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Geodesic correspondence of Riemann spaces.

By Minoru KURITA

(Received Jan. 10, 1955)

It is well known that the central projection of a sphere on a
plane induces a geodesic correspondence between the sphere and the
plane, while the stereographic projection induces a conformal cor-
respondence between them. In the present paper we define charact-
eristic roots of a conformal correspondence between Riemann spaces
and show that when all the characteristic roots are equal and some
additional conditions are satisfied, two spaces have some special pro-
perties concerning geodesic and conformal correspondences, which
can be regarded as a generalization of the case of sphere and plane.
Throughout the paper our treatment is local and we follow the con-
vention that the repeated indices imply summation and assume that
the indices 7,7, %, 2 run from 1 to n unless otherwise stated.

§ 1. Characteristic roots of a geodesic correspondence.

1. We consider two n-dimensional affinely connected spaces S

and S, which are both without torsion and are locally homeomorphic
in such a way that the geodesics in the two spaces correspond to

each other. Let the connections of S and S be respectively defined
by

dA=uw'e;, de;=wie;,

dA=w'e;, de;=w'le;.
Since there are no torsions we have
(1) doi — ' )\ 0! , d' —ai \ .

On account of the local homeomorphism we can take frames in the
tangent spaces in such a way that we have
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(2) o=,

23

As the geodesics in S and S correspond to each other we have, as is

well known,
(8) ®l=wi+8ib, 0" +b; 0
with a vector (b;). Putting
Qi=dwj—of o}, Gi=dsi—ot \B
we get, by virtue of (3),
(4) Qi=dei+8idbe? +db;, \ 0 +bdeoi
—(wf + 800" +b;0") \ (0] +8]b,0"+b,07)
=01+ 87d(b,o") +(db,— b,k —b,; b)) \w .

Now we assume that the groups of holonomy of S and S preserve

the volume in the tangent spaces. Then we have, for

curvature forms,

5) 2i=0, £2i=0
and hence, by (4) and (5),
(6) (n+1)d(b,0")=0,

thus b,0" is locally a total differential. We put

(7 db;—b,0f—bb,0*=p; 0k,
then by (6) and (7) we get
()] Dir="Dri -

For the curvature form we get from (4) and (6),

9) Qi=0itp.o"\w.

contracted

The rank of the matrix (p;) has an intrinsic meaning and we can
classify the geodesic correspondence of affinely connected spaces by

this rank, but we do not treat this here.

2. Hereafter we consider a geodesic correspondence between

two Riemann spaces S and S, which has already been investigated
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by Levi-Civita and L. P. Eisenhardt. Here we define characteristic

roots of the correspondence. We take orthogonal frames in the

tangent space of S and denote by o, wi=—wi the corresponding

Pfaffian forms of Riemannian connection. We then have do'=w’/\ ok
The Riemannian metric of S is given by

10) ds’= 2 (@)?,

while that of S is given by the equation of the form
11) d§2=ai]-w"wi (@;;=aj),

and the corresponding connection forms »/ are not always skew sym-
metric in 4,5. As (a;) is a parallel tensor field in the affinely con-
nected space defined by o', @/, we have

(12) da;;=a;»"+a,ok.

As S and S correspond geodesically, we have (8), and as (5) holds
good in our case we have (8) and (9). Conversely (3) and with
positive definite @;; are sufficient for the geodesic correspondence of
with [II). By taking a suitable orthogonal frames in S we can
transform the symmetric covariant tensor (p;;) into a diagonal form.
Denoting the diagonal elements by p, we get

(18) Qi=Qit+pe \w  (not summed for 7).

We call p,(i=1,---, n) characteristic roots of the geodesic corres-

pondence of S with S.

3. As an application of (13) we give a new proof of the classical
theorem which states that a projectively flat Riemann space is of

constant curvature. We take S as Euclidean space. Then we get
2i=0 and by (18)

Li=—po' o’ (not summed for z).

As £/ is skew symmetric in 4,7 we have p,=p, and consequently,
putting p,=p,=---=p,=K, we get £/=—-Ko'/\ 0/, which shows that S
is of constant curvature.
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4. Here we investigate the case in which all &’s are zero. In
this case we have @i=w’ and by

— k k
dd” = aik CO] -+ akj @;

and (a;) is a parallel symmetric covariant tensor field. As is well
known, the space S then decomposes into the direct product of Rie-
mann spaces, namely

ds’=do}+--- +do},

where each dgi(i=1,---, k) is an irreducible Riemannian metric. This
can be verified by taking orthogonal frames such that (e;) is of
diagonal form and by using E. Cartan’s lemma. Then the metric of

S is given by
ds*=adci+-:-+a,do},

a’s being constant.

§2. The case of equal characteristic roots.

5. Now we consider Riemann spaces for which the characteristic

roots of the geodesic correspondence of S with S are all equal. We
denote these roots by p. Then (p;;) is of diagonal form for any
orthogonal frame in S, the diagonal elements being equal to p. We
take orthogonal frames in S in such a way that

(14) b,=b, b,=b,=.--=b,=0.
Then, by virtue of (7), we have
(15) db—b’e' =po', —bol=po* (ax=2,--,n).
By the assumption 60 (the case 6=0 has been treated in 4)
do' = o \ w,=w" \ (—p/b &*) =0
and so we can take local coordinates x',---, x* such that
o' =dx'

holds good. Then we have
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(16) db = (b +p) dx' .

Thus b and p are functions of only one variable x'. Now let the
indices «, 8 run from 2 to n. Then we have by virtue of

do” =o' )\ 0+ of \ 0f=dx' \ (p/b ©") + 0P )\ f .
Hence putting

17) c=c(x')=exp S p/bdx', 7t = w’/C

we get the relations
dr*—mb \ of, of = —af
and by E. Cartan’s lemma > (=?)* does not contain x' provided that
we choose x%---, x7 suitably, ;amely we have
do?— 3] () = g,g(8%, -, x7) da P ,
and the metric of S can be written in the form
ds’=(dx')> +c(x')* do?.

Here c=c(x") is not arbitrary. It will be found as follows. We
take orthogonal frames such that o'=dx' and that ¢ do not contain
x' and dx'. Then the same is true for »f. Putting da=b,0' we get

by (14)

(18) da—=>b 0'=b dx'
and by (3)
ol=da-+bw'=2da, D=0l (aR)
o?=da (not summed for «)
wy=w,= —Pp[b o, @¢ = 0} + bew* = (b +p/b)w"

and can be written as
da,, =2(a,»*+a,m)=2a,b+p/b)o*+4a, da,

daal = aaﬂ—sq + aaIG} + aﬁlmg + 0“75;
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=0a,5(0 +p[b)ef 1 8a,da+ay 0l —plb a, o
da,;= @, @+ A, 5P% -+ Q@+ A, B

=a,, 0} +a 0!+ Zaaﬁda —a, p/b oP— ap, Db w*.

We put

(19) | a,e“=b,, a, e*=b,, a,pe=b,
and get

(20) db,,=2b,, ce~4(b+p/b) =,

(21) db,,=b,g ce~(b+p/b)ymf + by w8—b,, ce? /b,

(22) db,y=b,, w}+b. g0l —b, ce?plbwP—b, ce plb .

As 7 and »f do not contain x' and dx', (b;;) do not contain #', and so if
one of b, is not zero, cp/be* which is a function of x' is constant on
account of [22). By taking its differential and taking the relations

(23) 1 @ _ b _ da_ db
dx! dx!

—b?
¢ dx b P

into consideration we get

_b (:Z) +iic»-+da: z«( ‘Zp ~—12‘fb)+ 1; dx‘+bdx1=,_.‘;p

thus p is a constant.
If b,,=0 (x=2,---,m), b,, is non zero constant by and by

(24) by ce”*(b+p[0)=0 (a==p),
(25) b,.ce4(b+plb)—b,, ce* p/b=0 (not summed for «).

If one of b,; (a==R) is not zero, we have b+p/b=0 and p/b=0 by (25)
and so b=0. Thus we get a contradiction. Hence b,=0 (a¢==8) and
by [(22) db,,=0 (not summed for «) and by (25) ’

e p/(b*+p)=>,,/b,, =const. .

Hence by differentiation
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o_ b _2bdbidp o4, Bdp
P b’ +p P&’ +p)

and p is a constant in this case too. Thus we get
THEOREM 1. If the characteristic roots of the geodesic corrvespond-

ence of S with S are all equal, then the roots are constant.

6. We consider first the case in which p is a positive constant.
Putting p—=A? we get from b= A tan Ax' by a suitable choice of
additive constant in the variable x'. By ¢=Bsin Ax' (B const.)
and we have for S

ds®=(dx)* + B’ sin* Ax' do’ .

Denoting Ax!, A’ds* and A’B*ds® by x',ds® and do*® respectively, we
get

(26) ds® = (dx')? +sin® x' do’ .
We consider the space with this metric. Then we have
p=1, b=tan x*, c=sin x'

and by a—= —log cos x', as we can put an additive constant equal
to zero without loss of generality. Hence we get

27) e?=secx,
ce*p/b=1, (b+p/b) ce—a=1
and [(20) [(21) [22) can be written respectively in the form

(28) db,,=2b, m*

(29) db,, =b,zmP+ by 0 — b,

(30) db,;=b,, w}+bs, & —b,, w—by .

Now we consider one solution of these equations, namely
(31) b,=1, b,=0, b=3,5-

For the solution we have by [11), and

(32) ds®*=sec! x' (dx')’ +tan® x' do?,
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This can be transformed into the form
ds’=1/4 sec! x' (d(2x')*+sin*® (2x') do?)

and a correspondence of the point (x!, x%---, %) of S with the point
(2x', x%---, %) of S is conformal. Thus we get the following theorem

THEOREM 2. Let S be a Riemann space which is in geodesic cor-
respondence with another Riemann space S and let the characteristic

voots of the correspondence of S with S be all equal and positive. Then
by a suitable choice of coordinates we have for the metvic of S

ds® = (dx')* +sin® x' « g,5(#%- -, x7) dx* dx?

except for a similar tramsformation. Among the space S with this
property there is one with the metric

ds’=sec! x' (dx')’ +tan® x' « g 4(%,- -+, x*) dx* dxP

T his is conformal to S by the correspondence from the point (2x', x°,---, x7)
of S to (x, x%---x%) of S.

Here we mean by a similar transformation a multiplication of
a Riemannian metric by a constant. The latter half of the theorem
gives a generalization of the well known theorem on the corres-
pondence between a sphere and a plane. In fact if we denote by
P a point on the sphere (x')°+(x°)?+(x*)?’=1 in the Euclidean space
with spherical coordinates (1, 6, ) we have for the induced Rieman-
nian metric ds®=d0*+sin®* 6 dgp® and by a central projection of the
sphere on the plane x°=1 the point is mapped on the point with the
polar coordinates (tan 6, ). The Euclidean metric on the plane x*=1
is give by

ds®*=d (tan 0)* +tan? 6 dp’=sec! 0 df* +tan® 6 do’,

while by a stereographic projection from the point (0, 0, —1) of the
sphere on the plane x*=0 the point (1, 20, ) is mapped on the point
with the polar coordinates (tan 6, ¢) and the metric of the Euclidean
plane is given by

ds*=d(tan 0)*+tan® 6 dp*=1/4 sec' 6(d(26)* + sin® 26 dp?) .
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The case p<<0 can be treated in an analogous way by putting p= — A>
Then we have for the Riemannian metric of S

ds’ =(dx')’ +sinh® x' g,4(x°,- -+, x7) dx* dxP
and instead of we get
ds’=sech* x'(dx')’ +tanh® x' g,,(x%-+, x*) dx* dxP .

The case p=0 will be treated later.

7. Here we consider solutions of [(28), [29) and [30) other than
(31). If b,,=0, we have by b,,=0 (¢=2,8,---,n) and this is a
contradiction. Hence we can assume b,==0. Putting

(33) ha: “—baI/bll
we have by
hawa:balwa/bu - _dbu/(Zbu) .

Hence we can put dh=h, and we have

(34) db, ——2b, dh.
Now we put
b b b
(35) Cpg= % — "ot o T8
? bll bll bll
(36) m=wl+88 dh-+h,mP.

Then by [28), [29), (30), [35) and

db db,. b b, db b b, b db
dca — aB . “Yai gr . Yar MY ef 2 %ar  Tp1 ) Va1
g b11 ’ bu bu bu bu ( bn bn bn ) bu
:”baxn w{q“‘" bBT, (03;—‘ ,,b‘!-L 'ﬂ'ﬁ- ﬂbﬁl? Tt — ( bar T4 bT1, w;_ﬂ.a) _éﬁ_l_
bn et 11 i 11 11 11
by, b ) b ( b, b )
— w4 T @b —arf| Tal — (g — et VB (—2dh)
b,, bn g bu g bu bu

=Cpy @h+Crg 0L +2C,5 AR+ h, C g +RgC, T
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Hence we have by

37 dc,g=C, ThCop ]
Next we get
b db b, db
dn — —d( &) —_dby | b, 4Dy
* bll bll bll bll
b s B e D gy

11 bll 11

(38) dh,— hgeb —h,dh= —c gmf -+ .
If we put

(39) dh,— hyofi —h,dh=g,57°
we get

(40) 9us= —Cup+855-

Now by and by a straight forward calculation, we get
(41) det (¢,g) = b7 det (b;;)>0

and, for variables A%,

42) C NN =B,  ANB[b, — (D, N[b,,)" -

This quadratic form is positive definite. The reason is as follows.
If c,A“Af were not positive definite, it would be of the form ¢, (A%’
where A’s are linear combinations of A¢ and ¢,<<0, ¢,<<0 by [41).
Now for non zero vector (A%.--, A"*) such that A'=A°=...=A7=0 and
b, A*=0, c,gA*AP is negative, while by it is positive. Thus we
have

THEOREM 8. If the Riemann space with the metric (26) is in geo-
desic correspondence with the space whose metvic cannot be veduced
to (82) by a similar mapping, the Riemann space with the metric
do’ =3 (7% =g,4(%% -+, x7) dx* dxP admits a geodesic correspondence to the

a
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space with the metric do®=cm*m? and (40) holds good for q,, deter-
mined by (39).

Conversely if do® admits a geodesic correspondence satisfying (40)
then ds® determined by (26) is in a geodesic correspondence with the
space with the metric ds®—sec' x' (dx')*+tan’ &' ¢ gmrem? and the charact-
eristic roots are all equal.

The converse can be proved as follows. We determine b, by

m and put bal:_bllhu’ baﬁ:bll(caﬁ ’]*hahﬁ). Then , and
are satisfied and we get [(12).

By and we have
— dqaa = dcaﬁ =CyyTh+ € gl = €]+ € g, + 2¢,5dh + carh[ﬂrr +c gh,
(43) dqaﬁ /\ 71'5 = Card'n'T — ch(OZ /\ 77'9 — Cuﬁdh /\ 7TB .

By taking exterior differential of [89) and eliminating dk, and dg,
by (38) and we get

—hgdwl — (h o} -+ hdh —cg 7 + 7w8) \ 08— (Bl + h,dh — c gmf + %) \ dh
=C, dm’ — C gl \ 78— C 5dh )\ 7 4 dm* — C pd TP

(44) hg(28 47 \7f)=0

are

We put Qﬁzé RE zv A\ ¢ and call the number of the independent

solutions of the linear equations in A,
hﬂ(RgrE + 83;.863 - 8282;) =0 (a, B, Y, €= 2,- <oy n)

the relative index of nullity at the point of the Riemann space with
the metric do®—g,,dx*dxf. 1f the relative index of nullity is zero at

every point, we have by h;=0 and by b, =0. Thus by
b,, is constant and by b,s=0,98,; and the solution coincides with

except for a similar mapping. Thus we get
THEOREM 4. Let a metric of the space S be given by

ds® == (dx')* -+ sin’ x' do’

where the space S, with the metric do’ =g,y %", --, x*) dx*dx? has one of
the following properties.
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(@) S, does not admit non similar geodesic corrvespondence with
another space ;

(b) Relative index of nullity of S, is zevo at every point.

Then the space S whose characteristic roots of the geodesic corves-
pondence with S are all equal has the metric

ds’=sec' x' (dx')* +tan’ x' do’®
except for a similar mapping.
8. Next we consider the case p=0. By ¢ is a constant and

we can assume it to be equal to unity without loss of generality.
Then the metric of S is given by

(45) ds’ = (dx')* +do*

where do’=g, (%%, --, x*) dx* dx®. By we have db/dx'=b% and we
get b=—1/x' by a suitable choice of additive constant in x'. By
we get a:Sb dx'= —log x'+const. Here an additive constant may

be taken as zero. Then

er=1/x", bee=—1.
Then [(20), and take respectively the following forms
(46) db,, = —2b, "
(47) db, = —b g’ + by 0l
(48) db,;=b, o +b ol

As we have taken frames such that =* and »? do mnot contain «!,
b,; do not contain &'. In this case we have no solution such that
b,=0 (¢=2,---,m). We take orthogonal frames in the space with the
metric do® for which (b,5) reduces to a diagonal form. We put b,=b,,
(not summed for «) and assume

bz = ‘:bklz‘:bklﬂj:"' i;bkl+k2:?.'. :bk:izbk+1:l:bk+2:li:"':*:bn .

Let the indices «/, 8 run from 2 to k. By b’s are constant
and w? =0 (B=Fk,+1,---,n). Hence
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dn”’ = of \ 0f =7 \ «f; .

By E. Cartan’s lemma, >](7*)* contains k,—1 variables x%..-,x% by
a suitable choice of coordinates. By an analogous argument on the
other part of indices we get

do® =do’+ ... +daoi+ (dxF) + ... + (dx)?

where do} (i=1,---,/) are metrics of Riemann spaces. We take or-
thogonal frames in the tangent spaces of the space with the metric
do} in such a way that #»* contains only %...,x%, and etc. Then wf
eontain x°-.., x4 only and we get from

b, — by, o = —b'm? b'=b,.

As b, («'=2,--, k) can be considered as components of a vector in
the space with the metric do}, we take orthogonal frames such that
(by1,e-+5 b,,) reduces to (b'c/y---,0). Then we get

dc’ = —n?, ol =7 (/ =8,---, k).
If we put #¥/c’=p* («'=38,---, k) we get
dp* = —dc'|[(¢')* N7 +1/c" dm*
= —dc'[(c'V N7 +1/c 7 \wf +1]c' 7 \ of
=p¥ N\ wf (o, B =38,-+, k)

and by a suitable choice of coordinates x*=c’/, &%---, X d7v1=">(7w*)?
1

2

contains only «°---, ¥ and do}=(dx’)+(x*)*drl. Treating doi,.--,do;
analogously we get by '

db,, =2b'x°dx* + -+ +2bWPVxk i+t dxk kit 20, X5 dXET -+ 2B, xmdx
Hence

b, =b(x) +-- + 6D (x* ki) 1B, (%) 4 ... +- b, (x7)* + const. .

Thus we have completely determined the Riemann spaces for which
the characteristic roots of the geodesic correspondence are all zero,
namely
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S: ds’=(dx')+doi+--- +dai+ (dxFH) + .-+ (dxm)?

l,w [b’dg'(f e 4 b(”daﬁ + bk+1(dxk+1)2

ds= 1 g (@wys 1
(')

(%)

+--o+ b, (dx")*] + ¥(_x._—- dx'db,, .

§ 3. The case in which the characteristic
roots are equal except one.

9. It seems rather complicated to find all the Riemann spaces
which are in geodesical correspondence with another spaces with the
characteristic roots equal except one. We will give some examples
of such spaces. The space with the metric is a special case of
the one with the metric

(53) ds? = (dxl)z +c(x1)2 do?

where do®=g,4(x%---, x*) dx* dx? (a,B3=2,---,n). This space has been
treated by A. Fialkow [I] and K. Yano [2]. In my terminology [3]
it is the space for which another Riemann space is conformal and
the characteristic roots of the conformal correspondence are all equal.
In the following we investigate the geodesic correspondence of [(53)
with another space. We denote by S the space with the metric [63).
We put

(54) do’ =§] (m?)? (x=2,-+, n)

where = are Pfaffian forms in 2%...,x%. We take f such that
- drt=7f )\ @}, wﬁz_wg (&, B=2,---, 1)

and put

(55) w'=dx', w* = c(x')7*

(56) ot = —aw,=C'r", w! =0 (¢’ =dc/dx") ,

then we get

do'=0=0")\ o, dwt=dc \ 7 +cmf \ wf= o' )\ 0+ P \ @f
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and o', 0% o, and of are Pfaffian forms of Riemannian connection of
the space [(53).

Now we assume that the space S with the metric
(57) ds’ = a;; o'w’ (a‘.j:aﬁ)

is in geodesic correspondence with S by the mapping of points with
the same coordinates. Then the parameters of connection @/ satisfy
the following equations

(58) Bl=wi+8/db+bw’, db = b0

It seems complicated to find b, «; satisfying and for given
(63). Here we consider the case

(60) a,=a, =0, a,,=0 (a5=0)
(61) b,=0 (a, B=2,---,m).
By and we have
o,=db+b,dx', ot=c'm*+b,0*,
Bl=—c'r*, o8 =l +88db .

Putting a@;=a; (not summed for ¢) we have by and
0=da, =a»?+a,> +a o8 +a,»,
=a,(c'm+b o) —acT".
Hence we have
(62) a,/ c'lc+b)=ac]c.

We exclude the case b,--0, which has been investigated in 4. Then
¢’ cannot be zero on account of [62), and we have

(63) A== =0
By we have

n*
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da,,=a,55+aget+a,, 5+ a5,
=a,0%+ Aol =0 (not summed for «, )
and is satisfied for a,; (x==B). By virtue of we get
da,=2a»'=4a,db
da,=2a;»%=2a,db (not summed for «).

Hence @, =Ae*, a,=Be® (A, Bconst.). Putting these into we
get

Be®(c'[c+dbldx')=Ae |c.
Putting A/B=D we get e*—(D—Ec»-' (E const.)
a,=AD—Ec)?, a,=B(D—Ec*)™".

Hence except for a similar mapping we have

2

D c?
64 ds— D gaye.
(64 S= D Eey VT g

Here we will find p,; in (7). By (7), [61) and [56)
db,—b.db=(db /dx'—b}) dx', —bw,=bc'm*=(b,c[c)o.

Hence we get

;=0 (¢3=j), p,=dbjdx'—b}, p,,=bc'[c (not summed for «).
Thus the characteristic roots of the geodesic correspondence of S with
S are all equal except one. In the case c¢=sinx', D=1 we have

1 sin® &'

65 ds’=_ _* (dxyp+ SIMX ge
(65) (1 — E sin? x')? (@x) (1 —E sin® x') ’
and if E=1 we get [(32).

10. Next we seek for the condition that the space can be

locally imbedded in the (»#-+1)-dimensional Euclidean space. It is so

when and only when there exist auxiliary Pfaffian forms o?*'= —wi,,
such that
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(66) o'\ p* =0
(67) doj=f \ o]+ of* \oj,., do?*' =w}/\ w]*',
because, by putting «”*'=0 and w?1}=0, these and

do =’ |\

constitute structural equations in the (»+1)-dimensional Euclidean
space. We assume that an imbedding is realized. We have then by

(56)
do?=c'dr*+-dc’ \ 7= 'mf \ 0f+-dc’' |\ 7= of )\ wf+dc’ )\ .

Hence by o' N, =dc AN\m*. We put dc’=c"dx' and assume
c¢'’'=0. Thus we see

w?"'l—;pdxl +qa7ra ) w:‘*‘l:rddx‘—*‘sawa’ psa*qa a:c"
(not summed for «).
We assum >3 and we get
o?+' =pdx' , o, =7r,dx' +sm, ps=c".
By virtue of the relation deo”*'=0 we have
0=0'\o?*'+ 0’ \ o' = — o \ 7,dx' = — 7,0 \ dx'

and so »,=0. Hence

(68) ot =pdx', 5 4 =ST%,
(69) ps=c".
Hence we get by
dopt'=dpp\dx',  deit —of \ept = — 't \smr =0
and so
dp \dx'=0.

Thus p is a function of one variable x' only and by so is s too.
By and by
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de},,=ds )\ m* +sdm*=ds )\ m*+ sk \ wf=ds )\ m* + b, )\ f
da);,,l:w:”l/\w‘}—{—wﬁﬂ/\wgz —pc'dx' \m*+ob )\ wf
and we get

(70) ds= —pc'dx' .

Next we consider and get
dof— o} \ 0f = o, [\ 0f +ol* \of = —((¢')’ +87)m* )\ 7h.

Hence do’=3](7%)? is of constant curvature. We put

(71) () +s*=K (K =const.).

Conversely if do? is of constant positive curvature, we determine
s by and p by [69). Then by differentiation of cdc’ +sds=0
and by we get [70). Then an imbedding is realized by [68).
Thus we get the following theorem.

THEOREM. If n>8 and c is not a linear function in x', the space
with the metric is of imbedding class 1, when and only when the
space with the metric do* is of positive constant curvature.

As a corollary we have: if the space is of constant positive
curvature, then we can realize geodesic preserving deformation
from to in the (#+1)-dimensional Euclidean space.
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