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On the fundamental conjecture of $GLC$ I.
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G. Gentzen has founded in his well known paper [1] a logic
calculus LK, and proved the remarkable result that every provable
sequence in LK is provable without cut, by means of which he could
establish the consistency of the number theory [21. The author has
generalized in his former paper [4] Gentzen’s LK to a logical system
GLC (Generalized Logic Calculus), containing a subsystem $G^{1}LC$,
which latter contains LK. The proposition “ Every provable sequence
in GLC (resp. $G^{1}LC$ ) is provable without cut ” was called the funda-
mental conjecture of GLC (resp. $G^{1}LC$), and it was shown that from
this conjecture would follow the consistency of the analysis (resp. of
the theory of real numbers).

We shall prove in this paper the following theorem, which may
be regarded as a special case of the fundamental conjecture of $G^{1}LC$ .

THEOREM. Let $\backslash \mathfrak{P}$ be a proof-figure of a sequence $\mathfrak{S}$ in $G^{1}LC$ .
Assume that no beginning sequence of $\mathfrak{P}$ contains logical symbols, and
that $\mathfrak{P}$ has no inference-figure $\forall,$ $\exists$ on variable of height 1 of the
forms described below:

. $\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),I^{7}\rightarrow\Delta}$ $\frac{\Gamma\rightarrow\Delta,F(V)}{\Gamma\rightarrow\Delta,\exists\varphi F(\varphi)}$

where $F(\alpha)$ has a proper $\forall br\exists$ on variable of height 1. Then $\mathfrak{S}$

is provable without cut.
From this theorem follows the consistency of the theory of natural

numbers. In fact the mathematical induction is formalized in $GL^{1}C$ by
the following inference-figures. (See \S 4 in our former paper [4])

$\Gamma\rightarrow\Delta,$ $\alpha[0]\wedge\forall x(\alpha[x][-\alpha[x^{\prime}])[-\alpha[T]$

$\overline{\Gamma\rightarrow\Delta,\forall\varphi(\varphi[0]\wedge\forall x(\varphi}[\overline{x]-}\overline{\varphi[x^{\prime}])-\varphi[T]})$

$\ovalbox{\tt\small REJECT}\forall\varphi(\varphi[0]\wedge\forall x(\varphi[x][-\varphi[x])-\varphi[T]),$

$\Gamma\rightarrow\Delta A(0)\wedge\forall x(A(x)-A(x^{\prime}))-A(T),\Gamma\rightarrow\Delta$ .
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\S 1. Proof-figure of $G^{1}LC$ .
We begin with recapitulating the definitions and notions given in

[4]. Thereby we shall notify some modifications which will simplify
our expression.

1.1. Variables (called variables of type $0$ in [4])

1.1.1. free variables
$a,$ $b,$ $c,$ $\cdots\cdots$

1.1.2. bound variables
$x,y,$ $z,$ $\cdots\cdots$

1.1.3. special variables
$0,$ $\cdots$ .

1.2. $f$-variables with $i$ argument.places $(i=1,2,3, \cdots)$ (called variables
of height 1 with argument-places in [4])

1.2.1. free ones
$\alpha_{i}[*\cdots, *],$ $\beta_{i}[*\cdots, *],$ $\cdots$ .

1.2.2. bound ones
$\varphi_{i}[*\cdots, *],$ $\psi_{i}[*1, *i],$ $\cdots$ .

1.2.3. special ones (for the case, when $i=2$ )

$*_{1}=*2,$ $*1<*2,$ .
1.3. Functions

$*^{\prime},$ $*+*2,$ .
In [4], we considered in $G^{t}LC$ free functions, bound functions

and functions of height 2. To simplify the proof, we consider only the
special functions of height 1, though there is no essential difficulty
in proving an analogous theorem in more general case containing free
functions etc. .

Therefore all the logical symbols in a formula are always assumed
as proper.
1.4. Logical symbols

$\gamma,$ $\ovalbox{\tt\small REJECT},$ $\forall$ .
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Without loss of generality, we do not use $\vee$ nor $\exists$ which is
denoted by $E$ in [4].

1.5. Terms, Formulas, and Formulas with $i$ argument-places.
These concepts are defined in the usual manner; formulas with $i$

argument.places were called varieties of height 1 with $i$ argument.
places in [4]. Formulas and Formulas with $i$ argument-places are, in
principle, denoted by German capital letters in [4], but we shall denote
them by latin capital letters in this paper.
1.5.1. The outermost logical symbol of a formula containing at least
one logical symbol is the logical symbol which is used at the final
step of construction of the formula.
Examples of the term: $a+b,$ $(a+b)+c$ .
Example of the formula: $\alpha[a]\wedge\forall\varphi(\varphi[0]\wedge\beta[a])$ .
Example of the formula with $i$ argument-places:

$\{x_{1}, \cdots, x_{i}\}(\forall\varphi_{i}(\varphi_{i}[x_{1}, \cdots, x_{i}]\wedge\alpha_{i}[x_{1}, \cdots, x_{i}]))$ .
1.6. Proof-figures of $G^{1}LC$ .

The following terms have the same meaning as in [4]. The se-
quence, the inference-figure the upper sequence of an inference, the
lower sequence of an inference, the proof-figure, the beginning sequence,
the end.sequence and the expression: ‘a sequence is provable’.

In this paper the beginning sequence is always of the form $D\rightarrow D$ .
And the $inference\cdot figures$ are figures of the following kinds.
1.6.1. Inference.schemata on structure of the sequences.
‘ Weakening’

left: $\frac{I^{7}\rightarrow\Delta}{D,I^{7}\rightarrow\Delta}$ right: $\frac{\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta,D}$

The formulas denoted by $D$ above are called the weakening formula
of the weakening.
‘ Contraction’

left: $\frac{D,D,\Gamma\rightarrow\Delta}{D,I^{7}\rightarrow\Delta}$ right: $\Gamma\rightarrow\Delta,D\Gamma\rightarrow\Delta,D\underline{D},$ .
‘ Exchange’

left: $\frac{\Gamma,D,E,\Pi\rightarrow\Delta}{\Gamma,E,D,\Pi\rightarrow\Delta}$ right: $\frac{\Gamma\rightarrow\Delta,D,E,\Lambda}{\Gamma\rightarrow\Delta,E,D,\Lambda}$ .
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We consider the following inference as the spceial case of the
exchange:

$\Gamma\rightarrow\Delta$

$ I’\rightarrow\Delta$

1.6.2. Cut.

$\frac{\Gamma\rightarrow\Delta,DD,\Pi\rightarrow\Lambda}{\Gamma,\Pi\rightarrow\Delta,\Lambda}$

The formulas denoted by $D$ above are called the left and right cut-
formula of the cut.
1.6.3. Inference.schemata on logical symbols.
7’

left: $\frac{I^{7}\rightarrow\Delta,A}{7A,\Gamma\rightarrow\Delta}$ right: $\frac{A,l^{7}\rightarrow\Delta}{\Gamma\rightarrow\Delta,7A}$ .

$\wedge$

left (1): $\frac{A,I\rightarrow\Delta}{A\wedge B,\Gamma\rightarrow\Delta}$ right: $\Gamma_{\Gamma^{\rightarrow}\Pi^{-}\rightarrow\overline{\Delta,\overline{\Lambda}}A\wedge^{\frac{\Lambda,B}{B}}}-\frac-\Delta,A\Pi\rightarrow$

left (2): $\frac{B,I^{\gamma}\rightarrow\Delta}{A\wedge B,I’\rightarrow\Delta}$ .

‘
$\forall$ on variable’

left: $\frac{F(T),1\rightarrow\Delta}{\forall xF(x),\Gamma\rightarrow\Delta}$ right: $\frac{I^{7}\rightarrow\Delta,F(a)}{\Gamma\rightarrow\Delta,\forall xF(x)}$ .

( $T$ is an arbitrary term) (There is no $a$ in
the lower sequence)

‘
$\forall$ on $f$-variable with $iargument\cdot places$ ’

left: $\frac{F(A_{i}),\Gamma\rightarrow\Delta}{\forall\varphi_{i}F(\varphi_{i}),\Gamma\rightarrow\Delta}$ right: $\frac{I^{7}\rightarrow\Delta,F(\alpha_{i})}{\Gamma\rightarrow\Delta,\forall\varphi_{i}F(\varphi_{i})}$ .

($A_{j}$ is an arbitrary formula (There is no $\alpha_{j}$ in the
with $i$ argument-places) lower sequence)

In the above inference.schemata, the formulas denoted by $D,$ $E,$ $A$ ,
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$B,$ $F^{\prime}(T),$ $F(a),$ $F(A_{i})$ or $F(\alpha_{i})$ in the upper sequence are called the
subformulas of the inference. And we call the formulas denoted by
$D,$ $E,$ $\nearrow^{-}A,$ $A\wedge B,$ $\forall xF(x)$ or $\forall\varphi_{i}F(\varphi_{i})$ in the lower sequence the chief
formulas of the inference.
1.7. Successor.

When a formula $C$ is contained in the upper sequence of an in-
ference which is represented by one of the schemata 1.6.1–1.6.3, the
successor of $C$ is defined as follows.
1.7.1. If $C$ is a cut formula then there is no successor of $C$.
1.7.2. If $C$ is a subformula of the inference except cut and exchange,

then the successor of $C$ is the chief formula of the inference.
1.7.3. If $C$ is a subformula denoted by $D$ (or $E$ ) in the above schemata

of exchange, then the successor of $C$ is a chief formula denoted
by $D$ (or $E$) in the exchange.

1.7.4. If $C$ is the k.th formula of $\Gamma,$ $\Pi,$ $\Delta$ or $\Lambda$ in the upper sequence,
then the successor of $C$ is the k.th formula of $\Gamma,$ $\Pi,$ $\Delta$ or $\Lambda$

respectively in the lower sequence.

\S 2. Concepts concerning a proof-figure.

In this section we define some concepts with respect to a given
proof-figure.
2.1. String.

A series of sequences in the proof-figure with the following pro-
perty is called a string. The series begins with a beginning sequence
and ends with the end.sequence; every sequence of the series, except
the last is the upper sequence of an inference and is followed im-
mediately by the lower sequence.

We say ‘ a sequence $\mathfrak{S}_{1}$ is above another sequence $\mathfrak{S}_{2}$ if there is
a string containing both $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ in which $\mathfrak{S}_{1}$ appears in the former
order than $\mathfrak{S}_{2}$ . If $\mathfrak{S}_{1}$ is above $\mathfrak{S}_{2}$ and $\mathfrak{S}_{2}$ is above $\mathfrak{S}_{3}$, then we say ‘

$\mathfrak{S}_{2}$

is between $\mathfrak{S}_{1}$ and $\mathfrak{S}_{3}$ or $\mathfrak{S}_{2}$ is between $\mathfrak{S}_{3}$ and $\mathfrak{S}_{1}’$ .
2.2.

A formula in a beginning sequence is called beginning formula.
A formula in the end sequence is called an end-formula.
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2.3. Fibre.
A series of formulas in the proof.figure with the following property

is called a fibre. The series begins with a beginning formula or a
weakening formnla and ends with an end.formula or a cut-formula;
every formula of the series, except the last, is followed immediately
by its successor.

A formula $A$ is called an ancestor of a formula $B$ and $B$ is
called a descendent of $A$ , if there is a fibre containing these formula
in which $A$ appears in the former order than $B$ .
2.4. Predecessor.

If $A$ is the successor of $B$, then $B$ is called a predecessor of $A$ ;
if moreover a fibre $\mathfrak{T}$ contains $A$ and $B$, then $\mathfrak{T}$ contains no other
$pre$decessor of $A$ than $B$, and $B$ is called the ‘ predecessor of $A$ in $\mathfrak{T}’$ .

A chief formula of $\wedge right$ has two predecessors; in this case we
call a predecessor $B$ the first or the second predecessor according as $B$

is in the left or the right upper sequence. We use analogous termino-
logy for the unique predecessor $B$ of a chief formula of $\wedge left:B$ is
called the first or the second predecessor according as the inference
is $\wedge left(1)$ or $\wedge left(2)$ .
2.5. Related formulas.

This concept is defined as follows.
2.5,1. In a cut of the proof.figure, a cut-formula is related to the

other cut-formula.
2.5.2. If $A$ is related to $B$, then $B$ is related to $A$ .
2.5.3. If $A_{1}$ is the successor of $A_{2}$ and $A_{1}$ is not a chief formula of

a logical inference and $A_{1}$ is related to $B$ , then $A_{2}$ is related to
$B$ .

2.5.4. If $A$ is related to $B$ and both $A$ and $B$ are chief formulas of
logical inference except $\wedge$ , then the predecessor of $A$ is related
to the predecessor of $B$.

2.5.5. If $A$ is related to $B$ and each of $A$ and $B$ is a chief formula
of an inference $\wedge$ , then the first predecessor of $A$ is related to
the first predecessor of $B$ and the second predecessor of $A$ is
related to the second predecessor of $B$ .

We see easily that if $A$ is related to $B$ and each of $A$ and $B$ has
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a logical symbol, then the outermost logical symbol of $A$ is the same
as that of $B$.
2.6. Original formula.

Let $A_{j}$ be a formula with $i$ argument-places.
An indication of $A_{i}$ in a formula $G$ is given by a formula $F(\alpha_{i})$

with full indication of $\alpha_{i}$ (cf. [4] for full indication), if $\alpha_{i}$ is (an
$f$-variable with $i$ argument-places) not contained in $A_{i}$ and $G$ is
of the form $F(A_{i})$ ; the same indication is given (only) by a formula
of the form $F(\beta_{i})$ where $\beta_{i}$ is contained neither in $A_{i}$ nor in $F(\alpha_{i})$ .
If no confusion is likely to occur, we say that the indication is of the
form $F(A_{i})$ . The indication is void or non.void according as $F(\alpha_{1})$

contains no $\alpha_{i}$ or at least one $\alpha_{i}$ .
Now let $F$ be a formula in the proof-figure considered, together

with a given indication of the form $F(A_{i})$ . Then we determine, as
follows, an indication of $A_{i}$ in a predecessor of $F$.
2.6.1. If $F$ is not a chief formula of a logical inference, then the

predecessor of $F$ has the same indication Of $A_{i}$ as the one in $F$.
2.6.2. If $F$ is of the form $\nearrow^{-}G(A_{i})$ and is the chief formula of an

inference 7, then the predecessor of $F$ has the indication of
$A_{i}$ of the form $G(A_{i})$ .

2.6.3. If $F$ is of the form $\forall xG(x, A_{i})$ and is the chief formula of an
inference $\forall$ , then the predecessor of $F$ has the indication of
of the form $G(a, A_{i})$ or $G(T, A_{i})$ .

2.6.4. If $F$ is of the form $\forall\varphi jG(\varphi_{j}, A_{i})$ and is the chief formula of
an inference $\forall$ , then the predecessor of $F$ has the indication of
$A$ ; of the form $G(\alpha_{j}, A_{i})$ or $G(B_{j}, A_{i})$ .

2.6.5. If $F$ is of the form $F_{1}(A_{i})\wedge F_{2}(A_{i})$ and is the chief formula of
an inference $\wedge$ , then the first predecessor of $F$ has the indica-
tion of $A$ ; of the form $F_{1}(A_{i})$ and the second predecessor of $F$

has the indication of $A_{i}$ of the form $F_{2}(A_{i})$ .
Let $F(A_{i})$ be a formula in a fibre $\mathfrak{T}$ and the indication of $A_{i}$ in

$F(A_{i})$ be not void. Now, if we start from $F(A_{i})$ and go successively
to the predecessors in $\mathfrak{T}$ , then only the following tllree cases are
possible.

2.6.6. All the indications determined in the prescribed manner of $A_{i}$
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in the formulas in $\mathfrak{T}$ are non-void and the first formula of $\mathfrak{T}$ ,
that is, a beginning formula or a weakening formula, is of
the form $G(A_{i})$ , where $G(\alpha_{i})$ contains a logical symbol.

2.6.7. There exists a unique formula $B$ in $\mathfrak{T}$ , with void indication of
$A_{i}$ , whose successor is of the form $B\wedge C$ or $C\wedge B$, where $C$

has non.void indication of $A_{i}$ .
2.6.8. There exists a unique formula of the form $A_{i}(T_{1}, \cdots, T_{i})$ in $\mathfrak{T}$ ,

where the described $A_{i}$ is the indicated one, which is above
all other formulas in $\mathfrak{T}$ with this property.

In the last case we call the unique formula $A_{i}(T_{1}, \cdots, T_{i})$ the
original formula in $\mathfrak{T}$ of the indication of $F(A_{i})$ .

‘
$B$ is an original formula of the indication of $F(A_{i})$ means that

there exists a fibre $\mathfrak{T}$ , which contains $B$ and $F(A_{i})$ and the original
formula in $\mathfrak{T}$ of the indication of $F(A_{i})$ is $B$.
2.7. Explicit and Implicit fibres, formulas etc.
2.7.1. A fibre is called explicit, if it ends with an end.formula, and

is called implicit, if it ends with a cut.formula.
2.7.2. A formula in a proof.figure is called explicit or implicit accord-

ing as the fibre through this formula is explicit or implicit.

2.7.3. A sequence in the $proof\cdot figure$ is called implicit or explicit ac-
cording as this sequence contains an implicit formula or not.

2.7.4. An inference in the proof-figure is called explicit or implicit
according as the chief formula of this inference is explicit or
implicit.

Now we define the $end\cdot place$ (’ Endst\"uck’ in Gentzen [3]) of a
proof-figure.

A sequence in the proof.figure is called the sequence of the end-
place of this proof-figure, if and only if there is no implicit logical
inference under this sequence. An inference of a proof-figure is called
an inference of the end-place of this proof.figure, if and only if the
lower sequence of this inference is contained in the end.place.

2.8.
If a fibre $\mathfrak{T}$ has a chief formula of an inference $\mathfrak{J}$ , then we say

‘
$\mathfrak{T}$ is affected by $\mathfrak{J}$ ‘.
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The logical length of a fibre $\mathfrak{T}$ is the number of the 10 $g$ical in-
ferences affecting $\mathfrak{T}$ .

Let a formula $A$ be an ancestor of a formula $B$ . Then there
exists a fibre $\mathfrak{T}$ through $A$ and $B$. The logical length from $A$ to $B$

is the number of the logical inferences between $A$ and $B$ affecting $\mathfrak{T}$,
and this number does not depend on the choice of $\mathfrak{T}$ .
2.9. Rank of a formula.

We define the rank of a formula $A$ recursively as follows.
2.9.1. If $A$ contains no logical symbol, then the rank of $A$ is zero.
2.9.2. If $A$ is of the form $7B,$ $\forall xF(x)$ or $\forall\varphi_{i}F(\varphi_{i})$ , then the rank of

$A$ is $r+1$ , where $r$ is the rank of $B,$ $F(a)$ or $F(\alpha_{i})$ respectively.

2.9.3. If $A$ is of the form $B\wedge C$, then the rank of $A$ is $r+1$ , where
$r$ is the maximal number of the rank of $B$ and $C$.

2.10.
Let $\mathfrak{J}$ be a cut in a proof.figure $\mathfrak{P}$ and $\mathfrak{S}$ be a sequence of $\mathfrak{P}$ .

We say that ‘
$\mathfrak{S}$ is loaded on $\mathfrak{J}$ or ‘

$\mathfrak{J}$ is the loader of $\mathfrak{S}$ ‘, if and only
if $\mathfrak{S}$ is above $\mathfrak{J}$ and there exists no cut between $\mathfrak{S}$ and $\mathfrak{J}$ .

\S 3. Normal proof-figure.

In this section, we define first the concept of normal $proof\cdot figure$

and next the concept of proof-figure with potential and correspondence
of the ordinal number to a proof-figure with potential. Hereafter we
follow, as a whole, Gentzen [3]. Potential is a modification of ‘ H\"ohe’

in Gentzen [3].

3.1. Normal proof.figure.
A proof-figure $\mathfrak{P}$ satisfying the following conditions 3.1.1 and 3.1.2

is called normal.
3.1.1. If two fibres $\mathfrak{T},$

$\mathfrak{T}^{\prime}$ in $\mathfrak{P}$ begin with beginning formulas $A,$ $A^{\prime}$

respectively and end in different cut.formulas in one and same
cut and if, moreover, $A$ contains a logical symbol, then $A^{\prime}$

contains no logical symbol and $\mathfrak{T}$ is not affected by any in $\cdot$

ference $\forall$ left on $f$-variable.
3.1.2. The implicit logical inferences $\forall$ left on $f$-variable of the follow-

ing forms $\mathfrak{J}$ are of the ‘ first stage’, which means that $F(\alpha_{i})$



258 G. TAKEUTI

contains no logical symbol $\forall$ on $f$-variable:

$\mathfrak{J}\frac{F(A_{i}),I’\rightarrow\Delta}{\forall\varphi_{i}F(\varphi),\Gamma\rightarrow\Delta}$ .

In the rest of this paper, we aim at proving the following theorem,
which is stronger than the theorem stated in the introduction.

THEOREM. The end-sequence of a normal proof-figure is provable
without cut.
3.2. Degree of a formula in a normal proof.figure.

We define the degree of a formula $A$ in a normal proof.figure
recursively as follows.

3.2.1. The degree of a beginning formula or a weakening formula is 1.
3.2.2. If $A$ has a predecessor and is not a chief formula of an in.

ference on logical symbol or contraction, then the degree of $A$

is equal to the degree of the predecessor of $A$ .
3.2.3. If $A$ is a chief formula of a contraction, then the degree of $A$

is the maximal number of the degrees of the predecessors of $A$ .
3.2.4. If $A$ is a chief formula of an inference on logical symbol

except $\forall$ left on $f\cdot variable$ , then the degree of $A$ is $d+1$ , where
$d$ is the maximal number of the degrees of the predecessors of
$A$ .

3.2.5. Let $A$ be a chief formula of an inference $\forall$ left on $f\cdot variable$

and of the form $\forall\varphi_{i}F(\varphi_{i})$ and the predecessor of $A$ be of the
form $F(B_{i})$ . Then the degree of $A$ is $a+b$ , where $a$ is the
rank of $\forall\varphi_{i}F(\varphi_{i})$ and $b$ is the maximal number of the degrees
of the original formulas of $B_{i}$ (If there is no original formulas
of $B_{i}$ , then $b=1$ ).

We define the degree of a cut as the maximal number of the
degrees of the cut.formulas of this cut.
33. Potential.

A normal proof-figure is called a proof-figure with potential, if we
have attached to each sequence of this proof.figure a natural number,
called its potential, satisfying the following conditions.
3.3.1. If a sequence $\mathfrak{S}_{1}$ is above a sequence $\mathfrak{S}_{2}$, then the potential of

$\mathfrak{S}_{1}$ is not less than the potential of $\mathfrak{S}_{2}$.
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3.3.2. If $\mathfrak{S}_{1}$ is an upper sequence of an inference except cut and if $\mathfrak{S}_{2}$

is the lower sequence of this inference, then the potential of $\mathfrak{S}_{1}$

is equal to the potential of $\mathfrak{S}_{2}$ .
3.3.3. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are two upper sequences of a cut, then the poten-

tial of $\mathfrak{S}_{1}$ is equal to the potential of $\mathfrak{S}_{2}$ .
3.3.4. If a sequence $\mathfrak{S}$ is an upper sequence of a cut, then the potential

of $\mathfrak{S}$ is not less than the degree of this cut.
3.3.5. If a beginnin $g$ sequence $D\rightarrow D$ contains logical symbols, and a

fibre $\mathfrak{T}$ begins with one of two $D’ s$ and ends with a cut-formula
of a cut $\mathfrak{J}$ , then the potential of the upper sequences of $\mathfrak{J}$ is
not less than $\max(a, b+c)+1$ , where
$a$ is the degree of $\mathfrak{J}$ ,
$b$ is the maximal number of the degrees of any formula related

to one of two $D’ s$ ,
$c$ is the logical length of $\mathfrak{T}$ .

3.3.6. The potential of the end-sequence is zero.
We see easily that every normal proof-figure can be made a proof-

figure with potential. Therefore, to prove the theorem in 3.1, we have
only to prove that the end.sequence of a proof-figure with potential
is provable without cut.
3.4. Correspondence of the ordinal number to a proof-figure with

potential.

Now we make correspond an ordinal number less than the first
e.number to each sequence of the $proof\cdot figure$ with potential recursively
as follows.
3.4.1. The ordinal number of a beginning sequence is 1.
3.4.2. If $\mathfrak{S}_{1}$ is the upper sequence of an inference $\mathfrak{J}$ on structure, and

$\mathfrak{S}_{2}$ is the lower sequence of $\mathfrak{J}$ , then the ordinal number of $\mathfrak{S}_{2}$

is equal to the ordinal number of $\mathfrak{S}_{1}$.
3.43. If $\mathfrak{S}_{1}$ is the upper sequence and $\mathfrak{S}_{2}$ is the lower sequence of an

inference 7, $\wedge left,$ $\forall$ on variable, $\forall$ right on $f$-variable, or
explicit $\forall$ left on $f$-variable, then the ordinal number of $\mathfrak{S}_{2}$ is
$a+1$ , where $a$ is the ordinal number of $\mathfrak{S}_{1}$ .

3.4.4. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are two upper sequences and $\mathfrak{S}$ is the lower se-
quence of an inference $\wedge right$ , then the ordinal number of $\mathfrak{S}$
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is $\alpha+\beta$ , where $\alpha$ or $\beta$ is the ordinal number of $/\tilde{\mathfrak{H}}_{1}$ or $\mathfrak{S}_{2}$ re-
spectively and $+$ is the sign of natural sum.

3.4.5. If $\mathfrak{S}_{1}$ is the upper sequence and $\mathfrak{S}_{2}$ is the lower sequence of an
implicit inference $\forall$ left on $f$-variable, then the ordinal number
of $\mathfrak{S}_{2}$ is $\alpha+\omega$ , where $\alpha$ is the ordinal number of $\mathfrak{S}_{1}$.

3.4.6. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are two upper sequences and $\mathfrak{S}$ is the lower se.
quence of a cut, then the ordinal number of $\mathfrak{S}$ is

$\alpha+\beta$

$\omega$

$\sigma-\tau$

$\omega$

where $\alpha$ or $\beta$ is the ordinal number of $\mathfrak{S}_{1}$ or $\mathfrak{S}_{2}$ respectively and
$\sigma$ or $\tau$ is the potential of $\mathfrak{S}_{I}$ (and $\mathfrak{S}_{2}$ ) or $\mathfrak{S}$ respectively.

We call the ordinal number of a proof.figure with potential the
ordinal number of its end.sequence.

\S 4. Preparations of the essential reduction.

Let $\mathfrak{S}_{1},$ $\mathfrak{S}_{2},$

$\cdots,$
$\mathfrak{S}_{n}$ and $\mathfrak{S}$ be sequences. ‘

$\mathfrak{S}$ is reducible to $\mathfrak{S}_{1},$ $\cdots$ ,
$\mathfrak{S}_{n}$

’ will mean ‘ if $\mathfrak{S}_{1},$

$\cdots,$
$\mathfrak{S}_{\hslash}$ is provable without cut, then $\mathfrak{S}$ is provable

without cut’.
Let $\mathfrak{P}_{1},$ $\cdot\cdot$ $\mathfrak{P}_{n}$ and $\mathfrak{P}$ be proof-figure with potential. We say that

$\mathfrak{P}$ is reduced to $\mathfrak{P}_{1},$

$\circ\cdot\cdot,$

$\mathfrak{P}_{n}$ , if and only if the following conditions are
satisfied.
4.1.1. For each $i(1\leq i\leq n)$ , the ordinal number of $\mathfrak{P}_{i}$ is less than the

ordinal number of $\mathfrak{P}$ .
4.1.2. The end-sequence of $\mathfrak{P}$ is reducible to the end.sequences of

$\backslash p_{1},$

$\cdots,$
$\mathfrak{P}_{n}$ .

Clearly our purpose is to find the reduction of every proof-figure
with potential.

In this section we treat the case, that the end.place contains
explicit logical inferences. Let $\mathfrak{P}$ be a proof.figure with potential and
$\mathfrak{J}$ be the undermost explicit logical inference contained in the end.place
of $\mathfrak{P}$ . Then we divide the following cases according to the form of $\mathfrak{J}$ .
4.2. The cases when $\mathfrak{J}$ is 7, $\wedge left$ or $\forall$ .
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Since all the cases are similar, we treat only the case $\forall$ right on
$f$-variable. Then the form of $\mathfrak{J}$ may be considered as the following
one.

$\backslash 1\backslash 1\backslash 11_{1}|IJ^{/}$

$\backslash /\backslash \psi^{1}$

4.2.1. $\frac{\Gamma\rightarrow\Delta,F(\alpha_{i})}{\Gamma\rightarrow\Delta,\forall\varphi_{i}F(\varphi_{i})}\mathfrak{J}$

$\backslash 1\backslash _{\backslash _{\backslash _{\backslash }}1}t^{f_{1}}1_{1}\nu^{J^{\prime}}$

’

$\Gamma_{0}\rightarrow\Delta_{0}$ ,

where $\Gamma_{0}\rightarrow\Delta_{0}$ is the end sequence.

Since there is no other logical inference under $\mathfrak{J},$ $\Delta_{0}$ contains a
formula $\forall\varphi_{i}F(\varphi_{i})$ . Furthermore, without the loss of generality, we
can assume that $\Gamma_{0}\rightarrow\Delta_{0}$ contains no $\alpha_{i}$ . Therefore $I_{0}^{7}\rightarrow\Delta_{0}$ is reducible
to the sequence $\Gamma_{0}\rightarrow F(\alpha_{i}),$ $\Delta_{0}$. We reduce the above proof.figure 4.2.1
with potential to the following proof-figure with potential:

4.2.2.
$\frac{\frac{\Gamma\rightarrow^{1_{1}}\Delta^{\prime},F(\alpha_{i})\backslash I\backslash 1\backslash 1\backslash _{\backslash 1\backslash \nu^{\prime}}J^{J^{\prime}}11}{Someexchanges}}{\frac{I^{7}\rightarrow F(\alpha_{i}),\Delta}{\frac{Weakening}{\Gamma\rightarrow F(\alpha_{i_{1}}),\Delta,\forall\varphi_{i}F(\varphi_{i})}}}$

111
$\$_{\backslash _{\backslash }1}1_{1}$ ,’

$\backslash _{\backslash \psi^{I}}J$

$\Gamma_{0}\rightarrow F(\alpha_{j}),$ $\Delta_{0}$ ,

where every sequence of this proof-figure has the same potential
as the potential of the corresponding sequence of 4.2.1. The
normality and the legality of the potentials of 4.2.2 are shifted
on the properties of 4.2.1. The ordinal numbers of $\Gamma\rightarrow\Delta,$ $F(\alpha_{i})$

in 4.2.1 and 4.2.2 and $I^{7}\rightarrow F(\alpha_{i}),$ $\Delta$ in 4.2.2 are equal to each
others, and are less than the ordinal number of $\Gamma\rightarrow\Delta,$ $\forall\varphi_{i}F(\varphi_{i})$

in 4.2.1. Therefore the ordinal number of the end $\cdot$ sequence



262 G. TAKEUTI

$\Gamma_{0}\rightarrow F(\alpha_{i}),$ $\Delta_{0}$ of 4.2.2 is less than the ordinal number of the
end.sequence $I_{0}^{7}\rightarrow\Delta_{0}$ of 4.2.1.

4.3. The case when $\mathfrak{J}$ is $\wedge right$ .
Suppose that $\mathfrak{J}$ appears in the following form.

4.3.1.
$\frac{\Gamma^{\backslash _{\backslash }}\rightarrow^{\backslash }\Delta^{\prime},A\Pi\rightarrow^{\backslash _{\backslash }}\Lambda^{\prime^{\prime}},B\backslash _{\backslash }1,J^{J\backslash _{\backslash 1,!^{\prime}}}v’\psi^{1}\prime_{1}1_{1}11\backslash }{\Gamma,\Pi\rightarrow\Delta,\Lambda,A\wedge B}\mathfrak{J}$

$\backslash 1\backslash _{\backslash }|1_{1}|11’/$

$\backslash \backslash _{\backslash \nu^{J}}|$

$\Gamma_{0}\rightarrow\Delta_{0}$ .
By the similar reason as in 4.2, $I_{0}^{7}\rightarrow\Delta_{0}$ is reducible to $\Gamma_{(1}\rightarrow A,$ $\Delta_{0}$

and $I_{0}^{7}\rightarrow B,$ $\Delta_{0}$ . And the proof-figure 4.3.1 is reducible to the following
proof-figures.

$\backslash _{\backslash _{\backslash \backslash ,\nu’}.1_{/^{\prime}}}\acute{111I}!^{\prime}$ $\backslash _{\backslash _{\backslash _{\backslash }}1^{\prime^{\prime}},^{\prime}}\backslash \vee^{1_{1}}11$

$\frac{\Gamma\rightarrow\Delta,A}{Someweakeningsand}$ $\frac{\Pi\rightarrow\Lambda,B}{Someweakeningsand}$

4.3.2.
$1^{\tau},$

$\Pi\rightarrow A,\Delta,\Lambda,A\wedge Bexchanges$ $\frac{exchanges}{l^{v},Il\rightarrow B,\Delta,\Lambda,A\wedge B}$

$\backslash 1|1_{t}t_{1}I$

,
$\backslash 1\backslash 1\backslash 11_{I}11J^{J^{\prime}}$

$\backslash _{\backslash \psi^{1}}J$ $\backslash _{\backslash \psi^{1}}J$

$I_{0}^{7}\rightarrow A,$ $\Delta_{0}$ , $1_{0}^{\gamma}\rightarrow B,$ $\Delta_{0}$ ,

where every sequence of these proof-figures has the same potential
as the potential of the corresponding sequence in 4.3.1.

\S 5. Reductions for the case that the end-place contains
an implicit beginning sequence and

no logical inferences.

Hereafter we consider only a proof-figure with potential, whose
end.place contains no logical inference. In this section we consider
the cases that the end-place of the proof.figure contains an implicit
beginning sequence.
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Let $D\rightarrow D$ be one of implicit beginning sequences in the end.place.
Our consideration is divided into the following several cases.
5.1. The case, when one of two $D’ s$ is explicit.

We may assume that the right $D$ is explicit and the left $D$ is
implicit. Let the proof-figure be of the following form.

$D\rightarrow D$

$\backslash _{\backslash \backslash _{\backslash _{\backslash _{\backslash \nu^{J^{\prime}}}}}1,!^{\prime}}1_{1}11$

$\backslash 1\backslash |\backslash \iota 1_{1}11/$

$\backslash _{\backslash ,1\nu^{J}}$

5.1.1. $\frac{\Gamma\rightarrow\Delta,DD,\Pi\rightarrow\Lambda}{I^{7},\Pi\rightarrow\Delta,\Lambda}\mathfrak{J}$ $potentialpotential\sigma\tau$

$1_{1}11$

$\backslash _{\backslash _{\backslash _{\backslash _{\backslash }}1,^{\prime}}}\psi^{1}!^{\prime}$

$I_{0}^{7}\rightarrow\Delta_{0}$ .

Clearly $I_{0}^{7}\rightarrow\Delta_{0}$ is reducible to $\Gamma_{0}\rightarrow D,$ $\Delta_{0}$. We shall consider of
the following proof.figure 5.1.2.

$ 1\iota$

$\$_{\backslash _{\backslash }}$ llIl $l^{/}$

$\backslash \downarrow!J\backslash $

5.1.2.
$\frac{\Gamma\rightarrow\Delta,D}{Someweakeningsand}$

exchanges
potential $\tau$

$\overline{\Gamma,\Pi\rightarrow D,\Delta,\Lambda}$ potential $\tau$

$\backslash 1!\backslash _{\backslash _{\backslash J^{J^{\prime}}}}\backslash \psi^{1_{1}}1_{1_{1}}1_{I}$

$\Gamma_{0}\rightarrow D,$ $\Delta_{0}$ ,

where a sequence has the potential $\tau$ or the same potential as
the corresponding sequence in 5.1.1, according as the correspond.
ing sequence is loaded on $\mathfrak{J}$ or not. The normality and the
legality of the potentials of 5.1.2 is shifted on the properties
of 5.1.1.

Let $\alpha$ and $\beta$ be the ordinal numbers of corresponding two se-
quences $\mathfrak{S}_{1}$ in 5.1.1 and $\mathfrak{S}_{2}$ in 5.1.2. If $\mathfrak{S}_{1}$ is above $\mathfrak{J}$ and not loaded
on $\mathfrak{J}$, then $\alpha$ is equal to $\beta$ . If $\mathfrak{S}_{1}$ is loaded on $\mathfrak{J}$ , then
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$\alpha$

$\omega$

. $\cdot$ $\sigma-\tau$ .
$\beta\leq\omega$

This inequality is proved by the induction on the number of sequences
above $\mathfrak{S}$ and loaded on $\mathfrak{J}$ , because

$\alpha_{1}$ $\alpha_{2}$

$\omega\sigma-\tau$ and $\omega\sigma-\tau$

$\beta_{1}\leq\omega$ $\beta_{2}\leq\omega$

imply

$\alpha$

$\omega$

. $\rho$

$\beta_{1}+\beta_{2}\leq\omega$

$\omega\alpha_{\sigma}1+_{-}\alpha_{\tau^{2}}$

and
$\omega$

$\omega|\rho\leq\omega$
$\omega\}\sigma-\tau\beta_{1}.\omega$ .

Therefore, in the case when $\mathfrak{S}_{1}$ is $\Gamma\rightarrow\Delta,$ $D$ in 5.1.1, and $\mathfrak{S}_{2}$ is $\Gamma\rightarrow\Delta,$ $D$

in 51.2, our inequality holds, and in the case when $\mathfrak{S}_{1}$ is $l^{7},$ $\Pi\rightarrow\Delta,$ $\Lambda$

in 5.1.1 and $\mathfrak{S}_{2}$ is $\Gamma,$ $\Pi\rightarrow D,$ $\Delta,$ $\Lambda$ in 5.1.2 inequality $\beta<\alpha$ holds.
Hence $\beta<\alpha$ holds in the case when $\mathfrak{S}_{I}$ is under $\mathfrak{J}$, and after all, the
ordinal number of 5.1.2 is less than the ordinal number of 5.1.1.

Therefore the proof-figure 5.1.1 is reducible to 5.1.2.

5.2. The case, when two $D’ s$ are implicit and $D$ has no logical
symbol.

Let the proof-figure be of the following form.
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$D\rightarrow D$

$\Gamma^{\backslash _{\backslash }1_{/}}\rightarrow^{\backslash }\Delta^{J^{\prime^{\prime}}},D\backslash _{\backslash }1\psi^{1}1_{1}1$

$D,$

$\Pi\rightarrow^{\backslash }\Lambda_{1}^{1_{1^{I}l}},D,$
$\Lambda_{2}\backslash 1^{\prime}\backslash _{\backslash _{\backslash }|/^{\prime},\psi^{1}}1$

potential $\sigma$

5.2.1. $\Gamma,$ $\Pi\rightarrow\Delta,$ $\Lambda_{1},$ $D,$ $\Lambda_{2}$ potential $\tau$

$t_{1}$

$\iota_{\backslash 1,\vee 1}^{1}||’$

’
$\backslash 1\backslash _{\backslash _{\backslash _{\backslash }}1}1_{1/}!^{\prime}\psi^{1_{1}}11$

$\backslash _{\backslash }’\psi^{1}$

$\underline{\tilde{\Gamma}\rightarrow\Delta\sim,D}$ $D,$ $\Phi\rightarrow\Psi$

$\overline{\tilde{I^{\prime}},\Phi\rightarrow\sim_{\Delta}\sim,\Psi}$

$\backslash _{\backslash 1_{1},\backslash 1\backslash _{\backslash }J^{J^{\prime}}}\psi^{1J}\overline{1_{1}11}$

$\Gamma_{0}\rightarrow\Delta_{0}$ .

5.2.1 is reduced to the following.

$tl1$

$\backslash _{\backslash \backslash _{\backslash J}|,^{\prime^{\prime}}}$

$\Gamma\rightarrow\Delta,$ $D$ potential $\tau$

$\overline{Someweak}\overline{enings}$andedxchexchanges
$\Gamma,$ $\Pi\rightarrow\Delta,$ $\Lambda_{1},$ $D,$ $\Lambda_{2}$ potential $\tau$

5.2.2. $\backslash 1\backslash _{\backslash _{\backslash }1,\backslash 1/^{\prime}}\psi^{1^{J^{\prime}}}I1\iota 1$ $\backslash 1\backslash 1^{J^{\prime}}\backslash 1\backslash /^{\prime}\backslash 1\psi^{\prime_{1}}11$

$\frac{1^{\prime}\sim\rightarrow\Delta,DD,\Phi\rightarrow\Psi\sim}{\tilde{\Gamma},\Phi\rightarrow\Delta\sim,\Psi}\mathfrak{J}$

$1_{1}11$

$\backslash 1\backslash _{\backslash }11$
$J^{\prime^{\prime}}$

$\backslash _{\backslash _{\psi^{1/}}}$

$\Gamma_{0}\rightarrow\Delta_{0}$ .

The correspondence of potentials and ordinal numbers are the
same as in the 5.1. And since $D$ has no logical symbol, the
condition of the normal proof-figure and the condition 3.3.5 of
the potential pose no restriction on the cut $\mathfrak{J}$ .

5.3. The case, when two $D’ s$ are implicit and $D$ has logical symbols.

Let the proof-figure be of the following form.
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$D\rightarrow D$

$\backslash _{\backslash _{\backslash _{\backslash _{\backslash }}}}1_{1}\downarrow^{1}/^{\prime}\prime 1_{1/^{\prime}}1$

$\backslash _{\backslash }1_{1}1_{1}1_{1}/$

$\backslash _{\backslash \psi^{I/}}$

$\frac{\Gamma\rightarrow\Delta,DD,\Pi\rightarrow\Lambda_{1}D,\Lambda_{2}}{\Gamma,\Pi\rightarrow\Delta,\Lambda_{I}.D,\Lambda_{2}}\mathfrak{J}_{1}$ $potentialpotential\sigma_{1}\sigma_{2}$

111
$\backslash _{\backslash }|/$

$\backslash 1_{1}\backslash _{\backslash _{\backslash }}1\backslash 1’/$

$\backslash \backslash \sqrt{}$

$\dagger ’

5.3.1. $\frac{\tilde{\tau}\rightarrow\Delta\sim,DD,\Phi\rightarrow\Psi}{\tilde{\Gamma},\Phi\rightarrow_{1}\Delta\sim,\Psi}\mathfrak{J}_{2}$

potential $\tau_{1}$

$1\prime 1$

$\frac{\backslash _{\backslash _{\backslash _{\backslash _{\backslash \downarrow^{\prime^{\prime}}}}^{1^{\prime}}}}1_{1}\prime\prime}{\Gamma_{1}\rightarrow\Delta_{1},1}$

$pote^{potti_{2}a1}ntia^{e}1^{n_{\tau}}<^{\tau_{1}}\tau^{1}$

$1$

$\backslash 1\backslash _{\backslash _{\backslash }}1\backslash |\sqrt{}^{/^{l^{\prime}}}11$

$\Gamma_{0}\rightarrow\Delta_{0}$ ,

where $\Gamma_{1}\rightarrow\Delta_{1}$ is the uppermost sequence under $\mathfrak{J}_{2}$ , whose po-
tential is less than $\tau_{1}$.

We reduce 5.3.1 to the following 5.3.2.
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. $1,1_{1}1$

$\backslash 1$ ’

$\backslash _{\backslash \psi^{I}}/$

$\frac{\Gamma\rightarrow\Delta,D}{Someweakeningsand}$

$\frac{exchanges}{\Gamma,\Pi\rightarrow\Delta,\Lambda_{1},D,\Lambda_{2}}$

5.3.2. $\backslash _{\backslash }1\backslash _{\backslash \backslash _{\psi^{I_{I}}}}1_{1}11_{1}$ , $\backslash _{\backslash _{\backslash _{\backslash _{\backslash }}}}\psi^{1_{1/^{\prime}}}1_{1}1$

$\frac{I^{\gamma_{\rightarrow}}\Delta\sim,D}{Someweakeningsand}$ $\frac{D,\Phi\rightarrow\Psi}{Someweakeningsand}$

$\frac{exchanges}{\tilde{\Gamma},\Phi\rightarrow D,\Delta\sim,\Psi}$ $\frac{exchanges}{\tilde{\Gamma},\Phi,D\rightarrow\Delta\sim,\Psi}$

$1_{1}$

$1_{1}1$

$\backslash c_{\backslash }|’/$
$\backslash _{\backslash _{\backslash }}1Ilt!^{/}$

$\backslash _{\backslash \psi^{1}}J$
$\backslash _{\backslash ,I\nu^{\prime}}$

$\frac{l_{1}^{7}\rightarrow D,\Delta_{1}}{\frac{Someexchanges}{\Gamma_{1}\rightarrow\Delta_{1},Dl_{1}^{7},\Gamma}}\ovalbox{\tt\small REJECT}_{1^{\rightarrow^{\frac{\Gamma_{1},D\rightarrow\Delta_{1}}{\frac{Someexchanges}{\Delta_{1},\Delta_{1}D,\Gamma_{1}\rightarrow\Delta_{1}\mathfrak{J}_{3}}}}}}potentialpotential\tau_{2}\tau^{1^{-}}<^{1_{\tau_{1}}}$

$\overline{Someexchanges}$aanndd–$-$contractions
$\overline{\Gamma_{1}\rightarrow\Delta_{1}}$

$\backslash 1\backslash _{\backslash _{\backslash _{\backslash }}}t_{I/^{\prime}}^{J^{\prime}}\psi^{I}I_{1}1_{1}$

$\Gamma_{0}\rightarrow\Delta_{0}$ ,

where the potential of the sequences loaded on $\mathfrak{J}_{3}$ is $\tau_{1}-1$ , and
the potential of the sequences with the same loader as $\Gamma,$ $\Pi\rightarrow$

$\Delta,$ $\Lambda_{b}D,$ $\Lambda_{2}$ in 5.3.2 is $\tau_{1}-1$ or $\sigma_{2}$ , according as $\Gamma,$ $\Pi\rightarrow\Delta,$ $\Lambda_{1},$ $D$,
$\Lambda_{2}$ is loaded on $\mathfrak{J}_{3}$ or not, and moreover the other sequences
has the same potential as the corresponding sequence in 5.3.1.

By the condition 3.1.1 in 5.3.1, an arbitrary fibre which ends with
the cut.formula of $s_{3}^{\alpha}$ , begins with a weakening formula or a beginning
formula without logical symbol, so the conditions 3.1.1 and 3.3.5 are
trivial on $\mathfrak{J}_{3}$. By the condition 3.3.5 on $\mathfrak{J}_{2}$, we see that the potential
$\tau_{1}$ of upper sequence of $\Im_{2}$ is not less then $a+1$ , where $a$ is the ma-
ximal number of the degrees of the left cut.formula of $\mathfrak{J}_{1}$ and of the
right cut-formula of $s^{\alpha_{2}}$ . Hence the potential $\tau_{1}-1$ of upper sequences
of $s_{3}^{\alpha}$ is not less than the degree $a$ of $\mathfrak{F}_{3}$ , that is, the condition 3.3.4.
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on $s^{\infty_{3}}$ is satisfied.
Comparison of the ordinal numbers of 5.3.1 and 5.3.2 are similar

as in the case 5.1.

\S 6. Essential reduction.

In this section we assume that the end-place contains none of the
implicit beginning sequence and the logical inference.

First we define several concepts.

6.1. Boundary.
An inference $\mathfrak{J}$ belongs to the boundary of the end-place, if and

only if the lower sequence of $\mathfrak{J}$ belongs to the end-place and the upper
sequence of $\mathfrak{J}$ does not belong to the end.place. If $\mathfrak{J}$ belongs to the
boundary of the end-place, then $\mathfrak{J}$ is an implicit logical inference.
6.2.

A cut in the end.place is called suitable, if and only if each cut-
formula of this cut has a fibre ending with this cut.formula, which
contains the chief formula of an inference at the boundary.

6.3.
A cut.formula is called weakening, if and only if all the fibres

ending with this cut-formula begin with weakening formulas.
6.4. The case, when there is a cut in the end.place, one of whose

cut.formulas is weakening.

Let the proof.figure be of the following form.

$\backslash _{\backslash _{\backslash _{\backslash }}1^{\prime},^{J^{\prime}}}\backslash _{\backslash \nu}11\iota$ $\backslash _{\backslash }\backslash _{\backslash }|,^{\prime}’\backslash 1,\psi^{1_{1}}’$

,

64.1. $\frac{1^{\tau}\rightarrow\Delta,DD,\Pi\rightarrow\Lambda}{I^{7},\Pi\rightarrow\Delta,\Lambda}\mathfrak{J}$ $potentialpotential\tau\sigma$

$\backslash _{\backslash _{\backslash }}11|1|t/$

$\backslash ’\backslash \psi^{1}$

$I_{0}^{7}\rightarrow\Delta_{0}$ ,

where the right cut-formula of $\mathfrak{J}$ is weakening.

Now we eliminate all the ancestors of $D$ in the proof.figure to
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$D,$ $\Pi\rightarrow\Lambda$ . Clearly we have a normal proof.figure to $\Pi\rightarrow\Lambda$ . Now we
reduce 6.4.1 to the following proof-figure 6.4.2.

$\backslash _{\backslash _{\backslash _{\backslash }1,^{!^{\prime}}}}\backslash \psi^{1\prime}I_{1}I1$

6.4.2.
$\frac{\Pi\rightarrow\Lambda}{Someweakeningsand}$

exchanges
potential $\tau$

$\overline{I^{7},\Pi\rightarrow\Delta,\Lambda}$ potential $\tau$

$\sim 1_{1}1tt$

$\backslash \backslash _{\backslash _{\backslash _{\backslash }}}\downarrow^{1}/^{\prime}$

’

$\Gamma_{0}\rightarrow\Delta_{0}$ .

All the circumstance is the same as in the case 5.1.
Now, in addition to the condition at the beginnin $g$ of this section,

the proof-figure may be considered to contain no weakening cut-formula.
We prove by the induction on the number of the cuts in the end $\cdot$

place that there is a suitable cut.
Let $\mathfrak{J}$ be the lowest cut and of the following form.

$\frac{I^{\gamma}\rightarrow\Delta,DD,\Pi\rightarrow\Lambda}{\Gamma,\Pi\rightarrow\Delta,\Lambda}\mathfrak{J}$ .

Let $\mathfrak{P}_{1}$ be the proof-figure to $\Gamma\rightarrow\Delta,$ $D$ and $\mathfrak{P}_{2}$ be the proof-figure to
$D,$ $\Pi\rightarrow\Lambda$ . We see clearly that the $end\cdot place$ of $\mathfrak{P}_{i}$ has a sequence not
contained in the end.place of the proof-figure $\mathfrak{P}$ to $\Gamma,$ $Jl\rightarrow\Delta,$ $\Lambda$ , if and
only if there is an inference at the boundary of $\mathfrak{P}$ , whose chief formula
is an ancestor of the cut-formula of $\mathfrak{J}$ . Therefore, if $\mathfrak{J}$ is not suitable,
then the end place $\mathfrak{E}$ of $\mathfrak{P}_{1}$ or $\mathfrak{P}_{2}$ is a subset of the end-place of $\mathfrak{P}$ .
Then, by the hypothesis of the induction, there exists a suitable cut
$\mathfrak{J}_{0}$ in $\mathfrak{E}$ . Clearly $\mathfrak{J}_{0}$ is a suitable cut of $\mathfrak{P}$ .

Now we assume that the end-place contains a suitable cut. Let
$\mathfrak{J}$ be a suitable cut. The case is divided into the following ones ac-
cording to the outermost logical symbol of the cut-formula of $\mathfrak{J}$ .
6.5. The case, when the outermost logical symbol of the cut-formula

of $\mathfrak{F}$ is 7, $\wedge or\forall$ on variable.

We assume that the proof.figure is of the following form.
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$\backslash _{\backslash _{\backslash }}1f11/$ $\backslash _{\backslash _{\backslash }1}|,i’/$

$\backslash 1\backslash _{\backslash _{\backslash }}\iota’\backslash \psi^{\iota_{I/^{\prime}}}1_{1}1$

,
$\backslash _{\backslash \psi^{1/}}$

$\backslash _{\backslash \psi^{1/}}$

$\Gamma_{1}\rightarrow\Delta_{1},$ A $\Gamma_{2}\rightarrow\Delta_{2},$ $B$ $A,$ $\Pi_{1}\rightarrow\Lambda_{1}$

$\overline{\Gamma_{1},\Gamma}_{2}\overline{\rightarrow\Delta_{1},\Delta_{2},A\wedge B}$ $\overline{A\wedge B,\Pi_{1}\rightarrow\Lambda_{1}}$

$\overline{1}$

$\backslash 1\backslash _{\backslash }1\prime_{l}11/$

$\backslash _{\backslash }1_{1}\backslash _{\backslash _{\backslash \psi^{1}}\prime^{\prime^{\prime^{\prime}}}}1_{1}1_{1}1$

$\backslash J\backslash \backslash ^{1,}$

6.5.1. $\ovalbox{\tt\small REJECT} I_{3}^{v}\rightarrow\Delta_{3},$
$A\wedge BA\bigwedge_{\Lambda_{2}\Gamma_{3},\Pi_{2}\rightarrow\Delta_{3}}B,$

$\Pi_{2}\rightarrow\Lambda_{2}\mathfrak{F}$ potential $\sigma$

11
$\frac{\backslash _{\backslash _{\backslash _{\backslash _{\backslash }}}I^{\prime}}\psi^{1_{1/^{\prime}}}1_{1}\prime}{\Gamma_{4}\rightarrow\Delta_{4}}$

$ wtentia1_{\tau}<^{\sigma}wtentiaI\sigma$

$\backslash 1|1_{l}1_{1}1’/$

$\backslash J\backslash _{\psi^{t}}$

$\Gamma_{0}\rightarrow\Delta_{0}$ ,

where $\Gamma_{4}\rightarrow\Delta_{4}$ is the uppermost sequence under $\mathfrak{F}$ , whose po-
tential is less than $\sigma$.

We reduce 6.5.1 to the following proof.figure 6.5.2.
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$b$

$bb-|$ $-b|$

g
$\overline{\alpha}$ @ $\overline{\alpha}$ $\overline{\alpha}\overline{\alpha}$

$\sim--$ X $\overline{\overline{-}}$ $\overline{\overline{-}}\overline{\overline{-}}$

$\omega$

$9$
@ $\underline{\omega}$ $\omega\vee\omega$

$OQ$ $0QOQ$ $OQO\circ$

$o\dot{\triangleleft}$

$\{\dot{\circ}rj$
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where potentials of sequences are, except the indicated ones in
the figure 6.5.2, equal to potentials corresponding sequences in
6.5.1. Clearly the proof-figure 6.5.2 is normal, and the ordinal
number of 6.5.2 is less than the ordinal number of 6.5.1, by the
similar reason as in the case 5.1, for $\beta_{1}<\alpha$ and $\beta_{2}<\alpha$ imply

$\omega^{\beta_{1}}+\omega^{\beta_{2}}$
$\alpha$

$\omega^{\beta_{1}}+\omega^{\beta_{2}}<\omega^{\alpha}$ , that is $\omega\sigma-1-\tau$ . $\omega\sigma-\tau$ .
$\omega$ $<\omega$

Therefore, only the conditions of potentials for 6.5.2 are to be
examined. Since any other cut in 6.5.2 satisfies the conditions in ac.
cordence with corresponding cut in 6.5.1, we consider only the cut $\mathfrak{F}_{0}$

Though the potential of the upper sequences is less by 1 in $\mathfrak{F}_{0}$ than
in $\mathfrak{F}$ , the degree of the cut and the logical length of each fibre
ending with a cut-formula is less by 1 at least in $\mathfrak{F}_{0}$ than in $\mathfrak{F}$ . Hence
the conditions of potentials for 6.5.2 follow from the conditions for
6.5.1.
6.6. The case, when the outermost logical symbol of the cut.formula

of $\mathfrak{F}$ is $\forall$ on $f$-variable.
Before the reduction we prove the following proposition.

6.6.1. Let $\mathfrak{S}$ be a provable sequence which has the form $F(A_{i}),$ $\Gamma\rightarrow\Delta$

or the form $I^{7}\rightarrow\Delta,$ $F(A_{i})$ , and $F(\alpha_{i})$ have no logical symbol $\forall$

on $f$-variable. And let
$a$ be the degree of $F(A_{i})$ in an arbitrary proof-figure $\mathfrak{P}$ to the

sequence $\mathfrak{S}$ ,
$b$ be the maximal number of 1 and the degrees of the original

formulas $A_{i}(T_{1}, \cdots, T_{i})$ of $A_{i}$ in $\mathfrak{P}$ ,
$c$ be the maximal number of the logical lengths from original

formulas $A_{i}(T_{1}, T_{i})$ to $F(A_{i})$ , and
$d$ be the rank of $F(\alpha_{i})$ .
Then $a\leq b+d$ and $c\leq d$ .

PROOF. If $F(\alpha_{i})$ has no logical symbol, then proposition is clear,
for $a=b$ and $c=d=0$ . Therefore the proposition is easily proved by
the induction on $d$.

Now we consider the reduction. We assume that the proof-figure
is the following.
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$\backslash ^{I}i_{1}l_{I}1/$

$\backslash 1’\backslash 1\backslash _{\backslash \backslash }1\psi^{1}1_{1_{1/^{\prime}}}1$

$\backslash _{\backslash }\psi^{1/}$

$\frac{\Gamma_{1}\rightarrow\Delta_{1},F(\alpha_{i})}{\Gamma_{1}\rightarrow\Delta_{1},\forall_{\overline{1}}\varphi_{i}F(\varphi_{i})}$ $\frac{F(A_{i}),\Pi_{1}\rightarrow\Lambda_{1}}{\forall\varphi_{i}F(\varphi_{i})_{i},\Pi_{1}\rightarrow\Lambda_{1}}\mathfrak{F}_{1}$

11 11166.2.
$\backslash _{\backslash 1,\backslash _{\backslash }1}\backslash \psi^{1_{1/^{\prime}}\prime}|$

$\backslash _{\backslash _{\backslash }}l11/$

$\backslash ;\backslash \psi^{1}$

$\ovalbox{\tt\small REJECT}_{\Gamma_{2}^{i},\Pi_{2}\rightarrow\Delta_{2},\Lambda_{2}^{F(\varphi_{i}),\Pi_{2}\rightarrow\Lambda_{2}}}\tau_{2^{\rightarrow\Delta_{2}\forall\varphi_{i}F(\varphi)\forall\varphi_{i}}}\mathfrak{F}$

potential $\sigma$

$\overline{I}$

$1$

$\backslash _{\backslash _{\backslash }}|/$

$\backslash _{\backslash \psi^{I}}$

’

$I_{0}^{7}\rightarrow\Delta_{0}$ .

We divide the reduction into two stages. First we consider the
following proof-figure.

$\backslash _{\backslash _{\backslash }}I’$

’
$\backslash $ ’

$\backslash \psi^{1}$

$\frac{I_{1}^{7}\rightarrow\Delta_{1},F(\alpha_{i})}{\frac{Someweakeningsandexchanges}{\Gamma_{1}\rightarrow F(\alpha_{i}),\Delta_{1},\forall\varphi_{i}F(\varphi_{i})}}$

6.6.3.
$\backslash _{\backslash _{\backslash _{\backslash _{\backslash }}}}1’\psi^{1}\overline{1_{l}1_{1}}\iota_{1/^{\prime}}$ $\backslash 1\backslash _{\backslash _{\backslash }}1^{l^{\prec}}\backslash 1_{r^{\prime^{\prime}}}\psi^{1}-’,1$

$\Gamma_{2}\rightarrow F(\alpha_{i}),$ $\Delta_{2},$ $\forall\varphi_{i}F(\varphi_{i})$ $\forall\varphi_{i}F(\varphi_{i}),$ $lI_{2}\rightarrow\Lambda_{2}$

$I_{2}^{7},$ $.l\Gamma_{2}\rightarrow F(\alpha_{i}),$ $\Delta_{2},$ $\Lambda_{2}$

$\backslash \backslash _{\backslash }1_{1}1/\backslash _{\backslash \psi^{1_{1}}}J^{\prime}1_{I}\mathfrak{l}$

$\Gamma_{0}\rightarrow F(\alpha_{i}),$ $\Delta_{0}$ ,

where the potential of a sequence of 6.6.3 is equal to the po.
tential of the corresponding sequence of 6.6.2. Clearly this
proof-figure is normal and satisfies the conditions of potentials,
and the ordinal number of 6.6.3. is less than the ordinal number
of 6.6.2. Therefore, by the transfinite induction on the ordinal
number of the proof-figure, we see that

$I_{0}^{\prime}\rightarrow F(\alpha_{i}),$ $\Delta_{0}$

is provable without cut.
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Let $\mathfrak{P}_{1}$ be a proof.figure to $\Gamma_{0}\rightarrow\Delta_{0},$ $F(\alpha_{i})$ without cut, whose begin-
ning sequence has no logical symbol. And let $\mathfrak{P}_{2}$ be the proof.figure
obtained from $\mathfrak{P}_{1}$ by substituting $A_{i}$ for $\alpha_{i}$ in $\mathfrak{P}_{1}$ . Now we reduce
6.6.2 to the following.

$\backslash _{\backslash }1’\backslash _{\psi^{\prime_{1}}}^{1}1/^{J^{\prime}}- 111$

$F(A_{i}),$ $\Pi_{1}\rightarrow\Lambda_{1}$

$-\overline{Someweakeningsand}$

exchanges
$\overline{\forall\varphi_{i}F(\varphi_{i}),\Pi_{1},F(A}_{\overline{i^{\backslash }}}\backslash _{)}\rightarrow\Lambda_{J}$

6.6.4. $\backslash 1_{1}^{1}J\backslash _{\backslash _{\backslash }}|\backslash 1\psi^{\overline{1_{1}}}|$

$\backslash 1_{1}111_{1}^{\mathfrak{l}}$ ,

$\mathfrak{P}_{2_{\backslash _{\backslash }}}^{\iota}\backslash _{\backslash }\backslash |\psi^{1}\ddagger_{1}$

,
$\underline{\Gamma_{2}\rightarrow\Delta}_{2},I_{\frac{\varphi_{I^{i_{7}}}-\frac{F(\varphi_{i})\forall\varphi_{i}F(\varphi_{i}),\grave{\Pi}_{2^{\backslash _{\backslash }\prime}},F(A_{i})\rightarrow\Lambda_{2}\psi^{1}}{2,\Pi_{2},F(A_{i})\rightarrow\Delta_{2},\Lambda_{2}}}{Someexchanges}}^{\backslash }-$ potential $\sigma$

$\Gamma_{0}\rightarrow\Delta_{0},$

$F(A\frac{i)\overline{F(A_{i}),I_{2}^{\gamma},.\Pi_{2}\rightarrow\Delta_{2},\Lambda_{2}}}{\Gamma_{0},\Gamma_{2},\Pi_{2}\rightarrow\Delta_{0},\Delta_{2},\Lambda_{?}}\mathfrak{F}_{0}$

potential $\sigma$

$\overline{Some}$exchanges
$\overline{I_{2}^{7},\Pi_{2},I_{0}^{7}\rightarrow\Delta_{0},\Delta_{2},\Lambda_{2}\overline{111}}-$

$\backslash _{\backslash _{\backslash }I}1_{1}\prime J^{\prime}$

’

$\backslash _{\backslash \psi^{1}}$

’

$I_{0},$ $\Gamma_{0}\rightarrow\Delta_{0},$ $\Delta_{0}$

$-S\overline{ome}$exchanges and contractions
$-\overline{\Gamma_{0}\rightarrow\Delta_{0},}$

where the potential of the sequence loaded over $\mathfrak{F}_{0}$ is $\sigma$ and the
potential of the other sequence is equal to the potential of the
corresponding sequence in 6.6.2.

Let $\alpha$ be the ordinal number of $\forall\varphi_{i}F(\varphi_{i}),$ $\Pi_{1},$ $F(A_{i})\rightarrow\Lambda_{1}$ in 6.6.4,

Then $\alpha+\omega$ is the ordinal number of $\forall\varphi_{i}F(\varphi_{i}),$ $\Pi_{1}\rightarrow\Lambda_{1}$ in 6.6.2.
Therefore if $\alpha_{1}$ is the ordinal number of a sequence $\mathfrak{S}$ between
$\forall\varphi_{i}F(\varphi_{i}),$ $\Pi_{1},$ $F(A_{i})\rightarrow\Lambda_{1}$ and $\Gamma_{2},$ $\Pi_{2},$ $F(A_{i})\rightarrow\Delta_{2},$ $\Lambda_{2}$ and $\beta_{1}$ is the
ordinal number of the sequence corresponding to $\mathfrak{S}$ in 6.6.2, then $\alpha_{1}+\omega$

is not greater than $\beta_{1}$ . Since the ordinal number of $\Gamma_{0}\rightarrow\Delta_{0},$ $F(A_{i})$ in
6.6.4 is less than $\omega$ , the ordinal number of $\Gamma_{0},$ $\Gamma_{2},$ $\Pi_{2}\rightarrow\Delta_{0},$ $\Delta_{2},$ $\Lambda_{2}$ in
6.6.4 is less than the ordinal number of $\Gamma_{2},$ $\Pi_{2}\rightarrow\Delta_{2},$ $\Lambda_{2}$ in 6.6.2. There.
fore the ordinal number of 6.6.4 is less than the one of 6.6.2.
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Now we consider the normality and the conditions of potentials
for 6.6.4. $\mathfrak{P}_{2}$ has no cut, and every implicit formulas in $\mathfrak{P}_{2}$ are ancestors
of the left cut..formula $F(A_{i})$ of $\mathfrak{F}_{0}$ , so we consider only the conditions.
3.1.1, 3.3.4 and 3.3.5 on $\mathfrak{F}_{0}$ .

Let a fibre $\mathfrak{T}_{1}$ (or $\mathfrak{T}_{2}$) begin with a beginning formula and end
with the right (or left) cut-formula of $\mathfrak{F}_{0}$ and $\mathfrak{T}_{1^{\prime}}$ be the fibre cor-
responding to $\mathfrak{T}_{1}$ in 6.6.2. Since both cut-formulas of $\mathfrak{F}$ are not
weakening, and $\mathfrak{T}_{1^{\prime}}$ is affected by the inference $\forall$ left on $f$-variable,
the beginning formula of $\mathfrak{T}_{1^{\prime}}$ has no logical symbols. Therefore the
beginning formula of $\mathfrak{T}_{1}$ has no logical symbols and $F(\alpha_{1})$ has no $\forall$

on $f$-variable. On the other hand, as beginning sequences of $\mathfrak{P}_{1}$ have
no logical symbol, the beginning formula of $:\mathfrak{T}_{2}$ is an original formula
of $A_{i}$ in $F(A_{i})$ of the left cut-formula $\mathfrak{F}_{0}$, so $\mathfrak{T}_{2}$ is not affected by $\forall$

on $f$-variable. Hence the condition 3.1.1 is satisfied.
From 3.2.5 and 3.3.4 we see $ b+d+1\leq\sigma$, where $b$ is the maximal

number of the degrees of original formulas of $A_{i}$ in $F(A_{i})$ of $\mathfrak{F}_{1}$ , and
$d$ is the rank of $F(\alpha_{i})$ . Let $a$ or $a^{t}$ be the degree of left or right cut-
formula of $\mathfrak{F}_{0}$ , and $c$ be the logical length of $\sim^{s}\sim_{2}$ . Then by 6.6.1 we
have

$a\leq 1+d$ , $a^{t}\leq b+d$ and $b+c\leq b+d$ .
Of course, $b$ is the maximal number of the degrees of formulas related
to the beginning formula of $\mathfrak{T}_{2}$ , and $\mathfrak{P}_{2}$ has no cut, therefore 3.3.4 or
3.3.5 is obtained by these inequalities.

References

[1] G. Gentzen: Untersuchungen \"uber das logische Schliessen, I, II, Math. Z. 39 (1935).
176-210, 405-431.

[2] –: Die Widerspruchsfreiheit der reinen Zahlentheorie, Math. Ann. 112 (1936),
493-565.

[3] –: Die gegenw\"artige Lage in der mathematischen Grundlagenforschung.
Neue Fassung des Widerspruchsfreiheitsbeweises f\"ur die reine Zahlentheorie. Leipzig,
1938.

[4] G. Takeuti: On a generalized logic calculus. (Jap. J. Math. 23 (1953), 39-96);

Erata to ‘On a Generalized Logic Calculus’ (Jap. J. Math. 24 (1954), 149-156)


	On the fundamental conjecture ...
	\S 1. Proof-figure of ...
	\S 2. Concepts concerning ...
	\S 3. Normal proof-figure.
	\S 4. Preparations of ...
	\S 5. Reductions for the ...
	\S 6. Essential reduction.
	References


