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On fibre spaces in the algebraic number theory.
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Recently A. Weil ([4], [51) has introduced successfully the concept
of the fibre space into the algebraic geometry, and proved the important
classification theorem. In this paper we try to establish an analogous
theory on the algebraic number field.

Starting from any algebraic number field $k$ , we shall begin with
constructing an analogue $S(k)$ of the algebraic curve in \S 1, and then
define in \S 2 the “ W-variety, “ corresponding to the algebraic variety
in the algebraic geometry. After having defined the direct product of
W-varieties, and ” group W-variety” in \S 3, we shall introduce the
fibre spaces over the W-varieties, and prove the existence theorem and
the classification theorem in the last two paragraphs. A certain group
of fibre spaces corresponding to that of line bundles ([3], [5]) turns
out to be isomorphic with the classical group of “ Strahlklasse” in $k$ ,
if $k$ has a finite degree.

We shall here concern ourselves exclusively with the multiplicative
structure of algebraic number fields. In order to take the additive
structure of these fields also in account, it seems necessary to have
recourse to the concept of “ faisceaux” or some other new ideas.

The author wishes to express his cordial thanks to Prof. S. Iyanaga
for his encouragement and interest in this paper.

\S 1. Construction of an analogue of the algebraic curve.
Let $k$ be any algebraic number field of a finite or an infinite

degree fixed once for all. We denote by $k_{\lambda}(\lambda\in\Lambda)$ the fields which are
subfields of $k$ and have finite degrees over the rational number field,
and we define a semi $\cdot$ order $\lambda<\mu$ for $k_{\lambda}\subset k_{\mu}$ in $\Lambda$ , then $\Lambda$ becomes a
directed set.
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Let $\tilde{S}(k),\tilde{S}(k_{\lambda})(\lambda\in\Lambda)$ be the set of all finite(l) prime divisors of $k$ ,
$k_{\lambda}$ respectively. (The notation $\tilde{S}$ will have always this meaning also

with respect to other fields.) The prime divisor of $\tilde{S}(k),\tilde{S}(k_{\lambda})$ will be
generally denoted by $\sim,$$\sim_{A}\mathfrak{p}\mathfrak{p}$ respectively. If $\sim_{\lambda}\mathfrak{p}$ is induced by $\sim \mathfrak{p}$ , then we
write $\sim_{\lambda}\mathfrak{p}=\pi_{\lambda}(\sim \mathfrak{p})$ ; if $\lambda<\mu$ and $\sim_{\lambda}\mathfrak{p}$ is induced by $\sim_{\mu}\mathfrak{p}$ , then we write $\sim \mathfrak{p}_{\lambda}=$

$\pi_{\lambda}^{u}(1_{\mu}\sim_{)})$ . Then we have

$\pi_{\lambda}^{\mu}\circ\pi_{\mu}^{\nu}=\pi_{\lambda}^{\nu}(\lambda<\mu<\nu)$ , $\pi_{\lambda}^{\mu}\circ\pi_{\mu}=\pi_{\lambda}(\lambda<\mu)$ ,

and

$\tilde{S}(k)=proj$ . $\lim_{\lambda}\tilde{S}(k_{\lambda})$ .

Now we shall introduce a topology into $\tilde{S}(k)$ . By a topology we
shall always mean a $T_{1}\cdot topology$, namely one in which any subset
consisting of only one point is closed. First introduce into $\tilde{S}(k_{\lambda})$ the
weakest topology, so that a closed set in $\tilde{S}(k_{\lambda})$ is either $\tilde{S}(k_{\lambda})$ itself
or a set of finite number of points. Then the topological space $\tilde{S}(k)$

will be determined as the projective limit of the topological spaces
$\tilde{S}(k_{\lambda})$ .

Now, let $W$ be the group of all roots of unity; we denote by $\overline{W}$

the set of all elements of $W$ and the symbols $0$ and $\infty$ . We introduce
the weakest topology into $\overline{W}$, and new operations in $\overline{W}$ as follows:

$00=0,$ $\infty\infty=\infty,$ $0^{-1}=\infty,$ $\infty-1=0$ ,

$\zeta 0=0\zeta=0,$ $\zeta\infty=\infty\zeta=\infty$ for all $\zeta\in W$ .

But we do not define $ 0\infty$ and $\infty 0$ .
We denote by $k(W)$ the field generated by $W$ over $k$ . Then we

can embed the multiplicative groups of the residue class fields of $k(W)$

modulo finite primes of $k(W)$ into $W$ as follows. We denote $k(W)$ by
$K$. Let $\sim \mathfrak{p}$ be any finite prime divisor of $K,$ $U(\sim \mathfrak{p})$ the group of all $\grave{\mathfrak{p}}^{\prime}-$

1) ” finite ” means ” non-archimedean”. We may take all prime divisors, but it is
inessential to do so for our purpose.
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units of $K,$ $H(t)\sim_{)}$ the group of $\sim \mathfrak{p}$ units $\eta$ such that $|\eta-1|_{\mathfrak{p}}^{\sim}<1(||_{\mathfrak{p}}\sim means$

a valuation representing $\mathfrak{p}\sim$ ), and $K(\downarrow\sim_{)})^{*}$ the multiplicative group of the
residue class fields. ( $*denotes$ always the multiplicative group of fields.)

Then we have $K(\mathfrak{p})^{*}=U\sim(\sim \mathfrak{p})/H(\mathfrak{p})\sim,$ $W\subset U(\}\sim_{)})$ , Moreover we have the
following lemma.

LEMMA 1. Let $K$ be an algebraic number field containing all roots
of unity and $ K(\mathfrak{p})^{*}\sim$ the multiplicative group of the residue class field
modulo a finite prime divisor $\sim \mathfrak{p}$ of K. Then there exists one and only
one isomorphism $\iota_{t}^{\sim}$ of $ K(\mathfrak{p})^{*}\sim$ into $W$ such that for all $ceK(\sim \mathfrak{p})^{*}$ the
residue class of $\iota_{P}^{\sim}(c)$ $mod$. $\sim$

}) is identical with $c$.
PROOF. Let $\zeta$ be any root of unity, $\mathfrak{p}$ the prime divisor induced

by $\sim \mathfrak{p}$ in the field generated by $\zeta$ over the rational number field, and $p$

the prime rational number divirible by $\mathfrak{p}$ . If $\zeta\equiv 1mod$ . $\sim \mathfrak{p}$ , then $\zeta\equiv 1$

$mod$ . $\mathfrak{p}$ , therefore $\zeta$ is a $p^{\nu}\cdot th$ root of unity for some $\nu$ (Cf. H. Hasse
[2], S. 392). Conversely if $\zeta$ is a $p^{\nu}$ th root of unity, then $\zeta\equiv 1mod$ .
$\sim \mathfrak{p}$ (Cf. H. Hasse [21, S. 391). Hence all $(p^{\nu}-1)\cdot th$ roots are mutually
incongruent $mod$ . $\sim \mathfrak{p}$ since $p^{\nu}-1$ is prime to $p$ for any fixed $\nu$ . On the
other hand, any element of $ K(\mathfrak{p})^{*}\sim$ satisfies an equation $x^{p^{\nu}-1}=1$ for
some $\nu$ . Therefore any residue class of $ K(\mathfrak{p})^{*}\sim$ can be represented by
some element of $W$.

Now we denote by $W_{p}$ the group of all $p^{\nu}$ th roots of unity $(\nu^{=}$

$1,2$ , $\cdot$ . ) and by $W_{p}^{\prime}$ the group of all n.th roots of unity such that $n$

are not divisible by $p$ . Then we have $W=W_{p}W_{p}^{\prime},$ $W_{p}\cap W_{p}^{\prime}=\{1\}$ .
It follows from the above consideration that there exists one and only
one element of the group $W_{p}^{\prime}$ in any residue class of $ K(\mathfrak{p})^{*}\sim$ . We
define $\iota_{\mathfrak{p}}\sim(c)$ to be the element of $W_{p}^{\prime}$ uniquely determined in the
residue class $c$. Then $\iota\sim \mathfrak{p}$

is an isomorphism of $K(\mathfrak{p}\sim)^{*}$ into $W$ satisfying

the above condition. The uniqueness is easily seen. This completes
the proof.

Now we define $ f(\mathfrak{p})\sim$ for $f\in k^{*}$ and $\sim \mathfrak{p}\in\tilde{S}(k(W))$ as follows:

$ f(\sim \mathfrak{p})=\{_{\iota\sim(\overline{f})}^{0_{\mathfrak{p}}}\infty$ $i_{i}f_{f}if|_{1f}^{f}f|_{\mathfrak{p}}^{\mathfrak{p}}\sim<1\sim>1\sim=1\mathfrak{p}$

$and\overline{f}is$ the residue class of $fmod$ . $\sim \mathfrak{p}$ .

Thus the assignment $\sim \mathfrak{p}\rightarrow f(\mathfrak{p})\sim$ is a W.valued function on $\tilde{S}(k(W))$ .
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Now we introduce an equivalence relation on $\tilde{S}(k(W))$ as follows:
Let $\sim \mathfrak{p}$ be equivalent to or if and only if $ f(\mathfrak{p})=f(\mathfrak{q})\sim\sim$ for all $fek^{*}$ . We
denote by $S(k)$ the quotient set of $\tilde{S}(k(W))$ with respect to this
equivalence relation. Then the assignment $\sim \mathfrak{p}\rightarrow f(\dot{\check{\mathfrak{p}}})$ induces a $\overline{W}-$

valued function on $S(k)$ : we denote by $\mathfrak{p},$
$\mathfrak{q},$

$\cdots$ the elements of $S(k)$ ,
and $ f(\mathfrak{p})\sim$ by $f(\mathfrak{p})$ for $\mathfrak{p}$ containing $\sim \mathfrak{p}$ . So we need not distinguish $fek^{*}$

and the function $\mathfrak{p}\rightarrow f(\mathfrak{p})$ .
Let $\sim \mathfrak{p}$ be in $\tilde{S}(k(W))$ , and $\mathfrak{p}^{\prime}\in\tilde{S}(k)$ induced by $\sim \mathfrak{p}$ . Then $\mathfrak{p}^{t}$ depends

only upon the equivalence class $\mathfrak{p}$ of $\mathfrak{p}\sim$ , and $\mathfrak{p}$ will be said to lie above
$\mathfrak{p}^{\prime}$ . Now the canonical mappings of $\tilde{S}(k(W)),\tilde{S}(k_{\mu}(W))$ onto $\tilde{S}(k_{\lambda}(W))$

$(\lambda<\mu)$ induce mappings of $\tilde{S}(k),\tilde{S}(k_{\mu})$ onto $\tilde{S}(k_{\lambda})$ respectively, and we
have

$S(k)=proj$ . $\lim_{\lambda}S(k_{\lambda})$ .
LEMMA 2. Let $\mathfrak{p}^{\prime}$ be a finite prime divisor of $k$ . $If\sim \mathfrak{p}$ and or are

two prolongations of $\mathfrak{p}^{\prime}$ to $k(W)$ and $\iota\sim \mathfrak{p}and$
$\iota_{q}^{\sim}$ are as above, then

$\iota_{\mathfrak{p}}\sim(k(\mathfrak{p}^{\prime})^{*})=\ell_{q}\sim(k(\mathfrak{p}^{\prime})^{*})$ .
We denote by $Z$ this subgroup of $W$ and by $k(Z)$ the field generated
by $Z$ over $k$ . Then $f(\mathfrak{p})=f(q)$ for $allf\in k^{*}$ if and only if the prime
divisors induced by $\mathfrak{p}\sim and$ or in $k(Z)$ coincide with each other.

PROOF, The first part follows from well-known properties of
algebraic extensions of a finite field. Next, if we denote by $\overline{\mathfrak{p}}$ and a
the prime divisors induced by $\mathfrak{p}\sim$ and cr in $k(Z)$ , then we have

$k(Z)(\overline{\mathfrak{p}})^{*}=k(Z)(-\mathfrak{q})^{*}=k(\mathfrak{p}^{\prime})^{*}$ .
If $f(\sim \mathfrak{p})=f(\sim q)$ for all $f\in k^{*}$ , then $\iota\sim \mathfrak{p}$

and $\iota\sim q$ coincide on $k(\mathfrak{p}^{\prime})^{*}$ . Therefore
the residue classes of any $\zeta\in Zmod$ . $\overline{\mathfrak{p}}$ and a are equal, since their
images by

$\iota\sim \mathfrak{p}$ and $\iota\sim q$ coincide with each other. Hence $\overline{\mathfrak{p}}=\overline{\mathfrak{q}}$ in $k(Z)$ .
This reasoning admits the converse.

$CoROLLARY$ . Let $k$ be of a finite degree, and $\mathfrak{p}^{\prime}\in\tilde{S}(k)$ . Let $\zeta$ be
a primitive $(N\mathfrak{p}^{\prime}-1)\cdot th$ root of unity. Then the number of points in
$S(k)$ lying above $\mathfrak{p}^{\prime}$ is equal to the degree of $k(\zeta)$ over $k$ , and is in
particular finite.

Now, introduce into $S(k_{\lambda})$ the quotient topology, and the topological
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space $S(k)$ will be determined as the projective limit of the topological
sprces $S(k_{\lambda})$ . Then $S(k)$ is provided with a $T_{1}$-topology. It suffices
to prove this in the case of a finite degree. In this case, it follows
that the canonical mapping of $\tilde{S}(k(W))$ onto $S(k)$ is open. In fact, let
$U$ be any non.empty open subset of $\tilde{S}(k(W)),$

$\mathfrak{p}$ any class of $S(k)$ , and
then it suffices to prove that $U\cup \mathfrak{p}$ is open. Let $k_{\lambda}$ be subfields of
$k(W)$ which have finite degrees, $\pi_{\lambda},$

$\pi_{\lambda}^{\mu}$ the canonical mappings of
$\tilde{S}(k(W)),\tilde{S}(k_{\mu})$ onto $\tilde{S}(k_{\lambda})(\lambda<_{\mu})$ respectively, and $U_{\lambda}$ non.empty open
subsets of $\tilde{S}(k_{\lambda})$ such that $U=\bigcup_{\pi_{\lambda}^{-1}}_{\lambda}(U_{\lambda})$ where $\lambda$ runs over some
subset of the indexing set. Let $\sim \mathfrak{p}\in \mathfrak{p},$ $Z$, and fi as in the lemma 2.
Since $k(Z)=k_{\nu}$ has a finite degree, $k(Z)k_{\lambda}=k_{\lambda^{\prime}}$ has also a finite degree.

It follows that $U_{\lambda^{\prime}}^{\prime}=(\pi_{\lambda^{\prime}}^{\lambda})^{-1}(U_{\lambda})\cup(\pi_{\nu}^{\lambda^{\prime}})^{-1}(\{\overline{\mathfrak{p}}\})$ is open in $\tilde{S}(k_{\lambda^{\prime}})$ , because
the topology of $\tilde{6^{\backslash }}(k_{\lambda^{\prime}})$ is the weakest one, and $U_{\lambda}$ is non $\cdot$ empty and
open in $\tilde{S}(k_{\lambda})$ . Then we have by the lemma 2 $U\cup \mathfrak{p}=\bigcup_{\lambda}\pi_{\lambda^{\prime}}^{-1}(U_{\lambda}^{\prime},)$ .
Therefore $U\cup \mathfrak{p}$ is open. Now let $\mathfrak{p}$ and $\mathfrak{q}$ be any two distinct points

in $S(k)$, and $\sim \mathfrak{p},$ $Z,\overline{\mathfrak{p}}$ , a as above. Then we have $\overline{\mathfrak{p}}\neq\overline{\mathfrak{q}}\neg$ . Let $U\subset\tilde{S}(k(W))$

be the set of all $\mathfrak{p}_{1}\sim\in\tilde{S}(k(W))$ which are not prolongations of $\overline{\dot{q}}$ . Then
$U$ is open, therefore the image of $U$ by the canonical mapping of
$\tilde{S}(k(W))$ onto $S(k)$ is open. Since this subset of $S(k)$ contains $\mathfrak{p}$ and
does not contain $\mathfrak{q}$ by the lemma 2, it follows that $S(k)$ is provided
with a $T_{1}$-topology. Moreover, it follows from the corollary of the
lemma 2 that the topology of $S(k)$ is the weakest one, if $k$ has a finite
degree.

Now we have the following obvious analogy with the case of the
algebraic geometry. $W$ corresponds to an algebraically closed field,
and $S(k)$ to a curve with the Zariski.topology. The construction of
$S(k)$ corresponds to the extension of a field of definition to the
algebraically closed field, and $k^{*}$ (considered as the set of functions on
$S(k))$ to the field of rational functions on a curve.

\S 2. $W$-varieties and rational mappings.

Now we shall state a general definition which corresponds to the
definition of algebraic varieties.

DEFINITION 1. Let $S$ be a topological space and $\mathfrak{R}(S)$ a set of
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$\overline{W}\cdot valued$ functions defined on some non.empty open subsets of $S$ ; we
denote by $\mathfrak{D}(f)$ the domain of definition of $f\in \mathfrak{R}(S)$ . We call the pair
$(S, \mathfrak{R}(S))$ a W-variety,(2) if the following conditions are satisfied.

1) Any two non.empty open subsets of $S$ always intersect with
each other.

2) Any $f\in \mathfrak{R}(S)$ does not take identically the value $0$ or $\infty$ .
If $f\in \mathfrak{R}(S)$ is not a continuous function, then $f$ takes a constant value
on some non-empty open subset of $S$, and $f(x)\neq 0,$ $\infty$ for all $x\in \mathfrak{D}(f)$ .

3) For any two functions $f$ and $g$ in $\mathfrak{R}(S)$ , there exists one and
only one function $h$ in $\mathfrak{R}(S)$ such that $f(x)g(x)$ and $h(x)$ are defined
and coincide with each other for all $x$ in some non-empty open subset
of S. We denote by $fg$ this function $h$. Whenever $f(x)g(x)$ is defined,
$(fg)(x)$ is defined and $f(x)g(x)=(fg)(x)$ .

4) There exists a function $e$ in $\mathfrak{R}(S)$ such that $\mathfrak{D}(e)=S$ and $e(x)=$

$1$ for all $x\in S$.
5) For any $f\in \mathfrak{R}(S)$ , there exists a function $f^{\prime}$ in $\mathfrak{R}(S)$ such that

$\mathfrak{D}(f$
‘

$)$ $\subset \mathfrak{D}(f)$ and $f^{\prime}(x)=f(x)^{-1}$ for all $x\in \mathfrak{D}(f^{\prime})$ .
We call any function in $\mathfrak{R}(S)$ a rational function on S. lf a

function in $\mathfrak{R}(S)$ takes a constant value on some non.empty open
subset of $S$, then we call this a constant function.(3) We can easily
see that $\mathfrak{R}(S)$ forms an abelian group with respect to the product
defined as above; and if $f$ and $g\in \mathfrak{R}(S)$ take the same values on some
non-empty open subset of $S$ , then $f=g$.

Examples of W.varieties:
1) $S=W,$ $\mathfrak{R}(W)=the$ set of all assignments of $\zeta^{n}$ to $\zeta\in W$ for all

integers $n$ . It is easily seen that $(W, \mathfrak{R}(W))$ is a W-variety.
2) $S=\overline{W},$ $\mathfrak{R}(\overline{W})=the$ set of all assignments of $\zeta^{n}$ to $\zeta\in\overline{W}$ for all

integers $n$ . For $n>0,0^{n}$ and $\infty^{-n}$ mean $0,0^{-n}$ and $\infty^{n}$ mean $\infty$ , and
$\zeta^{0}$ mean 1 for all $\zeta\in\overline{W}$. Then $(\overline{W}, \mathfrak{R}(\overline{W})$ forms a W.variety.

2) We may take any infinite abelian group instead of $W$ as far as the general theory
is concerned. We use here the word ” variety”, although only the multiplicative struc-
ture is considered. A W-variety $(S, \Re(S))$ will be sometimes denoted simply by $S$.

3) According to this definition, there may exist constant functions which are not
continuous. This would seen unnatural, but the later examples will show the convenience
of our definition. The constant function in the usual sense will be specified as the
“ everywhere defined constant valued function ”.
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3) Let $k$ be any algebraic number field and $S(k)$ as in \S 1. $S=S(k)$,
$\mathfrak{R}(S(k))=k^{*}$ (considered as the set of functions on $S(k)$ as explained in
\S 1.). We shall prove that $(S(k), k^{*})$ is a W.variety. The condition
1) of the definition of W.variety easily follows. Let $f$ be in $h^{*}$ . Then
$\mathfrak{D}(f)=S(k)$ and $f$ is continuous if and only if $f=1$ or $f\neq a$ root of
unity other than 1. In fact, let $f$ be not a root of unity, and $\zeta eW$.
Assume that $f$ and $\zeta$ are contained in a subfield $k_{\lambda}$ of $k$ of a finite
degree. Then there exists only a finite numbe.$r$ of points $\mathfrak{p}_{\lambda}\in S(k_{\lambda})$

such that $ f(\mathfrak{p}_{\lambda})=\zeta$ . (This fact is also valid when $\zeta=0$ or $\infty.$ ) It follows
that $f$ is continuous as the function on $S(k)$ . Conversely, let $f$ be a
primitive n-th root of unity $(n>1)$ and contained in some $k_{\lambda}$ as above.
Then the set of all $\mathfrak{p}_{\lambda}\in S(k_{\lambda})$ such that $f(\mathfrak{p}_{\lambda})\neq f$ is non-empty and
contains only a finite number of points. It follows that $f$ is not con-
tinuous as the function on $S(k)$ . Let $f$ and $g$ be in $k^{*}$ and contained
in some $k_{\lambda}$ as above. If $f\neq g$, then the set of all $\mathfrak{p}_{\lambda}\in S(k_{\lambda})$ such that

$f(\mathfrak{p}_{\lambda})=g(\mathfrak{p}_{\lambda})$ is finite. It follows that two functions in $\mathfrak{R}(S(k))$ which
take the same values on some non.empty open subset of $S(k)$ coincide
with each other. From these facts it follows that all conditions in
the definition of W-variety hold.

4) Let $k$ be an algebraic number field of a finite degree and $\mathfrak{m}$

an integral divisor of $k$ which may contain real primes; we denote by
$|)t1|$ the set of all points lying abo $ve$ finite primes contained in $m$ .
$S=S(k)-|$ nt $|,$ $\backslash J\dagger(S)=the$ set of all elements $f\in k^{*}$ such that $f\equiv 1mod$ .
$m$ . Then $(S, \mathfrak{R}(S))$ forms a W-variety. The proof runs similarly as
above.

Now we shall define some general concepts. Let $S$ and $S$ ‘ be W-
varieties and $\rho$ a mapping of $S$ into $S^{\prime}$ . We call $\rho$ a rational mapping
if the following condition is satisfied: If $\rho(x)$ is contained in $\mathfrak{D}(f$

‘
$)$

for $x\in S$ and $f^{\prime}\in \mathfrak{R}(S^{\prime})$ , then there exists $f$ in $\mathfrak{R}(S)$ such that $x\in \mathfrak{D}(f)$

and $f(y)=f^{\prime}(\rho(y))$ for all $y$ in some neighborhood of $x$ . We easily see
that $f$ depends only upon $f^{\prime}$ , and we have $\mathfrak{D}(f)\supset\rho^{-1}(\mathfrak{D}(f^{\prime}))$ and $f(y)=$
$f^{\prime}(\rho(y))$ for all $y\in\rho^{-1}(\mathfrak{D}(f^{\prime}))$ . Let $S,$ $S^{\prime}$ and $S^{\prime\prime}$ be W-varieties, $\rho$ a
rational mapping of $S$ into $S^{\prime}$ , and $\rho^{\prime}$ a rational mapping of $S^{t}$ into $S$ ”.
Then we easily see that the composite mapping $\rho^{t}\circ\rho$ is a rational
mapping of $S$ into $S^{r/}$ . We easily see also that a mapping $\rho$ of $S$

into $W$ is a rational mapping if and only if $\rho$ is a rational function
on $S$. Let $S$ and $S^{\prime}$ be W.varieties and $\rho$ a rational mapping of $S$
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onto $S^{\prime}$ . We call $\rho$ a birational mapping of $S$ onto $S^{\prime}$ if $\rho$ is a homeo.
morphism of $S$ onto $S^{\prime}$ and $\rho^{-1}$ is rational.

Let $U$ be any non.empty open subset of a W-variety $S$, and $\mathfrak{R}(U)$

the set of all functions obtained from functions in $\mathfrak{R}(S)$ by the restric.
tions of the domains of definition to $U$. Then $(U, \mathfrak{R}(U))$ is a W-
variety. We call $(U, \mathfrak{R}(U))$ an open subvariety of $(S, \mathfrak{R}(S))$ . We can
easily verify the following lemma.

LEMMA 3. Let $S$ and $S$ ‘ be W.varieties, $U_{i}(i\in J)$ open subvarieties
of $S$ such that $S=\cup U_{i},$ $U_{i}^{\prime}$ open subvarieties of $S^{\prime}$ , and $\rho$ a mapping

of $S$ into $S^{\prime}$ such $i\epsilon Jthat\rho(U_{i})\subset U_{i}^{\prime}$ for all $i\in J$ . Then $\rho$ is a rational
mapping of $S$ into $S^{\prime}$ if and only if the restriction of $\rho$ to $U_{i}$ is a
rational mapping of $U_{i}$ into $U_{i}^{\prime}$ for every $i\in J$ .

LEMMA 4. Let $\{U_{i}\}_{i\epsilon J}$ be a covering of a given non.empty set $S$.
Let each $U_{i}$ be provided with a topology, and $\mathfrak{R}(U_{i})$ a set of $\overline{W}\cdot valued$

functions on some subsets of $U_{i}$ such that $(U_{i}, \mathfrak{R}(U_{i}))fo\gamma ms$ a W-variety.
Suppose moreover that for every pair $i,$ $i$ in $J,$ $U_{i}\cap U_{j}$ is non-empty
and is open in $U_{i}$ and $U_{j}$, and that two structures of $U_{i}\cap U_{j}$ as the
open subvarieties of $U_{i}$ and $U_{j}$ coincide with each other. Then there
exists one and only one structure of $W\cdot variety$ of $S$ such that $(U_{i},$ $\mathfrak{R}$

$(U_{i}))$ is the open subvariety of $(S, \mathfrak{R}(S))$ for every $i$.
PROOF. We denote by $\sigma_{ij}$ the isomorphism of $\mathfrak{R}(U_{i})$ onto $\mathfrak{R}(U_{i}\cap U_{j})$

induced by the natural injection of $U_{i}\cap U_{j}$ into $U_{i}$ . Let $\mathfrak{R}(S)\subset_{i\epsilon}\prod_{J}\mathfrak{R}(U_{i})$

be the set of those elements $(f_{i})_{i\epsilon J}$ such that $\sigma;j(f_{i})=\sigma_{ji}(f_{j})-$ for every
pair $i,j$ in $J$ . We may regard $f=(f_{i})_{ieJ}\in \mathfrak{R}(S)$ as a W.valued function
defined $on_{i\epsilon}\bigcup_{J}\mathfrak{D}(f_{i})$ as follows:

$f(x)=f_{i}(x)$ for $x\in \mathfrak{D}(f_{i})$ .
This definition of $f(x)$ does not depend upon a choice of $i$ such that
$x\in \mathfrak{D}(f_{i})$ because of properties of the $\sigma_{ij}$ . We introduce a topology
into $S$ such that the $U_{i}$ are open subspaces with the relative topologies.
So we can easily verify that $(S, \mathfrak{R}(S))$ is a W-variety and $(U_{i}, \mathfrak{R}(U_{i}))$

are the open subvarieties of $(S, \mathfrak{R}(S))$ . The uniqueness of the structure
of W-variety in $S$ is easily seen.

\S 3. Direct products and group $W$-varieties.

Now we shall define the direct product of two W-varieties. Let
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$S$ and $S^{\prime}$ be W.varieties and assume that if $f\in \mathfrak{R}(S)$ and $f^{\prime}\in \mathfrak{R}(S^{\prime})$

take the same constant value on some non-empty open subsets of $S$

and $S^{\prime}$ respectively, then $f$ and $f^{\prime}$ are everywhere defined constant
valued functions. Under this assumption we shall define the product
W-variety of $S$ and $S^{\prime}$ . (Whenever we say in the following “ the pro-
duct of W-varieties $S,$ $S^{\prime}$ can be defined “, we imply that this assump.
tion is satisfied.) This assumption is satisfied if $e$ is the only constant
function in $\mathfrak{R}(S)$ or $\backslash J\$(S^{\prime}),$ $e$ . $g$ . when $S$ or $S^{\prime}$ is one of the W.varieties
given as 1), 2) above.

Let $f\in \mathfrak{R}(S)$ and $f^{\prime}\in \mathfrak{R}(S^{\prime})$ . We denote by $\mathfrak{D}(f,f^{\prime})$ the set of all
pairs $(x, x^{\prime})\in S\times S^{\prime}$ such that $x\in \mathfrak{D}(f),$ $x^{\prime}\in \mathfrak{D}(f^{\prime})$ , and $f(x)f^{\prime}(x^{\prime})$ are
defined: we denote by $(f,f^{\prime})$ the function defined on $\mathfrak{D}(f,f^{\prime})$ whose
value at $(x, x^{\prime})$ is equal to $f(x)f^{\prime}(x^{\prime})$ . Then we define $\backslash J_{\grave{t}}(S\times S^{\prime})$ to be
the set of functions $(f,f^{\prime})$ defined as above for all $f\in\backslash J\grave{\backslash }(S)$ and $f^{\prime}\in \mathfrak{R}(S^{\prime})$ .
Next we introduce the weakest topology in $S\times S^{\prime}$ such that the pro-
jections $S\times S^{\prime}\rightarrow S$ and $S$ ‘ are continuous, and that $(f,f^{\prime})\in \mathfrak{R}(S\times S‘)$

is continuous whenever one of $f$ and $f^{\prime}$ is not a constant function.
This topology in $S\times S^{\prime}$ is not always the same as the product topology.

Then we can prove that $(S\times S^{\prime}, \mathfrak{R}(S\times S^{\prime}))$ is a W.variety; we call
this W.variety the product W.variety of $S$ and $S^{\prime}$ . The conditions 2),
4) and 5) of the definition of W-variety are easily seen, and we shall
prove the conditions 1) and 3).

PROOF of 1). Let $U$ and $U^{\prime}$ be non.empty open subsets of $S$ and
$S^{\prime}$ respectively, $(f_{i},f_{i}^{\prime})e^{\backslash }Jl(S\times S^{\prime})$ and $\zeta_{i}\in W(i=1,2, \cdots, n)$ . We denote
by $G_{i}$ the set of all pairs $(x, x^{\prime})$ such that $(f_{i},f_{i}^{\prime})(x, x^{\prime})$ are defined and
not equal to $\zeta_{j}$ . We assume that one of $f_{i}$ and $f_{i}^{\prime}$ is not a constant
function and $G_{i}$ is not empty. Now it suffices to prove that $(U\times U^{\prime})$

$\cap G_{1}\cap\cdots\cap G_{n}$ is not empty. Let $U_{i}$ be the set of all points $x\in \mathfrak{D}(f_{i})$

such that if $f_{i}^{\prime}$ takes a constant.value, say $\zeta_{l}^{\prime}$ , on some non.empty
subset of $S^{\prime}$ then

$f_{i}(x)\neq\zeta_{i^{-1}}^{\prime}\zeta_{i}$ .
Then from the condition on $(f_{i},f_{i}^{\prime})$ it follows that $U_{i}$ is non.empty and
open for every $i$ . If $V$ is the set of all points $x$ such that $Jf_{i}(x)$ are
defined and in $W$ for every $i$ , then $V$ is non.empty and open. Hence
$V\cap U\cap U_{1}\cap\cdots\cap U_{n}$ contains at least one point $a$ . Next, let $U_{t}^{\prime}$ be the
set of all points $x^{\prime}\in S^{\prime}$ such that $f_{i}^{\prime}(x^{\prime})$ are defined and
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$f_{i}^{\prime}(x^{t})\neq f_{i}(a)^{-1}\zeta_{i}$ .
Then $U_{i}^{\prime}$ is non.empty and open because of the choice of $a$ for every
$i$. Hence $U^{\prime}\cap U_{1}^{\prime}\cap\cdots\cap U_{n}^{\prime}$ contains at least one point $a^{\prime}$ . Thus $(U\times U^{\prime})$

$\cap G_{1}\cap\cdots\cap G_{n}$ contains $(a, a^{\prime})$ , since we easily see that $G_{i}\supset(V\cap U_{i})\times U_{i}^{\prime}$

for each $i$, so it is not empty. This completes the proof of 1).
PROOF of 3). Let $(f,f^{\prime}),$ $(g, g^{\prime})$ be two functions in $\mathfrak{R}(S\times S^{\prime})$ . We

denote by $G_{0}$ the set of all pairs $(x, x^{\prime})\in S\times S^{\prime}$ such that $(f,f^{\prime})(x, x^{\prime})$ ,
$(g, g^{t})(x, x^{\prime})$ and their products are defined. Then $G_{0}$ is non-empty
and open in $S\times S^{\prime}$ and $f(x),$ $g(x),$ $f^{\prime}(x^{t}),$ $g^{\prime}(x^{\prime}),f(x)g(x),f^{\prime}(x^{\prime})g^{\prime}(x^{t})$ and
$(f(x)g(x))(f^{\prime}(x^{\prime})g^{\prime}(x^{\prime}))=(fg)(x)(f^{\prime}g^{\prime})(x^{\prime})=(fg,f^{\prime}g^{\prime})(x, x^{\prime})$ are defined
for every $(x, x^{\prime})eG_{0}$ . It remains to show that if $(f,f^{\prime})$ and $(g, g^{\prime})$ take
the same values on some non.empty open subset of $S\times S^{\prime}$ then $(f,f^{\prime})=$

$(g, g^{\prime})$ as functions in $\mathfrak{R}(S\times S^{\prime})$ . Since $f(x),f^{\prime}(x^{\prime}),$ $g(x)$ , and $g^{t}(x^{t})$ are
defined and not equal to $0$ or $\infty$ for every $(x, x^{\prime})$ in some non $\cdot$ empty
open subset $G$ of $S\times S^{\prime}$ , we have

$f(x)g^{-1}(x)=f^{\prime-1}(x^{\prime})g^{\prime}(x^{\prime})$ for every $(x, x^{\prime})\in G$ .
So it suffices to show that the set of all $x$ such that $(x, a^{\prime})\in G$ for any
fixed $a^{\prime}\in S^{\prime}$ is an open subset of $S$. In fact, if that is so, $fg^{-1}$ and
$f^{r-1}g^{\prime}$ are constant functions taking the same constant value, say $\zeta$ , on
some open subsets of $S$ and $S^{\prime}$ respectively and it follows from our
assumption that these functions are everywhere defined constant valued
functions. Therefore $ f(x)=g(x)\zeta$ for all $xe\mathfrak{D}(f)=\mathfrak{D}(g),$ $f^{\prime}(x^{\prime})\zeta=g^{\prime}(x^{\prime})$

for all $x^{\prime}\in \mathfrak{D}(f^{\prime})=\mathfrak{D}(g^{\prime})$ and $f(x)f^{\prime}(x^{\prime})=g(x)g^{\prime}(x^{\prime})$ for all $(x, x^{t})\in \mathfrak{D}(f,f^{\prime})$

$=\mathfrak{D}(g, g^{\prime})$ , so $(f,f^{\prime})=(g, g^{\prime})$,
Now we shall prove the above assertion. Let $a$ be any point of

$S$ such that $(a, a^{\prime})eG$ . Since $G$ is open, there exist open subsets $U$ of
$S$ and $U^{\prime}$ of $S^{\prime}$ , some functions $(f_{i},f_{i}^{\prime})$ in $\mathfrak{R}(S\times S^{\prime})$ and $\zeta_{i}$ in $\overline{W}(i=1$ ,
2, $\cdots,$ $n$) such that $(a, a^{\prime})\in(U\times U^{\prime})\cap G_{1}\cap$ $G_{n}\subset G$ where $G_{i}$ is the set
of all pairs $(x, x^{\prime})$ such that $f_{i}(x)f_{i}^{\prime}(x^{t})$ are defined and not equal to $\zeta_{i}$.
Let $U_{i}$ be the set of all $x\in S$ such that

$ f_{i}(x)\neq$

if $f_{i}^{\prime}(a^{t})=0$

for each $i$ . Then $U_{i}\ni a$ is open and $U_{i}\times\{a^{\prime}\}\subset G_{i}$ for every $i$. So
$U\cap U_{1}\cap\cdots\cap U_{n}$ containing $a$ is open, and for any point $x$ in this set, $(x$,
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$a^{\prime})\in G$. This completes the proof.
If $S\times S^{\prime}$ is the product W-variety of W-varieties $S$ and $S^{\prime}$ , then

it follows easily that the projections $S\times S^{\prime}\rightarrow S$ and $S^{\prime}$ are rational.
Let $U$ and $U^{\prime}$ be any open subvarieties of $S$ and $S^{\prime}$ respectively.
Then the product $W- va\iota\cdot ietyU\times U^{\prime}$ can be defined and coincides with
the open.subvariety of $S\times S^{\prime}$ . Let $G$ be a W.variety which is a
group, and assume that the function $e$ satisfying the condition 4) of
the definition 1 is the only constant function in $\backslash J\grave{\backslash }(G)$ . If the group
operations $(\xi, \eta)\rightarrow\xi\eta$ and $\xi\rightarrow\xi^{-1}$ are continuous and rational, then we
call $G$ a group W-variety.(4) The following lemmas will be used later.

LEMMA 5. Let $A,$ $B$ and $B^{\prime}$ be W-varieties, $\rho$ and $\rho^{\prime}$ be continuous
rational mappings of $A$ into $B$ and $B^{\prime}$ respectively. Assume that the
product W-variety of $B$ and $B^{\prime}$ can be defined. Then the mapping
$(\rho, \rho^{\prime})$ of $A$ into $B\times B^{\prime}$ such that $(\rho, \rho^{\prime})(x)=(\rho(x), \rho^{\prime}(x))$ for all $xeA$

is continuous and rational.
PROOF. Let $x$ be in $A$ , and $(f,f^{\prime})$ in ${}^{t}1$ } $(B\times B^{\prime})$ such that $(f,f^{\prime})$

$(\rho(x), \rho^{\prime}(x))$ is defined. Then $f(\rho(x))$ and $\int^{\prime}(\rho^{\prime}(x))$ are defined, therefore
there exist $g$ and $g^{\prime}$ in $\mathfrak{R}(A)$ such that $g(y)=f(\rho(y)),$ $g^{\prime}(y)=f^{\prime}(\rho^{\prime}(y))$

for all $y$ in some neighborhood of $x$ . Hence $(gg^{\prime})(y)=(f,f^{\prime})(\rho(y), \rho^{\prime}(y))$

for all $y$ in some neighborhood of $x$ . It follows from this that $(\rho, \rho^{\prime})$

is continuous and rational. This completes the proof.
The following two lemmas are easily verified by the lemma 5.
LEMMA 6. Let $A,$ $A^{\prime},$ $B$ and $B$ ‘ be W-varieties, $\rho$ and $\rho^{\prime}$ be con-

tinuous rational mappings of $A$ into $B$ and $A^{\prime}$ into $B^{\prime}$ respectively.
Assume that the product W-varieties $A\times A^{\prime}$ and $B\times B^{\prime}$ can be defined.
Then the mapping $\rho\times\rho^{\prime}$ of $A\times A^{\prime}$ into $B\times B^{\prime}$ such that $(\rho\times\rho^{t})(x, x^{\prime})=$

$(\rho(x), \rho^{\prime}(x))$ for all $(x, x^{\prime})eA\times A^{\prime}$ is continuous and rational.
LEMMA 7. Let $S$ and $F$ be $W\cdot varieties,$ $G$ a group W-variety and

$\rho$ a continuous rational mapping of $S$ into G. Assume that the pro-
duct W-variety $S\times F$ can be defined and $G$ operates on $F$, that is, $a$

continuous rational mapping $\psi$ of $G\times F$ onto $F$ such that $\psi(\xi, \psi(\eta, \alpha))=$

$\psi(\xi\eta, \alpha)$ for all $\xi,$ $\eta eG$ and $\alpha eF$, is given. Then the mapping: $(x, \alpha)\rightarrow$

$(x, \psi(\rho(x), \alpha))$ is a birational mapping of $S\times F$ onto itself.

4) The mapping $\xi\rightarrow\xi_{\eta}$ is not always rational $for$ fixed $\eta\epsilon G$ .
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\S 4. Fibre spaces and existence theorem.

Now we shall proceed to define fibre spaces over a W.variety.
First, we shall define principal fibre $W$-spaces over a W.variety. (Cf.
Bourbaki [1]).

DEFINITION 2. A principal fibre W-space is a collection as
follows:

1) A W-variety $B$ called the principal fibre W-variety,
2) a W-variety $S$ called the base W.variety,
3) a rational mapping $\pi$ of $B$ onto $S$ called the proiection,
4) a group W-variety $G$ called the structural group,
5) a continuous rational mapping $\varphi$ of $B\times G$ onto $B$ called the

law of transformation such that $\varphi(\varphi(u, \xi),$
$\eta$ ) $=\varphi(u, \xi\eta)$ for all $u\in B$ and

$\xi,$ $\eta\in G$ . We shall denote $\varphi(u, \xi)$ simply by $ u\cdot\xi$ .
Assume that there exist an open covering $\{U_{i}\}_{i\epsilon J}$ of $S$ and a

birational mapping $\Phi$ ; of $U_{i}\times G$ onto $\pi^{-1}(U_{i})$ for each $i$ such that

(H) $\dagger_{\Phi_{i}(x^{i},\xi)\eta=\Phi_{i}}^{\pi(\Phi(x,.\xi))=x}(x, \xi\eta)$

for all $x\in U_{i}$ and $\xi,$ $\eta\in G$ .

If W.varieties $S$ and $G$ are fixed, we shall denote a principal
fibre W-space $(B, S, \pi, G, \varphi)$ by $(B, \pi)$ or more simply by $B$. Let $B$,
$\pi,$ $G,$ $\{U;, \Phi_{i}\}$ be as above. Then there exists(5) a continuous rational
mapping $s_{ij}$ of $U_{i}\cap U_{j}$ into $G$ for each pair $i,$ $j$ such that

$\Phi_{i^{-1}}\Phi_{j}(x.\xi)=(x, s_{ij}(x)\xi)$ for all $(x, \xi)\in(U_{i}\cap U_{j})\times G$ .

5) In order to pro $\backslash re$ this, we need the following lemma. (The corresponding fact is
trivial in the case of the topology.)

LEMMA. Let $S$ be a W-variety, and $G$ a group W-variely. Let $\Phi$ be a conlinuous
rational mapping of $S\times G$ into $G$ such that $\Phi(x, \xi)\eta=\Phi(x, \xi\eta)$ for all $xeS,$ $\xi,$

$\eta e$ G. Then
there exists a continuous rational mapping $t$ of $S$ into $G$ such lhal $\Phi(x, \xi)=t(x)\xi$ .

PROOF, Let $fe\Re(G)$ and 1 $e\mathfrak{D}(f)$ where 1 means the identity of $G$ . Since $\xi\rightarrow(\xi, \xi-1)$

and $(\xi, \eta)\rightarrow c\eta r$ are rational, there exists $ge\mathfrak{R}(G)$ such that $g(\xi)=f(1)$ on some open subset
of $G$ . Hence $g$ is a constant function, therefore $1=g(\xi)=f(1)$ for some $\xi eG$ . From this
fact it follows that $x\rightarrow(x, 1)$ is a rational mapping of $S$ into $S\times G$, and this mapping is
continuous (Cf. \S 3, Proof of 3)). Hence $x\rightarrow\Phi(x, 1)=t(x)$ is continuous and rational, and
$\Phi(x, \xi)=t(x)\xi$ ,
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The system $\{s_{ij}\}$ is uniquely determined by $\{U_{i}, \Phi_{i}\}$ .
Now let $\{U_{i}^{\prime},\}_{i\epsilon J^{\prime}}$ be any refinement of $\{U_{i}\}_{;_{\epsilon f}}$ and $i^{\prime},$ $j^{\prime}$ any pair

of elements in $J^{\prime}$ . Let $\Phi_{i}^{\prime}$ and $s_{ij^{\prime}}^{\prime}$ be the restrictions of $\Phi_{i}$ and $s_{ij}$ to
$U_{i}^{\prime}\times G$ and $U_{i}^{\prime}\cap U_{j^{\prime}}^{\prime}$ respectively for some pair $i,j$ such that $U_{i}^{\prime},$ $\subset U_{i}$

and $U_{j^{\prime}}^{\prime}\subset U_{j}$ . Then it is easily seen that the covering $\{U_{i}^{\prime},\}$ and the
system of birational mappings $\{\Phi_{i}^{\prime},\}$ satisfy the above condition (r)
and $\{s_{i^{\prime}j^{\prime}}^{\prime}\}$ is determined from $\{\Phi_{i^{\prime}}^{\prime}\}$ as above. From this fact it fol.
lows easily that for two principal fibre W-spaces $(B, \pi)$ and $(B^{\prime}, \pi^{\prime})$

with the same base and group, there exists a birational mapping $\psi$ of
$B$ onto $B^{\prime}$ such that $\pi^{t}\circ\Psi=\pi$ and $\Psi(u)\cdot\xi=\Psi(u\cdot\xi)$ for all $u\in B$ and
$\xi\in G$ if and only if these fibre W-spaces satisfy the condition (r) for
some $\{U_{i}, \Phi_{i}\}$ and $\{U_{i}, \Phi_{i}^{\prime}\}$ determining the same $\{s_{ij}\}$ . Such two
principal fibre W.spaces are said to be isomorphic. Then the following
proposition is easily proved as in usual topology.(5)

PROPOSITION. Let $\{U_{i}\}_{i\epsilon J}$ be an open covering of a W-variety $S$,
$(B, \pi)$ and $(B^{\prime}, \pi^{\prime})$ be two principal fibre W-spaces with the same base
$S$ and group G. Assume that $\{\Phi_{i}\}$ and $\{\Phi_{i}^{\prime}\}$ satisfy (fl) for $(B, \pi)$

and $(B^{\prime}, \pi^{\prime})$ respectively, and determine $\{s_{ij}\}$ and $\{s_{ij}^{\prime}\}$ respectively.
Then $(B, \pi)$ and $(B^{\prime}, \pi^{\prime})$ are isomorphic if and only if there exists a
continuous rational mapping $t_{i}$ of $U_{i}$ into $G$ for each $i\in J$ such that
for each pair $i,$ $i$

$s_{ij}^{i}(x)=t_{i}(x)s_{jj}(x)t_{j}(x)^{-1}for$ all $x\in U_{i}\cap U_{j}$ .

THEOREM 1. Let $S$ be a $W\cdot variety,$ $G$ a group W-variety. Let
$\{U_{i}\}_{i\epsilon J}$ be an open covering of $S$ and $s_{ij}$ a continuous rational mapp-
ing of $U_{i}\cap U_{j}$ into $G$ for each pair $i,$ $i$ in J. Then there exists a
princtpal fibre W-space $(B, \pi)$ such that there exists a system $\{\Phi_{i}\}$

satisfying (E) and determining $\{s_{ij}\}lf$ and only if the following con-
dition is satisfied:

$s_{ij}(x)s_{jl}(x)=s_{il}(x)$ for all $x\in U_{i}\cap U_{j}\cap U_{l}$ ,

for each triple $i,$ $i,$ $1$ in $J$ .

PROOF. The “ only if ” part is easily seen. To prove the ” if)

part, we shall construct a fibre W-space as follows. Let $\tilde{B}\subset S\times G\times J$

be the set of those triples $(x, \xi, i)$ such that $x\in U_{i}$ . Then $\tilde{B}$ is the
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union of the disjoint subsets $U_{i}\times G\times\{i\}(i\in J)$ . We define in $\tilde{B}$ an
equivalence relation: $(x, \xi, i)\sim(y, \eta, j)$ if $x=y,$ $\xi=s_{ij}(x)\eta$ . We define $B$

to be the set of cquivalence classes of this relation in $\tilde{B}$. We define
a mapping $\Phi_{i}$ of $U_{i}\times G$ into $B$ to be the assignment of the equivalence
class of $(x, \xi, i)$ to $(x, \xi)\in U_{i}\times G$ for each $i$. We can define a mapping
$\pi$ of $B$ onto $S$ by $\pi(\Phi_{i}(x, \xi))=x$ for any $(x, \xi, i)$ without contradictions.
Then $\Phi_{i}$ is a one.to.one mapping of $U_{i}\times G$ onto $\pi^{-1}(U_{i})$ for every $i$

and $\Phi_{i}^{-1}\Phi_{j}(x, \xi)=(x, s_{ij}(x)\xi)$ for all $xeU_{i}\cap U_{j}$ for any $i,$ $j$. Next we
can define a mapping $\varphi$ of $B\times G$ onto $B$ to be

$\varphi(\Phi_{i}(x, \xi),$
$\eta$ ) $=\Phi_{i}(x, \xi\eta)$ for every $i$ .

It follows from the lemma 7 that the mapping $\Phi_{i^{-I}}\Phi_{j}$ defined on $(U_{i}\cap U_{j})$

$\times G$ is a birational mapping of $(U_{i}\cap U_{j})\times G$ onto itself. So if we in-
troduce the structure of W-variety into $\pi^{-}$ $(U_{i})$ by the mapping $\Phi$; of
$U_{i}\times G$ onto $\pi^{-1}(U_{i})$ for every $i$, then we have by the lemma 4 a W-
variety $(B, \mathfrak{R}(B))$ such that the W-varieties $\pi^{-1}(U_{i})$ are open subvarieties
of $B$ .

It follows from the lemma 3 that $\pi$ is a rational mapping of $B$

onto $S$, since the restriction of $\pi$ to $\pi^{-I}(U_{i})$ is the composite mapping
of $\Phi_{i^{-1}}$ and the projection of $U_{i}\times G$ onto $U_{i}$ for every $i$. It follows
similarly that $\varphi$ is a continuous rational mapping satisfying the equality
in the definition 2. This completes the proof.

Next we shall define a fibre W-space associated to a principal fibre
W.space and a given fibre.

DEFINITION 3. Let $(B, S, \pi, G, \varphi)$ be a principal fibre W-space, $Fa$

W-variety and assume that the product W-variety $S\times F$ can be defined.
Let $\psi$ be a continuous rational mapping of $G\times F$ onto $F$ such that
$\psi(\xi, \psi(\eta, \alpha))=\psi(\xi\eta, \alpha)$ for all $\xi,$ $\eta\in G$ and all $\alpha\in F$. $\psi$ will be called
the law of transformation. Then a fibre W-space of the fibre $(F, \psi)$

associated to the principal fibre W.space $(B, S, \pi, G, \varphi)$ is a collection as
follows :

1) A W.variety $\overline{B}$ ,
2) the principal fibre W-space $(B, S, \pi, G, \varphi)$ ,
3) the W-variety $F$ and the law of transformation $\psi:G\times F\rightarrow F$,
4) a continuous rational mapping $\overline{\pi}$ of $\overline{B}$ onto $S$ called the proz

jection,
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5) a mapping $\theta$ of $B\times F$ onto $\overline{B}$ such that
$\overline{\pi}(\theta(u, \alpha))=\pi(u)$ for all $(u, \alpha)eB\times F$,
$\theta(\varphi(u, \xi),$ $\alpha$ ) $=\theta(u, \psi(\xi, \alpha))$ for all $(u, \xi, \alpha)\in B\times G\times F$,

and that for a system $\{U_{i}, \Phi_{i}\}$ corresponding to $(B, S, \pi, G, \varphi)$ in the
sense of the definition 2, the mapping $(x, \alpha)\rightarrow\theta(\Phi;(x, 1),$ $\alpha$ ) supplies a
birational mapping of $U_{i}\times F$ onto $\overline{\pi}^{- 1}(U_{i})$ . We shall denote by $\overline{\Phi}_{i}$

this mapping.
We can prove that for any principal fibre W.space $(B, S, \pi, G)$

and any W-variety $F$, on which $G$ operates, there exists a fibre W.space
of the fibre $F$ associated to $(B, S, \pi, G)$ provided that $S\times F$ can be
defined. In fact, we define in $B\times F$ an equivaelnce relation: $(u, \alpha)\sim$

$(v, \beta)$ if there exists an element $\xi$ in $G$ such that $u=\varphi(v, \xi)$ and
$\beta=\psi(\xi, \alpha)$ . We define $\overline{B}$ to be the set of equivalence classes of this
relation in $B\times F$. We denote by $\theta(u, \alpha)$ the equivalence class of $(u, \alpha)$

$\in B\times F$. We define $\overline{\pi};\theta(u, \alpha)\rightarrow\pi(u)$ . Let $\{U_{i}, \Phi_{i}\}$ be a system cor-
responding to $(B, S, \pi, G, \varphi)$ in the sense of the definition 2. Then the
mappings $\overline{\Phi}_{i}$ : $(x, \alpha)\rightarrow\theta(\Phi_{i}(x, 1),$ $\alpha$ ) are one-to-one mappings of the
$U_{i}\times F$ onto the $\overline{\pi}^{-1}(U_{i})$ . If we introduce the structures of W-varieties
by $\overline{\Phi}_{i}$ and the W-varieties $U_{i}\times F$ into $\overline{\pi}^{-1}(U_{i})$ , then it follows from the
lemma 4 that we have the W-variety $(\overline{B}, \mathfrak{R}(\overline{B}))$ such that the W-varieties
$\overline{\pi}^{-1}(U_{i})$ are the open subvarieties. Then we can easily verify by the
previous lemmas that all conditions in the definition of the fibre W-
space for $(\overline{B}, (B, S, \pi, G), F,\overline{\tau\pi}, \theta)$ hold.

If ( $\overline{B},$ $(B,$ $S,$ $\pi,$ $G),$ $F$, it, $\theta$ ) and $(\overline{B}^{\prime}, (B, S, \overline{\pi}, G), F, \pi^{\prime}, \theta^{\prime})$ are two fibre
W-spaces of the fibre $F$ associated to $(B, S, \pi, G)$ , there exists a bira-
tional mapping $\overline{\Psi}$ of $\overline{B}$ onto $\overline{B}^{\prime}$ , such that $\overline{\Psi}^{\circ}\theta=\theta^{\prime}$ and therefore
$\overline{\pi}^{-1_{\circ}}\overline{\Psi}=\overline{\pi}$. Since an associated fibre $W\cdot space$ is essentially unique in
this sense, we shall fix an associated fibre W-space denoted by $(\overline{B}, \overline{\pi})$

for each principal fibre W-space $(B, \pi)$ , for a fixed fibre $F$.
\S 5. Classification theorem.

Hereafter we shall confine ourselves to the case of $G=W$ and
$F=\overline{W}$ . In this case rational mappings $s_{ij}$ of $U_{i}\cap U_{j}$ into $G$ are
rational functions on $U_{i}\cap U_{j}$ . So we may identify $s_{ij}$ with the func-
tion in $\mathfrak{R}(S)$ uniquely determined by $s_{ij}$ for every pair $i,$ $j$. The law
of transformation: $G\times F\rightarrow F$ is defined by $(\xi, \alpha)\rightarrow\xi\alpha$ for all $\xi\in G=W$

and $\alpha\in F=\overline{W}$.
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A W.variety $(S, \mathfrak{R}(S))$ is said to be of a finite type, if the topology
of $S$ is the weakest one, any function in $\mathfrak{R}(S)$ is everywhere defined
and the following additional condition is satisfied:

6) For any $x\in S$, there exists a function $t_{x}\in \mathfrak{R}(S)such$ that $t_{x}(x)=0$

and for any $f\in \mathfrak{R}(S)$ there exists an integer $n$ satisfying the condition:
$(t_{x}^{-n}f)(x)\neq 0and\neq\infty$ .

We call such a function as $t_{x}$ a uniformizing variable at $x$ , we
can define at any $x\in S$ an order function $\nu_{x}$ such that $\nu_{x}$ is a homo-
morphism of $\mathfrak{R}(S)$ onto the additive group of all integers and $\nu_{x}(f)>0$

if and only if $f(x)=0$ for every $f\in \mathfrak{R}(S)$ . $\nu_{x}$ is uniquely determined
for each $x\in S$. Hereafter we shall denote by $\mathfrak{p},$ $\mathfrak{q},$

$\cdots$ points in $S$.
Now we shall define some concepts in order to state the classifica-

tion theorem. $\mathfrak{p}$ is said to be a coniugate of $\mathfrak{q}$ , if $\nu \mathfrak{p}(f)=\nu_{\mathfrak{q}}(f)$ for all
$f\in \mathfrak{R}(S)$ . This is an equivalence relation. A principal fibre W-space
$(B, \pi, S)$ is said to be rational if there exists an open covering $\{U_{i}\}_{i\epsilon J}$

satisfying the condition of the definition 2 such that any conjugate
point of every $\mathfrak{p}\in U_{i}$ is contained in $U_{i}$ for each $i$ (Such a covering is
said to be ational.).

By a divisor on $S$, we understand an element of the free abelian
group $D(S)$ , the generators of which are points of $S$. The divisor on
$S$ will be generally denoted by $\sum n_{P}\mathfrak{p}$ . By a rational divisor on $S$, we
understand a divisor $\sum n_{\mathfrak{p}}\mathfrak{p}$ such that $n_{\mathfrak{p}}=n_{q}$ whenever $\mathfrak{p}$ is a con.
jugate of $q$ . And by a prime rational divisor on $S$, we understand
$\sum \mathfrak{p}$ (finite sum) where $\mathfrak{p}$ runs over all conjugates of some fixed $\mathfrak{q}$ .
Then the group $D_{0}(S)$ of all rational divisors is a free abelian group.
the generators of which are prime rational divisors on $S$. Since the
set of all $\mathfrak{p}$ such that $\nu p(f)\neq 0$ is finite for each $f\in \mathfrak{R}(S)$ , we can define
a divisor $\sum\nu \mathfrak{p}(f)\mathfrak{p}$ . This divisor is said to be a principal divisor, the
divisor of $f$, and denoted by $(f)$ . We shall denote by $P(S)$ the group
of all principal divisors.

Next we shall define a group structure in a set of principal fibre
W.spaces over $S$. Here we need not confine ourselves to W-varieties
of a finite type. We denote by $\mathfrak{B}(S)$ a set of principal fibre W.spaces
over $S$ such that for any principal fibre W-space $(B, \pi)$ over $S$ there
exists one and only one $(B^{\prime\prime}\pi)\in \mathfrak{B}(S)$ isomorphic to $(B, \pi)$ . If $\{U_{i}, s_{ij}\}$

and $\{U_{i}, s_{ij}^{\prime}\}$ correspond to $(B, \pi)$ and $(B^{\prime}, \pi^{\prime})\in \mathfrak{B}(S)$ respectively, then
there exists one and only one $(B^{\prime\prime\prime\prime}\pi)\in \mathfrak{B}(S)$ corresponding to $\{U_{i}, s_{ij}s_{i^{\prime}j}\}$
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by the theorem 1. We shall call $(B^{\prime\prime}, 7r^{\prime\prime})$ the product of $(B, \pi)$ and
$(B^{\prime}, \pi^{\prime})$ , then it follows from the theorem 1 that $\mathfrak{B}(S)$ forms a group
by this multiplication. The trivial principal fibre W.space in $\mathfrak{B}(S)$

which is identified with $S\times W$ , is the identity of the group $\mathfrak{B}(S)$ . The
set of all rational principal fibre W-spaces in $\mathfrak{B}(S)$ forms a subgroup
$\mathfrak{B}_{0}(S)$ of $\mathfrak{B}(S)$ .

THEOREM 2. If $S$ is a W-variety of a finite type, then there
exists an isomorphism of $\mathfrak{B}(S)$ onto the factor group $D(S)/P(S)$ which
induces an isomorphism of $\mathfrak{B}_{0}(S)$ onto $D_{0}(S)/P(S)$ .

This isomorphism is obtained as follows: Let $(B, \pi)$ be any pri-
nctpal fibre W-space in $\mathfrak{B}(S)$ and $\rho$ be any cross section of the associ-
ated fibre W.space $(\overline{B},\overline{\pi})$ , namely, a rational mapping of $S$ into $\overline{B}$ such
that $\overline{\pi}\circ\rho=1$ . Let $\{U_{i}, \Phi_{i}\}$ be a system satisfying the condition (E)
in the definition 2, and let, for each $i,$ $f_{i}$ be the rational function in
$\mathfrak{R}(S)$ such that $\rho(\mathfrak{p})=\overline{\Phi}_{i}(\mathfrak{p},f_{i}(\mathfrak{p}))$ for all $\mathfrak{p}\in U_{i}$ . We define a divisor $(\rho)$

to be $\sum n_{\mathfrak{p}}\mathfrak{p}$ where $n_{\mathfrak{p}}=\nu_{\{’(f_{i})}$ for $\mathfrak{p}\in U_{i}$ . ( $\nu_{\{)}(f_{i})$ does not depend upon a
choice of $i$ nor $(\rho)$ upon a choice of $\{U_{i}, \Phi_{i}\}.$ ) If $\rho$ runs over all cross
sections of $(\overline{B},\overline{\pi})$ , then $(\rho)$ runs over all divisors in a divisor class
modulo $P(S)$ which depends only $up\rho n(B, \pi)$ . The assignment $\rho\rightarrow(\rho)$

supplies the above isomorphism. (Cf. Kodaira and Spencer [3], Weil
[4], [5])

PROOF. First we shall prove the existence of a cross section $\rho$

and the possibility of the definition of $(\rho)$ . Let $\{s_{j_{j}}\}$ be a system of
rational functions in $\mathfrak{R}(S)$ determined by $\Phi$ ; for $(B, \pi)$ as in \S 3. Let
us fix an index $i$ . Since for every $\mathfrak{p}$ in $S,$ $\overline{\Phi}_{j}(\mathfrak{p}, s_{ji}(\mathfrak{p}))$ does not depend
upon a choice of $j$ such that $\mathfrak{p}\in U_{j}$ , we define $\rho(\mathfrak{p})$ to be $\overline{\Phi}_{j}(\mathfrak{p}, s_{ji}(\mathfrak{p}))$

for $U_{j}$ containing $\mathfrak{p}$ . Then $\rho$ is a cross section of $(\overline{B},\overline{\overline{\pi}})$ . Let $\rho$ be
any cross section of $(\overline{B},\overline{\pi})$ . For all $\mathfrak{p}\in U_{i}\cap U_{j},$ $\rho(\mathfrak{p})=\overline{\overline{\Phi}}_{i}(\mathfrak{p},f_{i}(\mathfrak{p}))=\overline{\Phi}_{j}(\mathfrak{p}$ ,
$s_{ji}(\mathfrak{p})f_{i}(\mathfrak{p}))=\overline{\Phi}_{j}(\mathfrak{p},f_{j}(\mathfrak{p}))$ , therefore $\nu_{t)}(f_{i})=\nu_{\mathfrak{p}}(f_{j})$ since $\nu_{\mathfrak{p}}(s_{ij})=0$ .

Next let $\rho^{\prime}$ be also any cross section of $(\overline{B},\overline{\pi})$ and put

$\rho^{\prime}(\mathfrak{p})=\overline{\overline{\Phi}};(\mathfrak{p},f_{i}^{\prime}(\mathfrak{p}))$ for all $\mathfrak{p}\in U_{i}(f_{i}^{\prime}\in \mathfrak{R}(S))$ .

Then $f_{i}f_{j}^{-1}=s_{ij}=f_{i}^{\prime}f_{j^{-1}}^{\prime}$ for any $i,j$, therefore $f_{i}^{\prime}f_{i^{-1}}\in \mathfrak{R}(S)$ does not
depend upon a choice of $i$ . So we denote by $t$ this function in $\mathfrak{R}(S)$ ,
then we have $\nu \mathfrak{p}(f^{\prime})=\nu \mathfrak{p}(f_{i})+\nu \mathfrak{p}(t)$ and $(\rho^{\prime})=(\rho)+(t)$ . $(\rho^{\prime})$ runs over all
divisors of a divisor $clas_{3}^{\neg}$ . It follows easily from the proposition in
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\S 4 that the divisor class of $(\rho)$ does not depend upon a choice of $\{U_{i}$ ,
$\Phi_{i}\}$ .

From the definition of the group operation in $\mathfrak{B}(S)$ and the theorem
1, we can easiIy see that the mapping defined by $\rho\rightarrow(\rho)$ is a homo.
morphism of $\mathfrak{B}(S)$ into $D(S)/P(S)$ . Now if $(\rho)$ is principal, then for
some cross section $\rho^{\prime}$ and each $i,j$

$\rho^{\prime}(\mathfrak{p})=\overline{\Phi}_{i}(\mathfrak{p},f_{i}(\mathfrak{p})),$ $f_{i^{-1}}s_{ij}f_{j}=1$ and $\nu \mathfrak{p}(f_{i})=0$ for all $\mathfrak{p}\in U_{i}$ .
Hence $(B, \pi)$ is isomorphic to $SxW$. Therefore the above homomor-
phism is an isomorphism. In order to show that this isomorphism is
onto, it suffices to prove that for any $\mathfrak{p}eS$ there exist $(B, \pi)$ and a
cross section $p$ of $(\overline{B},\overline{\pi})$ such that $(\rho)=\mathfrak{p}$ . Let $t$ be a uniformizing
variable at $\mathfrak{p}$ . We define $U_{0}=S--\{\mathfrak{p}\}$ and $U_{1}=the$ set consisting of
$\mathfrak{p}$ and of all $\mathfrak{q}\in S$ such that $\nu \mathfrak{p}(t)=0$ . Then $\{U_{0}, U_{1}\}$ is an open cover-
ing of $S$. We define: $s_{00}=s_{11}=1$ and $s_{10}=s_{01}^{-1}=t$ . Then there exists a
principal fibre W.space $(B, \pi)$ corresponding to $\{U_{i}, \Phi_{i}\}$ where $\Phi_{i^{-1}}\Phi_{j}$

$(q, \xi)=(\mathfrak{q}, s_{ij}(q)\xi)$ for all $(\mathfrak{q}, \xi)\in(U_{i}\cap U_{j})\times W$. We easily see that $(\rho)=\mathfrak{p}$

for the cross section $\rho$ of $(\overline{B}, \overline{\pi})$ defined by $\rho(q)=\overline{\Phi}_{i}(q, s_{i0}(\mathfrak{q}))$ for all $\mathfrak{q}\in S$.
This completes the proof.

If $k$ is an algebraic number field of a finite degree, the example
3) in \S 2 is a special case of the example 4). In the case of 4), it is
easily seen that $D_{0}(S)$ may be regarded as the group Am of all ideals
in $k$ prime to $\mathfrak{m}$ , and $P(S)$ the group $S_{\mathfrak{m}}$ of all principal ideals gene-
rated by elements $f\in k^{*}$ such that $f\equiv 1(mod. \mathfrak{m})$ .

Hence we have

$\mathfrak{B}_{0}(S)\cong A_{\mathfrak{m}}/S_{\mathfrak{m}}$ (so called “ Strahlklassengruppe $mod$ . $\mathfrak{m}$ “)

Thus the concept of the rational fibre W-space (of the fibre $\overline{W}$ and the
group $W$ ) just corresponds to the concept of the ideal class $mod$ . $\mathfrak{m}$ in
the classical number theory.

In order to treat the case of an infinite degree, we shall consider
the projective limit of W-varieties of a finite type as follows. Let $\Lambda$

be a directed set. Let $S_{\lambda}(\lambda\in\Lambda)$ be W-varieties of a finite type, and
$\pi_{\lambda}^{\mu}(x<\mu)$ be continuous rational mappings of $S_{\mu}$ onto $S_{\lambda}$ such that
$\pi_{\lambda}^{\mu}\cdot\pi_{\mu}^{\nu}=\pi_{\lambda}^{\nu}(\lambda<\mu<\nu)$ . Now let $S$ be the projective limit of the
topological spaces $S_{\lambda}$ , and $\pi_{\lambda}$ continuous mappings of $S$ onto $S_{\lambda}$ such
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that $\pi_{\lambda^{k}}^{t}\cdot\pi_{\mu}=\pi_{\lambda}(\lambda<\mu)$ . We define $\mathfrak{R}(S)$ to be the set of all functions
$f_{\lambda}\circ\pi_{\lambda}$ defined on $S$ for all $\lambda\in\Lambda$ and $f_{\lambda}\in \mathfrak{N}(S_{\lambda})$ . Then it follows easily
that $(S, \mathfrak{N}(S))$ is a W-variety, and the $\pi_{\lambda}$ are rational. We may
identify $f_{\lambda}\circ\pi_{\lambda}$ with $f_{\lambda}$ for all $f_{\lambda}\circ\pi_{\lambda}\in \mathfrak{R}(S)$ , and then may regard all
$\mathfrak{R}(S_{\lambda})$ as subgroups of $\mathfrak{R}(S)$, we have $\mathfrak{R}(S)=_{\lambda}\bigcup_{\epsilon\Lambda}\mathfrak{R}(S_{\backslash }\ovalbox{\tt\small REJECT})$ . This fact holds

also without the assumption that $S_{\lambda}$ are of a finite type whenever all
rational functions on $S_{\lambda}$ are everywhere defined.

We define $D(S)$ to be $\lim_{\lambda}D(S_{\lambda})$ which is defined by the mappings
$j_{\lambda}^{\mu}$ : $\mathfrak{p}_{\lambda}\rightarrow\sum\nu \mathfrak{p}(t_{\mathfrak{p}_{\lambda}})\mathfrak{p}_{\mu}$ (finite sum) for $\mathfrak{p}_{\lambda}\in S_{\lambda}$ and $\mathfrak{p}_{\mu}eS_{\mu}(\lambda<\mu)$ . So we

$\mathfrak{p}_{\mu}$

$\mu$

may regard $D(S_{\lambda})\subset D(S_{\mu})\subset D(S)(\lambda<\mu)$ ; we have $D(S=)\bigcup_{\lambda\epsilon\Lambda}D(S_{\lambda})$ .
Then we easily see that for any $f_{\lambda}\in:$) $\backslash (S_{\lambda})$ the divisor of $f$ in $S$ coinci-
des with the divisor of $f$ in $S_{\lambda}$ for each $\lambda$ . So we define as follows:
$P(S)=\lim P(S_{\lambda}),$ $D_{0}(S)=\lim D_{0}(S_{\lambda})$ . Then we have $D(S)\supset D_{0}(S)\supset P(S)$ .
A principal fibre W.space $(B, \pi)$ over $S$ is said to be of a finite type,
if there exists an open covering $\{U_{i}^{(\lambda)}\}$ of $S_{\lambda}$ for some $\lambda$ such that the
open covering $\{\pi_{\lambda}^{-1}(U_{i}^{(\lambda)})\}$ satisfies the condition of the definition 2;
moreover $(B, \pi)$ is said to be rational, provided that $\{U_{i}^{(\lambda)}\}$ is rational
in the above. We define groups $\mathfrak{B}(S)$ and $\mathfrak{B}_{0}(S)$ as in the case of a
finite type, and define also $\mathfrak{B}_{1}(S)$ as the subgroup of all $(B, \pi)$ of a
finite type in $\mathfrak{B}(S)$ . Then we have also in this case

$\mathfrak{B}_{1}(S)\cong D(S)/P(S),$ $\mathfrak{B}_{0}(S)\cong D_{0}(S)/P(S)$ .

PROOF. Let $(B, \pi)$ be any principal fibre W.space in $\mathfrak{B}_{1}(S)$ . Then
the existence of a cross section of $(\overline{B}, \overline{\pi})$ follows in the same way as
in the proof of the theorem 2. We shall use the same notations as
used there. Let $p$ be a cross section of $\overline{B}$. Then there exist $\lambda\in\Lambda$ ,
$B_{\lambda}e\mathfrak{B}(S_{\lambda})$ , an open covering $\{U_{i}^{(\lambda)}\}$ of $S_{\lambda}$ , birational mappings $\Phi_{i}^{(\lambda)}$,
and functions $f_{i}\in \mathfrak{R}(S_{\lambda})$ such that $(\mathfrak{g})$ is satisfied for $\{U_{l}^{(\lambda)}, \Phi_{i}^{(\text{\‘{A}})}\}$ , and
also for the open covering $\{\pi_{\lambda}^{-1}(U_{i}^{(\lambda)})\}$ of $S$ and some system $\{\Phi_{i}\}$ ,
and that $\rho(\mathfrak{p})=\overline{\Phi}_{i}(\mathfrak{p},f_{i}(\mathfrak{p}))$ whenever $\mathfrak{p}\in\pi_{\lambda}^{-1}(U_{i}^{(\lambda)})$ . Then we can define
a cross section $\rho_{\lambda}$ of $\overline{B}_{\lambda}$ as follows: $\rho_{\lambda}(\mathfrak{p}_{\lambda})=\overline{\Phi}_{i}^{(\lambda)}(\mathfrak{p}_{\lambda},f_{j}(\mathfrak{p}_{\lambda}))$ whenever
$\mathfrak{p}_{\lambda}\in U_{i}^{(\lambda)}$ . It is easily seen that the divisor class of $(\rho_{\lambda})$ modulo $P(S)$

depends only upon $B$. Thus we obtain a mapping of $\mathfrak{B}_{1}(S)$ into
$D(S)/P(S)$ by $\rho\rightarrow(\rho_{\lambda})$ .
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Conversely, let $B_{\lambda}$ be in $\mathfrak{B}(S_{\lambda})$ for any $\lambda$ , and $\rho_{\lambda}$ a cross section of
$\overline{B}_{\lambda}$ . Then there exist $Be\mathfrak{B}_{1}(S)$ and a cross section $\rho$ of $\overline{B}$ such that
$B_{\lambda},$

$\rho_{\lambda}$ correspond to $B,$ $\rho$ in the above consideration. If $B_{\lambda}$ is the
identity of $\mathfrak{B}(S_{\lambda})$ , then $B$ is the identity of $\mathfrak{B}_{1}(S)$ . Hence it follows
from the theorem 2 that the mapping defined as above by $\rho\rightarrow(\rho_{\lambda})$ is
an isomorphism of $\mathfrak{B}_{1}(S)$ onto $D(S)/P(S)$ . This isomorphism induces
an isomorphism of $\mathfrak{B}_{0}(S)$ onto $D_{0}(S)/P(S)$ . This completes the proof.

This result can be applied for the W-variety $(S(k), k^{*})$ where $k$ is
of an infinite degree. If $k$ contains all roots of unity, then $S(k)$ may
be regarded as the set of all finite primes in $k$ , and we have

$\mathfrak{B}_{1}(S)=\mathfrak{B}_{0}(S),$ $D(S)=D_{0}(S)$ .

The College of General Education
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