A generalization of the principal ideal theorem

By Fumiyuki TERADA

(Received Nov. 25, 1955)

The purpose of this paper is to give a cohomology-theoretical description of a generalized principal ideal theorem. The definitions and the notations in this paper are borrowed from C. Chevalley's lecture notes at Nagoya University [1].

1. Let G be a finite group, and S be an automorphism of the group G. The image of an element $\sigma \in G$ by S will be denoted by $S(\sigma)$. Let H be the invariant subgroup of G, which is generated by all the elements $S(\sigma)\sigma^{-1}$, $\sigma\tau\sigma^{-1}\tau^{-1}(\sigma,\tau G)$. Then H is an S-invariant subgroup of G, and G/H is abelian.

Let A be a G-module. We shall denote a submodule of A which is generated by all the elements $(1-\sigma)a$ ($\sigma \in G$, $a \in A$) by I_GA . Especially, if A is the group ring Z(G) over the integral domain Z of all rational integers, the submodule $I_GZ(G)$ will be denoted by I_G . We shall use analogous symbols concerning subgroups of G.

2. We shall consider, in this section, certain mappings of the cohomology groups of G.

Let $x, y \in I_G$, and $n \in Z$. Then, $x \otimes y \otimes n \rightarrow x \otimes ny$ defines an isomorphism $\psi_G : H^{-2}(G, Z) \rightarrow H^{-1}(G, I_G)$. We have also an isomorphism $\psi_H : H^{-2}(H, Z) \rightarrow H^{-1}(H, I_H)$.

Let A be a G-module, and $\tau \in G$, $a(\tau) \in A$ such that $\sum a(\tau) = 0$. Then, $\sum \tau \otimes a(\tau) \to a(e)$, where e is the unit element of G, induces an isomorphism $H^{-1}(G, A) \to A^{G \to 0}/I_G A$. Especially, if $A = I_G$, we have an isomorphism $\varphi_G : H^{-1}(G, I_G) \to I_G/I_G I_G$, and also, $\varphi_H : H^{-1}(H, I_G) \to I_G^{H \to 0}/I_H I_G$.

We have also an isomorphism $\phi: H^{-1}(H, I_H) \rightarrow H^{-1}(H, I_G)$ (cf. [1] Theorem 7.1).

Let j_{-r} be the injection mapping $H^{-r}(H, I_G) \rightarrow H^{-r}(G, I_G)$, r = 1,2. Then, $\varphi_G j_{-1} \varphi_H^{-1}$ maps $I_G^{H \to 0} / I_H I_G$ into $I_G / I_G I_G$, and the kernel is the subgroup $(I_{G'}, I_H I_G) / I_H I_G$ of the group $I_G^{H \to 0} / I_H I_G$, where G' is the commutator subgroup of G.

The ideal I_G of Z(G) is generated by all the elements $1-\sigma$, $\sigma \in G$, and each element of I_G is described as $\sum a(\sigma) (1-\sigma)$, where $a(\sigma) \in Z$.

Then, $\sum a(\sigma) \ (1-\sigma) \rightarrow \sum a(\sigma) \ (1-\sigma^{-1}S(\sigma))$ defines a homomorphism S^* of the module I_G into I_H . And when we consider the ideal I_H modulo $(I_{G'}, I_H I_G)$, S^* induces a G-homomorphism of the G-module I_G into $I_H/(I_{G'}, I_H I_G)$. The kernel of this homomorphism contains $I_G I_G$. Thus we have a G-homomorphism $S_1^*: I_G/I_G I_G \rightarrow I_G^{H\to 0}/(I_H I_G, I_{G'})$, and combining with ψ , φ , we may define a homomorphism $S_2^*: H^{-2}(G, Z) \rightarrow H^{-2}(H, Z)/(1+G)$ (kernel of I_{-2}). More precisely, $I_{-2}^* = I_{-2}^* \cdot I_{-2}^* \cdot$

Moreover, we shall consider the restriction mapping. We shall describe it in details (cf. [1], Chap. 7). Let $\sigma_1=1,\sigma_2,\cdots,\sigma_m$ be representatives of the quotient group G/H, and X be a submodule of the module I_G which is generated by σ_i-1 ($i=1,\cdots,m$). Then $I_G=I_H+U$ (direct), where $U=\sum_{n\in H} hX$. Let α be the mapping of I_G onto I_H which maps I_H upon 0 and maps I_H identically. Then the mapping $\alpha\otimes\alpha:I_G\otimes I_G\to I_H\otimes I_H$ defines the restriction mapping $r_2:H^{-2}(G,Z)\to H^{-2}(H,Z)$. Also, $\alpha\otimes 1:I_G\otimes I_G\to I_H\otimes I_G$ defines the restriction mapping $r_1:H^{-1}(G,I_G)\to H^{-1}(H,I_G)$, and we have a commutativity relation $r_1\cdot\psi_G=\Phi\cdot\psi_H\cdot r_2$. Moreover, $r=\varphi_Hr_1\varphi_G^{-1}$ is a mapping $I_G/I_GI_G\to I_H^{-1}(I_HI_G)$ and by the definition of α , r is a mapping which maps $x\in I_G$ to $\sum_{i=1}^m \sigma_ix\in I_G^{H\to 0}$.

Finally, we shall describe these mappings in the following diagrams, which are commutative.

532 F. TERADA

3. In this section, we shall prove the following proposition. Proposition. Kernel of $S_i^* \subset kernel$ of r.

Let τ_1, \dots, τ_m be representatives of generators of the abelian group G/H, where we may assume that these elements generate the group G. This is accomplished by adding to them certain elements of H. Let e_1, \dots, e_m be the order of $\tau_1, \dots, \tau_m \mod H$. Then, $a_i=1-\tau_i (i=1,\dots,m)$ form an ideal base of I_G .

Let M be the direct sum $\sum_{i=0}^{l-1} Z(G)\overline{S}^i$, where \overline{S} is a symbol such that $\overline{S}^l=1$ and l is the order of the automorphism S. If we define $\overline{S}(\sigma \overline{S}^i)=S^{-1}(\sigma)\overline{S}^{i+1}$, then M will have the structure of a ring. Let I_M be the ideal of M generated by all the elements $1-\xi$, $\xi \in M$. Then $a_0=1-\overline{S}$ and a_i $(i=1,\cdots,m)$ form an ideal base of I_M .

Let $\overline{I}_G = MI_G$, $\overline{I}_H = MI_H$, and $\overline{I}_{G'} = MI_{G'}$. In this section, we shall consider the module \overline{I}_G modulo $\overline{I}_H I_M$, where $\overline{I}_H I_M$ is an ideal of M generated by all the elements (1-h)(1-m), $h \in H$, $m \in M$. Then, $\overline{I}_H I_M \subset \overline{I}_H$, and \overline{I}_H is generated by the following elements (1), (2) modulo $\overline{I}_H I_M$.

$$(1-\tau_i)a_i-(1-\tau_i)a_i$$
 $(i,j=1,\dots,m)$ (1)

$$(1-\bar{S})a_i-(1-\tau_i)a_0$$
 $(i=1,\dots,m)$ (2)

And $(\bar{I}_{G'}, \bar{I}_H I_M)$ is generated by elements (1) modulo $\bar{I}_H I_M$. It is shown easily that $xya_j \equiv yxa_j \mod \bar{I}_H I_M$, $(j=0,1,\cdots,m)$, where $x,y \in G$ or $x=\bar{S}$ or $y=\bar{S}$. In other words, we can calculate coefficients of a_i commutatively, when we consider in \bar{I}_G modulo $\bar{I}_H I_M$. And it is shown that

$$\bar{I}_H I_M \cap I_G^{H \to 0} \subset I_H I_G \tag{3}$$

Now let $a = \sum_{i=1}^{m} \gamma_i a_i \in I_G$. Then

$$S^*a = S^* \sum \gamma_i a_i = \sum \gamma_i \cdot S^* a_i = \sum \gamma_i (1 - \tau_i^{-1} \overline{S}^{-1} \tau_i \overline{S})$$

$$= \sum \gamma_i \tau_i^{-1} \overline{S}^{-1} ((1 - \overline{S}) a_i - (1 - \tau_i) a_0) \quad \text{mod } (I_{G'}, I_H I_G).$$

On the other hand $ra = \sum_{\sigma_i \in G/H} \sigma_i \cdot \sum_{i=1}^m \gamma_i a_i$. Let $f_i = 1 + \tau_i + \cdots + \tau_i^{e_i - 1}$. Then, $\tau_i^{-1} f_1 \cdots f_m a_i \equiv f_1 \cdots f_m a_i$ (mod $I_H \cdot I_G$), and

$$egin{aligned} ar{S}^{-1}(rullet a) = ar{S}^{-1}f_1\cdots f_m\sum_i \gamma_i a_i &= ar{S}^{-1}\sum_i \gamma_i f_1\cdots f_m a_i \ &= \sum_i \gamma_i au_i^{-1} ar{S}^{-1}f_1\cdots f_m a_i \ . \end{aligned}$$

Let $\eta_i = \gamma_i \tau_i^{-1} \bar{S}^{-1}$, then our proposition is reduced to the following:

"If
$$\sum \eta_i((1-\bar{S})a_i-(1-\tau_i)a_0) \in (\bar{I}_{G'},\bar{I}_HI_M)$$
, then

$$\sum \eta_i f_1 \cdots f_m a_i \in \bar{I}_H I_M$$
". (cf. (3))

PROOF OF THE PROPOSITION. As $\tau_{i}^{e} \in H, 1-\tau_{i}^{e} \in I_{H}$ is expressed by (1), (2) as follows.

$$1 - \tau_{i}^{e_{i}} = \sum_{k>l}^{1, \dots, m} P_{kl}^{(i)}((1 - \tau_{l})a_{k} - (1 - \tau_{k})a_{l}) + \sum_{k=1}^{m} P_{k0}^{(i)}((1 - S)a_{k} - (1 - \tau_{k})a_{0}).$$

In this formula, $1-\tau_{i}^{e}=f_{i}a_{i}$; and if we rewrite

$$-\sum P_{kl}^{(i)}((1-\tau_l)a_k-(1-\tau_k)a_l)-\sum P_{kl}^{(i)}(1-\bar{S})a_k=\sum Q_k^{(i)}a_k \qquad (4)$$

$$-\sum P_{k_0}^{(i)}(1-\tau_k)a_0 = R_i a_0, \qquad (5)$$

we have

$$f_i a_i + \sum_{k=1}^m Q_k^{(i)} a_k = R_i a_0$$
 $(i = 1, \dots, m)$

By the elimination formula, we have

$$D_{l}a_{k} = D_{k}a_{l}$$
 $(k, l = 0, 1, \dots, m)$ (6)

where

Since we can calculate the coefficients of a_k commutatively, we

have from (4),

$$\sum \! Q_{\pmb{k}}^{(i)} (1- au_{\pmb{k}}) a_l \! = - \sum \! P_{\pmb{k}^0}^{(i)} (1-ar{S}) \; (1- au_{\pmb{k}}) a_l \! = \! (1-ar{S}) R_i a_0 \; .$$

Also we have $(1-\tau_k)f_ka_l=0$. Therefore, after multiplying the first row of D_0 by $1-\tau_1,\dots$, the last row of D_0 by $1-\tau_m$, we have the following formula by adding each row to the k-th row:

$$(1-\tau_k)D_0a_l = (1-\overline{S})D_ka_l \qquad (l=0, 1, \dots, m; k=1, \dots, m)$$
 (7)

Thus we get elements D_k of M, which satisfy (6) and (7). Since $(1-\overline{S})(1+\overline{S}+\cdots+\overline{S}^{l-1})=0$, we may assume that the \overline{S} -degree of D_k $(k=1,\cdots,m;$ that is, except D_0) is at most l-2.

Since M is the direct sum of Z(G) and $M(1-\overline{S})$, D_0 can be described as $D_0 = D' + D(1-\overline{S})$, where $D' \subset Z(G)$ and the \overline{S} -degree of D is at most l-2. Therefore, we have from (7)

$$(1-\tau_k)D'a_1=(1-\overline{S})(D_k-(1-\tau_k)D)a_1$$

Since the left-hand side of this equality is an element of Z(G), and the \overline{S} -degree of $D_k - (1 - \tau_k)D$ is at most l-2, we have the following two relations.

$$D_{k}a_{l} = (1 - \tau_{k})Da_{l} \qquad (l = 0, 1, \dots, m; k = 1, \dots, m)$$

$$(1 - \tau_{k})D'a_{l} = 0$$
(8)

From the second formula, we have $D'a_l=f_1\cdots f_mD''a_l$, and then

$$D_0 a_l = D(1 - \overline{S}) a_l - f_1 \cdots f_m D'' a_l \qquad (l = 1, \cdots, m)$$

When we consider this relation modulo $I_M I_M$, we have $e_1 \cdots e_m a_l = e_1 \cdots e_m D''(1) a_l$, and this implies D''(1) = 1. Since $D'' \in Z(G)$, D''(1) = 1 means $f_1 \cdots f_m D'' a_l = f_1 \cdots f_m a_l$. Therefore, we get the following relation

$$D_0 a_l = D(1 - \overline{S}) a_l - f_1 \cdots f_m a_l \qquad (l = 1, \dots, m)$$
(9)

Thus we have an element D which satisfies (8) and (9).

Now let us compute $\sum \eta_i f_1 \cdots f_m a_i$. It is performed by (6)~(9).

Let $\sum_{i=1}^{m} \eta_{i} a_{i}$ be an element of I_{G} , which satisfies

$$\sum \eta_i((1-\bar{S})a_i - (1-\tau_i)a_0) = \sum_{i,j=1}^m f_{ij}((1-\tau_i)a_j - (1-\tau_j)a_i).$$

Then

$$\sum \eta_i f_1 \cdots f_m a_i = \sum \eta_i (D_0 a_i - D(1 - \bar{S}) a_i)$$
, by (9)
 $= \sum \eta_i (D(1 - \tau_i) a_0 - D(1 - \bar{S}) a_i)$, by (6) and (8)
 $= D \cdot \sum f_{ij} ((1 - \tau_j) a_i - (1 - \tau_i) a_j)$, by the assumption
 $= 0$ by (6),

which proves our proposition.

Since ψ and φ are isomorphisms, our proposition implies that the kernel of S_2^* is contained in the kernel of r_2 .

4. Let $\overline{\mathcal{Q}}/\mathcal{Q}$ be a finite normal extention of an algebraic number field \mathcal{Q} , G be the Galois group of $\overline{\mathcal{Q}}/\mathcal{Q}$, and S be an automorphism of the group G.

Let H be the invariant subgroup of G which is considered in 1., K be the corresponding intermediate field of $\overline{\mathcal{Q}}/\mathcal{Q}$.

Let $C_{\overline{Q}}$, C_K , and C_Q be the idele class groups of \overline{Q} , K, and Q, respectively. Let ξ be the canonical class of $H^2(G, C_{\overline{Q}})$. Then $\xi \to \xi \otimes \zeta$ ($\zeta \in H^{-2}(G, Z)$) induces an isomorphism of $H^{-2}(G, Z)$ with $H^0(G, C_{\overline{Q}})$. And, combining with this isomorphism, S_2^* induces a homomorphism S_0^* of $H^0(G, C_{\overline{Q}})$ into $H^0(H, C_{\overline{Q}})/(\text{kernel of } j_0)$. Then, $j_0 S_0^* = S^*$ defines an endomorphism of the class group $C_Q/N_{\overline{Q}/Q}C_{\overline{Q}}$.

On the other hand, the restriction mapping r_0 of the group $H^0(G, C_{\overline{Q}})$ into $H^0(H, C_{\overline{Q}})$ induces the injection mapping of $C_{Q}/N_{\overline{Q}/Q}C_{\overline{Q}}$ into $C_K/N_{\overline{Q}/K}C_{\overline{Q}}$. Therefore, we have the following theorem from the preceding proposition.

THEOREM. The kernel of the endomorphism $j_0S_0^*$ of the group $C_{\Omega}/N_{\bar{\Omega}/\Omega}C_{\bar{\Omega}}$ is contained in $N_{\bar{\Omega}/K}C_{\bar{\Omega}}$, when it is considered in C_K .

A special case of this theorem is the generalised principal ideal theorem which was obtained by Prof. Tannaka and the author. Now, let k be a finite algebraic number field and K be the absolute class

536 F. TERADA

field (generally a ray class field) over k. Let Ω/k be a cyclic intermediate field of K/k, and S be a generator of the (cyclic) Galois group of Ω/k . Let $\overline{\Omega}/K$ be the absolute class field of K, and G be the Galois group of $\overline{\Omega}/\Omega$. Then S induces an automorphism of the group G, and K is just the intermediate field of $\overline{\Omega}/\Omega$ which is considered in the preceding theorem. It is easy to see that the homomorphism $j_0S_0^*$ in the theorem is the endomorphism such that $c \rightarrow c^{1-s}$, where $c \in C_{\Omega}$ and c^s means the image of c by the element c0 of the Galois group of c1. Thus we have the following theorem.

THEOREM. Let k be an algebraic number field, K the absolute class field over k, and Ω/k a cyclic intermediate field of K/k. Let S be a generator of the Galois group of the cyclic extension Ω/k . Then all ambigous classes in Ω (i. e. idele class c such that $c^{1-s}=1$) are contained in $N_{\bar{\Omega}/K}C_{\bar{\Omega}}$, when considered in K.

By the usual correspondence which exists between ideles and ideals we have an analogous result which was obtained in [2] and [3]. The description of our theorem by an automorphism is due to a suggestion by K. Masuda.

Tohoku University

References

- [1] C. Chevalley, Class field theory, Nagoya University, 1953-1954.
- [2] T. Tannaka, Some remarks concerning principal ideal theorem, Tōhoku Math. Journal, second series, vol. 1 (1951).
- [3] F. Terada, On generalized principal ideal theorem, Tohoku Math. Journal, second series, vol. 6 (1954), 95-100.