A renewal theorem.

By Tatsuo KAWATA

(Received Nov. 5, 1955)

1. Introduction Let X_i $(i=1,2,\cdots)$ be independent identically distributed random variables, having the mean values $E(X_i)=m$. Then it holds

(1.1)
$$\lim_{x\to\infty} \sum_{n=1}^{\infty} P_r(x < S_n \le x + h) = \frac{h}{m},$$

where $S_n = \sum_{i=1}^n X_i$, under some restrictions. This is known as renewal theorem.

Feller [7] and Täcklind [10] proved (1.1) under some conditions in the case $X_i \ge 0$, $(i=1,2,\cdots)$.

Blackwell [1] has proved (1.1) with the only condition that $E(X_n) < \infty$, when $X_i \ge 0$ and X_i has not the lattice distribution. Chung-H. Pollard [3] imposed the restriction that the distribution of X_i possesses an absolutely continuous part when X_i has not a lattice distribution and is not necessarily non-negative. T. H. Harriss by written communication and Blackwell [2] have shown that the restriction is unnecessary. Doob [6] discussed (1.1) from another point of view. Cox-Smith [4] have proved, under certain assumptions, in the case where X_i has a probability density, that

(1.2)
$$\lim_{n\to\infty}\sum_{n=1}^{\infty}h_n(x)=\frac{1}{m},$$

where $h_n(x)$ is the probability density of S_n and we suppose m>0. Cox-Smith have discussed (1.1) where the distributions of X_i are not necessarily identical. Recently S. Karlin [9] has shown the renewal theorem (1.1) in either cases lattice or continuous, where X_i are not necessarily non-negative.

We shall treat the case the distributions of X_i are not necessarily identical. Then it would be natural to expect that

(1.3)
$$\lim_{T\to\infty}\frac{1}{T}\int_0^\infty \sum_{n=1}^\infty P_r(x< S_n\leq x+h)dx=\frac{h}{m},$$

when

(1.4)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} E(X_i) = m$$

exists. We shall prove this in §3 under some conditions on the distribution functions of X_i .

2. Lemmas. We state first some lemmas.

LEMMA 1. Let $f(t) \ge 0$,

(2.1)
$$\int_{-\infty}^{0} e^{-st} f(t) dt < \infty, \quad for \quad 0 \leq s \leq s_0,$$

and

(2.2)
$$\int_{-\infty}^{\infty} e^{-st} f(t) dt \sim \frac{A}{s^{\gamma}}, \quad as \quad s \to 0,$$

for some positive $\gamma > 0$, then

$$\int_{-\infty}^{t} f(u) du \sim \frac{At^{r}}{\Gamma(\gamma+1)}, \quad as \quad t \to \infty.$$

PROOF. We have

$$\int_{0}^{\infty} e^{-st} f(t) dt = \int_{-\infty}^{\infty} e^{-st} f(t) dt - \int_{-\infty}^{0} e^{-st} f(t) dt$$

$$\sim \frac{A}{s^{r}} - C$$

$$\sim \frac{A}{s^{r}},$$

for $s \to 0$, C being $\int_{-\infty}^{0} f(t) dt$.

Hence by a well-known theorem, it results

$$\int_0^t f(u) \, du \sim \frac{At^r}{\Gamma(\gamma+1)}, \qquad t \to \infty$$

and this is equivalent to

$$\int_{-\infty}^{t} f(u) du \sim \frac{At^{\gamma}}{\Gamma(\gamma+1)}.$$

LEMMA 2. Let X_i $(i=1,2,\cdots)$ be independent random variables such that $E(X_i)=m_i>0$. Suppose that the distribution function $F_n(x)$ of X_n satisfies

(2.3)
$$\int_{-\pi}^{0} e^{-sx} dF_n(x) < \infty, \quad \text{for } 0 \leq s \leq s_0$$

for some so and further that

(2.4)
$$\lim_{A\to\infty}\int_A^\infty xdF_n(x)=0,$$

(2.5)
$$\lim_{A\to\infty}\int_{-\infty}^{-A}e^{-sx}\,dF_n(x)=0$$

hold uniformly with respect to n and $0 < s \le s_0$.
If

(2.6)
$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} m_i = m, \quad (>0)$$

then

(2.7)
$$\lim_{s\to 0} s \sum_{n=1}^{\infty} \varphi_n(s) = \frac{1}{m},$$

where

$$\varphi_n(s) = \int_{-\infty}^{\infty} e^{-sx} d\sigma_n(x)$$
,

 $\sigma_n(x)$ being the distribution function of S_n .

PROOF. We notice that there exists a constant C_1 independent of n such that

$$(2.8) \qquad \int_{-\infty}^{\infty} |x| dF_n(x) < C_1.$$

This is immediate by (2.4) and (2.5). For, $|x| < e^{-s_0x}$ (x < 0) for large |x| and, (2.4) and (2.5) show that

$$(2.9) \qquad \int_{|x|>A} |x| dF_n(x) < a,$$

where A and a are some constants independent of n, and

$$\left|\int_{-\infty}^{\infty} x dF_n(x)\right| \leq \int_{|x|>A} |x| dF_n(x) + \int_{|x|\leq 1} |x| dF_n(x).$$

Put

$$(2.10) f_n(s) = \int_{-\infty}^{\infty} e^{-sx} dF_n(x), 0 \leq s \leq s_0.$$

Let ε be any given positive number. Take A so large that

$$(2.11) \qquad \int_{|x| < A} |x| dF_n(x) < \varepsilon,$$

(2.12)
$$\int_{-\infty}^{-A} e^{-s_0 x} dF_n(x) < \varepsilon,$$

which are possible by (2.4) and (2.5). Now we determine s_1 so that

$$(2.13) \quad \int_{-\infty}^{-A} |x| e^{-sx} dF_n(x) < \int_{-\infty}^{-A} e^{-s_0 x} dF_n(x) < \varepsilon, \quad \text{for } 0 \leq s \leq s_1 < s_0.$$

Further we take s_2 so that

(2.14)
$$|1-e^{sA}| < \epsilon, \quad \text{for } 0 \leq s \leq s_2 \leq s_1.$$

Then we have

and

$$|f'_{n}(\theta s) - f'_{n}(0)| \leq \left| \left(\int_{|x| > A} + \int_{|x| \leq A} \right) (e^{-\theta s x} - 1) x dF_{n}(x) \right|$$

$$\leq \int_{x > A} |x| dF_{n}(x) + \int_{x < -A} |x| e^{-sx} dF_{n}(x) + \int_{|x| \leq A} (e^{sA} - 1) |x| dF_{n}(x)$$

$$< \varepsilon + \varepsilon + (e^{sA} - 1) \int_{-\infty}^{\infty} |x| dF_{n}(x)$$

$$< 2\varepsilon + \varepsilon C_{1}$$

by (2.11), (2.13), (2.14) and (2.8). Hence (2.15) shows that we can write:

(2.16)
$$f_n(s) = 1 - sm_n + s\eta_n$$
,

where

$$(2.17) |\eta_n| < \varepsilon (C_1 + 2), \text{for } 0 \leq s \leq s_2,$$

uniformly with respect to n. Thus

$$\log f_n(s) = \log (1 - sm_n + s\eta_n)$$

$$=-sm_n+s\eta_n-\frac{s^2}{2}(m_n-\eta_n)^2+\cdots$$

$$=-sm_n-s\xi_n$$
,

say. Then there exists s_2 such that

(2.19)
$$|\xi_n| < \varepsilon$$
, for $0 \le s \le s_2$, uniformly for n ,

noticing that m_n is uniformly bounded by (2.8).

Now we have

$$\varphi_n(s) = \prod_{i=1}^n f_i(s) = e^{-s \sum_{i=1}^n (m_i + \xi_i)},$$

which we can represent as

$$\varphi_n(s) = e^{-sn(m+\delta_n + \zeta_n)},$$

putting

$$\sum_{i=1}^n m_i = nm + n\delta_n, \qquad \sum_{i=1}^n \xi_i = n\zeta_n.$$

From (2.6), there exists an N for which

$$|\delta_n| < \varepsilon$$
, for $n > N$.

And

$$|\zeta_n| < \varepsilon$$
, $0 \le s \le s_2$

uniformly for n.

Hence we have

$$\sum_{n=1}^{\infty} \varphi_n(s) = \sum_{n=1}^{\infty} e^{-ns(m+\delta_n+\zeta_n)},$$

$$s \sum_{n=1}^{\infty} \varphi_n(s) = s \sum_{n=1}^{N} \varphi_n(s) + s \sum_{n=N+1}^{\infty} \varphi_n(s)$$

$$\leq sN + s \sum_{n=N+1}^{\infty} e^{-ns(m-2\epsilon)}$$

$$\leq sN + rac{se^{-s(m-2arepsilon)}}{1-e^{-s(m-2arepsilon)}}$$
 .

Thus

$$\limsup_{s\to 0} s \sum_{n=1}^{\infty} \varphi_n(s) \leq \frac{1}{m-2\epsilon}$$

and since ε is arbitrary we get

(2.21)
$$\limsup_{s\to 0} s \sum_{n=1}^{\infty} \varphi_n(s) \leq \frac{1}{m}.$$

On the other hand

$$s \sum_{n=1}^{\infty} \varphi_n(s) \ge s \sum_{n=N+1}^{\infty} \varphi_n(s)$$

$$\ge s \sum_{n=N+1}^{\infty} e^{-ns(m+2\epsilon)}$$

$$= s \left(\sum_{n=0}^{\infty} -\sum_{n=0}^{N}\right)$$

$$\ge \frac{s}{1 - e^{-s(m+2\epsilon)}} - sN.$$

Hence

$$\liminf_{s\to 0} s \sum_{n=1}^{\infty} \varphi_n(s) \ge \frac{1}{m+2\varepsilon}$$

from which it results

(2.22)
$$\liminf_{s\to 0} s \sum_{m=1}^{\infty} \varphi_n(s) \geq \frac{1}{m}.$$

- (2.21) and (2.22) show (2.7).
- **3. Theorem.** Let X_i ($i=1,2,\cdots$) be independent random variables. Suppose that (2.3) holds, and (2.4) and (2.5) hold uniformly with respect to n and $0 \le s \le s_0$. If (2.6) is satisfied, then

$$\lim_{x\to\infty}\frac{1}{x}\int_{-\infty}^{x}\sum_{n=1}^{\infty}P_{r}(x< S_{n}\leq x+h)\ dx=\frac{h}{m},$$

where $S_n = \sum_{i=1}^n X_i$.

PROOF. We put

$$G_N(x) = \sum_{n=1}^N P_r(x < S_n \leq x + h)$$

and form

$$\int_{-\infty}^{\infty} e^{-sx} dG_N(x) = \sum_{n=1}^{N} \left(\int_{-\infty}^{\infty} e^{-sx} d\sigma_n(x+h) - \int_{-\infty}^{\infty} e^{-sx} d\sigma_n(x) \right)$$
,

where $\sigma_n(x)$ is, as before, the distribution function of S_n . Using the notations in 2, the last expression is

$$\sum_{n=1}^{N} (e^{sh} - 1) \int_{-\infty}^{\infty} e^{-sx} d\sigma_n(x) = (e^{sh} - 1) \sum_{n=1}^{N} \varphi_n(s).$$

By Lemma 3, $\sum_{1}^{\infty} \varphi_{n}(s)$ is convergent and thus

$$\lim_{N\to\infty}\int_{-\infty}^{\infty}e^{-sx}\,dG_N(x)$$

exists and we have

(3.2)
$$\lim_{N\to\infty} \int_{-\infty}^{\infty} e^{-sx} dG_N(x) = (e^{sh} - 1) \sum_{n=1}^{\infty} \varphi_n(s).$$

Similarly, putting

$$H_N(x) = \sum_{n=1}^N P_r(S_n \leq x)$$

we have

(3.3)
$$\int_{-\infty}^{\infty} e^{-sx} dH_N(x) = \sum_{n=1}^{N} \int_{-\infty}^{\infty} e^{-sx} d\sigma_n(x)$$
$$= \sum_{n=1}^{N} \varphi_n(s)$$

and

$$\lim_{N\to\infty}\int_{-\infty}^{\infty}e^{-sx}\,dH_N(x)$$

exists.

Since $\varphi_n(s)$ is uniformly bounded for $0 \le s \le s_2$ (see (2.20)), we have: $\int_{-\infty}^{\infty} e^{-sx} dH_N(x) \le NC_2 \text{ putting } \varphi_n(s) \le C_2. \text{ Therefore}$

$$\int_{-\infty}^{-A} e^{-sx} dH_N(x) \leq NC_2$$
,

for any positive A. Taking t less than s_2 and $s=s_2$,

$$NC_2 \ge \int_{-\infty}^{-A} e^{-(s_2 - t)x} e^{-tx} dH_N(x)$$
 $\ge e^{(s_2 - t)A} \int_{-\infty}^{-A} e^{-tx} dH_N(x)$
 $\ge e^{(s_2 - t)A} \int_{-B}^{-A} e^{-tx} dH_N(x)$

which is

$$\int_{-R}^{-A} e^{-tx} dH_N(x) \leq e^{-(s_2-t)A} NC_2.$$

Letting $t \rightarrow 0$, and $B \rightarrow \infty$, we get

$$H_{\mathcal{N}}(-A) \leq e^{-s_2 A} NC_{\mathfrak{p}}$$
.

Therefore if $0 \leq s \leq s_3 < s_2$

$$\lim_{x\to-\infty}e^{sx}H_N(x)=0.$$

Thus integration by parts shows that for $0 \le s \le s_3$

(3.6)
$$\int_{-\infty}^{\infty} e^{-sx} dH_N(x) = s \int_{-\infty}^{\infty} e^{-sx} H_N(x) dx.$$

Since $H_N(x)$ increases as $N \rightarrow \infty$ and tends to a non-decreasing function the existence of the limit (3.4) and (3.6) show that

(3.7)
$$\lim_{N\to\infty}\int_{-\infty}^{\infty}e^{-sx}H_N(x)dx=\int_{-\infty}^{\infty}e^{-sx}H(x)dx$$

exists for $0 \le s \le s_3$. H(x) equals to $\sum_{n=1}^{\infty} P_r(S_n \le x)$. The existence of the right side integral shows that for $0 \le s \le s_4 \le s_3$,

(3.8)
$$H(x) = o(e^{sx})$$
, for $|x| \to \infty$.

Hence

(3.9)
$$s \int_{-\infty}^{\infty} e^{-sx} H(x) dx = \int_{-\infty}^{\infty} e^{-sx} dH(x)$$

exists. Since $H(x+h) - H(x) = G(x) = \sum_{n=1}^{\infty} P_r(x < S_n \le x+h)$, combining (3.2), (3.6), (3.7) and (3.9), we get

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}e^{-sx}dG_n(x)=s\int_{-\infty}^{\infty}e^{-sx}G(x)dx$$

$$=(e^{-sh}-1)\sum_{n=1}^{\infty}\varphi_n(s).$$

By Lemma 3, we have

(3.10)
$$\int_{-\infty}^{\infty} e^{-sx} G(x) dx \sim \frac{h}{ms}, \qquad s \to 0.$$

By (3.8), $G(x) = o(e^{sx})$ for $|x| \to \infty$ and for fixed h.

$$\int_{-\infty}^{0} e^{-sx} G(x) dx < \infty, \qquad \text{for} \qquad 0 \leq s \leq s_{5} < s_{4}.$$

Then by Lemma 2, we have finally

$$\int_{-\infty}^{x} G(x) \, dx \sim \frac{hx}{m} \qquad \text{as} \qquad x \to \infty$$

which proves the theorem.

References

- [1] D. Blackwell, A renewal theorem, Duke Math. Journ., 15 (1948)
- [27] -----, Extension of a renewal theorem, Pacific Journ. Math., 3 (1953)
- [3] K. L. Chung and H. Pollard, An extension of renewal theorem, Proc. Amer. Math. Soc. 3 (1952)
- [4] D. R. Cox and W. L. Smith, A direct proof of a fundamental theorem of renewal theory, Skandinavisk Aktuartidskrift, 1953
- [5] W. L. Smith, Asymptotic renewal theorems, Proc. Royal Soc. Edinburgh, Section A, 64 (1953-54)
- [6] J.L. Doob, Renewal theory from the point of view of the theory of probability, Trans. Amer. Math. Soc. 63 (1947)
- [7] W. Feller, On the integral equation of renewal theory, Ann. Math. Stat., 12 (1941)
- [8] ____, Fluctuation theory of recurrent events, Trans. Amer. Math. Soc. 67 (1949)
- [9] S. Karlin, On the renewal equation, Pacific Journ. Math. 5 (1955)
- [10] S. Täcklind, Fourier analytische Behandlung vom Erneuerungsproblem, Skandinavisk Aktuartidskrift 28 (1945)