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A renewal theorem.

By Tatsuo KAWATA

(Received Nov. 5, 1955)

1. Introduction Let X;(z-=1,2,---) be independent identically

distributed random variables, having the mean values E(X,)=m. Then
it holds

’

(1.1) lim S)P(x<S,<x+h)— Z

x—° p=1

n
where S,=>)X,, under some restrictions. This is known as renewal
i=1

theorem.

Feller [7] and Tacklind proved under some conditions
in the case X;>0, (¢=1,2,--+). _

Blackwell has proved with the only condition that
E(X,)<<co, when X,>=0 and X, has not the lattice distribution.
Chung-H. Pollard [3] imposed the restriction that the distribution of
X, possesses an absolutely continuous part when X; has not a lattice
distribution and is not necessarily non-negative. T.H. Harriss by
written communication and Blackwell [2] have shown that the restric-
tion is unnecessary. Doob [6] discussed from another point of
view. Cox-Smith have proved, under certain assumptions, in the
case where X; has a probability density, that

L 1

(1.2) lnlfg,;h"(x)— -hi“’
where %,(x) is the probability density of S, and we suppose m>0.
Cox-Smith have discussed where the distributions of X, are not
necessarily identical. Recently S. Karlin has shown the renewal
theorem in either cases lattice or continuous, where X; are not
necessarily non-negative.

We shall treat the case the distributions of X, are not necessarily
identical. Then it would be natural to expect that
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(1.3) lim 1\ SPe<S,=xthdi= ",
T—ee T 0 =1 m

when

(1.4) lim 1 3 EX)=m

n—oee Poi=1

exists. We shall prove this in §8 under some conditions on the
distribution functions of X..

2. Lemmas. We state first some lemmas.
LEMMA 1. Let f(t)=0,

2.1) SO et f(t) dt < oo, for 0=s<s,,
and
2.2) [ et fity ae~ A as 50,

o s
for some positive v=0, then

Atr
~ S t [eze]
\" s Ty ) -

PROOF. We have

S:e—st f@) dt= Swwe‘—st @) dt — SO me—“ f(t) dt

A

~ e —

ST

A
ST

~

-

for s—0, C being S° fi¢) dt.

—co

Hence by a well-known theorem, it results

t Atr
| Jo du

and this is equivalent to
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! Atr
uydu~ 77,
S—wf( ) I'(v+1)
LEMMA 2. Let X;(i—=1,2,---) be independent random variables such

that E(X)=m;>0. Suppose that the distribution function F,(x) of X,
salisfies

(2.8) SO e=s* dF,(x) << oo, for 0<s<s,
for some s, and further that
(2.4) lim waan(x) -0,
Ao JA
~A
(2.5) limg o5t dF,(x) =0
Ao J—co
hold uniformly with respect to n and 0 <s<s,.
If
(2.6) lim ' Sm—m, (>0)
n-ee W i=1
then
; d 1
2.7 1 = ’
(2.7) glnls nZ=1 ?,(5) "
where

2.(8)=\" e do,@),

o ,(x) being the distribution function of S,.
PROOF. We notice that there exists a constant C, independent
of n such that

(2.8) S": |x| dF,(x) <C,..

This is immediate by (2.4) and (2.5). For, |x|]<<e** (x<<0) for large
| x| and, (2.4) and (2.5) show that

(2.9) \ . JxldF, @ <a,

where A and @ are some constants independent of z, and
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S“’ xan(x)lgg ]xlan(x)+S x| dF,(x).
—s \ 121> A =

xl |x]=
Put
(2.10) fuo)=\" e dF, (), 0=<s<s,.
Let € be any given positive number. Take A so large that

(2.11) \ _1xlaF,m<e,

IxI<A

—A
(2.12) S e=sor dF (%) <e,

which are possible by and [2.5), Now we determine s, so that

—-A -A
(2.13) S |x|e—s* dF, (%) <S e+ dF, (x)<e, for 0<s<s <s,.
Further we take s, so that
(2.14) |1—ed| <€, for 0<s<s,<s,.

Then we have

Ja(8)=1,(0) +5f,(65), 0<f<1

=145£,(0) -+ s[£,(65) — £,(0)] ,

(2.15)

and

|x]=

<\ _ 1xdF,@+{  |sle=dF,m+ | (@a-1))x1dF,m
A x<—-A A

x>

lx/=
<et+et@t—D\" |xldF,m
< 2e+¢C,

by [(2.11), (2.13), [(2.14) and [2.8). Hence (2.15) shows that we can

write :

(2.16) fu(8)=1—sm,+sn,,
where
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(2.17) (7,l<<e(C,+2), for 0<s<s,,

uniformly with respect to #. Thus

IOg fn(s) = lOg (1 —Ssm,, + Snn)

2
(2.18) = —sm,, + 81, — ; (m,—n,) +---

= —sm,—S§&, ,
say. Then there exists s, such that
(2.19) €, <<e, for 0<s<s,, uniformly for #,
noticing that m, is uniformly bounded by [2.8).

Now we have

77
¢n(s) :Hfl(s) :e-szf‘ (mi+€,~)’
i=1

which we can represent as

(2_20) ¢n(s) — e*sn(mﬂﬁn +Cy) ,
putting

imi:nm"}"nsn’ i&i:ngn'

1=1 i=1
From [2.6), there exists an N for which

18, <<e, for n>N.
And
I§n|<€7 0§S§SZ

uniformly for .
Hence we have

S S) = S e ns(m+6,+¢,)
’12=1¢n() ;1 )

s Z:%(S) =S ZZ%(SHS Z;H P.(S)

n=

gSN—FS i e—ns(m—2e)

n=N+1
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—s(m—2)
< sN-+ _semrTE
1— e—9(m~16)
Thus
limsup s Z P,(s5) < 1
0 m—2e
and since e is arbitrary we get
(2.21) limsup s 2 ®,(5) =< 1
s—0 m

On the other hand

S22 PS)=s 2 P,(s)
n=1 n=N+1

ZS i e*ns(m+?e)
n=N+1
o N
- (&2
s
= 1 _ gstmt2) —sN.
Hence
1
liminf s L) -
ls—>:(lJn E ¢n( ) m+2€
from which it results
(2.22) liminf s S @, ()= L .
§-0 m=1 m

(@21) and [222) show (27

3. Theorem. Let X, (i=1,2,.--) be independent vandom variables.
Suppose that (2.3) holds, and [(2.4) and [(2.5) hold uniformly with respect
ton and 0<s<s,. If is satisfied, then

(8.1) lim—l—gx S Px<S,=x+h) dx— ”;

x—o X o
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where S,= i X
PrROOF. We put
Gy(x)— S P(x<S,=x+h)

and form
N

S:,e““ dGy(x) = 2, (Sle‘“ dan(x+h)—8°° et do, (),

n=1

-—oo

where o,(x) is, as before, the distribution function of S,. Using the
notations in 2, the last expression is

N oo N
S (e - 1)S_we‘“ do (D) =(e"~1) 3 9,(5) .

n=1

By Lemma 3, i%,(s) is convergent and thus
1

lim S” =5t dG (%)

N—roo
exists and we have
(3.2) lim S” e~ dGr(x) = (e —1) 3 @, (s) .
Nooo J—oo n=1

Similarly, putting

Hy(®) = 3 P(S,<7)

we have
Sw e=s* dH (%) = % Sj es*do (%)
' N
(3-3) S =2
and
(3.4) lim Sm s dH (%)
N—ooo J—oo

exists.
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Since @, (s) is uniformly bounded for 0 <s< s, (see [2.20)), we have :
gw e~s* dHy(x) < NC, putting ¢, ,(s)<C,. Therefore

S”Ae‘sx dH\(x)< NC, ,

—o0

for any positive A. Taking ¢ less than s, and s=s,,

NC,> S_—Ae—(&—t)x e=t* dH ()

—oo

2 e(Sz"l—')A S_Ae*l'x dHN(x)

= elss A g—ze‘” dH (x)
which is
' S—ie"fx dH\(x) < e~ =04 NC, .
Letting t -0, and B— o, we get
H,(—~A)y=e=ANC,.
Therefore if 0<s<s,<s,
(8.5) lirrz° e*H (%) =0.

xo—

Thus integration by parts shows that for 0<s<s,

—o0

3.6) - Si e~s* dHy(x)=s Sm e*Hy (x) dx .

Since H)y(x) increases as N— co and tends to a non-decreasing function
the existence of the limit and show that :

(8.7) lim Sm e~s*Hy (x)dx = Sw e—s*H(x) dx

Noew e
exists for 0<s<s,. H(x) equals to i P(S,<x). The existence of
the right side integral shows that forn61§s§s4§sg,
(3.8) ) H(x)=o0(e*) , for | %] — oo .

Hence

(3.9) s Sw e*H(x) dx= Sm e* dH(x)

—v 00
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exists. Since H(x-+h)— H(x)=G(x)= i P(x<S,<x-+h), combining
(3:2), (3.6), [3.7) and [3.9), we get '

lim Sle—sxdGn(x) =S Sw e*G(x)dx

5 oo —o0

—(@=1) 3 9,(5) -

By Lemma 3, we have

(3.10) S;e—sx G(x)dx~ ;:s , s—0.

By [3.8), G(x)=o0(es*) for |x|— co and for fixed A.

0
g e G(x)ydx << oo, for 0<s<s,<s,.

Then by Lemma 2, we have finally

Sx G(x) dx~ _hx as X—> o
— m

which proves the theorem.
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