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Three decades ago, H. Hasse discovered in his fundamental
research on the arithmetic of quadratic formsl) a remarkable principle,
which may be stated as follows in its most general form: Let $K$ be
an abstract field, $k$ an algebraic number field or a field of algebraic
functions of one variable over a finite field, $\mathfrak{p}$ a place of $k$ and $k_{\mathfrak{p}}$ the
p-completion of $k$ . Let furthermore $O(K)$ be an object related to $K$

and $\Pi$ a property of $O(K)(e$ . $g$ . $O(K)$ may be a quadratic form $f$,
and $\Pi$ the representability of zero by $f$). If $K$ is in particular speci.
alized to $k$ , then $O(K)$ will represent an object $O(k)$ related to $k$ . Let
$O_{\mathfrak{p}}$ be the object constructed naturally from $O(k)$ by transition to $k_{\mathfrak{p}}$

from $k$ . By the ‘ Hasse principle’ we shall mean this statement: The
assertion ‘ $O(k)$ has the property $\Pi$ ‘ follows from the fact that ‘

$O_{1^{t}}$

has the property $\Pi$ for every place $\mathfrak{p}$ of $k$ . Theorems of this form
will be called theorems of Hasse type. Hasse has proved some im-
portant theorems of this type, concerning quadratic forms, cyclic ex-
tensions of algebraic number field, etc.2)

Now the question arises: to what extent is this principle valid ?
In the present paper we shall investigate this question in connection
with the orthogonal groups, as they are in closest relation to quadratic

forms. In fact these groups can be treated in the same time with the
corresponding quadratic forms by the geometrical method of $Dieudonn\text{\’{e}}_{r}$

Eichler3) and others.
Thus, in \S 1 we introduce preliminary notions such as the simil $\cdot$

arity of forms, the indices and coindices of forms and the Clifford
algebra of forms. We prove a lemma (Lemma 1) which shows that the
similarity of forms is more natural than the congruence from geometric-

1) Hasse [1] and [2].

2) Deuring [3] Chap. VII and Witt [4].

3) Dieudonn\’e [5] and Eichler [6].
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al viewpoint. Except in the final remark on the topological linear
spaces, the ground field $K$ in \S 1 may be any field of characteristic
$\neq 2$ . Then, in \S 2 we assume the field $K$ to be locally compactly valued.
We consider the local properties of quadratic forms and orthogonal
groups: the determination of indices of forms (Lemma 2), the characte $\cdot$

rization of local similarity of forms by means of their indices and dis-
criminants (Lemma 3) and the relation between indices of forms and
the local isomorphism of their orthogonal groups (Lemma 4). The
results on the automorphisms of classical groups due to Dieudonn\’e are
used. Finally, in \S 3 we shall establish certain theorems of Hasse type
for quadratic forms and orthogonal groups over a field of algebraic
numbers, or a field of algebraic functions of one variable over a finite
field of characteristic $\neq 2$ . Thus, we prove, firstly, the principle for
similarity of forms, where the arithmetic of central simple algebra is
used (Theorem 1). Secondly, using Lemma 1, we transfer the thus
obtained principle to that of orthogonal groups (Theorem 2). Lastly,
we prove another theorem for groups under a somewhat weaker as-
sumption and there a result from the class field theory is used
(Theorem 3). It seems interesting to the writer that the algebraic
property, $i$ . $e$ . the coniugateness of groups, comes from the continuity
for all topologies induced by places in $K$.

\S 1. Preliminary notations.

Let $K$ be a field of characteristic $\neq 2$ , and let $V$ be an n-dimen-
sional vector space over $K$. We denote by $E$ the algebra of endo $\cdot$

morphisms of $V$ over $K$, and by $GL(V)$ the group of automorphisms
of $V$ over $K$. Let $f$ be a non-degenerate symmetric bilinear form on
V. For any $\sigma\in GL(V)$ , we define another bilinear form $f^{\sigma}$ as follows:

$f^{\sigma}(x,y)=f(\sigma X, \sigma y)$ for all $x,$ $y\in V$. It is easy to see that $f^{\sigma\tau}=(f^{\sigma})^{\tau}$,
$(af)^{\sigma}=of^{\sigma}$ for $\sigma,$ $\tau\in GL(V),$ $a\in K^{*4)}$ . We say that two forms5) $f$ and $g$

are congruent: $f\sim g$, if $g=f^{\sigma}$ for some $\sigma\in GL(V)$ and that they are
similar: fcog, if $g\sim af$ for some $aeK^{*}$ . We denote by $O(V,f)$ the
set of all $\sigma\in GL(V)$ such that $f^{\sigma}=f$ and call it the orthogonal group

4) $K^{*}$ is the set of all non-zero elements in $K$.
5) For brevity, we often omit the long adjective: “ non-degenerate symmetric bilinear“.

We also denote the quadratic form corresponding to $f$ simply by the same notation.
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corresponding to $f$. It is easy to see that $O(V, af)=O(V,f)$ and
$ O(V,f^{\sigma})=\sigma^{-1}O(V,f)\sigma$ for $a\in K^{*},$ $\sigma\in GL(V)$ . This means that if $f\infty g$

then their groups $O(V,f)$ and $O(V, g)$ are coniugate in $GL(V)$ . We
can show that the converse is also true (Lemma 1). This is one of
the important relations between forms and their groups.

LEMMA 1. Let $K$ and $V$ be as above. Let $f$ andg be two forms
on V. Then, their orthogonal groups $O(V,f)$ and $O(V, g)$ are con-
jugate in $GL(V)$ if and only if $f$ and $g$ are similar in $K:f\infty g$.

PROOF. It suffices to show the necessity of the condition. If
$O(V, g)=\tau^{-1}O(V,f)_{\tau}$, then $O(V, g)=O(V,f^{\tau})$ . Thus, we may assume
from the first that $O(V,f)=O(V, g)$ . We devide the proof into two
cases.

Case A. $(K\neq GF(3))$ . Let $a$ be any non-isotropic vector (in the
sense of f) in $V$ and let $\sigma_{<a>}^{f}$ be the symmetry with respect to the
hyperplane $<a>f$ which is composed of all $x\in V$ such that $f(a, x)=0^{6)}$

Thus, we have an orthogonal decomposition, $V=<a>\oplus<a>f$ . On
the other hand, the involution $\sigma_{<a>}^{f}$ , conSidered as an element in
$O(V, g)$ , determines a non-isotropic subspace $U$ of $V$ such that $\sigma<af>(u)$

$=-u,$ $u\in U$ and $\sigma_{<a>}^{f}(v)=v,$ $v\in U^{g}$ , where $U^{g}$ is the conjugate of $U$ in
the sense of $g^{7)}$ We also have another orthogonal decomposition,
$V=U\oplus U^{g}$ . Since $<a>f$ is a hyperplane, we have $U^{g}\subset<a>f$ Con-
versely let $x$ be any vector $\in<a>f$. Set $x=y+z,$ $yeU,$ $z\in U^{g}$. Then,
we get $x=\sigma_{<a}^{f}>(x)=-y+z$ . Hence, it follows that $y=0$, and so $x=z\in U^{g}$.
Thus, we have $U=<b>$ and $<b>B=<a>f$ We may also write
$\sigma_{<a>}^{f}$ as $\sigma_{<b>}^{g}$ . Now, set $b=\mu a+x$ , $\mu\in K$, $xe<a>f$. Then, since
$\sigma_{<a>}^{f}(b)=\sigma_{<b>}^{g}(b)$ , we get $x=0$ , and we have $<a>=<b>$ . Thus, we
have $<a>f=<a>g$ for all non.isotropic vectors (in the sense of $f$).
By exchanging the roles of $f$ and $g$ in the above argument we see that
we need not distinguish the non.isotropic vectors in the senses of $f$ and
$g$. For a fixed nen.isotropic $a$, since $<a>f$ and $<a>g$ are the null-
spaces of the linear functionals $\varphi_{a}$ ; $\varphi_{a}(x)=f(a, x)$ and $\psi_{a}$ : $\psi_{a}(x)=g(a, x)$,
$x\in V$, respectively, we know that $<\varphi_{a}>=<\psi_{a}>$ in the dual space of
V. Thus, we get $\psi_{a}=\lambda_{a}\cdot\varphi_{a}$, namely, $g(a, x)=\lambda_{a}f(a, x),$ $xeV,$ $\lambda_{a}\in K^{*}$ .
If $a$ and $a^{\prime}$ are non-isotropic and $f(a, a^{\prime})\neq 0$ , then we have $g(a, a^{\prime})=$

$\lambda_{a}f(a, a^{\prime})$ and $g(a^{\prime}, a)=\lambda_{a^{\prime}}f(a^{\prime}, a)$ . Since $f$ and $g$ are symmetric forms,

6) $<a>$ denotes the line spanned by $a$ .
7) [5] p. 19 Prop. 7.
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we get $\lambda_{a}=\lambda_{a^{\prime}}$ . Now, let $a_{i},$ $i=1,\cdots,$ $n$ be a fixed orthogonal basis of
$V$ for $f$ Since $K$ contains at least 5 elements, there exists a $\mu eK^{*}$

such that $\mu^{2}f(a_{1}, a_{1})+\sum_{i-2}^{n}f(a_{i}, a_{i})\neq 0$ . Using this $\mu$ , put $a=\mu a_{1}+$

$i=2\lambda\neg o_{i}n$ Then, $f(a, a)\neq 0,$ $f(a, a_{i})\neq 0i=1,\cdots,$ $n$. Therefore, by the above

argument, we have $\lambda_{a_{i}}=\lambda_{a},$ $i=1,\cdots,$ $n$ . Now, let $x=\sum_{i-1}^{n}\mu_{i}a_{i}$ be any

vector $\in V$. Then, $g(x, y)=\sum_{i-1}^{n}\lrcorner^{\prime}\mu_{i}g(a_{i}, y)=\sum_{i-1}^{n}\mu;\lambda_{a_{i}}f(a_{i}, y)=\lambda_{a}f(x, y)$

for all $y\in V$. Thus, we get $g=\lambda_{a}f$. This settles Case A.
Case B. $(K=GF(3))$ If $n$ is odd, we have nothing to prove since

then any two forms are congruent. If $n$ is even, we have two cases:
$fi\sim x_{1}^{2}+\cdots+x^{2_{t-1}},+x_{n}^{2}$ or $f_{2}\sim x_{1}^{2}+\cdots+x_{n-1}^{2}-x_{n}^{2}$ . But, since the order of
$O(V,f_{1}):2(3^{n-1}-(-1)^{\frac{n}{2}}3^{(\frac{n}{2}-1)})(3^{n-2}-1)3^{n-3}\cdots(3^{2}-1)3$ and that of $o(V,f_{2})$ :
$2(3^{n-1}+(-1)^{\frac{n}{l}}3^{()}\frac{n}{2}-1)(3^{n-2}-1)3^{n-3}\cdots(3^{2}-1)3$ are different, $o(V,f_{1})$ and
$O(V,f_{2})$ cannot be conjugate in $GL(V)^{8)}$ Thus, we also know the validity
of our statement in Case B.

After Dieudonn\’e, we say that a form $f$ is of index $\nu$ if $\nu$ is the
maximum dimension of $U\subset V$ such that $U\subset U^{*}$ , where $U^{*}$ is the
conjugate of $U$ with respect to $f^{9)}$ A form $f$ of index $\nu$ is congruent

to $g=\lambda^{\nu_{\urcorner}}i=1(x_{t}^{2}-y_{l}^{2})+f^{*}$ , where the index of $f^{*}$ is zero. From Witt’s
theorem, such $f^{*}$ is determined uniquely up to congruence by $f$, and
we call it the kernel of $f^{10)}$ We also call the rank of $f^{*}$ (which is
equal to $ n-2\nu$ ) the coindex of $f$ and denote it by $\nu^{*}(f)$ . Since $ x^{2}-y^{2}\sim$

$a(x^{2}-y^{2})$ for all $a\in K^{*}$ , we get immediately that $f^{*}\infty g^{*}$ if and only if
$f\leftrightarrow g$.

Suppose that $V$ be of dimension 2 over $K$. Let $e_{i},$ $i=1,2$ be some
orthogonal basis of $V$ with respect to a form $f$ on $V$. Then, the as-
sociative algebra of rank 4 over $K$ with basis 1, $\omega_{1},$ $\omega_{2},$ $\omega_{1}\omega_{2}$ such that
$\omega_{i^{=f(e_{i},e_{i})=a_{i}}}^{2},$ $\omega;\omega_{k}+\omega_{k}\omega_{i}=0(i\neq k)i,$ $k=1,2$ , is called the quaternion
algebra of $f^{11)}$ This algebra is central simple over $K$. It is easily

8) Dickson [7] Chap. VII \S \S 169-170.
9) [5] p. 17.

10) [4] Satz 5.
11) This algebra is called by Witt [4] the Clifford algebra of $f$. But we shall adopt

a modified definition of Clifford algebras; see below.
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verified that this algebra is determined up to isomorphism by $f$. We
denote it by $(a_{1}, a_{2})$. We see that if one of $a_{1},$ $a_{2}$ is a square in $K$ then
$(a_{1}, a_{2})\cong K_{2}$ : the full matric algebra of degree 2 over $K$, and if one of
them, say $a_{2}$, is not a square in $K$ then $(a_{1}, a_{2})\cong(a_{1}, K(\sqrt{}\overline{a_{2}}),$ $\sigma$ ) : a
cyclic algebra with respect to the quadratic extension $K(\sqrt{}\overline{a_{2}})$ with
Galois group $<\sigma>.12$) Thus, we get the following relations for their
algebra classes: $(a, b)\sim(b, a),$ $(a, -a)\sim 1$ and $(a, c)\otimes(b, c)\sim(ab, c)$ , where
$\otimes means$ the tensor product of two algebras over $K$ Now, let, again,
$V$ be an $n\cdot dimensional$ vector space over $K$, and let $f$ be a form on
V. For some fixed orthogonal basis $e_{i}(i=1,\cdots, n)$ , put $a_{i}=f(e_{i}, e_{i})$ and
$d_{i}=a_{1}\cdots a_{i}$ . Then, we define the Clifford algebra $\mathfrak{C}(f)$ of $f$ as a tensor
product over $K:\mathfrak{C}(f)=(a_{1}, d_{1})\otimes(a_{2}, d_{2})\otimes\cdots\otimes(a_{n}, d_{n})^{13)}$ This is, of course,
central simple over $K$ It can be seen from the above properties of
$(a, b)$ that $f\sim g$ implies that $\mathfrak{C}(f)\sim \mathfrak{C}(g)$ and we know that the algebra
class of $\mathfrak{C}(f)$ is independent of the choice of orthogonal basis $e_{i^{14)}}$. By

simple computations we get $\mathfrak{C}(af)\sim(a, (-1)\frac{n(n+1)}{2}d(f)^{n+1})\otimes \mathfrak{C}(f)$ , where
$a\in K^{*}$ and $d(f)$ denotes the discriminant of $f$ relative to some basis of
$V^{15)}$ and $\mathfrak{C}(f+g)\sim(d(f), d(g))\otimes \mathfrak{C}(f)\otimes \mathfrak{C}(g)$ . For the special quadratic

form of type $f\sim\sum_{i\Leftarrow 1^{1}}^{r}(x_{i}^{2}-y_{i}^{2})$ , we have $d(f)\sim(-1)^{r}$ and $\mathfrak{C}(f)\sim(-1$ ,

$(-1)\frac{r(r+1)}{2})$ .
We shall close this section with some topological remarks. Suppose

that $K$ has a non.trivial valuation $|$ . Let $u_{i}(i=1,\cdots, n)$ be some fixed

basis of $V$ over $K$ If we define norm of $x=\sum_{i=1^{1}}^{n}x_{i}u_{i}\in V$ by $||x||=$

$\max_{i=1\ldots..n}|x_{i}|$ and that of $X=(x_{ij})\in E$ by $||X||=i.j\approx 1\ldots nmax.|X_{ij}|$ then $V$ and $E$

are topologized as usual.16) A subset $S$ of such a topological linear
space is called bounded if for some $b>0$ we have $||x||<b$ for all $x\in S$.

12) $<*>$ denotes the cyclic group generated by $\#$ .
13) The Clifford algebra defined here is slightly different from the habitual one. That

is the one denoted as $S(f)$ in [ $4^{\urcorner}$ . We define, inspired by Jones [8], $\mathfrak{C}(f)$ as a product
of $(a, b)s$ directly.

14) See the argument in [8] pp. 32-35.
15) The class of $d(f)$ modulo $K^{*2}$ is independent of the choice of basis. We denote

$a\sim b$ if $ab-1\in K^{*2}$ .
16) Artin [9] p. 18.



84 T. ONO

It is easy to see that boundedness is independent of the choice of basis
$u_{i}$ . It is obvious that the group $O(V,f)$ is a closed subset of $E$ and
$f\infty g$ implies that their groups $O(V,f)$ and $O(V, g)$ are homeomorphically
isomorphic. If $K$ is locally compact, then so are $V$ and $E$, and a
bounded closed subset of $V$ or $E$ is the same thing as a compact subset.

\S 2. Local considerations.

In this \S , we assume that $K$ is a locally compactly valued field of
characteristic $\neq 2$ . Let $V$ be an n.dimensional vector space over $K$

and $f$ be a non $\cdot$ degenerate symmetric bilinear form on $V$. If $K$ is the
comptex number field, then $\nu=[n/2]$ always, where $[\neq]$ means the
integral part of $\star$ . If $K$ is the real number field, then we get easily
$\nu=\min(\iota, n-\iota)$ , where $\iota$ is the number of positive coefficients in a
canonical form of $f$. On the other hand, if $K$ is $non\cdot archimedean$ ,
then we know that for $n\geqq 5$ , every $f$ is a zero form.17) Thus, in this
case, the coindices $\nu^{*}\leqq 4$ and more precisely $\nu^{*}=1$ or 3 if $n$ is odd,
$\nu^{*}=0,2$ or 4 if $n$ is even. For non.archimedean fields it is also known
that $d(f)$ and $\mathfrak{C}(f)$ form a complete system of invariants for forms on
$V^{18)}$ As to the coindices for the non.archimedean cases we get the
following

LEMMA 2. If $n$ is odd, then $\nu^{*_{=}}1$ if and only $lf\mathfrak{C}(f)\sim(-1$,
$(-1)^{\frac{n^{2-}1}{8}}d^{\frac{n+1}{2}})$ , where $d$ is the discriminant of $f$ for some basis in $V$.
If $n$ is even, then $\nu^{*}=0$ if and only if $(-1)^{\frac{n}{2}}d$ is a square in $K$ and
$\mathfrak{C}(f)\sim(-1,$ $(-1)\frac{n^{B}+2n}{8})$ , and $\nu^{*}=2$ if and only $|f(-2)^{\frac{n}{2}}d$ is not a
square in $K$

PROOF. Case 1. ( $n$ : odd). $\nu^{*}=1$ means that $f\sim g=^{\frac{n-1}{\sum_{i-1}^{2}}}(x_{i}^{2}-y_{l}^{2})$

$+(-1)^{\frac{n-1}{2}}dx$ . This congruence, however, is equivalent to the condition
$\mathfrak{C}(f)\sim \mathfrak{C}(g)\sim((-1)^{\frac{n-1}{2}}, (-1)^{\frac{n-1}{2}}d)\otimes(-1,$ $(-1)^{\frac{n^{2}-1}{8}})\otimes(-1, (-1)^{\frac{n-1}{2}}d)$

$\sim(-1, (-1)^{\frac{n^{2}-1}{8}}d^{\frac{n+1}{2}})$ .

17) [4] Satz 16 or [6] p. 42 Satz 7.3.
18) [4] Satz 17.
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Case 2. ( $n$ : even). First, $\nu^{*}=0$ means that $f\sim g=\sum_{i\rightarrow 1}^{2^{n}}--(x_{i}^{2}-y_{i}^{2})$ . This

congruence holds if and only if $d\sim(-1)^{\frac{n}{2}}$ and $\mathfrak{C}(f)\sim(-1,$ $(-1)\frac{n^{2}+2n}{8})$ .
Next, suppose $\nu^{*_{=}}2$ . By definition we have $\nu(f^{*})=0$ and so $-d^{*}$ is..
not a square in $K$ Since $d\sim(-1)^{-n}2^{--1}d^{*}=(-1)^{\frac{n}{2}}(-d^{*}),$ $(-1)^{\frac{n}{2}}d$ is
also not a square in $K$. Finally, suppose $\nu^{*}=4$ . Then, $d\sim(-1)^{\frac{n}{2}-2}d^{*}$

$=(-1)^{\frac{n}{2}}d^{*}$ . Since $\nu(f^{*})=0,$ $(-1, -1)\otimes \mathfrak{C}(f^{*})$ does not split in $K(\sqrt{d^{*})}.19)$

As every quaternion algebra splits by any quadratic extension over our
$K^{20)}d^{*}$ should be a square in $K$ Thus, we get $(-1)^{\frac{n}{2}}d\sim 1$ . There.
fore our lemma is proved.

For the archimedean case, it is a trivial fact that the similarity of
two forms is characterized by their indices. As an analogue of this
we prove the following

LEMMA 3. Let $K$ be a non-archimedean field. In order to have
$f_{\Omega}g$ it is necessary and sufficient that: $\nu(f)=\nu(g),$ $lfn$ is odd; $\nu(f)=$

$\nu(g)$ and $d(f)\sim d(g),$ $lfn$ is even.21)

PROOF. The necessity is trivial. Now, assume that $\nu(f)=\nu(g)$ for
an odd $n$ . If $\nu^{*}(f)=\nu^{*}(g)=1$ , then $f^{*}\leftrightarrow g^{*}$ and it follows that $f\infty g$.
If $\nu^{*}(f)=\nu^{*}(g)=3$ , then $\nu(f^{*})=\nu(g^{*})=0$ , and $(-1, -1)\otimes \mathfrak{C}(f^{*})$ and
$(-1, -1)\otimes \mathfrak{C}(g^{*})$ do not split in $K^{22)}$ As there exists only one algebra
class of order 2 over our $K^{23}$ we get $\mathfrak{C}(f^{*})\sim \mathfrak{C}(g^{*})$ . Let $a$ be an
element in $K^{*}$ such that $d(f^{*})\sim d(ag^{*})$ . Since $\mathfrak{C}(ag^{*})\sim \mathfrak{C}(g^{*})$ , we see
that $f^{*}\sim ag^{*}$ , namely $f^{*}\leftrightarrow g^{*}$ . Therefore we get $f\leftrightarrow g$. Next, assume
that $\nu(f)=\nu(g)$ and $d(f)\sim d(g)$ for an even $n$ . If $\nu^{*}(f)=\nu^{*}(g)=0$ or
4, then from Lemma 2 we have $d(f)\sim d(g)\sim(-1)^{\frac{n}{2}}$ and $\mathfrak{C}(f)\sim \mathfrak{C}(g)$ .
If $\nu^{*}(f)=\nu^{*}(g)=2$ , then from the condition on the discriminants we
have $d(f^{*})\sim d(g^{*})$ . Since $f^{*}$ and $g^{*}$ (are binary forms, this implies
that $f^{*}\infty g^{*}$ . Thus, we again have $f\infty g$. This settles the sufficiency. $ 24\rangle$

19) [4] Satz 14.
20) [3] p. 113.
21) The condition about the discriminats for an even $n$ is trivial except the case

$v^{*}(f)=v^{*}(g)=2$.
22) [4] Satz 13.
23) [3] p. 112 Satz 3.
24) This proof was inspired by Mr. Tsuzuku.
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For Lorentz groups, we can see by topological considerations that
if two groups are homeomorphically isomorphic then their correspond-
ing forms have equal indices. The analogue of this holds also for our
general field $K$ as a consequence of Dieudonn\’e’s result on the automor-
phisms of orthogonal groups. We get the following

LEMMA 4 Let $K$ be a locally compact field as described above.
If there exists a homeomorphical isomorphism $\varphi$ between $O(V,f)$ and
$O(V, g)$ , then we have $\nu(f)=\nu(g)$ .

PROOF. Since $\varphi$ is a homeomorphism, if one of the groups is
compact, so is the other. This implies that if one of the indices is zero,
so is the other.25) Suppose that $n\leqq 3$ , then the indices $\leqq[3/2]=1$ and
the statement is proved. Thus, we may assume that $n\geqq 4$ and both
indices are $\geqq 1$ . For such a case, it is known that $\varphi$ induces a 1–1
mapping $\Phi$ of the set of all lines in $V$ onto itself such that if a line
$<x>$ is orthogonal to another line $<y>$ with respect to $f$ then $\Phi<x>$

is orthogonal to $\Phi<y>$ with respect to $g$ and furthermore $\Phi<x>$

$=<sx>$ . where $s$ is a 1–1 semi.linear transformation of $V$ onto
itself.26) Therefore the image of the basis of a totally isotropic sub-
space of $V$ for $f$ spans also a totally isotropic subspace of $V$ for $g$

whose dimension is the same as the former one. Thus, we have $\nu(f)$

$=\nu(g)$ , and our lemma is proved.

\S 3. Hasse principle.

Hereafter, we assume that $K$ is either a field of algebraic numbers
or a field of algebraic functions of one variable over a finite field of
characteristic $\neq 2$ . Let $K_{\mathfrak{p}}$ be a $\mathfrak{p}$ -adic completion of $K$ with respect
to a place $\mathfrak{p}$ in $K$. Then, $K_{\mathfrak{p}}$ satisfies the conditions of $K$ in g2 and
conversely a field $K$ in \S 2 is a $K_{\mathfrak{p}}$ with a suitable $K$ (in our present
sense) and a suitable place $\mathfrak{p}$ in $K$. We denote by $V_{\mathfrak{p}}$ the scalar ex-
tension of $V$ with respect to $K_{\mathfrak{p}}$ , and by $E_{\mathfrak{p}},$ $GL(V_{\mathfrak{p}})$ the corresponding
algebra and group. Suppose that a form $f$ is given on $V$. Naturally

$24^{\prime})$ See the addendum at the end of the paper.
25) Ono [10] Th. 2.
26) Dieudonn\’e [11] Chap. X, \S \S 32-33. Though only the automorphism is treated there,

we can see that the same argument shows the existence of the above $\Phi$ for the case of
an isomorphism.
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$f$ may be considered as a form on $V_{\mathfrak{p}}$ for any place $\mathfrak{p}$ in $K$, and we
may consider $O(V,f)$ as a subgroup of $O(V_{\mathfrak{p}},f)$ for any place $\mathfrak{p}$ in $K$

Let $\nu_{t)},$
$\nu_{\mathfrak{p}}^{*}$ be the local index and coindex of $f$ respectively for a place

$\mathfrak{p}$ . The Hasse principle for indices is expressed as $\nu=\min_{\mathfrak{p}}\nu \mathfrak{p}$ ’ where $\mathfrak{p}$

runs over all places in $K$ For a real infinite place $\mathfrak{p}$ , let $\iota \mathfrak{p}$ be the
number of positive coefficients in a canonical form of $f$ in $K_{\mathfrak{p}}$ . In
general, we denote by $\mathfrak{A}_{\mathfrak{p}}$ the scalar extension of an algebra $\mathfrak{A}$ over
$K$ to $K_{\mathfrak{p}}$ .

First we prove the following theorem of Hasse tyPe on the simil $\cdot$

arity of forms.
THEOREM 1. Let $K$ be a field of algebraic numbers or a field of

algebraic functions of one vanable over a finite field of characteristic
$\neq 2$, and let $V$ be an n-dimensional vector space over K Let $f$ and
$g$ be two non $\cdot$ degenerate symmetric bilinear forms on V. Then
$f_{C4}g$ in $K_{l}fand$ only if $f_{Co}g$ in $K_{\mathfrak{p}}$ for every place $\mathfrak{p}$ in $K$

To get this theorem we prove the following lemma.
LEMMA 5. Let $K$ be a field of algebraic numbers, and let $L$ be a

quadratic extension of $K:L=K(\Gamma d)$ . Let $\mathfrak{M}$ be the set of all real
infinite places in $K$ such that $d$ is positive in $K_{\mathfrak{p}}$ . Then, there exists
an element $ceL$ such that $N_{L/K}(c)$ has an arbitrarily given (positive or
negative) sign in each $K_{\mathfrak{p}},$ $\mathfrak{p}e\mathfrak{M}$ .

PROOF of lemma. Let $\mathfrak{p}^{)}s$ and $\mathfrak{q}s$ be places in $\mathfrak{M}$ corresponding
to the given positive and negative signs respectively. By the independ $\cdot$

ency of valuations in $K$, there exists an $x\in K$ such that $|x|_{\mathfrak{p}}>\sqrt{}\overline{|d|}_{\triangleright}$

and $|x|_{q}<\sqrt{|d|_{\mathfrak{q}}}.27$ ) Since $d$ is positive in $K_{\mathfrak{p}},$ $\mathfrak{p}e\mathfrak{M}$ , this means that
$x_{\mathfrak{p}}^{2}>d_{\mathfrak{p}},$ $x_{W}^{2}<d_{\mathfrak{q}}$ , where $x_{\mathfrak{p}}$ and $d_{\mathfrak{p}}$ mean respectively the conjugates of
$x$ and $d$ with respect to $\mathfrak{p}$ . Thus, if we put $c=x+\sqrt{d,}$ then $N_{L/K}c=$

$x^{2}-d$ satisfies the required condition.
PROOF of theorem. The necessity is trivial. We prove the $suffici\rightarrow$

ency separately for two cases.
Case 1. ( $n$ : odd). Suppose that $fc\circ g$ in $K_{\mathfrak{p}}$ for any place $\mathfrak{p}$ in $K$.

Then, we have $\nu \mathfrak{p}(f)=\nu \mathfrak{p}(g)$ for any $\mathfrak{p}$ . Put $a=d(f)d(g)^{-1}$, then $d(ag))$

$\sim ad(g)=d(f)$ since $n$ is odd. We also have $\nu \mathfrak{p}(ag)=\nu \mathfrak{p}(g)=\nu \mathfrak{p}(f)$ for
any $\mathfrak{p}$ . Thus, we may assume from the first that $\nu \mathfrak{p}(f)=\nu \mathfrak{p}(g)$ and

27) [9] p. 8.
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$d(f)\sim d(g)$ in $K_{\mathfrak{p}}$ for any $\mathfrak{p}$ . Now, let $\mathfrak{p}$ be a real infinite place. Then,
we have $\iota \mathfrak{v}(f)=\iota \mathfrak{p}(g)$ or $n-\iota p(g)$ . Suppose that $\iota p(f)=n-\iota p(g)$ for some
real infinite $\mathfrak{p}$ . Since $d(f)\sim d(g)$ , it follows that $(-1)^{n-\iota}\mathfrak{p}^{(f)}=(-1)^{n-\iota}0^{(g)}$

$=(-1)^{\iota}\mathfrak{p}^{(f)}$ . Therefore, $(-1)^{n}=1$ in $K_{\mathfrak{p}}$ . This contradicts to the as-
sumption that $n$ is odd. Thus, we have $\iota p(f)=\iota p(g)$ for all real infinite
places $\mathfrak{p}$ . Therefore we have $f\sim g$ in $K_{\mathfrak{p}}$ for all infinite places $\mathfrak{p}$ . Now,
let $\mathfrak{p}$ be any finite place in $K$ Since $\nu \mathfrak{p}(f)=\nu \mathfrak{p}(g)$ and $d(f)\sim d(g)$ in
$K_{\mathfrak{p}}$ . we get $\mathfrak{C}\mathfrak{p}(f)\sim \mathfrak{C}_{\mathfrak{p}}(g)$ from Lemma 2. Therefore $f\sim g$ in $K_{\mathfrak{p}}$ for
all finite places $\mathfrak{p}$ . Thus, we get $f\sim g$ in $K_{\mathfrak{p}}$ for any place $\mathfrak{p}$ in $K$

According to the Hasse principle for the congruence of forms,28) we get
$f\sim g$ in $K$

Case 2. ( $n$ : even). From the assumption we have $\nu \mathfrak{p}(f)=\nu \mathfrak{p}(g)$ and
$d(f)\sim d(g)$ in $K_{\mathfrak{p}}$ for any $\mathfrak{p}$ . Now, for any real infinite place $\mathfrak{p}$ , we
set $e\mathfrak{p}=0$ if $\iota \mathfrak{p}(g)=\iota \mathfrak{p}(f)$ and ep $=1$ if $\iota \mathfrak{p}(g)=n-\iota \mathfrak{p}(f)$ . Then, we may
select an element $beK$ such that $b$ is of sign $(-1)^{e_{P}}$ in $K_{\mathfrak{p}}$ for
any real infinite place $\mathfrak{p}$ . Then, we see that $\nu \mathfrak{p}(f)=\nu \mathfrak{p}(bg)$ for any
place $\mathfrak{p}$ , in particular $\iota \mathfrak{p}(f)=\iota \mathfrak{p}(bg)$ for any real infinite place $\mathfrak{p}$ and
$d(f)\sim d(bg)$ since $n$ is even. Thus, from the first was may assume
that $\nu \mathfrak{p}(f)=\nu \mathfrak{p}^{(g)}$ for any place $\mathfrak{p},$

$\iota \mathfrak{p}(f)=\iota \mathfrak{p}(g)$ for any real infinite
place $\mathfrak{p}$ and $d(f)\sim d(g)$ in $K$. Now, for infinite places $\mathfrak{p}$ , since $f\sim g$ in
$K_{\mathfrak{p}}$ , we get $\mathfrak{C}_{\mathfrak{p}}(f)\cong \mathfrak{C}_{\mathfrak{p}}(g)$ and for finite places $\mathfrak{p}$ such that $\nu^{*_{)}}(f)=\nu_{\mathfrak{p}}^{x}(g)$

$=0$ or 4, $i.e$ . $(-1)^{-}2d(f)\sim(-1)^{-}2d(g)\sim 1n_{-}n_{-}$ in $K_{\mathfrak{p}}$ , we get $\mathfrak{C}_{\mathfrak{p}}(f)\sim \mathfrak{C}_{\mathfrak{p}}(g)$

from Lemma 2. Thus, $(\mathfrak{C}(f)\otimes \mathfrak{C}(g))\mathfrak{p}=\mathfrak{C}\mathfrak{p}(f)\otimes \mathfrak{C}\mathfrak{p}(g)\sim 1$ for the above
mentioned places $\mathfrak{p}$ . If, moreover, $\mathfrak{C}\mathfrak{p}(f)\sim \mathfrak{C}_{\mathfrak{p}}(g)$ for all such places $\mathfrak{p}$

that $\nu^{\star}\mathfrak{p}(f)=\nu \mathfrak{p}*(g)=2^{ae)}$ , then we have $f\sim g$ in $K_{\mathfrak{p}}$ for all places $\mathfrak{p}$ in $K$

Thus, we have $f\sim g$ in $K$ as in Case 1. If not, then the algebra
$\mathfrak{C}(f)\otimes \mathfrak{C}(g)$ over $K$ is of exponent 2, $i$ . $e$ . of Schur index 2 There-
fore we see that $\mathfrak{C}(f)\otimes \mathfrak{C}(g)\sim(a,$ $K(\sqrt{\beta)}, \sigma)$ where $a,$ $\beta\in K^{*},$

$\sigma$ is a
generator of Galois group of $K(\sqrt{\beta})$ over $K$. Thus, $\mathfrak{C}(f)\otimes \mathfrak{C}(g)\sim 1$ in
$K(\sqrt{\beta})$ . For the above mentioned non-exceptional places $\mathfrak{p}$ , obviously

we have $\mathfrak{C}(f)\otimes \mathfrak{C}(g)\sim 1$ in $K_{\mathfrak{p}}(\sqrt{(-1)^{\frac{n}{2}}d(f}$) $)$ . On the other hand, for

28) [4] Satz 20.
29) We call such a finite place exceptional.
30) [3] p. 119, Satz 6, 7.



Arithmetic of orthogonal groups 89

the exceptional places $\mathfrak{p}$ , since $(-1)^{\frac{n}{2}}d(f)$ is not a square in $K_{\mathfrak{p}}$ , we

also have $\mathfrak{C}(f)\otimes \mathfrak{C}(g)\sim 1$ in $K_{\mathfrak{p}}(\sqrt{(-1)^{\frac{n}{2}}d(f)})$ . Thus, we get from
the fundamental statement on algebra classes, $\mathfrak{C}(f)\otimes \mathfrak{C}(g)\sim 1$ in
$L=K(\sqrt{}^{\overline{n_{2^{-}}}}(-1)^{\sim}d(f)).31)$ Then, we also have $L=K(\sqrt{\beta})^{32)}$ Thus, we
get $\mathfrak{C}(f)\otimes \mathfrak{C}(g)\sim(a, L, \sigma)=(a, (-1)^{\frac{n}{2}}d(f))$ . Our next task is to replace
$a$ by an element $\in K^{*}$ which is totally positive. To do this, let $\mathfrak{M}$ be

the set of all real infinite places $\mathfrak{p}$ in $K$ cuch that $d=(-1)^{\frac{n}{2}}d(g)$ is
positive in $K_{\mathfrak{p}}$ . Then from the above Lemma 5, there exists $ceL$ such
that $aN_{L/K}c$ is positive in $K\mathfrak{p}$ for all $\mathfrak{p}\in \mathfrak{M}$ . As $(N_{L/K}c, L, \sigma)\sim 1^{33)}$ we
may assume that $(\mathfrak{C}(f)\otimes \mathfrak{C}(g))\sim(a,$ $(-1)^{n_{2}}- d(g))$ , where $a$ is positive
in $K_{\mathfrak{p}}$ for all $\mathfrak{p}\in \mathfrak{M}$ . On the other hand, for all real infinite places $\mathfrak{p}$

such that $\mathfrak{p}\not\in \mathfrak{M},$ $a$ must be positive in $K_{\mathfrak{p}}$, since $ 1\sim(\mathfrak{C}(f)\otimes \mathfrak{C}(g))\mathfrak{p}\sim$

$(a, (-1)^{\underline{n}_{2^{-}}}d(g))_{\mathfrak{p}}$ for these places $\mathfrak{p}$ . Therefore, we have $\iota \mathfrak{p}(f)=\iota \mathfrak{p}(ag)$

for all real infinite places $\mathfrak{p}$ . From the above formula of equivalence

we get $\mathfrak{C}(f)\sim(a, (-1)^{n_{2^{-}}}- d(g))\otimes \mathfrak{C}(g)\sim \mathfrak{C}(ag)$ . Therefore, we have $\mathfrak{C}_{\mathfrak{p}}(f)$

$\sim \mathfrak{C}_{\mathfrak{p}}(ag)$ and $d(f)\sim d(ag)$ for all finite places $\mathfrak{p}$ . This means that $f\sim ag$

in $K_{\mathfrak{p}}$ for all finite places $\mathfrak{p}$ . Together with the above equality on $\iota \mathfrak{p}$ ,
we get from the Hasse principle for congruences, $f\sim ag$ in $K$ This
proves our statement.

We get immediately from Lemma 1 in \S 1 the following theorem
of Hasse type for orthogonal groups.

THEOREM 2. Let $K$ and $V$ be as described in Theorem 1. Let $f$

and $g$ be forms on V. Then the orthogonal groups $O(V, f)$ and $O(V, g)$

are coniugate in $GL(V)$ if and only $lfO(V\mathfrak{p},f)$ and $O(V\mathfrak{p}_{J}g)$ are con-
jugate in $GL(V_{\mathfrak{p}})$ for all places $\mathfrak{p}$ in $K$.

Finally we prove the following theorem for orthogonal groups.
THEOREM 3. Let $K$ and $V$ be as described in Theorem 1. Let

$f$ and $g$ be forms on V. If their local orthogonal groups $O(V_{p},f)$ and
$O(V_{\mathfrak{p}}, g)$ are homeomorphically isomorphic for every place $\mathfrak{p}$ in $K$, then
the global groups $O(V, f)$ and $O(V, g)$ are coniugate in $GL(V)$ .

31) [3] p. 118, Satz 2.
32) [3] p. 122, Satz 11.
33) [3] p. 65, Satz 3
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PROOF. From Lemma 4, we have $\nu \mathfrak{p}(f)=\nu \mathfrak{p}(g)$ for any place $\mathfrak{p}$ in
$K$ If $n$ is odd, we get $f_{\circ}\circ g$ in $K_{\mathfrak{p}}$ for any $p$ by Lemma 3. Thus, it
follows from Theorem 1 that $f(g$ in $K$ On the other hand, if $n$ is
even, again we have $\nu \mathfrak{p}(f)=\nu \mathfrak{p}(g)$ for any $\mathfrak{p}$ . Lemma 2 implies that
$(-1)^{\frac{n}{2}}d(f)$ is a square in $K_{\mathfrak{p}}$ if and only if $(-1)^{\frac{n}{2}}d(g)$ is so. This
means that the set of all finite places in $K$ which split completely $re$ .

lative to the quadratic extension $K(\sqrt{(-1)^{\frac{n}{2}}d(f)})$ coincides with such

set relative to the extension $K(1_{\overline{(-1)^{\frac{n}{2}}d(g)})}$ . Therefore, both qua-
dratic extensions are the class fields over the same ideal class group
in $K$, and so they coincide.34) Thus, we get $d(f)\sim d(g)$ . Then, we
have $f_{C\wedge}g$ in $K_{\mathfrak{p}}$ for any $\mathfrak{p}$ , from Lemma 3. Thus, we get $f\infty g$ in
$K$ from Theorem 1. Therefore we have the conjugateness of two
groups.

Nagoya University.
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Addendum

(Received Nov. 8, 1954)

After this paper had been prepared, Prof. J. Dieudonn\’e has kindly
communicated to the writer that our lemma 4 is true without any
topological assumptions provided $n\geqq 3$ . His remark is as follows:

The first thing to do is to characterize the extremal involutions of
the orthogonal groups by the method of C. E. Rickart.35) There is nothing
to do for $n=3$ , and for $n=4,5,$ Rickarts proof works as well as for
$n\geqq 6$ . This being done we can see that there is no isomorphism be-
tween $O(V, f)$ and $O(V, g)$ if the index is $0$ for one of them and $\neq 0$

for the other by the arguments of $[11]^{36)}$. We are thus reduced to the
case where both indices are $>0$ and $n\geqq 4$ ; this is done by the same
arguments as those of $[$11 $]^{}$

By this remark, we can further weaken the assumption of our
Theorem 3 (for $n\geqq 3$ ) to get

THEOREM 3’. Let $K$ and $V$ be as described in Theorem 1. If
the local groups $O(V_{\mathfrak{p}}, f)$ and $O(V\mathfrak{p}, g)$ are (abstractlly) isomorphic for
every place $\mathfrak{p}$ in $K$, thethe global groups $O(V, f)$ and $O(V, g)$ are
coniugate in $GL(V)$ .

35) Richart [13] p. 703. Th. 1.4.
36) [11] p. 48.
37) [11] p. 48-51.
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