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A generalization of the principal ideal theorem

By Fumiyuki TERADA
(Received Nov. 25, 1955)

The purpose of this paper is to give a cohomology-theoretical
description of a generalized principal ideal theorem. The definitions
and the notations in this paper are borrowed from C. Chevalley’s
lecture notes at Nagoya University [1].

1. Let G be a finite group, and S be an automorphism of the
group G. The image of an element ¢ G by S will be denoted by
S(s). Let H be the invariant subgroup of G, which is generated by
all the elements S(¢)o !, ot 'v7' (e, 7G). Then H is an S-invariant
subgroup of G, and G/H is abelian.

Let A be a G-module. We shall denote a submodule of A which
is generated by all the elements (1-o)a (c&G,a=A) by IA.
Especially, if A is the group ring Z(G) over the integral domain Z
of all rational integers, the submodule I.Z(G) will be denoted by I..
We shall use analogous symbols concerning subgroups of G.

2. We shall consider, in this section, certain mappings of the
cohomology groups of G.

Let x,y=1I; and n=Z. Then, xQyRQn—xQny defines an iso-
morphism .: H*G, Z)-H (G, I;). We have also an isomorphism
Vg H(H, Z)—H(H, L.

Let A be a G-module, and 1& G, a(v) & A such that Dla(r)=0.
Then, > 7 a(r)—a(e), where e is the unit element of G, induces an
isomorphism H (G, A)—A¢°I;A. Especially, if A=I. we have an
isomorphism @ : H (G, I,)—1;/I;1; and also, ¢, : H'(H, I;)—I{>|1,1.

We have also an isomorphism @:H'(H, I,)—-H"'(H,1;) (cf.
Theorem 7.1).

Let j_, be the injection mapping H"(H, I.)->H (G, I;), r=1,2.
Then, ¢.j_,¢5 maps I&>/I,I. into I;/I;I;, and the kernel is the
subgroup (Ig, I lc) I I, of the group I4~°/I, 1., where G’ is the
commutatorsubgroup of G.

The ideal I, of Z(G) is generated by all the elements 1—o, c =G,
and each element of I; is described as >a(os) (1—o), where a(s)=Z.
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Then, Ya(o) (1—o)—>a(s) (1—o07'S(s)) defines a homomorphism S* of
the module I, into I, And when we consider the ideal I, modulo
Iz, I;1;), S* induces a G-homomorphism of the G-module I, into
I,/Ig, I I;). The kernel of this homomorphism contains I I;. Thus
we have a G-homomorphism S¥: I /I I.—IE"/(I 1 I;), and combining
with ¥, », we may define a homomorphism S} : H*(G, Z)—-H™*(H, Z)/
(kernel of j_,). More precisely, Sf=v5« @ e @i/ S¥pse, and if Doe®
a(c) = (I R1;)% a(c)= 1, Da(a)=0, then ST maps %a@a(a) to
2 hQhS*(a(e)) & Iy Iy)H.

heG . ) ‘
Moreover, we shall consider the restriction mapping. We shall

describe it in details (cf. , Chap. 7). Let o,=1, 0,--+; 0, be re-
presentatives of the quotient group G/H, and X be a submodule of
the module I, which is generated by o,—1(¢=1,--:,m). Then I,=
I,+U (direct), where U:%hX. Let « be the mapping of I, onto
I, which maps U upon 0 and maps I, identically. Then the mapping
aQa: I, QI ~I,RI,; defines the restriction mapping 7,: H*(G, Z)—
H>H,Z). Also, a®1:I.QI,—I,Q 1, defines the restriction map-
ping 7»,: H (G, I;)-~H"'(H, I;), and we have a commutativity relation
v oYo=@\Yy7,, Moreover, 7r=@,7¢; is a mapping I /I.I.—
IE> I I, and by the definition of «, 7 is a mapping which maps

x=1; to ﬁl ox= IE.

Finally, we shall describe these mappings in the following
diagrams, which are commutative.

¥ 1' P
H-G, Z) —H\(G, I)—>1;/I:1;

" o nl |

¥
H(H, Z)~> H(H, L)—>H(H, 1—> 1Ll

Y Pc ‘
H>2(G, 2) —H (G, I5)—>15/1:1;

S;i ) S:él

¥ P
H>H, Z)[(kernel of j_,) = H-'\(H, I))| % —H"'(H, 1)/ % = I |(Iglg, 1))
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8. In this section, we shall prove the following proposition.

PROPOSITION. Kernel of S¥ c kernel of 7.

Let «,---,7, be representatives of generators of the abelian
group G/H, where we may assume that these elements generate
the group G. This is accomplished by adding to them certain ele-
ments of H. Let e,---,e,, be the order of r,---,7, mod H. Then,
a@;=1-—7,i=1,..-,m) form an ideal base of I

- — _
Let M be the direct sum EIZ(G)S", where S is a symbol such
70

that S'=1 and ! is the order of the automorphism S. If we define

S(6Si)=8-(¢)S**!, then M will have the structure of a ring. Let
I,, be the ideal of M generated by all the elements 1§, ¢=M. Then

a,=1—S and a; (i=1,---,m) form an ideal base of I,,.
Let I.=MI,, I,—MI,, and I;,=MI;. In this section, we shall

consider the module I, modulo I,I,, where I, I, is an ideal of M
generated by all the elements (1—-k)(1—m),h&H,m=M. Then,

II,cT, and I, is generated by the following elements (1), (2)
modulo I,I,,. |

(I_Ti)aj_—(l_'rj)ai (i, j=1,'-', m) 1)
1-S)a,—A-7)a, (i=L,--,m) 2)

And (I, II,) is generated by elements (1) modulo I [, It is
shown easily that xya,=yxa; mod I,I,, (j=0,1,..-,m), where x,y=G
or x=S or y=S. In other words, we can calculate coefficients of g;
commutatively, when we consider in I; modulo I,I,. And it is
shown that

I, IE I, I, (8)

Now let a—-—f]fy,-a,-EIG. Then

i=1

S*a= S*Z')’,-aiEZ’Y,' . S*a,- = Z’Y,’(l - 'Ti_lg‘l'rig)
=Sy S (1 -8)a;— (1 —7)a,) mod (I, II).
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m

On the other hand 7a = e;Ha-,-- > Vil Let f;=1+7;+:--4+7%"". Then,
T =S 1 S (modi Iy IG): and
S(rea)=S7f, £, 20.a=S" T, f - f,a
EZ%’T:'_IS— TS

Let 17,~='y,~'r-‘1§‘1, then our proposition is reduced to the following:

1

“If 3m((1—S)a;— (1 —7)a) & g, Ily), then
S S s E Ly (cf. (3))

PROOF OF THE PROPOSITION. As t4<H,1—74& I, is expressed
by (1), (2) as follows.

1—rsi= SUPH(A—m)a,— (L —ma) + 3 PR(A—S)a,—(1-7)a,) .

k>1
In this formula, 1—7%=fa;; and if we rewrite
—>P((A—7)a,—1—7pa)— Zpse{))(l.—g)ak: 20, (4)
_ngb)(l_Tk)aozRiao ’ ()
we have

fa+¥Qpa—Ra, (i=1-m)

By the elimination formula, we have

Dlak:Dkal (k’ l:o’ 1,..., m) (6)
where
&)
fih Qe QY Fir QO Ryene QW
s IR
Q) cevvinnnnn. QUM Qm .ooeisR - f, + QU™

Since we can calculate the coefficients of @, commutatively, we
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have from (4),
QP )8~ —ZPPA-S) (1-rya,~(1-SRa,.

Also we have (1—7,)f@,=0. Therefore, after multiplying the first
row of D, by 1-—7,---, the last row of D; by 1—7,, we have the
following formula by adding each row to the A-th row:

(1—7)Dya,=(1-S)D,g, ({=0,1,--.,m; k=1,..-,m) (1)

Thus we get elements D, of M, which satisfy (6) and (7). Since
1-S)@ +S+..-+8-)=0, we may assume that the S-degree of
D, (k=1,---,m; that is, except D ) is at most /—-2.

Since M is the direct sum of Z(G) and M(1—S), D, can be des-

cribed as D,=D' +D(1-S), where D'<Z(G) and the S-degree of D
is at most /—2. Therefore, we have from (7)

(1—=)D'a,=(1-S) (D,—(1—7,)D)a,

Since the left-hand side of this equality is an element of Z(G), and

the S.degree of D,—(1—7,)D is at most /—2, we have the following
two relations.

D.,a,=(1—7,)Da, (1=0,1,--,m; k=1,---, m) @®)
A—7,)Da,=0
From the second formula, we have D'a,=f---f,D"a, and then
D,a,—DQ1—S)a,—f,---f,,D'a, (I=1,---,m)

When we consider this relation modulo I,J,, we have e¢---¢,a,=
e.--e,D'(1a, and this implies D'(1)=1. Since D" < Z(G), D"(1)=1
means f,---f, D"a,=f,--f,a. Therefore, we get the following relation

D,a,=D(1—S)a,—f,--f,.a, (=1,---, m) (9)

Thus we have an element D which satisfies (8) and (9).
Now let us compute > f---f,.a. It is performed by (6)~(9).
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Let iniai be an element of I, which satisfies
i=1

>m((1— §)ai“ (1—7)a,) = i fij((l —T)A— (1-7)a).

i,j=1

Then
S0 fo folti= S(Da;— D1 —Sa,) by (9)
=>m(DA—7)a,—D1—S)a), by (6) and (8)
| =D fi((l—1)a;—(1—7)a), by the assumption
=0 by (6),

which proves our proposition.

Since Y and @ are isomorphisms, our proposition implies that
the kernel of S¥ is contained in the kernel of 7,.

4. Let !3/9 be a finite normal extention of an algebraic number
field 2,G be the Galois group of 5/.9, and S be an automorphism
of the group G.

Let H be the invariant subgroup of G which is considered in 1.,

K be the corresponding intermediate field of .2/.9.

Let Cg Ck, and C, be the idele class groups of 2, K, and 2,
respectively. Let & be the canonical class of H*(G,C3z). Then ¢—
ERE (= H G, Z)) induces an isomorphism of H—*(G, Z) with H(G,
Cg). And, combining with this isomorphism, S¥ induces a homomor-
phism S¥ of H(G, Cg) into H°(H, Cg)/(kernel of 7). Then, jS¥=S*
defines an endomorphism of the class group C,/Ng,,C5.

On the other hand, the restriction mapping 7», of the group
H'(G, Cg) into H°(H, C3) induces the injection mapping of C,/Ng ,Cy
into Cx/Ng xCg. Therefore, we have the following theorem from the
preceding proposition.

THEOREM. The kernel of the emndomorphism jS¥ of the group
Co/Ng,oCyq ts contained in Ny, Cg, when it is considered in Cy.

A special case of this theorem is the generalised principal ideal
theorem which was obtained by Prof. Tannaka and the author. Now,
let & be a finite algebraic number field and K be the absolute class
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field (generally a ray class field) over k. Let £2/k be a cyclic inter-
mediate field of K/k, and S be a generator of the (cyclic) Galois

group of 2/k. Let 2/K be the absolute class field of K, and G be
the Galois group of £2/2. Then S induces an automorphism of the

group G, and K is just the intermediate field of £2/2 which is con-
sidered in the preceding theorem. It is easy to see that the homo-
morphism 5,S¥ in the theorem is the endomorphism such that c—c',
where ¢ C, and ¢ means the image of ¢ by the element S of the
Galois group of £2/k. Thus we have the following theorem.

THEOREM. Let k be an algebraic number field, K the absolute
class field over k, and 2|k a cyclic intermediate field of K|k. Let S
be a generator of the Galois group of the cyclic extension 2|k. Then
all ambigous classes in 2 (i.e. idele class ¢ such that c'—=1) are
contained in N Cgz, when considered in K.

By the usual correspondence which exists between ideles and
ideals we have an analogous result which was obtained in and
[3]. The description of our theorem by an automorphism is due to
a suggestion by K. Masuda.

Tohoku University
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