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Introduction.

Let $G$ be a compact group and $\mathfrak{N}$ a complex normed linear space.
We mean by a representation $\{\mathfrak{N}, T(a)\}$ a homomorphism of $G$ into
the group of bounded linear operators on $\mathfrak{N}$ such that $a\rightarrow T(a)$ . The
following types of representations are important: i) algebraic repre $\cdot$

sentation, ii) bounded algebraic representation,i) iii) weakly measurable
representation,2) iv) strongly measurable representation,3) v) weakly
continuous representation,4) vi) strongly continuous representation.5)
Clearly each condition above becomes gradually stronger when it runs
from i) to vi), except iv). When the representation space $\mathfrak{N}$ of
$\{\mathfrak{N}, T(a)\}$ is a Banach space, it is called a $B\cdot representation$ .

In considering a B-representation $\{\mathfrak{B}, T(a)\}$ , what we shall call
the conjugate representation $\{\mathfrak{B}^{*}, T^{*}(a)\}$ arouses our special interest.
For example, we can prove, by considering $\{\mathfrak{B}^{**}, T^{**}(a)\}$ of a weakly
continuous B-representation $\{\mathfrak{B}, T(a)\}$ , the equivalence of all four condi-
tions (Theorem 2): 1) $\{\mathfrak{B}, T(a)\}$ is completely decomposable, 2) $\{\mathfrak{B}$ ,
$T(a)\}$ is strongly continuous, 3) $\{\mathfrak{B}, T(a)\}$ is strongly measurable, 4)
for any given $x\in \mathfrak{B}$ , the closed invariant subspace generated by $T(a)x$ ,

1) Algebraic repl esentation such that [$|T(a)||<M$ for a certain $M(>0)$ .
2) Bounded algebraic representation such that $f(T(a)x)$ is a measurable function on

$G$ for any $x\epsilon \mathfrak{N}$ and $f\epsilon \mathfrak{N}^{*}$, where $\mathfrak{N}^{*}$ means the conjugate space of $\mathfrak{N}$ .
3) Bounded algebraic representation such that $T(a)x$ is strongly measurable (in the

sense of Bochner) for any fixed $x\epsilon \mathfrak{N}$ .
4) Bounded algebraic representation such that $f(T(a)x)$ is a continuous function on

$G$ for any $x\epsilon \mathfrak{N}$ and $f\epsilon \mathfrak{N}^{*}$ .
5) Algebra $ic$ representation such that

$||T(a_{\alpha})x-T(a_{0})x\Vert\rightarrow 0$ as $a_{\alpha}\rightarrow a_{0}$ ,

(and then necessarily bounded).
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$a\in G$ , is separable. This explains naturally the classical result of Peter
and Weyl [101

The content of the present paper is briefly as follows. We first
give a survey of unitary representations of a compact group (\S 1). In
\S 2 the finite dimensionality of an irreducible algebraic representation
is proved under a weak assumption. Our discussions which follow
are really based on two fundamental Propositions A and $B$ (\S 3); in
fact, Proposition A yields the essential part of the structure Theorem 2
(\S 4). On the other hand, it is possible to deduce from Proposition $B$

a formal structure of weakly continuous representations which might
be regarded as a formulation of reduction of the weak continuity to
the strong one (\S 5). The relations between the weak and the strong
continuity are discussed in \S 6. The r\^ole played by the weak and the
strong measurable representations becomes clear in the last section
(\S 7). The principal idea used here is to reduce an arbitrary repre-
sentation to a unitary one. Since we make full use of the boundedness
of Haar measure, it seems difficult to generalize further this method
beyond the compact case.

Throughout this paper we concem ourselves with the representa.
tion of a compact group G. $\mathfrak{H},$ $\mathfrak{B}$ and $\mathfrak{N}$ denote a Hilbert space, a
Banach space and a normed linear space, respectively; Hilbert space
is not assumed to be separable. Linear operators are assumed to be
bounded and are denoted by $S(a),$ $T(a),$ $U(a)$ etc., whose adjoint opera-
tors are denoted by $S^{*}(a),$ $T^{*}(a)$ etc. respectively. We denote elements
of a compact group $G$ by $a,$ $b,$ $c,$ $\cdots$ , and elements of $\mathfrak{N},$ $\mathfrak{B},$ $\mathfrak{H}$ etc, by
$x,y,$ $z,$ $\cdots;f,$ $g,$ $\cdots$ . The integral is always taken with respect to the
Haar measure on G. $L^{p}(G)(1\leqq p\leqq\infty)$ and $C(G)$ (the family of con-
tinuous functions on $G$ ) denote the usual Banach spaces. For a given
$\mathfrak{N}$ , we shall denote by $[x|P(x)]$ the closed subspace of $\mathfrak{N}$, generated
by all elements $x$ having the property $P(x)$ .

The author wishes to express his deepest thanks to Professors Y.
Mimura and Y. Kawada for their constant encouragements and advices
during the preparation of this paper. The author is also grateful to
Mr. N. Iwahori for his valuable remarks.

6) Numbers in brackets refer to the bibliography at the end of the paper.
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\S 1. Unitary representations.

In this section we consider a unitary representation $\{\mathfrak{H}, U(a)\}$ .
The following three propositions are well-known.7) Since Proposition
1 plays a fundamental r\^ole for our later discussions, we give here a
direct proof of Proposition 1.

PROPOSITION 1. $\{\mathfrak{H}, U(a)\}$ is completely reducible, $i.e$ . $\mathfrak{H}$ is a $dis$ .
crete direct sum of mutually orthogonal finite-dimensional subspaces
$\mathfrak{H}_{\alpha}’ s$ , each of which is invariant and irreductble under $U(a)$ (a $eG$):
$\mathfrak{H}=\sum_{\alpha}\oplus \mathfrak{H}_{\alpha}$ .

PROOF. Since the invariance of a closed subspace of $\mathfrak{H}$ implies
that of its orthogonal complement, it suffices to prove this proposition
only in the case where $\mathfrak{H}$ is generated by $U(a)\xi(a\in G)$ for some fixed
$\xi,$ $\Vert\xi\Vert=1$ .

For all $x,$ $y$ in $\mathfrak{H}$ , we define

$[x,y]=\int(x, U(a)\xi)\overline{(y,U(a)\xi)}da$ . (1)

Normalizing Haar measure so that $\int da=1$ , we have $[x, y]\leqq\Vert x\Vert\Vert y\Vert$ .
Hence $[x, y]$ defines a bounded bilinear form on $\mathfrak{H}$ . Let $H$ be the
Hermitian operator associated with $[x, y]^{8)}$ :

$[x, y]=(Hx, y)$ for all $x,$ $y$ .
Then $H$ is a positive definite operator in the strict sense. Now, for
any $a_{0}\in G$ and for every $x,$ $y$ in $\mathfrak{H}$ , we have

$(U(a_{0})Hx, y)=(Hx, U(a_{0})^{*}y)$

$=\int(x, U(a)\xi)(y, U(a_{0}a)\xi)da$

$=\int(U(a_{0})x, U(a)\xi)\overline{(y,U(a)\xi)}da$

$=(HU(a_{0})x, y)$ ,

whence each $U(a)$ commutes with $H$. Moreover, $H$ is completely

7) See Godement [1], Hurevitsch [5], It\^o [6], Murakami [8] and Wigner [14].

8) This Hermitian operator $H$ was first introduced explicitly by S. lt\^o [6].
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continuous. In fact, if $x_{n}\rightarrow x_{0}$ (weakly), $Hx.\rightarrow Hx_{0}$ (weakly); on the
other hand, from (1) and Lebesgue’s convergence theorem follows
that $\Vert Hx_{n}\Vert^{2}\rightarrow\Vert Hx_{0}\Vert^{2}$ , and thus $Hx_{n}\rightarrow Hx_{0}$ (strongly).

Consequently, if we perform the spectral resolution of $H$, we have
$H=\sum\lambda_{i}P_{\mathfrak{M}i}$ , where $P_{\mathfrak{M}i}$ is the projection whose range is the finite-
dimensional eigenspace $\mathfrak{M}_{i}$ corresponding to the eigenvalue $\lambda;$ . This,
together with the positive definiteness of $H$ in the strict sense, yields

$\mathfrak{H}=\sum\oplus \mathfrak{M}_{i}$ .
Since each finite.dimensional subspace $\mathfrak{M}_{i}$ reduces every $U(a)$ , because
of the commutativity of $H$ and $U(a)$ , the above decomposition of $\mathfrak{H}$

gives a decomposition into invariant subspaces. If $\{\mathfrak{M}_{i}U_{\mathfrak{M}i}(a)\}^{9)}$ is
still reducible, it is possible further to decompose $\mathfrak{M}_{i}$ into irreducible
subspaces by the use of the well.known procedures. This completes
the proof.

We call such a decomposition of $\mathfrak{H}$ as stated in Proposition 1 a
complete decomposition of $\{\mathfrak{H}, U(a)\}$ . Now we shall establish the rela-
tionship between two complete decompositions of $\{\mathfrak{H}, U(a)\}$ . This is
easily formulated in terms of the following notion: For a complete
decomposition $\{\mathfrak{H}, U(a)\}=\sum_{\alpha}\oplus\{\mathfrak{H}_{\alpha}, U_{\mathfrak{H}\alpha}(a)\}$ and for a fixed equivalent

class $\mathfrak{D}$ of irreducible representations of $G$ , we denote by $\mathfrak{H}(\mathfrak{D})$ the
closed subspace generated by all those $\mathfrak{H}_{\alpha}’ s$ for which the irreducible
representation $U_{\mathfrak{H}}\alpha(a)$ belongs to $\mathfrak{D}$ . Thus, $\mathfrak{H}=\sum_{\alpha}\oplus \mathfrak{H}_{\alpha}$ and $\mathfrak{H}=\sum_{\beta}\oplus \mathfrak{H}_{\beta}$

denoting two complete decompositions of $\{\mathfrak{H}, U(a)\}$ , they yield another
kind of decompositions such that $\mathfrak{H}=\geq_{\lrcorner^{\urcorner}}\mathfrak{D}\oplus \mathfrak{H}(\mathfrak{D})$ and $\mathfrak{H}=\geq \mathfrak{D}^{\lrcorner^{\urcorner}}\oplus \mathfrak{H}^{\prime}(\mathfrak{D})$

respectively, with respect to the class of irreducible representations.
Then from the orthogonality relations we get the following result.

PROPOSITION 2. $\mathfrak{H}(\mathfrak{D})=\mathfrak{H}^{\prime}(\mathfrak{D})$ .
PROPOSITION 3. Any irreducible unitary representation of a $com$ .

pact group is equivalent to one which is obtained in a complete decom-
position of the regular representation.

PROOF. Let $\{\mathfrak{H}, U(a)\}$ be irreducible. Then making use of nota-
tions in the proof of Proposition 1, we have $H=\lambda I(\lambda>0)$ , that is

9) $U_{wi}\eta(c)$ denotes the representation of $G$ obtained by restricting $U(a)$ in $\mathfrak{M}_{i}$ . Such
notation is used in \S 1; in the remaining sections, if it happens such a case, we write
$U(a)$ for $U_{\mathfrak{M}i}(a)$ only for simplicity.
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$\lambda\Vert x\Vert^{2}=\int|(x, U(a)\xi)|^{2}da$ .

Hence if we assign to every $x$ of $\mathfrak{H}$ an element $f_{x}(a)=(x, U(a)\xi)/\sqrt{\lambda}$ of
$L^{2}(G)$ , we obtain an isomorphism between $\mathfrak{H}$ and a closed subspace $\tilde{L}$

of $L^{2}(G)$ , through which $U(a)$ can be identified with the regular repre.
sentation in $\tilde{L}$.

REMARK. This result can be generalized to a theorem for locally
compact groups which asserts that any irreducible unitary representation
corresponding to an integrable positive definite function (in Godement’s
sense [1]) is realizable in the regular representation.

\S 2. Irreducible representations.1 )

In his paper [7] I. Kaplansky remarked the fact without giving its
proof that any irreducible strongly continuous B.representation is finite-
dimensional. It is a purpose of this section to formulate this theorem
in a more generalized form and to prove it.

THEOREM 1. Let $\{\mathfrak{N}, T(a)\}$ be an irreducible bounded algebraic
representation of G. If for some non.zero element $f_{0}\in \mathfrak{N}^{*}f_{0}(T_{(}^{\prime}a)x)$ is
continuous on $G$ for any $x\in \mathfrak{N}$ , then $\mathfrak{N}$ is finite-dimensional.

PROOF. Set

$(x, y)=\int f_{0}(T(a)x)\overline{f_{0}(T(a)y)}da$ (2)

for $x,y\in \mathfrak{N}$ . From the assumption the integrand being continuous, this
definition is meaningful. We shall prove that $(x_{0}, x_{0})=0$ implies $x_{0}=0$ .
In fact, $(x_{0}, x_{0})=0$ means

$\int|f_{0}(T(a)x_{0})|^{2}da=0$ ,

and thus $f_{0}(T(a)x_{0})=T^{*}(a)f_{0}(x_{0})=0$ for all a $G$ ; accordingly, putting
$\mathfrak{N}_{0}=$ { $x;T^{*}(a)f_{0}(x)=0$ for all $a\in G$ }, we have $x_{0}\in \mathfrak{N}_{0}$. But $\mathfrak{N}_{0}$ is clearly
an invariant closed subspace, whence from the irreducibility of $\{\mathfrak{N}$ ,
$T_{(}^{\prime}a)\}$ and $f_{0}\neq 0$ it results $\mathfrak{N}_{0}=\{0\}$ , and so $x_{0}=0$ as desired. $(x, y)$

defined in (2) therefore gives an inner product of $\mathfrak{N}$ . $\mathfrak{H}$ denotes the
completion of $\mathfrak{N}$ with respect to this inner product and $||||||$ denotes

10) Irreducibility of a representation means the non-existence of a proper invariant
closed subspace.
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the norm in $\mathfrak{H}$ . If $x.\rightarrow x_{0}$ (strongly), we have $T^{*}(a)f_{0}(x_{n})\rightarrow T^{*}(a)f_{0}(x_{0})$

for each $a$ , and so

$|||x_{n}-x_{0}|||^{2}=\int|f_{0}(T(a)x_{n})-f_{0}(T(a)x_{0})|^{2}da\rightarrow 0$ ;

hence $\mathfrak{N}$ is continuosly imbedded into $\mathfrak{H}$ in the sense of the strong
topology. We denote the image of $\mathfrak{N}$ into $\mathfrak{H}$ by $\mathfrak{H}(\mathfrak{N})$ .

Now consider $T(a)$ as an operator on $\mathfrak{H}(\mathfrak{N})$ . We have by the right
invariance of Haar measure

$|||T(a_{0})x|||^{2}=\int|f_{0}(T(aa_{0})x)|^{2}dx=|||x|||^{2}$ .

Thus, being isometric, $T(a)$ can be uniquely extended to a unitary
operator $U(a)$ on $\mathfrak{H}$ , which clearly induces an algebraic representation
of $G$. We assert furthermore that $\{\mathfrak{H}, U(a)\}$ is a unitary representation
of $G$. This follows immediately from the fact that the function

$f_{0}(T(ba)x)\overline{f}_{0}\overline{(}\overline{T(b)y)}$ is continuous on $G\times G$ .
Applying Proposition 1 to $\{\mathfrak{H}, U(a)\}$ , we obtain a complete decom $\cdot$

position of $\mathfrak{H}$ :
$\mathfrak{H}=\sum_{\alpha}\oplus \mathfrak{H}_{\alpha}=\sum_{\alpha}\oplus P_{\alpha}\mathfrak{H}$ ,

where $P_{\alpha}$ means the projection operator associated with $\mathfrak{H}_{\alpha}$ .
Suppose that there is a non.zero $x$ in $\mathfrak{H}(\mathfrak{N})$ whose projection on

some $\mathfrak{H}_{\alpha_{0}}$ is zero, i. e. $x\neq 0$ and $P_{\alpha_{0}}x=0$ . Putting $\mathfrak{H}_{1}=\mathfrak{H}\ominus \mathfrak{H}_{\alpha_{0}}$ , this
assumption is equivalent to $\mathfrak{H}(\mathfrak{N})\cap \mathfrak{H}_{1}\neq\{0\}$ . Let $\mathfrak{N}_{1}$ be the inverse
image of $\mathfrak{H}(\mathfrak{N})$ A $\mathfrak{H}_{1}$ through the natural mapping of $\mathfrak{N}$ onto $\mathfrak{H}(\mathfrak{N})$ . Since
this mapping is continuous, $\mathfrak{N}_{1}$ is a closed subspace of $\mathfrak{N}$ different from
$\{0\}$ ; mereover, the invariance of $\mathfrak{H}_{1}$ under $U(a)$ implies that of $\mathfrak{N}_{1}$ under
$T(a)$ . Thus the irreducibility of $\{\mathfrak{N}, T(a)\}$ leads to $\mathfrak{N}_{1}=\mathfrak{N}$ . But this
means $\mathfrak{H}(\mathfrak{N})=\mathfrak{H}(\mathfrak{N})\cap \mathfrak{H}_{1}$ , and so $\mathfrak{H}(\mathfrak{N})\subseteqq \mathfrak{H}_{1}$ , which is contradictory to
the fact that $\mathfrak{H}(\mathfrak{N})$ is dense in $\mathfrak{H}$ .

Hence, from $x\in \mathfrak{H}(\mathfrak{N})$ and $x\neq 0$, we can conclude $P_{\alpha}x\neq 0$ for all
$\alpha$ . Taking any $\alpha_{0}$ , let $x$ correspond to $P_{\alpha_{0}}x$ . Then this induces an
isomorphic mapping of $\mathfrak{N}$ into $\mathfrak{H}_{\alpha_{0}}$ regarded as linear spaces. Now $\mathfrak{H}_{\alpha_{0}}$

being $finite\cdot dimensional$ , we find that $\mathfrak{N}$ is also finite-dimensional. This
completes the proof.

After accomplishing the proof, observe that the finite dimensionality
of $\mathfrak{N}$ implies $\mathfrak{H}=\mathfrak{H}(\mathfrak{N})$ . This shows that the complete decomposition of
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$\{\mathfrak{H}, U(a)\}$ given above is trivial.
REMARK. In Theorem 1, if $\mathfrak{N}$ is furthermore assumed to be

separable, the assumption on the continuity of $f_{0}(T(a)x)$ can be replaced
by the measurability. This is shown by the use of the proof of
Theorem 9.

\S 3. Main propositions.

Suggested by the result of Peter and Weyl, which clarifies the
structure of the regular B-representation induced in $C(G)$ , we introduce

DEFINITION 1. For a given algebraic representation $\{\mathfrak{N}, T(a)\}$ , let
$\{\mathfrak{N}_{\alpha}, T(a)\}_{\alpha eA}$ be the family of all the finite.dimensional irreducible
representations such that $Ji_{\alpha}’ s$ are invariant subspaces of $\mathfrak{N}$ . $\{\mathfrak{N}, T(a)\}$

(or $\mathfrak{N}$ ) is called completely-decomposable if the subspace generated by
all $\{?l_{\alpha}\}_{\alpha\epsilon A}$ is dense in $J\mathfrak{i}$ with respect to the strong topology.

From Theorem 1 follows that, if $\{\backslash y\},$ $T(a)$ } is weakly continuous,
the assumption on finite dimensionality of $\mathfrak{N}_{\alpha}$ in the above definition
becOmes superfluous.

Now we shall prove two fundamental Propositions A and $B$ , which
seem to be, in a sense, in a dual relation. These propositions are very
similar to each other not only in the statement but also in the proof.
However, as is seen later, they possess in an essential feature the
different significance for the theory of representations and will be used
rather independently.

PROPOSITION A. Let $\{\mathfrak{N}, T(a)\}$ be a bounded algebraic representa-
tion of $G$ , and let $\{\mathfrak{S}, T(a)\}$ be a weakly continuous representation
such that $\mathfrak{S}$ is an invariant subspace of $\mathfrak{N}^{11)}$ Then, regarding $\{\mathfrak{N}^{**}$ ,
$T^{**}(a)\}$ as a bounded algebraic representation of $G$, we can find an
invariant closed subspace $\tilde{\mathfrak{S}}$ of $\mathfrak{N}^{**}$ with the following properties.

i) $\{\tilde{\mathfrak{S}}, T^{**}(a)\}$ is strongly continuous and completely decomposable.
ii) Let an element $f$ of !] $t^{*}$ have the property: $F(f)=0$ for all

$F\in\tilde{\mathfrak{S}}$ . Then $f$ belongs to $\mathfrak{S}^{\perp}$, where $\mathfrak{S}^{\perp}=$ [$f|f(x)=0$ for all $x\in \mathfrak{S}$ ].
PROOF. Taking any fixed $\xi\in \mathfrak{S}$ , we define an inner product in

$\mathfrak{N}^{*}$ by

$(f, g)_{\xi}=\int f(T(a)\xi)\overline{g(}\overline{T}\overline{(a)\xi)}da$ . (3)

11) In such a case, we say that $\{\mathfrak{S}, T(a)\}$ is contained in $\{\mathfrak{N}, T(a)\}$ .
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Let $\mathfrak{N}_{\xi^{*}}$ be the closed subspace of $\mathfrak{N}^{*}$ formed by all elements $f$ with
$(f, f)_{\xi}=0$ ; we obtain a Hilbert space $\mathfrak{H}_{\xi}$ by completion of the quotent
space $\mathfrak{N}^{*}/\mathfrak{N}_{\xi^{*}}$ . Denote the canonical mapping of $\mathfrak{R}^{*}$ into $\mathfrak{H}_{\xi}$ , by $f\rightarrow\dot{f}$,
and the imbedded image of $\mathfrak{N}^{*}$ into $\mathfrak{H}_{\xi}$ , by $\mathfrak{H}_{\xi}(\mathfrak{N}^{*})$ . Since the repre-
sentation $\{\mathfrak{N}, T(a)\}$ is bounded, we may assume by (3)

$|||f|||_{\xi}\leqq||$ fll , (4)

where $||||||_{\xi}$ means the norm of $\mathfrak{H}_{\xi}$ . Now, from $T^{*}(a)\mathfrak{N}_{\xi^{*}}\subseteqq \mathfrak{N}_{\xi^{*}}$ , it
follows that $T^{*}(a)$ induces an operator in $\mathfrak{H}_{\xi}(\mathfrak{N}^{*})$ ; this operator being
isometric by (3), we can extend it to a unitary operator $U^{*}(a)$ on $\mathfrak{H}_{\xi}$ .
Remembering the proof of Theorem 1, we know that $\{\mathfrak{H}_{\xi}, U(a)\}$ thus
obtained is a unitary representation of $G$ , and that $\mathfrak{H}_{\xi}$ admits a com-
plete decomposition with respect to this representation such that

$\mathfrak{H}_{\xi}=\sum_{\alpha}\oplus \mathfrak{H}_{\xi_{a}}.\cdot$

Consider the linear functional $F_{\xi,h}(f)$ on $\mathfrak{N}^{*}$ associated with each
element $h\in \mathfrak{H}_{\xi}$ , defined by $F_{\xi.h}(f)=(f, h)_{\xi}$ . We have by (4)

$|F_{\xi.h}(f)|\leqq||f||\cdot|||h|||_{\xi}$ , (5)

hence $F_{\xi.h}(f)$ defines a bounded linear functional on $\mathfrak{N}^{*}$ . If $h_{1}\neq h_{2}$ ,
we have $(f, h_{1})_{\xi}\neq(\dot{f}, h_{2})_{\xi}$ for at least one $f$, i.e. $F_{\xi.h_{1}}\neq F_{\xi.h_{2}}$ . From (5)
follows $||F_{\xi.h}||\leqq|||h|\Vert_{\xi}$ .

Put
$\mathfrak{N}_{\xi}^{**}=[F_{\xi.h}|h\in \mathfrak{H}_{\xi}]$ ;

$\mathfrak{N}_{\xi}^{**}$ is a closed subspace of $\mathfrak{N}^{**}$ . Denote by $\Psi_{\xi}$ the mapping of $\mathfrak{H}_{\xi}$ into
$\mathfrak{N}_{\xi}^{**}\backslash $ such that $h\rightarrow F_{\xi,h}$ . Then we have shown that $\Psi_{\xi}$ induces a
univalent anti-homomorphism of $\mathfrak{H}_{\xi}$ into $\mathfrak{N}_{\xi}^{**}$ , which is continuous with
respect to the strong topology in each space.

Now observe that the operator $U(a)$ on $\mathfrak{H}_{\xi}$ is transferred by $\Psi_{\xi}$

to such an operator on $\mathfrak{N}_{\xi}^{**}$ as the one obtained by restricting $T^{**}(a)$

to $\mathfrak{N}_{\xi}^{**};$ in fact,

$F_{g_{U(a^{t}h}}.(f)=(\dot{f}, U(a)h)_{\xi}=(U^{*}(a)\dot{f,}h)_{\xi}$

$=F_{\xi.i}(T^{*}(a)f)=T^{**}(a)F_{\xi.h}(f)$ .
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From this it follows that $\Psi_{\xi}(.|_{C}^{\sim}\tau_{\xi.\alpha})$ is an irreducible invariant finite-
dimensional subspace in $\{0l^{**}, T^{**}(a)\}$ , and that $\{\Psi_{\xi}(\mathfrak{H}_{\xi,\alpha}), T^{**}(a)\}$ is
strongly continuous. $\Psi_{\xi}$ being continuous, the subspace generated by
all $\Psi_{\xi}(\mathfrak{H}_{\xi.\alpha})$ is dense in $J?_{\xi^{**}}$ , whence $\{\mathfrak{H}_{\xi^{**}}, T^{**}(a)\}$ is strongly con.
tinuous and completely decomposable, as is readily verified.

Finally, put

$\tilde{\mathfrak{S}}=[J1_{\xi^{**}}\cdot|\xi\in \mathfrak{S}]$ .
We show that $\tilde{\mathfrak{S}}$ meets the requirements i) and ii) stated in the pro-
position.

i) follows from the fact that $\tilde{\mathfrak{S}}$ is generated by the closed subspaces
$\mathfrak{N}_{\xi^{**}}$ in which $T^{**}(a)$ is strongly continuous.

ii) is proved as follows: Choose an $f$ in $\mathfrak{R}^{*}$ such that $F(f)=0$ for
all $F\in\tilde{\mathfrak{S}}$ . If $f\not\in \mathfrak{S}^{\perp}$, we have $f(x_{0})\neq 0$ for an $x_{0}\in \mathfrak{S}$ . Consider $F_{x_{0}.\dot{f}}$ ;
then we have $F_{x_{0},\dot{f}}(f)=0$ and so

$\int|f(T(a)x_{0})|^{2}da=0$ ,

which implies $f(\prime x_{0})=0$ by the continuity of $f(T(a)x_{0})$ . This contradic-
tion shows the validity of ii).

Thus the proof of Proposition A is completed.
Before we enter into Proposition $B$ , for a given bounded algebraic

representation {Yl, $T(a)$ } it is convenient to introduce the subspace
$\mathfrak{N}_{C}^{*}$ of $\backslash $] $l^{*}$ defined by

$\mathfrak{N}_{C}^{*}=$ { $f;f(\tau_{(a)x)}^{\gamma}$ is continuous on $G$ for any $x$ }.

Clearly $\mathfrak{R}_{C}^{*}$ is a closed subspace which is invariant under $T^{*}(a)$ .
PROPOSITION B. Let $\{\mathfrak{N}, T(a)\}$ be a bounded algebraic representa $\cdot$

tion. Regarding $\{\backslash J\mathfrak{i}^{*}, T^{*}(a)\}$ as a bounded algebraic anti.representation,
we can find an invariant closed subspace $\sim_{p}j_{\backslash }$ of $\backslash $) $\mathfrak{i}^{*}$ with the following
properties.

i) $\{\tilde{\mathfrak{L}}, T^{*}(a)\}$ is strongly continuous and completely decomposable.
ii) Let an element $x$ of se have the property: $f(x)=0$ for all

$f\in\tilde{\mathfrak{L}}$. Then $x$ belongs to $\mathfrak{N}_{c^{\perp}}^{*}$, where $!|_{(c^{\perp}}^{\backslash *}=$ [$x|f(x)=0$ for $allf\in \mathfrak{N}_{\dot{C}}^{*}$ ].

PROOF. Although almost all parts of this proof go on simply by
a slight modification, or rather simplification of the proof of Proposition
$A$, we shall follow it briefly for the sake of later use.
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For any fixed $f\in \mathfrak{N}_{C}^{*}$ we define an inner product in $\mathfrak{N}$ by

$(x, y)_{f}=\int f(T(a)x)\overline{f(T(a)y})da$ .
Denoting by $\mathfrak{N}_{f}$ the closed subspace of $\mathfrak{N}$ consisting of all elements
$(x, x)_{f}=0$ , we obtain a Hilbert space $\mathfrak{H}_{f}$ by completion of $\mathfrak{N}/\mathfrak{R}_{f}$ .
Consider a unitary representation $\{\mathfrak{H}_{f}, U(a)\}$ induced naturally from
$\{\mathfrak{N}, 7_{(}^{\backslash }\prime a)\}$ . Then $\mathfrak{H}_{f}$ is decomposed such that

$\mathfrak{H}_{f}=\sum_{\alpha}\oplus \mathfrak{H}_{f.\alpha}$ .
For any $Ze\mathfrak{H}_{f}$ , the linear functional $\Phi_{f.z}$ on $\mathfrak{N}$ defined by

$\Phi_{f,z}(x)=(\dot{x}, z)$

belongs to $\mathfrak{N}^{*}$ , and the anti-linear mapping $\Psi_{f}$ of $\mathfrak{H}_{f}$ into $\mathfrak{N}^{*}$ such that
$z\rightarrow\Phi_{f.z}$ is univalent and continuous. Denote by $\mathfrak{N}_{f.\alpha}^{*}$ the image of
$\mathfrak{H}_{f.\alpha}$ mapped by $\Psi_{f}$ . Then $\mathfrak{N}_{f.\alpha}^{*}$ is a finite-dimensional irreducible
invariant subspace of $\mathfrak{N}^{*}$ with respcet to $T^{*}(a)$ ; furthermore the
representation $\{\mathfrak{N}_{f.\alpha}^{*}, T^{*}(a)\}$ is strongly continuous. Thus, as is readily
seen, putting

$\tilde{\mathfrak{L}}=[\Phi_{f,z}|z\in \mathfrak{H}f, fe\mathfrak{N}_{\dot{C}}^{*}]$ ,

we have the desired closed subspace, and this completes the proof.
It is clear that $\tilde{\mathfrak{L}}$ possesses the subspace generated by all elements

$\Phi_{f,y}$ of $\mathfrak{N}^{*}$ as a dense subspace, where

$\Phi_{f.y}(x)=\int f(T(a)x)\overline{f(T(a)y})da$ $(y\in \mathfrak{N},f\in \mathfrak{N}_{C}^{*})$ .
This fact becomes essential in \S 5.

\S 4. Structure of strongly continuous $B$-representations.

In order to explain our aim in this section, let us consider Pro $\cdot$

position A. This suggests: if a weakly continuous representation
$\{\mathfrak{N}, T(a)\}$ is given, we have a strongly continuous representation which is
contained in $\{\mathfrak{N}^{**}, T^{**}(a)\}$ . This representation space is rather thickly
contained in $\backslash $) $\}^{**}$ , but not always in $\mathfrak{N}$ if we regard V} as a subspace
of $\mathfrak{N}^{**}$ . While this situation will be pursued in \S 6, we first examine
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a case where such a strongly continuous representation is already
realized in $\{\mathfrak{N}, T(a)\}$ . Conditions to guarantee us such a normal case
lead naturally to a strongly continuous B-representation, and there we
meet the theorem of Peter-Weyl.

THEOREM 2. Let $\{\mathfrak{B}, T(a)\}$ be a weakly continuous B-representa-
tion. $T/un$ the four properties listed below arc, equivalent to each
other:

1) $\{\mathfrak{B}, T(a)\}$ is completely decomposable.
2) $\{\mathfrak{B}, T(a)\}$ is strongly continuous.
3) $\{\mathfrak{B}, T(a)\}$ is strongly measurable.
4) For every $x\in \mathfrak{B}$ , the invariant closed subspace $[T(a)x|a\in G]$

is separable.12)

PROOF. We shall prove this theorem by showing a sequence of
implications: $1$ ) $\rightarrow 2$ ) $\rightarrow 4$ ) $\rightarrow 3$ ) $\rightarrow 1$ ).

PROOF OF $1$ ) $\rightarrow 2$ ). Assume that $\{\mathfrak{V}, T(a)\}$ fulfills i). Then for
any $xe\mathfrak{B}$ and for any positive number $e$ , there exists an element $y$

belonging to an invariant finite.dimensional subspace $\mathfrak{B}_{1}$ such that
$||x-y||<e/3M$, where $M$ is an upper bound of $||T(a)||$. Let $a_{\alpha}\rightarrow a_{0}$.
Since in $\mathfrak{B}_{1}$ the representation $T(a)$ is strongly continuous, for a suitable
$\alpha_{0}$ we have $||T(a_{a})y-T(a_{0})y||<e/3$ when $\alpha>\alpha_{0}$. From this it follows
immediately that $||T(a_{\alpha})x-T(a_{0})x||<e$ when $\alpha>\alpha_{0}$ .

PROOF OF $2$ ) $\rightarrow 4$ ). Let $\{\mathfrak{B}, T(a)\}$ be strongly continuous. For
any fixed $xe\mathfrak{B}$ , put $\mathfrak{B}_{1}=[T(a)x|a\in G]$ and $K=\{a;T(a)x=x\}$ ; clearly
$K$ is a closed subgroup of $G$ . Introduce a new topology into the
homogeneous space $G_{1}=G/K$ (left cosets) by making use of the metric
such that

dist $(\dot{a},\dot{b})=||T(a)x-T_{(}^{\prime}b)x||$ ,

where $\dot{a}$ means the coset containing $a$ . We denote the topological
space thus obtained by $G_{1}^{\prime}$ . The natural mapping of $G$ onto $G_{1}^{\prime}$ being
continuous and $G$ being compact, we find that $G_{1}^{\prime}$ is separable, whence
we can choose a countable dense subset {a$n$ } from $G_{1}^{\prime}$ . Then $\mathfrak{B}_{1}$ is
spanned by the subspace formed by such elements as $\sum\alpha_{n}T(a_{n})x$ with

12) This property of $T(a)$ is called separably-valued. When we assume merely the
separability of [ $ T(a)x|a\epsilon G-N_{x}\urcorner$ , where $N_{x}$ means a suitable null set, $T(a)$ is called
almost separably-valued.
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rational coefficients $\alpha_{n}$ .
PROOF OF $4$) $\rightarrow 3$ ). This is a consequence of a well-known lemma

due to Pettis [11], which asserts that a weakly measurable $T(a)x$

becomes strongly measurable if and only if $T_{(}a$) $x$ is almost separably $\cdot$

valued.
PROOF OF $3$ ) $\rightarrow 1$ ). Using the same notations as in Proposition $A$ ,

we have only to show that $\tilde{\mathfrak{S}}$ , constructed in this case for $\{\mathfrak{B}, T(a)\}$ ,
coincides with $\mathfrak{B}$ , under the assumption of strong measurability. Now,
as is readily verified by ii) of Proposition $A$ , it is sufficient for this to
prove $\tilde{\mathfrak{S}}\subseteqq \mathfrak{B};\tilde{\mathfrak{S}}$ being generated by all $F_{\xi,f}(\xi\in \mathfrak{B}, f\in \mathfrak{B}^{*})$ , this is fur-
thermore reduced to show that $F_{\xi.f}$ is contained in $\mathfrak{B}$ , because $\mathfrak{B}$ is
closed in $\mathfrak{B}^{**}$ .

Since the function $x_{\xi.f}(a)$ , defined on $G$ with the range $\mathfrak{B}$ , such
that

$ x_{\xi.f}(a)=\overline{f(T(a)\xi)}T(a)\xi$

is strongly measurable and $|||x_{\xi f}(a)|||$ is bounded, $x_{\xi f}(a)$ is strongly
integrable (in the sense of Bochner). Hence, putting

$x_{\xi.f}=\int x_{\xi.f}(a)da$ ,

we have
$F_{\xi.f}(g)=\int g(T(a)\xi)\overline{f(T(a)\xi})da$

$=g(\int f\overline{(T(a)\xi)}T(a)\xi da)$

$=g(x_{\xi.f})$ for all $g\in \mathfrak{B}^{*}$ .

This means $F_{\xi.f}=x_{\xi.f}$ , as we wish to show. Thus all parts of Theorem
2 are completely proved.

As easy applications of Theorem 2 to the regular representation
in a function space: $f(x)\rightarrow f(xa)$ , we have the following well.known
results.

COROLLARY 1 (Peter.Weyl). Denote by $R(G)$ the linear set gene-
rated by the coefficients of all finite.dimensional irreducible representa-
tions of G. Then $R(G)$ forms a dense linear set in $L^{p}(G)(1\leqq p<\infty)$

and in $C(G)$ with respect to the proper topology in each space.
We mean by $C^{r}(T^{n})$ the family of all functions of the class $C^{r}$ on
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the n.dimensional torus $T^{n}$ .
$c_{oROLLARY}2$ . Let $f(x_{1}, \cdots, x_{n})\in C^{r}(T^{n})(r\leqq\infty)$ . For a given $e>0$

and for an integer $N$ such that $N\leqq r$, there exists a trigonometrical
polynomial $P(x)$ with the properties:

$|D^{(k)}f(x_{1}, \cdots, x_{n})-D^{(k)}P(x_{1}, \cdots, x_{n})|<e$

for $0\leqq k\leqq N$, where $D^{(k)}f$ is the k.lh derivative of $f$.

\S 5. Structure of weakly continuous representations.

We shall prove that any weakly continuous representation is $ex$ .
pressed as a kind of a continuous direct sum of strongly continuous
representations, each of which is realized as the regular representation
in a function space. This aspect is very analogous to the situation
that any $W^{*}$ -algebra (ring, according to a terminology of von Neumann)
on a separable Hilbert space can be reduced to factors and is written
as a direct integral of them, as is shown by von Neumann [9], Segal
[12] and Godement [2].

THEOREM 3. Let $\{\mathfrak{N}, T(a)\}$ be a weakly continuous representation
of G. Then we can find a locally compact space $\Omega$ , and a $non\cdot trivial$

normed linear space $I_{\xi}^{7}$ corresponding to each point $\xi$ of 9; $I_{\xi}^{\gamma}$ is a
subfamily of continuous functions on $G$ with a suitable norm, and is
also anti-isomorphic to an invariant subspace of $\{\mathfrak{N}^{*}, T^{*}(a)\}$ . Further-
more we have a linear mapping of $\backslash J\mathfrak{i}$ onto $I_{\xi}^{\gamma}$ such that $x\rightarrow x_{\xi}(a)$ .
We denote by $x_{\xi}^{*}$ the element in $\mathfrak{N}^{*}$ corresponding to $x_{\xi}(a)$ . The totality
of $x_{\xi}(a)(\xi e\Omega, x\in \mathfrak{R})$ can be considered as a linear space $\Delta$ , formed by
such functions on $\Omega$ as taking values in $I_{\xi_{0}}$ at $\xi=\xi_{0}$ .

Those have the following properties:
1) The linear mapping

$x\rightarrow\{x_{\xi}(a)\}$

of $\mathfrak{N}$ onto $\Delta$ is univalent. This correspondence is denoted by $x\sim x_{\xi}(a)$ .
2) $||x_{\xi}(a)||_{\xi}\leqq||x||$ , where $||||_{\xi}$ means the norm in $\Gamma_{\xi}$ .
3) $T(b)x\sim x_{\xi}(ab)$ .
4) $||x_{\xi}(ab_{\alpha})-x_{\xi}(ab_{0})||_{\xi}\rightarrow 0$ as $b_{\alpha}\rightarrow b_{0}$ . i.e. the right regular repre-

sentation in $I_{\xi}^{7}$ is strongly continuous.
5) For fixed $a$ and $x,$ $x_{\xi}(a)$ as afunction of $\xi$ belongs to $L_{\infty}(\Omega)$ ,
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where $L_{\infty}(S2)$ means the function space formed by all continuous func-
tions vanishing at infinity.

6) $||T(a)x||=\max_{\xi\epsilon\Omega}|x_{\xi}(a)|$ .
7) Let $x-x_{\xi}(a),$ $y\sim y_{\xi}(a)$ . Then

$y_{\xi^{*}}(x)=\int x_{\xi}(a)\overline{y_{\xi}(a)}da$ .

8) Let $x\sim x_{\xi}(a)$ . If a sequence $\{\xi_{n}\}$ of $\Omega$ converges to $\xi$ , then
$x_{\xi_{n}^{*}}$ converges weakly to $x_{\xi_{0}}^{*}$ .

PROOF. Let $\Omega^{\prime}$ be the unit circle of $\mathfrak{N}^{*}$ . Then, as is well-known,
$\Omega^{\prime}$ is compact with respect to the weak topology. Thus, putting $\Omega$ for
$\Omega‘-\{0\}$ , we find that $\Omega$ is the locally compact space (the eliminated
point $0$ is considered to be at infinity). For any $x\in \mathfrak{N}$ , we assign to
each $ f\in\Omega$ the continuous function on $G$ such that

$x_{f}(a)=f(T(a)x)$ . (6)

For a fixed $ fe\Omega$ , let $\Gamma_{f}^{\prime}$ be the linear space consisting of all
functions $x_{f}(a)$ , where $x$ runs over $\mathfrak{N};I_{J}^{7^{\prime}}$ is clearly nontrivial. The
mapping $x\rightarrow x_{f}(a)$ gives rise to a linear mapping of $\mathfrak{N}$ onto $I_{f}^{7/}$ .

In order to define a norm in $\Gamma_{f}^{\prime}$, we make use of Proposition B.
Applying it to $\{\mathfrak{N}, T_{(}^{\prime}a)\}$ in question, we see that $\tilde{\mathfrak{L}}$ is an invariant
closed subspaces of $\{\mathfrak{N}^{*}, T^{*}(a)\}$ which is generated by invariant sub $\cdot$

spaces $\mathfrak{N}_{f}^{*}(f\in \mathfrak{N}^{*});\mathfrak{N}_{f}^{*}$ is formed by all elements such that

$\Phi_{f.x}(y)=\int f(T(a)y)\overline{f(T(a)x})da$ $(x\in \mathfrak{N})$ , (7)

as is remarked at the end of Proposition B. If $f(T(a)x)\equiv 0$ , then of
course $\Phi_{f.x}\equiv 0$ ; conversely $\Phi_{f.x}\equiv 0$ yields $\Phi_{f.x}(x)=0$ , that is,

$\int|f(T(a)x)|^{2}da=0$ and so $f(T(a)x)\equiv 0$ .
Therefore it is possible to introduce a norm in $\Gamma_{f}^{\prime}$ by

$||x_{f}(a)||_{f}=||\Phi_{f,x}||$ .
As is seen from (6) and (7), the normed linear space $I_{f}$ whose con-
stituents are $I_{f}^{7/}$ and $||||_{f}$ is anti.isomorphic to $9l_{j}^{*}$ by means of the
correspondence $x_{f}(a)\leftrightarrow\Phi_{f.x}$

Now we shall prove that $\Omega,$ $I_{f}^{7}$ and $x\rightarrow x_{f}(a)$ have the properties
stated in the theorem.
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1) $x_{f}(a)=f(T(a)x)\equiv 0$ for all $ f\in\Omega$ , is equivalent to $x=0$.
2) By (7) and $||f||\leqq 1$ , we may assume $||\Phi_{f.x}||\leqq||x||$ , and so

$||x_{f}(a)||_{f}\leqq||x||$ .
3) From $x\sim x_{f}(a)$ and $x_{f}(a)=f(T(a)x)$ , it results $T(b)x\sim x_{f}(ab)$ .
4) Since by (7) $\Phi_{J},\tau(b)x^{---T^{*}(b^{-1})\Phi_{f,x}}$

’ we have $||x_{f}(ab)||_{f}=$

$||T^{*}(b^{-1})\Phi_{f,x}||$ , and so
$||x_{f}(ab_{\alpha})-x_{f}(ab_{0})||_{f}=||T^{*}(b_{\alpha}^{-1})\Phi_{f.x}-T^{*}(b_{0^{-1}})\Phi_{f,x}||$

This tends to zero as $b_{\alpha}\rightarrow b_{0}$, because $\{\mathfrak{N}_{f}^{*}, T^{*}(a)\}$ is strongly con-
tinuous.

5) This is easily seen by the definition of weak topology.
6) $||T(a)x||=\max_{/f1\leq 1}|f(T(a)x)|=\max_{\Omega}f\epsilon|x_{f}(a)|$ .
7) By (6) and (7) this is clear.
8) Suppose that $f_{n}\rightarrow f_{0}$ (weakly); then $f_{n}(T(a)x)\rightarrow f_{0}(T(a)x)$ for

each $a$, whence by (7) $\Phi_{J_{n^{x}}}.\rightarrow\Phi_{f_{0}.x}$ (weakly).
This completes the proof.
REMARK. $\Omega$ does not always satisfy the first axiom of countability.

But it is known that, in the case when Yt is a reflexive Banach space,
$\Omega$ is locally sequentially-compact.

Now it is desirable to take an available simple space as the base
space $\Omega$ in the above theorem. Because we know by Theorem 2 the
structure of strongly continuous representations, we arrive at

DEFINITION 2. Let $\{\mathfrak{N}, T(a)\}$ be a bounded algebraic representa-
tion. Assume that it is possible to find a strongly continuous repre-
sentation $\{\mathfrak{S}, S(a)\}$ such that

1) There exists a continuous univalent linear mapping $\Psi$ of $\mathfrak{N}$

onto $\mathfrak{S}$ .
2) $\Psi(T(a)x)=S(a)\Psi(x)$ .

Then $\{\mathfrak{N}, T(a)\}$ is called almost $strongly\cdot continuous$ .
THEOREM 4. For a given weakly continuous representation

$\{\mathfrak{N}, T(a)\}$ , assume that we can select suitable countable elements $f_{1},f_{2}$ ,
in $i1\mathfrak{i}^{*}$ such that $\{T^{*}(a)f_{i} ; a\in G, i=1,2, \cdots\}$ forms a total subset in

$\mathfrak{N}^{*13)}$ Then $\{\mathfrak{N}, T(a)\}$ is almost strongly.continuous.
PROOF. Denote by $\mathfrak{S}^{t}$ the linear set consisting of all elements

13) A subset $\mathfrak{S}$ in the conjugate space of a normed linear space se is called total,
when, if $f(x)=0$ for all $f\epsilon \mathfrak{S}$. then $x=0$ .
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such that $\Phi_{x}=\{x_{f_{1}}(a), x_{2}(a), \cdots\}$ , where $x_{f_{\oint}}(a)$ is defined by (6). This
is a subset of a sequential space, whose coordinates are continuous
functions on $G$. We introduce a norm in $\mathfrak{S}$

‘ by

$||\Phi_{x}||=\sum_{i=1}^{\infty}\frac{\Vert x_{!i}(a)\Vert_{f_{i}}}{2^{i}}$ ;

here we assume $||f_{i}||=1(i=1,2, \cdots)$ without losing generality.
Denoting by $\mathfrak{S}$ the normed linear space $\{\mathfrak{S}^{\prime}; |||_{1^{1}}\}$ , we define a

mapping $\Psi$ of $\mathfrak{N}$ onto $\mathfrak{S}$ by $x\rightarrow\Phi_{x}$ Then $\Psi$ is obviously linear and
continuous by 2) in Theorem 3. Now $\Phi_{x}=0$ means $||x_{f_{i}}(a)||_{f_{i}}=0$ for
all $i$ and so $x_{f_{i}}(a)\equiv 0$ , whence we have $f_{i}(T(a)x)=T^{*}(a)f_{i}(x)=0$ for
$i=1,2,$ $\cdots$ and for all $a\in G$ . This, together with the assumption on
$\{T^{*}(a)f_{i}\}$ , yields $x=0$ . Hence $\Psi$ is univalent.

Now the representation $\{\mathfrak{S}, S(a)\}$ with

$S(b)\Phi_{x}=\{x_{f_{1}}(ab), x_{f_{2}}(ab), \cdots\}$

is strongly continuous, onto which $\{\mathfrak{N}, T(a)\}$ is imbedded by $\Psi$ . Hence
$\{\mathfrak{N}, T(a)\}$ is almost $strongly\cdot continuous$ .

In \S 7, we shall treat again almost strongly.continuous representa-
tions from a somewhat different viewpoint.

\S 6. Relations between two notions of continuity.

In this section we shall treat the relations between the weakly-
and the strongly-continuous representations.14)

From Proposition A and Theorem 2 we have
THEOREM 5. In the case where the representation space $\mathfrak{N}$ is

separable or reflexive, the weak continuity of $\{\mathfrak{N}, T(a)\}$ necessarily
implies the strong continuity.

Let $\{\mathfrak{N}, T(a)\}$ be a bounded algebraic representation. Form an
invariant closed subspace $\mathfrak{N}_{W}$ of $\mathfrak{N}$ , consisting of all those elements
$x$ for which $f(T(a)x)$ is continuous on $G$ for every $f\in \mathfrak{N}^{*}:$ $\{\mathfrak{N}_{W}, T(a)\}$

is the greatest weakly-continuous representation contain$ed$ in $\{\mathfrak{N}, T(a)\}$ ,
and is called the weakly continuous part of $\{\mathfrak{N}, T(a)\}$ . The strongly

14) We could not succeed in obtaining an example of a weakly, but not strongly,

continuous representation.
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continuous part $\{\mathfrak{N}_{S}, T(a)\}$ is defined similarly: $\mathfrak{N}_{S}$ is the invariant
closed subspace of $\mathfrak{N}$ , consisting of all those elements $x$ such that
$xe\mathfrak{N}_{W}$ and $[T(a)x|a\in G]$ is separable. It is clear that $\mathfrak{N}_{S}\subseteqq \mathfrak{N}_{W}\underline{\subseteq}\mathfrak{N}$ .

We are now interested in studying a weakly continuous representa.
tion $\{\mathfrak{N}, T(a)\}$ with $\mathfrak{N}\neq \mathfrak{N}_{S}$ .

LEMMA 1. Using the same notations as in Proposition $A$ , if
$\mathfrak{S}\subseteqq \mathfrak{N}$ , then $\{\mathfrak{S}, T(a)\}$ is strongly continuous.

PROOF. The assumption, combined with ii) of Proposition $A$ , yields
$\mathfrak{S}\subseteqq\tilde{\mathfrak{S}}$ ; $\{\tilde{\mathfrak{S}}, T‘‘*(a)\}$ being strongly continuous, $\{\mathfrak{S}, T(a)\}$ is of course
strongly continuous.

Consequent]y, if a weakly continuous representation $\{\mathfrak{N}, T(a)\}$ with
$\mathfrak{N}\neq \mathfrak{N}_{S}$ is given, applying Proposition A to {’)}, $T(a)$ } itself, we have
$\tilde{\mathfrak{S}}\cap(\backslash ]\mathfrak{i}^{**}-\mathfrak{N})\neq\{0\}$ and $\tilde{\mathfrak{S}}$ A $(V_{t}^{\backslash }-\mathfrak{R}_{S})=\{0\}$ . Furthermore, by ii) of
Proposition $A$ , from $F(f)=0$ for all $F\in\tilde{\mathfrak{S}}$ it results $f=0$ . Thus we
have shown

THEOREM 6. For any weakly continuous representation $\{\mathfrak{N}, T(a)\}$ ,
the strongly continuous part $\mathfrak{N}_{S}^{**}$ of $\{\mathfrak{N}^{**}, T^{**}(a)\}$ forms a total sub-
space. If $\mathfrak{N}_{S^{\Gamma}}\mathfrak{N}=\in$

’ then $\mathfrak{N}_{S}\subsetneqq-\mathfrak{N}_{s}^{**}$ .
$CoROLLARY$ . Let $\{\mathfrak{N}, T(a)\}$ be a bounded algebraic representation.

Consider a closed subspace $\mathfrak{N}_{C}^{**}$ of $\mathfrak{N}^{**}$ , formed by all elements $F$ such
that $l\prime^{\urcorner}(T^{*}(a)f)$ is a continuous function on $G$ for every $f\in \mathfrak{N}^{*}$ . If
$\mathfrak{A}1_{C}^{**}=\mathfrak{N}$ , then $\{\mathfrak{N}, T(a)\}$ is strongly continuous.

The above discussions may be used to obtain a remarkable, but
somewhat pathological property of a weakly continuous B-representation
$\{\mathfrak{B}, T(a)\}$ with $\mathfrak{B}\neq \mathfrak{B}_{S}$ . To see this some preliminary considerations
are necessary.

Let $\mathfrak{B}$ be a non-reflexive Banach space. A theorem due to Milman
asserts that a closed subspace of a reflexive Banach space is also
reflexive, whence, repeating the process to construct $\mathfrak{B}^{**}$ from $\mathfrak{B}$ , we
get

$\mathfrak{B}^{(0)}\lrcorner\subseteqq \mathfrak{B}_{=}^{(1)}\subset_{\Leftarrow}\subset_{\leftarrow}\mathfrak{B}^{(n)}\subseteqq\Leftarrow\cdots$ ,

where $\mathfrak{B}^{(0)}=\mathfrak{B}$ and $\mathfrak{B}^{(n+1)}=\mathfrak{B}^{(n)**}$ . This process is further carried on;
by transfinite induction we shall define a Banach space $\mathfrak{B}^{(\alpha)}$ for any
ordinal number $\alpha$ . Suppose that, for an ordinal number $\alpha_{0}$, we have
already defined $\mathfrak{B}^{(\alpha)}$ for $\alpha<\alpha_{0}$ , with the property: $\mathfrak{B}^{(a)}\rightarrow\subseteqq \mathfrak{B}^{(\beta)}$ for
$\alpha<\beta$. If $\alpha_{0}$ has an ordinal number $\gamma$ which is immediately before $\alpha_{0}$ ,
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we define $\mathfrak{B}^{(\alpha_{0})}$ as $\mathfrak{B}^{(\gamma)**}$ . lf $\alpha_{0}$ is a limit ordinal number, first put
$\mathfrak{L}^{(\alpha_{0})}=\bigcup_{\alpha<\alpha_{0}}\mathfrak{B}_{\alpha}$ ; then $\mathfrak{L}^{(\alpha_{0})}$ becomes in a natural manner a normed linear
space. Now we define $\mathfrak{B}^{(\alpha_{0})}$ as a Banach space obtained by completion
of $\mathfrak{L}^{(\alpha_{0})}$ . Thus we have obtained $\mathfrak{B}^{(\alpha)}$ for any $\alpha$ , such that $\mathfrak{B}^{(\alpha)}\subseteqq \mathfrak{B}^{(\beta)}$

for $\alpha<\beta$ .
Assume that a weakly continuous B-representation $\{\mathfrak{B}, T(a)\}$ is

given. Then we can define an operator $T^{(\alpha)}(a)$ on $\mathfrak{B}^{(\alpha)}$ in an obvious.
manner; $\{\mathfrak{B}^{(\alpha)}, T^{(\alpha)}(a)\}$ is a bounded algebraic $B\cdot representation$ of $G$ .
We denote by $\{\mathfrak{B}_{W}^{(\alpha)}, T^{(\alpha)}(a)\}$ and $\{\mathfrak{B}_{S}^{(\alpha)}, T^{(\alpha)}(a)\}$ the weakly and the
strongly continuous part of $\{\mathfrak{B}^{(\alpha)}, T^{(\alpha)}(a)\}$ , respectively. Then from
Proposition A and Lemma 1 we have

THEOREM 7. Let $\{\mathfrak{B}, T(a)\}$ be a weakly continuous $B$-representa-
tion such that $\mathfrak{B}\neq \mathfrak{B}_{S}$ . Then $\mathfrak{B}_{S^{\alpha}=\mapsto}^{()\subset \mathfrak{B}_{S}^{(\beta)}}$ and $\mathfrak{B}_{W}^{(\alpha)}\subseteqq \mathfrak{B}_{W^{)}}^{(\beta}$ for any
$\alpha<\beta$ .

So far we have mainly concerned with the relationship between
$\{\mathfrak{N}, T(a)\}$ and $\{\mathfrak{N}^{**}, T^{**}(a)\}$ . From now on we shall consider the
properties of $\{\mathfrak{N}^{*}, T^{*}(a)\}$ induced from a given representation $\{\mathfrak{N}, T(a)\}$ .
If the representation space is reflexive, the situation is very clear, thaf
is, the strong continuity of $\{\mathfrak{B}, T(a)\}$ implies the strong continuity of
$\{\mathfrak{B}^{*}, T^{*}(a)\}$ and vice versa.

DEFINITION 3. A bounded algebraic representation $\{\mathfrak{N}, T(a)\}$ is.
called almost weakly-continuous when $\mathfrak{N}_{C}^{*}$ is a total set in $\mathfrak{N}^{*15)}$

From Proposition $B$ and this definition we obtain:
THEOREM 8. Let $\{\mathfrak{N}, T(a)\}$ be an almost weakly-continuous repre-

sentation. Then the strongly continuous part $\mathfrak{N}_{S}^{*}$ of $\{\mathfrak{N}^{*}, T^{\mu}(a)\}$ is
total in $\mathfrak{N}^{*}$ .

We shall give an example of $\{\mathfrak{N}, T(a)\}$ such that $\mathfrak{N}_{S}^{*}$ is total in
$\mathfrak{N}^{*}$ . Let $\{\mathfrak{N}, T(a)\}$ be the regular representation induced in $L^{1}(G)$ ;
then $\{\mathfrak{N}_{S}^{*}, T^{*}(a)\}$ is equivalent to the regular anti-representation induced
in $C(G)$ , and $C(G)$ , regarded as a subspace of $L^{\infty}(G)$ , is total in $L^{\infty}(G)$ .

As a result of the above theorem we have
$CoROLLARY$ . If a weakly continuous representation $\{\mathfrak{N}, T(a)\}$ is

regarded as the coniugate representation of a certain representation,16)
then $\{\mathfrak{N}, T(a)\}$ contains the strongly continuous part as a total subset.
–

15) As to theto the de nition of $\mathfrak{N}_{C}^{\star}$, see p. 232.
16) Namely, we can find an algebraic anti-representation $\{\mathfrak{S}, S(a)\}$ such that $\mathfrak{N}=\mathfrak{S}^{*,}$

$T(a)=S^{*}(a)$ . $\{\mathfrak{N}, T(a)\}$ is called the conjugate representation of $\{\mathfrak{S}, S(a)\}$ .
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From this corollary a problem arises: Does there exist a weakly
continuous representation such that its strongly continuous part is
$\{0\}$ ? The author has no idea to approach this problem.

Now let $\{\mathfrak{N}^{*}, T^{*}(a)\}$ be the conjugate representation of a given
weakly continuous representation $\{\mathfrak{N}, T(a)\}$ . Concerning the formal
structure of $\{\mathfrak{N}^{*}, T^{*}(a)\}$ , we can obtain the corresponding result to
Theorem 3 by the use of Proposition A. The essential distinction
arising here lies in the fact that in this case it is assured that the
base space $\Omega$ is only completely-regular instead of locally-compactness,
contrary to Theorem 3. Since this assertion can be easily formulated,
we omit the exact formulation.

\S 7. Mesurable $B$-representations.

Concerning unitary representations, we know that, whenever the
representation space is separable, the weak measurability of a repre.
sentation necessarily leads to the strong continuity. We proceed as
before to reduce our discussions on measurable B.representations to this
result of the unitary representation. For that purpose the following
lemma is useful, the devices of whose proof are due to E. Hopf [41.

LEMMA 2. Let $\{\mathfrak{B}, T(a)\}$ be strongly measurable. Then

$\int|f_{0}(T(a)x_{0})|^{2}da=0$

implies $f_{0}(x_{0})=0$ .
PROOF. Owing to a lemma of Pettis, for a null set $M_{x_{0}},$ $\mathfrak{B}_{X_{0}}=$

$[T(a)x_{0}|a\not\in M_{x_{0}}]$ is separable, where we may assume $e\not\subset M_{x_{0}}$ . Let $x_{1}$ ,
$x_{2},$ $\cdots$ be a countable dense subset of $\mathfrak{B}_{x_{0}}$ . Now consider the closed
subspace of $\mathfrak{B}$ which consists of all elements $x$ such that $f_{0}(T(a)x)=0$

holds for $a\not\in N_{x}$ , where $N_{x}$ means a suitable null set. Clearly this
subspace contains all $T(a)x_{0}$ for $a$ $eG$ and thus a fortiori $\mathfrak{B}_{x_{0}}$ . Putting

$N=\bigcup_{n=1}^{\infty}N_{x_{n}}$ , we see that $\mathfrak{N}$ is a null set and that $f_{0}(T(a)x)=0$ for $a\not\in N$,

irrespective of $x\in \mathfrak{B}_{x_{0}}$ . Hence, putting $x_{0}$ for $x$ in this equality and
then replacing $x_{0}$ by $T(b)x_{0}$ for any $b\not\in M_{x_{0}}$ , we have $f_{0}(T(ab)x_{0})=0$ for
$a\not\in N$. On the other hand, it follows immediately from the boundedness
of Haar measure that there exists an element $c$ such that $c\not\in N$,
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$c^{-1}\not\in M_{X_{0}}$ . Hence we have $f_{0}(x_{0})=f_{0}(T(cc^{-1})x_{0})=0$ , as we wished to prove.
THEOREM 9. If $\mathfrak{B}^{*}$ is separable, the weakly measurable B-repre-

sentation $\{\mathfrak{B}, T(a)\}$ is strongly continuous.
PROOF. This theorem holds for a $finite\cdot dimensional$ case. Applying

the consideration similar to the one used in the proof of Theorem 2,
we see that it suffices to show the complete decomposability of
$\{\mathfrak{B}, T(a)\}$ .

We first prove:
a) Let $\{\mathfrak{H}_{\xi}, U(a)\}$ be the algebraic unitary representation which

is obtained from $\{\mathfrak{B}, T(a)\}$ by the procedures used in Proposition A
(as is easily seen, this is possible). Then $\{\mathfrak{H}_{\xi}, U(a)\}$ is a (continuous)
unitary representation.

b) If $(f, f)_{\xi}=\int|f(T(a)\xi)|^{2}da=0$ , then $f(\xi)=0$ .
PROOF OF a). It is clear that the separability of $\mathfrak{B}^{*}$ implies that

of $\mathfrak{H}_{\xi}$ ; besides

$(U(a)\dot{f},\dot{g})_{\xi}=\int f(T(a^{-1}b)\xi)g(T(b)\xi)db$

is measurable. Hence $\{\mathfrak{H}_{\xi}, U(a)\}$ is a continuous representation, ac-
cording to a known result for the unitary representation.

PROOF OF b). Since $\mathfrak{B}$ is separable because of the separability of
$\mathfrak{B}^{*},$ $\{\mathfrak{B}, T(a)\}$ is strongly measurable and so Lemma 2 can be applied.

Now, as is easily verified, the above two assertions enable us to
carry over the proof of Proposition A and the proof of $iii$ ) $\rightarrow i$ ) of
Theorem 2 to $\{\mathfrak{B}, T(a)\}$ in question. Thus, if we follow this, we get
the complete decomposability of $\{\mathfrak{B}, T(a)\}$ , which completes the proof.

In the above theorem the separability of $\mathfrak{B}^{*}$ is assumed. The
author cannot determine whether this assumption may be replaced by
a more weakened one such as the separability of $\mathfrak{B}$ . However we
shall show later that this is the case when $\{\mathfrak{B}, T(a)\}$ is the conjugate
representation of some representation.

DEFINITION 4. Let $\mathfrak{B}$ be a Banach space. If a subset $\mathfrak{T}$ of $\mathfrak{B}^{*}$

satisfies the following condition, $\mathfrak{T}$ is called strictly total:

$|f(x)|$

$\sup_{f\epsilon \mathfrak{T}.f\neq 0}\overline{||f||}=||x||$ for all $x\in \mathfrak{B}$ .
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Obviously a strictly total set is total. We have examples of such
sets: 1) $\mathfrak{B}$ , as a subspace of $\mathfrak{B}$ ”, 2) $C(G)$ , as a subspace of $L^{-}(G)$ ,
which is conjugate to $L^{1}(G)$ , 3) The subspace in the conjugate space
of $C(G)$ , consistng of all Radon measures $\{d\mu\}$ such that $d\mu=f(x)dx$

$(f(x)\in C(G))$ .
DEFINITION 5. A bounded algebraic B-represeptation $\{\mathfrak{B}, T(a)\}$

is called s.almost $weakly\cdot continuous$ in the case where $\mathfrak{B}_{C}^{*}$ is strictly
total.

In order to make the position of the following theorem clear, we
first give a general property of almost strongly-continuous representa-
tions.

PROPOSITION 4. An almost strongly.continuous representation
$\{\mathfrak{N}, T(a)\}$ is necessarily almost weakly-continuous.

PROOF. By Definition 2 $\{\mathfrak{N}, T(a)\}$ is continuously imbedded onto
a strongly continuous representation $\{\sim\infty, S(a)\}$ . Denote by $\Psi$ this
linear univalent mapping of $\mathfrak{N}$ onto $\mathfrak{S}$ , and by $\Psi^{*}$ its adjoint mapping
of $\mathfrak{S}^{k}$ into $?l^{*}$ . Observe that, for every $F\in \mathfrak{S}^{\triangleright_{\backslash }}\Psi^{*}(F)(T(a)x)$ is con-
tinuous for each $x\in \mathfrak{N},$ $i$ . $e$ . $\Psi^{*}(\mathfrak{S}^{*})\subseteqq \mathfrak{N}_{C}^{*}$ . This is immediately seen
from the strong continuity of $\{\mathfrak{S}, S(a)\}$ and

$\Psi^{*}(F)(T(a)x)=F(\Psi(T(a)x))$ (from the definition of $\Psi^{*}$ )

$=F(S(a)_{\Psi}(x))$ (from Definition 2).

Now if $\Psi^{*}(F)(x)=0$ for all $F\in \mathfrak{S}^{*}$ , then $F(\Psi(x))=0$ , and so $\Psi(x)=0$ ,
$x=0$. This means that $\Psi^{*}(\mathfrak{S}^{*})$ is total, and thus $\mathfrak{N}_{C}^{*}$ is total. This
completes the proof.

THEOREM 10. Assume that $\{\mathfrak{B}, T(a)\}$ is a strongly measurable
$B\cdot representation$ . If $\{\mathfrak{B}, T(a)\}$ is almost weakly.continuous, it contains
a dense invarirnt subspace $\mathfrak{C}$ such that $\{\mathfrak{C}, T(a)\}$ is an almost strongly-
continuous representation. If $\{\mathfrak{B}, T(a)\}$ is further assumed to be $s$ .
almost weakly-continuous, $\{\mathfrak{B}, T(a)\}$ becomes strongly continuous.

PROOF OF THE FIRST $AssERTION$. Consider the total closed sub-
space $\mathfrak{B}_{C}^{*}$ stated in Definition 3. For $f,$ $g\in \mathfrak{B}_{C}^{*}$ , we define an inner
product by

$(f, g)_{\xi}=\int f(T(a)\xi)\overline{g(T(a)\xi})da$ .
Then, by the repetition of the same arguments as in Proposition $A$,
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we can conclude that there exists a closed subspace $\mathfrak{S}\approx$ of $(\mathfrak{B}_{C}^{*})^{*}$ such
that $\mathfrak{S}\approx$ is invariant under the operator induced by $T^{**}(a)$ for every
$a\in G$ (this operator is denoted by the same notation) and $\{\mathfrak{S}, T^{**}(a)\}\approx$

is strongly continuous. The elements $F_{\xi,g}$ of $\mathfrak{S}\approx$ corresponding to $\xi\in \mathfrak{B}$ ,
$g\in \mathfrak{B}_{C}^{*}$ , that is, defined by

$F_{\xi.g}(f)=\int f(T(a)\xi)\overline{g(T(a)\xi)}da$ $(f\in \mathfrak{B}_{C}^{*})$ (8)

generate a dense invariant subspace $\mathfrak{S}$ in $\mathfrak{S}\approx$ .
Put

$x_{\xi.g}=\int\overline{g(T(a)\xi})T(a)\xi da$ . (9)

From the assumption this Bochner integral exists. (8) and (9) yield

$f(x_{\xi,g})=F_{\xi,g}(f)$ for all $fe\mathfrak{B}_{C}^{*}$ .
Since $\mathfrak{B}_{C}^{*}$ is total, $x_{\xi.g}$ is uniquely determined by the above relation.
From this, putting $\mathfrak{C}$ for the subspace generated by $x_{\xi.g}(\xi\in \mathfrak{B}, g\in \mathfrak{B}_{C}^{*})$ ,
we know that $\mathfrak{C}$ is an invariant subspace of $\{\mathfrak{B}, T(a)\}$ , and the map-
ping $\Psi$ defined by $\Psi(x_{\xi.g})=F_{\xi.g}$ gives rise to a univalent linear mapping
of $\mathfrak{C}$ onto $\mathfrak{S}$ . Now

$||\Psi(x_{\xi.g})||=\sup_{C}|f(x_{\xi.g})|\leqq||x_{\xi.g}||,J\epsilon \mathfrak{V}^{*}.l)f|/=1$ (10)

whence $\Psi$ is continuous. Besides clearly

$\Psi(T(a)x)=T^{**}(a)\Psi(x)$ .
Thus $\{\mathfrak{C}, T(a)\}$ is almost strongly-continuous.

Consequently, if we can show that $\mathfrak{C}$ is dense in $\mathfrak{B}$ , the proof will
be completed. This is done as follows.

Take $f\in \mathfrak{B}^{*}$ such that $f(x)=0$ for all $x\in \mathfrak{C}$ . Then this means
$f(x_{\xi.g})=0$ for any $\xi\in \mathfrak{B},$ $g\in \mathfrak{B}^{*}$ , whence we have by (9)

$\int\overline{g(T(a)\xi)}f(T(a)\xi)da=0$ .
This is written as

$\overline{g(\int\overline{f(T(a)\xi)}T(a)\xi da)}=0$ for all $\xi\in \mathfrak{B},$ $g\in \mathfrak{B}_{C}^{*}$ .
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But $\mathfrak{B}_{C}^{*}$ being total, it results

$\int\overline{f(T(a)\xi)}T(a)\xi da=0$ for all $\xi\in \mathfrak{B}$ .

Here applying $f$, we have

$\int|f(T(a)\xi)|^{2}da=0$ for all $\xi\in \mathfrak{B}$ ,

whence by Lemma 2 we obtain $f=0$ . This completes the proof.
PROOF OF THE SECOND $AssERTION$ . Suppose that $\{\mathfrak{B}, T(a)\}$ is

strongly measurable and s.almost weakly-continuous. When we apply
the above proof to $\{\mathfrak{B}, T(a)\}$ , by Definition 4 we have the equality
sign in (10), and so $\mathfrak{S}$ may be identified with $\mathfrak{C}$, from which the strong
continuity of $\{\mathfrak{B}, T(a)\}$ follows.

REMARK. The second part of this theorem is a strengthened form
of Theorem 2, $3$ ) $\rightarrow 2$ ).

$CoROLLARY$. Suppose that $\{\mathfrak{V}, T(a)\}$ is a weakly-continuous B-
representation and $\{\mathfrak{B}^{*}, T^{*}(a)\}$ is strongly measurable. Then $\{\mathfrak{B}^{*}$ ,
$T^{*}(a)\}$ is strongly continuous.

This follows from the fact that $\{\mathfrak{V}^{*}, T^{*}(a)\}$ is s.almost weakly-
continuous because $\mathfrak{B}$ is strictly total in $\mathfrak{B}^{**}$ .

Now, in order to derive some consequences from this corollary,
we need a following result which is a slight generalization of Pettis’
lemma [111.

LEMMA 3. Let $\mathfrak{B}$ be a Banach space and $\mathfrak{S}$ be a strictly total
subspace in $\mathfrak{B}^{*}$ . Let $x(\alpha)$ be a mapping of measure space $(\Omega, B, m)$

into $\mathfrak{B}$ such that $x(\alpha)$ is almost separably-valued. If $f(x(\alpha))$ is a
measurable function on $\Omega$ for every $f\in \mathfrak{S}$ , then $x(\alpha)$ is strongly
measurable.

PROOF.17) We shall first prove the measurability of $||x(\alpha)||$ .
Without losing generality, we may assume $x(\Omega)=\{x(\alpha);\alpha\in\Omega\}$ is
separable. Let $\{x_{n}\}=\{x(\alpha_{n})\}$ be a countable dense set in $x(\Omega)$ . $\mathfrak{S}$,
being strictly total, contains elements $\{f_{n.m}\}$ such that

17) See Hille [3], p. 36.
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$||f_{n.m}||=1$ ,

$||x_{n}||\geqq|f_{n.m}(x_{n})_{1}^{1}\geqq||x_{n}||-\frac{1}{m}$ .

Put $\varphi_{m}(\alpha)=\sup_{\pi}|f_{\pi.m}(x(\alpha))|$ . Then by the measurability of $f_{n.m}(x(\alpha))$

we see that $\varphi_{m}(\alpha)$ is also measurable. For any $x(\alpha)$ and for any given
$e>0$ there exists an $x_{n}$ such that $||x(\alpha)-x_{n}||<e$, whence we have

$\varphi_{m}(\alpha)\geqq|f_{n.m}(x(\alpha))|$

$\geqq|f_{n,m}(x_{n})|-|f_{n,m}(x(\alpha)-x_{n})|$

$\geqq||x(\alpha)||-$ $\frac{1}{m}-2e$ ,

and so
1

$\varphi_{m}(\alpha)+$
$m^{-\geqq||x(\alpha)||\geqq\varphi_{m}(\alpha)}$

Hence we have $\sup_{m}\varphi_{m}(\alpha)=||x(\alpha)||$ , which means the measurability of
$||x(\alpha)||$ . Now the strong measurability of $x(\alpha)$ follows immediately
from this result by the use of the familiar argument.

We can now show that there exist some remarkable relations
between $\{\mathfrak{B}, T(a)\}$ and $\{\mathfrak{B}^{*}, T^{*}(a)\}$ under the assumption on the separ $\cdot$

ability of $\mathfrak{B}^{*}$ .
THEOREM 11. Let $\{\mathfrak{B}, T(a)\}$ be a weakly measurable B.representa-

tion. If $\mathfrak{B}^{*}$ is separable, then $\{\mathfrak{B}^{*}, T^{*}(a)\}$ is strongly continuous.
PROOF. From Lemma 3 it results that $\{\mathfrak{B}^{*}, T^{*}(a)\}$ is strongly

measurable since $\mathfrak{B}$ is strictly total in $\mathfrak{B}^{**};$ on the other hand, Theorem
9 shows the strong continuity of $\{\mathfrak{B}, T(a)\}$ under our assumption.
Thus Corollary of Theorem 10 can be applied, which yields the desired
result.

COROLLARY 1. If $\mathfrak{B}^{*}$ is separable, the weak measurability of $\{\mathfrak{B}$ ,
$T(a)\}$ implies the strong continuities of $\{\mathfrak{B}, T(a)\}$ and $\{\mathfrak{B}^{*}, T^{*}(a)\}$ .

The following corollary should be compared with Theorem 9.
COROLLARY 2. Assume that a weakly measurable B.representation

$\{\mathfrak{B}, T(a)\}$ is the coniugate representation of a certain representation.
Then $\{\mathfrak{B}, T(a)\}$ is strongly continuous whenever $\mathfrak{B}$ is separable.

THEOREM 12. If $\mathfrak{B}$
“ is sepamble, the strong continuity of $\{\mathfrak{B}$ ,
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$T(a)\}$ means the same property of $\{\mathfrak{V}^{*}, T^{\{\epsilon}(a)\}$ and vice versa.
PROOF. If $\{\mathfrak{V}, T(a)\}$ is strongly continuous, it is of course weakly

measurable, so that by Theorem 11 $\{\mathfrak{B}^{*}, T^{*}(a)\}$ is strongly continuous.
The converse part follows from Theorem 5, since $\mathfrak{B}$ is separable.

University of Tokyo.
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