) $\rho_{1}\leqq\rho_{0}\leqq\rho_{2}$ ,

where

$\rho_{1}=\underline{2}\underline{-1^{/_{\lambda^{---}}}}4-\lambda^{\overline{2}}--$ $\rho_{2}=2+1^{/_{\lambda^{-}}}-\overline{4-\lambda^{2}}$

Similarly, we can prove

(14) $\rho_{1}\leqq\rho_{0^{\prime}}\leqq\rho_{2}$ .
It follows easily from (13) and (14) that one of the images of the
two replicas of $\Gamma$ lying on $F$ on the w-plane contains $w=0$ and a
point on $|w|=\rho_{1}$ , and that the other contains $ w=\infty$ and a point on
$|w|=\rho_{2}$ . Hence we have, by (II) in 2,

(15) $mod B\leqq\log\Psi=\log\Psi$ ;

where the equality holds if and only if the two images of $\Gamma$ are
respectively

$-\rho_{1}\leqq \mathfrak{R}w\leqq 0$ , $\mathfrak{J}w=0$

and

$\rho_{2}\leqq \mathfrak{R}w\leqq+\infty$ , $\mathfrak{J}w=0$ ,

or
$-\infty\leqq \mathfrak{R}w\leqq-\rho_{2}$ , $\mathfrak{J}w=0$

and

$0<\mathfrak{R}w\leqq\rho_{1}$ , $\mathfrak{J}w=0$ .
The condition for equality in (15) may be also stated as follows. Jt

holds, if and only if $\Gamma$ is a minor arc $\bigwedge_{1}z_{0}z$ of the unit circle, with

$z_{0}=1,$ $|z_{0}-z_{1}|=\lambda$ . There exist two such minor arcs: $ z_{0}z_{1}\wedge$ . We denote
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by $\Gamma_{\lambda}^{(\iota)}$ one of them, which lies in the upper half-plane and by $\Gamma_{\lambda}^{(2)}$

the other.
Now, we consider the case where $\Gamma$ coincides either with $\Gamma_{\lambda}^{(1)}$ or

with $\Gamma_{\lambda}^{(2)}$ . We rotate the $z\rightarrow plane$ around $z=0$ , until the middle point

of $\Gamma$ coincides with $z=1$ . Then, in formula (12): $mod A\leqq\frac{1}{2}mod B$,

the equality holds if and only if $\Gamma^{\prime}$ is mapped onto $|Z|=\sqrt{q}$ by the
conformal mapping which maps $B$ onto a circular annulus $q<|Z|<1$ .
(See Teichm\"uller [5].) As is easily seen, this happens if and only if
$\Gamma^{\prime}$ is the negative real axis. Consequently, since we have in such a
case

$mod A=\frac{1}{2}mod B=\frac{1}{2}\log\Psi(\frac{(2+\sqrt{4-\lambda^{2}})^{2}}{\lambda^{2}})$ ,

and also $A=A_{\lambda}$ , we have

(16) $\log X(\lambda)=mod A_{\lambda}=\frac{1}{2}\log\Psi(\frac{(2+\sqrt{4-\lambda^{2}})^{2}}{\lambda^{2}})$ .

Now, (9) follows immediately from (12), (15) and (16). Further-
more, it is easily observed from the facts obtained until now, that
the equality in the formula (9) holds if and only if $A$ is the annulus
obtained by a revolution of $A_{\lambda}$ around the point $z=0$ . Next, (10)

follows from (16) and (6). (10) being proved, we have

(17) $\lambda X(\lambda)=2\sqrt 2+1/\overline{4-}\lambda^{2}$ . $--\frac{\frac{2}{\lambda}\sqrt{}}{\sqrt 2+}\Phi_{\frac{2(}{\lambda}\overline{\overline{\sqrt{4-\lambda^{2}}}}}\overline{2+1/4}\overline{-\lambda^{2}})$ .

Now, since $\frac{2}{\lambda}\sqrt 2\overline{+\sqrt 4}-\overline{\lambda^{2}}-$ is a decreasing function of $\lambda$ , the

second fraction in the right-hand side is a decreasing function of $\lambda$ by

(7). As $2\sqrt 2\overline{+\sqrt 4-}\overline{\overline{\lambda}^{2}}-$ decreases also when $\lambda$ increases, $\lambda X(\lambda)$ is a
decreasing function of $\lambda$ . Therefore we have, by (6) and (17),

$\lambda X(\lambda)\uparrow 16$ as $\lambda\rightarrow+0$ ,

which proves (11).
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4. Proof of the theorem. First, we prove that

(18) $\sup_{K,T.z_{1}\neq zx}\lrcorner T\underline{(z}_{1}$

)
$-T_{K^{1}}\underline{(}\underline{z}_{2}$

)
$||z_{1}-z_{2}^{-}|\leqq 16$ .

For this purpose, it suffices to show

(19) $|T(z_{1})-T(z_{2})|<16|z_{1}-z_{2}|K^{1}$ ,

for an arbitrary K-QC mapping $w=T(z)$ of $|z|<1$ onto $|w|<1$ such
that $T(O)=0$ and for arbitrary two points $z_{1},$ $z_{2}$ such that $|z_{1}|\leqq 1$ ,
$|z_{2}|\leqq 1,$ $z_{1}\neq z_{2}$ . We set $T(z_{1})=w_{1},$ $T(z_{2})=w_{2}$ .. In case $|z_{1}-z_{2}|\geqq 1$ , (19) is trivial. So we may assume that
$0<|z_{1}-z_{2}|<1$ . Now, $w=T(z)$ can be extended to a K-QC mapping
from $|z|<+\infty$ to $|w|<+\infty$ . (See Ahlfors [1], Mori [3], [4].) We

denote by $A$ the annulus $\{z$ ; $21|z_{1}-z_{2}|<|z-\underline{z}_{1}+_{-}z_{2}2|<\frac{1}{2}\}$ . Then

we have

$mod A=\log\frac{1}{|z_{1}-z_{2}|}$

and consequently, by the fact stated at the beginning of 2,

(20)
$\log\frac{1}{|z_{1}-z_{2}|K1}\leqq mod T(A)$ .

Now, we shall estimate the right-hand side of this formula.
Suppose first that

$1^{o}$

$|z_{1}+z_{2}2|\leqq_{2}^{1}-$

Then, $A$ is contained in $|z|<1$ , and so $T(A)$ is contained in $|w|<1$ ,
and a fortiori, in $|w-w_{1}|<2$. Consequently, one of the complementary
continua of $T(A)$ contains both $w_{1}$ and $w_{2}$ , and the other contains
$\{w;|w-w_{1}|\geqq 2\}$ . Therefore, we have by (I) in 2

$mod T(A)\leqq\log\Phi(\frac{1}{|w_{1}-w_{2}|})$ .
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Consequently we have, by (20) and (7),

$\frac{1}{|z_{1}-z_{2}|K^{1}}\leqq\Phi(_{\overline{|w_{1}}-\neg w_{2}}2)<\frac{8}{|w_{1}-w_{2}|}z$

whence (18) follows.
Next, suppose that

$2^{o}$

$|\frac{z_{1}+z_{2}}{2}|>\frac{1}{2}$ .

Then $A$ does not contain $z=0$ , and so $T(A)$ does not contain $w=0$ .
So that one of the complementary continua of $T(A)$ contains both
$w=0$ and $ w=\infty$ , and the other contains both $w_{1}$ and $w_{2}$ . Therefore,
we have by Lemma 1

$mod T(A)\leqq\log X(|w_{1}-w_{2}|)$ .
Consequently, by (20) and (11), we have

$\frac{1}{|z_{1}-z_{2}|K1}\leqq X(|w_{1}-w_{2}|)<\frac{16}{|w_{1}-w_{2}|}$
,

whence (19) follows immediately.
Thus we have proved (18).
Next, let us prove

(21)
$\sup_{K,T,z_{1}\neq z_{2}}\frac{|T(z_{1})}{|z_{1}}\frac{-T(z_{2})|}{-z_{2}|K^{1}}\geqq 16$

.

For any small positive number $s$, we denote by $A_{s}^{(z)}$ the annulus
{ $ z;|z|<+\infty$ ) $-\{z;-\infty<\mathfrak{R}z\leqq 0, \mathfrak{J}z=0\}-\{z;|z|=1, |\arg z|\leqq s/2\}$ . We
map the planar region $\{z;|z|<+\infty\}-\{z;-\infty<\mathfrak{R}z\leqq 0, \mathfrak{J}z=0\}$ con-
formally onto the planar region $\{Z;|Z|<1\}$ on the Z-plane by a
regular function $Z=f(z)$ in such a manner that $z=0$ and $ z=-\infty$

correspond to $Z=-1$ and $Z=l$ respectively. Then the image of $|z|=1$

is the part of the imaginary axis of the Z-plane contained in $|Z|<1$ ,
and consequently the image of the arc $\{z ; |z|=1, |\arg z|\leqq s/2\}$ is a
segment on the imaginary axis, whose middle point is $Z=0$ . We
denote the length of this segment by 1. Then we can easily obtain
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1 1(22) $\lim_{s\rightarrow 0}s$
$=$

4

The image of $A_{s}^{(z)}$ is the annulus obtained by excluding this segment
from $|Z|<1$ . We denote this image by $A_{s}^{(Z)}$ .

Next, we map $A_{s}^{(Z)}$ conformally onto a circular annulus $A_{s}^{(\zeta)}$ :
$\gamma<|\zeta|<1$ on the $\zeta$-plane by a regular function $\zeta=\varphi(Z)$ . We can
easily obtain

(23) $\lim\gamma$ 1
$l\rightarrow 0$ 1 4

Then we map $A_{s}^{(\zeta)}$ onto a circular annulus $A_{s}^{(\omega)}$ : $\gamma^{K^{1}}<|\omega|<1$ on

the $\omega$-plane by the K-QC mapping $\omega=\tau(\zeta)=|\zeta|K^{1}e^{i\arg\zeta}$ .
Further, we map $A_{s}^{(\omega)}$ conformally onto $A_{s}^{(W)}$ which is the annulus

obtained by excluding from $|W|<1$ a segment lying on the imaginary
axis of the W-plane whose middle point is $W=0$ . We denote by
$W=\psi(\omega)$ the mapping function and by $1^{\star}$ the length of this segment.
We can easily obtain

$l^{\star}$

(24)
$\lim_{\gamma\rightarrow 0}$

$\gamma K1=4$
.

Now, as is easily ascertained, two boundary points of $A_{s}^{(Z)}$ lying
on its slit which are in the same position in the Z-plane are trans-
formed by the composite mapping $W=\psi(\tau(\varphi(Z)))$ to two boundary
points of $A_{s}^{(W)}$ lying on its slit in the same position in the W-plane.
Consequently $W=\psi(\tau(\varphi(Z)))$ can be regarded as a continuous function
in $|Z|<1$ , and hence this mapping can be regarded as a K-QC mapping
of $|Z|<1$ onto $|W|<1$ . (See Ahlfors [1], Mori [3], [4].) By this ex-
tended mapping $W=\psi(\tau(\varphi(Z)))$ , the part of the imaginary axis con-
tained in $|Z|<1$ is transformed into the part of the imaginary axis
contained in $|W|<1$ .

Next we map $|W|<1$ conformally onto the planar region $\{w;|w|$

$<+\infty\}-\{w;-\infty<\mathfrak{R}w\leqq 0, \mathfrak{J}w=0\}$ by a regular function $w=g(W)$ in
such a manner that $W=-1$ and $W=1$ correspond respectively to
$w=0$ and $ w=-\infty$ . Then, the part of the imaginary axis contained
in $|W|<1$ corresponds to the unit circle on the w-plane, and con-
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sequently, $A_{s}^{(W)}$ is transformed into a planar annulus $A_{s}^{(w)}$ obtained
by excluding from $\{w;|w|<+\infty\}-\{w;-\infty<\mathfrak{R}w\leqq 0, \mathfrak{J}w=0\}$ an arc
lying on $|w|=1$ which is symmetric with respect to the real axis.
We denote by $s^{\star}$ the length of this arc. Then we can easily obtain

(25) $\lim_{l^{*}\rightarrow 0}\frac{s^{\star}}{l^{\star}}=4$ .

We denote by $w=T_{s}(z)$ the mapping from $A_{s}^{(z)}$ onto $A_{s}^{(w)}$ which is
obtained by combining the above-mentioned five mappings one after
another. Then $w=T_{s}(z)$ is a K-QC mapping in $A_{s}^{(z)}$ . As is easily as-
certained, two boundary points of $A_{s}^{(z)}$ lying on the negative real axis
in the same position in the z-plane are transformed by $w=T_{s}(z)$ to
two boundary points of $A_{s}^{(w)}$ lying on $tlIe$ negative real axis in the
same position in $tlje$ w-plane. On the other hand, since $f(z)$ and $g(W)$

are regular in $\{z;|z|<+\infty\}-\{z;-\infty<\mathfrak{R}z\leqq 0, \mathfrak{J}z=0\}$ and in { $W$ ;
$|W|<1\}$ respectively, and since, as was shown above, $\psi(\tau(\varphi(Z)))$ can
be regarded as a K-QC mapping in $|Z|<1,$ $w=T_{s}(z)$ can be regarded
as a K-QC mapping of $\{z;|z|<+\infty\}-\{z;-\infty<\mathfrak{R}z\leqq 0, \mathfrak{J}z=0\}$ onto
$\{w;|w|<+\infty\}-\{w;-\infty<\mathfrak{R}w\leqq 0, \mathfrak{J}w=0\}$ . Therefore $w=T_{s}(z)$ can be
regarded as a K-QC mapping of $|z|<+\infty$ onto $|w|<+\infty$ .

Next, as was remarked above, the unit circle on the z-plane is
transformed into the part of the imaginary axis contained in $|Z|<1$

by $Z=f(z)$ . The interval on the imaginary axis contained in $|Z|<1$

is transformed into $\{W;|\mathfrak{J}W|<1, \mathfrak{R}W=0\}$ by $W=\psi(\tau(\varphi(Z)))$ , and the
part of the imaginary axis contained in $|W|<1$ is transformed into
the unit circle on the w-plane by $w=g(W)$ . Consequently $|z|<1$ is
mapped onto $|w|<1$ by $w=T_{s}(z)$ .

Now, we have obviously

$\sup_{K,T,z_{1}\neq\sim_{g}}\frac{|T(z_{1})-T(z_{2})|}{|z_{1}-z_{2}|K^{1}}\geqq\frac{s^{\star}}{S^{K^{1}}}$ .

On the other hand, we have, by (22), (23), (24) and (25),

$\lim_{s\rightarrow 0}-s_{1}^{\star}-=16^{1-}K^{1}$ .
$S^{K}$

(21) follows immediately from these two formulas.
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