Journal of the Mathematical Society of Japan

## On the kernel of semigroups.

## By Hiroshi HASHIMOTO

## (Received October 20, 1953)

The structure of the kernel of finite semigroups was studied by Suschkewitsch [1], and his study has been extended to bicompact semigroups by Numakura [2]. In the latter case, the set of idempotents plays an important rôle. In this note we shall define the kernel of semigroups which have minimal left and minimal right ideals, and investigate the relation between the kernel and minimal left (right) ideals. Thus we propose to extend the theory of bicompact semigroups to more general semigroups.

Let  $D_1$  be a minimal left ideal,  $D_2$  a minimal right ideal, and D the product of  $D_1$  and  $D_2$ . Then, in order that a subset L(R) of S be a minimal left (right) ideal of S, it is necessary and sufficient that L(R) be represented in the following form:

$$L=D_1a \qquad (R=aD_2),$$

where *a* is an element in L(R). From this fact it follows that the product of any minimal left ideal and any minimal right ideal is always equal to *D*. Therefore *D* is determined uniquely irrespective of the selection of  $D_1$  and  $D_2$ . *D* is a simple semigroup and is called the kernel of *S*. If we put  $E=D_2D_1$ , then *E* is a group contained in  $D_1$  and  $D_2$ . Therefore every semigroup which has its kernel contains at least one idempotent. We obtain the following result, which shows the relation between the kernel and minimal left (right) ideals: the kernel *D* is decomposed into join of minimal left (right) ideals which have no element in common. On the other hand every minimal left (right) ideal can be divided into groups, which have no element in common. The structure of the kernel *D* is thus completely determined.

The author wishes to express here his hearty thanks to professor M. Moriya to whom he has been greatly indebted for his many valuable remarks and suggestions.

1. In this paper we limit ourselves to semigroups which have

minimal left ideals and minimal right ideals.

Let  $D_1$  be a minimal left ideal and  $D_2$  a minimal right ideal of S. Then  $Sd_1$  is a left ideal contained in  $D_1$  for any element  $d_1 \in D_1$ , so that by definition

(1)  $Sd_1=D_1$  for every element  $d_1$  in  $D_1$ ,

and similarly

(2)

 $d_2S=D_2$  for every element  $d_2$  in  $D_2$ .

Accordingly

$$SD_1 = D_1$$

 $(4) D_2 S = D_2.$ 

Now, if we put

 $(5) D=D_1D_2,$ 

then by (3) and (4)

$$SD = SD_1D_2 = D_1D_2 = D$$
,  
 $DS = D_1D_2S = D_1D_2 = D$ .

namely

SD=DS=D.

Thus D is an ideal in S and furthermore, by (1) and (2), D is a minimal ideal in S.

THEOREM 1 L. Every minimal left ideal L of S can be represented in the form L=Da, where a is any element in L.

PROOF. Since  $SL \subset L$ , we have  $Da \subset L$  for any element *a* in *L*. However Da is a left ideal of *S*. Thus we have L=Da.

THEOREM 1 R. Every minimal right ideal R of S can be represented in the form R=aD, where a is any element in R.

By these theorems we have

(7)  $D_1 = Dd_1$  for every element  $d_1$  in  $D_1$ ,

(8)  $D_2 = d_2 D$  for every element  $d_2$  in  $D_2$ ,

and so

$$DD_1=D_1, \quad D_2D=D_2.$$

60

By (6), (7) and (8)

 $(10) D_1 \subset D, D_2 \subset D.$ 

On the other hand, we have by (9),

(11) 
$$D^2 = DD_1D_2 = D_1D_2 = D$$
.

$$D = D_1 D_2 \subset D_1 D \subset D^2 = D$$

hence

$$(12) D_1 D = D D_2 = D.$$

THEOREM 2L. Every minimal left ideal L of S can be represented in the form  $L=D_1a$ , where a is any element in L.

 $D=D_1D_2\subset DD_2\subset D^2=D$ ,

PROOF. Since SL=L,  $D_1a \subset L$  for any element a in L. However  $D_1a$  is a left ideal of S by (3) and hence  $L=D_1a$  for every a in L.

THEOREM 2 R. Every minimal right ideal R of S can be represented in the form  $R=aD_2$ , where a is any element in R.

 $D_1$  is a minimal left ideal of S. Then we have

(13) 
$$D_1 = D_1 d_1$$
 for every element  $d_1$  in  $D_1$ ,

accordingly

(14) 
$$D_1^2 = D_1$$

Similarly, we have

(15)  $D_2=d_2D_2$  for every element  $d_2$  in  $D_2$ ,

(16) 
$$D_2^2 = D_2$$
.

From (6) and theorem 1 we can obtain the following theorems:

THEOREM 3. Every minimal left (right) ideal is contained in D.

THEOREM 4 L. Every minimal left ideal L of S can be represented in the form  $L=D_1d$ , where d is an element in D.

THEOREM 4 R. Every minimal right ideal R of S can be represented in the form  $R = dD_2$ , where d is an element in D.

**2**. *E* is defined by the product of  $D_2$  and  $D_1$ . Then by (10) we see at once that

$$(17) E \subset D.$$

By (9) and (16) we can obtain the following results:

 $ED=D_2$ .

 $D_2 \supset E$ .

(18)  $D_1 = D D_1 = D_1 D_2 D_1 = D_1 E$ ,

(19)  $DE = D_1 D_2 D_2 D_1 = D_1 D_2 D_1 = D D_1 = D_1.$ 

Similarly

(20)  $D_2 = D_2 D = D_2 D_1 D_2 = E D_2$ ,

(22) 
$$E^2 = D_2 D_1 D_2 D_1 = D_2 D D_1 = D_2 D_1 = E$$
.

By (17) (19) and (22) we have

$$(23) D_1 = DE \supset E^2 = E$$

and similarly

(24)

Finally by (14) and (16) we have

 $ED_1 = D_2 E = E.$ 

Here we remark that

(26) 
$$E = d_2 D_1 = D_2 d_1$$
, where  $d_1 \in D_1$ ,  $d_2 \in D_2$ ,

because from (7), (8) and (11) we obtain  $E = D_2 D_1 = d_2 D D d_1 = d_2 D d_1$ =  $d_2 D_1 = D_2 d_1$ .

THEOREM 5. E is a group.

**PROOF.** Let *e* be any element in *E*. From (23) and (24) we see that *e* is an element in  $D_1$  and  $D_2$ . Therefore by (13) and (15) we have

$$Ee = D_2(D_1e) = D_2D_1 = E$$
 ,  
 $eE = (eD_2)D_1 = D_2D_1 = E$ 

for every element e in E. Hence E is a group.

**3.** LEMMA 1. Let p be any element in  $D_1d$ , where d is an element in D. Then  $D_1p$  is identical with  $D_1d$ .

PROOF. Since p is an element in  $D_1d$ , p can be represented in the form  $d_1d$ , where  $d_1$  is an element in  $D_1$ . By (13) we have  $D_1p = D_1d_1d = D_1d$ .

LEMMA 2. If d and d' are elements in D, then either  $D_1d=D_1d'$ or  $D_1d \frown D_1d'=\phi$ .

**PROOF.** Let p be a common element in  $D_1d$  and  $D_1d'$ . By lemma 1

62

we have  $D_1 p = D_1 d = D_1 d'$ .

LEMMA 3. D is covered by the family  $\{D_1d, d \in D\}$ .

PROOF. This is evident by (12).

LEMMA 4.  $D_1d$  is a minimal left ideal of S for any element d in D.

PROOF. It is easy to see that  $D_1d$  is a left ideal. If L is a left ideal of S in  $D_1d$ , then, for any element  $d_1d$  in  $D_1d$ , we have  $L \supset SL \supset D_1d_1d = D_1d$  by theorem 2L. Hence  $D_1d$  is a minimal left ideal.

By lemma 4 and theorem 4 we have

THEOREM 6L. In order that a subset L of S be a minimal left ideal of S, it is necessary and sufficient that L be represented in the following form:

$$L=D_1d$$
 where d is an element in D.

Similarly we obtain

THEOREM 6 R. In order that a subset R of S be a minimal right ideal of S, it is necessary and sufficient that R be represented in the following form:

 $R=dD_2$  where d is an element in D.

THEOREM 7. Let L be any minimal left ideal and R any minimal right ideal, then

- (i) LR=D,
- (ii) RL is a group.

**PROOF.** By theorem 6, L and R can be represented as follows:

$$L=D_1d$$
,  $R=d'D_2$ ,

where d, d' are elements in D. Since  $dd' \in D$  and  $D_1$  is a minimal left ideal, we have  $D_1 = D_1 dd'$  by lemma 4. Hence we obtain LR = D.

Next, we have  $RL = d'D_2D_1d = d'Ed$ . Any element p in d'Ed can be represented in the form p=d'ed, where  $e \in E$ . Then d'edd'Ed = d'ed''Ed, where d''=dd' is an element in D. Therefore d'' can be represented as  $d''=d_1d_2$ , where  $d_1 \in D_1$ ,  $d_2 \in D_2$ ; and by (26),  $E = d'_2D_1$ ,  $d'_2 \in D_2$ , therefore  $ed''E = ed_1d_2d'_2D_1$ . By (16)  $d_2d'_2$  is an element in  $D_2$ . If we put  $d''_2 = d_2d'_2$ , we have  $ed''E = ed_1d''_2D_1 = ed'''D_1$ , where  $d''' = d_1d''_2$  is an element in D. Since  $ed''' \in ED = D_2$  by (21),  $d''_2 = ed'''$  is an element in  $D_2$  and then  $ed''E = d_2''D_1 = E$  by (26). Hence d'edd'Ed = d'Ed for every element e in E. And also we have d'Edd'ed = d'Ed for every element e in E. Therefore d'Ed is a group.

Since, by theorem 7, D is equal to the product of any minimal left ideal and any minimal right ideal, we shall define D as the kernel of S.

THEOREM 8. The kernel D is a simple semigroup.

PROOF. Let d be any element in D, then  $d=d_1d_2$  where  $d_1 \in D_1$  and  $d_2 \in D_2$ . Therefore we have  $DdD=Dd_1d_2D=D_1D_2=D$  by (7) and (8). Hence D is a simple semigroup. [3]

From theorem 5 we have

THEOREM 9. Every semigroup which has its kernel contains at least one idempotent.

By lemmas 1-4 we have the following theorem which gives the relation between the kernel and minimal left (right) ideals:

THEOREM 10. The kernel D is decomposed into join of minimal left (right) ideals which have no element in common.

LEMMA 5. Let p be any element in dE, where d is an element in D. Then pE=dE.

PROOF. Since p is an element in dE, p can be represented in the form de, where e is an element in E. Then pE=deE=dE by theorem 5.

LEMMA 6 L.  $D_1$  is decomposed into join of disjoint subsets dE with  $d \in D$ .

PROOF. Let p be a common element in dE and d'E. Then by lemma 5 we have pE=dE=d'E. Thus if d and d' are two elements in D, either dE=d'E or  $dE \frown d'E=\phi$  holds. Since  $DE=D_1$  by (19),  $D_1$  is covered by the family  $\{dE, d \in D\}$ .

LEMMA 6 R.  $D_2$  is decomposed into join of disjoint subsets Ed with  $d \in D$ .

By theorem 6, 10 and lemma 6, we can see that the kernel D is decomposed into join of subsets dEd', where d, d' are elements in D.

Now we have

LEMMA 7. Let p be any element in dEd', where d and d' are elements in D. Then pEd'=dEd'.

PROOF. Since p is an element in dEd', p can be represented in the form p=ded' with  $e \in E$ . Then pEd'=ded'Ed'. But we have

ed'E=E from the proof of theorem 7. Hence pEd'=dEd'. Therefore, if there is a common element p in d'Ed and d''Ed, where d' and d'' are elements in D, we have by lemma 7 pEd=d'Ed=d''Ed. So, if d' and d'' are two elements in D, then either aEd=bEd or  $aEd \frown bEd=\phi$  holds. Thus we have the following results:

THEOREM 11 L. A minimal left ideal  $D_1d$  with  $d \in D$  is decomposed into join of disjoint subsets d'Ed, where d' belongs to D.

Similarly we have

THEOREM 11 R. A minimal right ideal  $dD_2$  with  $d \in D$  is decomposed into join of disjoint subsets dEd', where d' belongs to D.

By theorem 6, 10 and 11 we have

THEOREM 12. The kernel D is decomposed into join of disjoint subsets dEd', where d and d' are elements in D.

If we put  $d=d_1d_2$  and  $d'=d'_1d'_2$ , where  $d_1$ ,  $d'_1$  are elements in  $D_1$  and  $d_2$ ,  $d'_2$  elements in  $D_2$ , then by (13) and (15) we have

$$dEd' = d_1(d_2D_2)(D_1d'_1)d'_2 = d_1D_2D_1d'_2 = d_1Ed'_2$$
.

LEMMA 8. If  $d_1 \in D_1$  and  $d_2 \in D_2$ , then  $d_1 E d_2$  is a group.

PROOF. Let p be any element in  $d_1Ed_2$ . Then  $p=d_1ed_2$ ,  $e \in E$  and  $d_1ed_2d_1Ed_2=d_1Ed_2d_1ed_2=d_1Ed_2$  for every element e in E. Thus  $d_1Ed_2$  is a group.

Now, theorem 11 and 12 can be expressed as follows:

THEOREM 13. Every minimal left (right) ideal is decomposed into join of groups which have no element in common.

THEOREM 14. The kernel D is decomposed into join of groups  $d_1Ed_2$ , which have no element in common, where  $d_1 \in D_1$ , and  $d_2 \in D_2$ . In this case  $d_1Ed_2d'_1Ed'_2 = d_1Ed'_2$  holds true.

Let p be any element in  $d_1E$  where  $d_1 \in D_1$ . Then  $p = d_1e$ ,  $e \in E$  and  $pE = d_1eE = d_1E$ . Therefore if  $d_1$  and  $d'_1$  are two elements in  $D_1$ , then we can see that  $d_1E = d'_1E$  or  $d_1E \frown d'_1E = \phi$ . Similarly, if  $d_2$  and  $d'_2$  are two elements in  $D_2$ , then  $Ed_2 = Ed'_2$  or  $Ed_2 \frown Ed'_2 = \phi$ . We shall remark here that the following relations hold :

$$d_1Ed_1E = d_1E$$
,  $Ed_2Ed_2' = Ed_2'$ .

LEMMA 9. For an element  $d_1$  in  $D_1$  every element  $d'_1$  in  $D_1$  which satisfies  $d_1E = d'_1E$  is contained in  $d_1E$ .

**PROOF.** Let  $d'_1$  be an element in  $D_1$  which satisfies  $d_1E = d'_1E$ .

Since  $D_1E=D_1$  by (18),  $D_1$  is covered by the family  $\{d_1E, d_1 \in D_1\}$ , so that there exists in  $D_1$  an element  $d_1''$  such that  $d_1' \in d_1''E$ . Therefore we have  $d_1E=d_1'E=d_1'E \ni d_1'$  by lemma 5.

Let p be any element in  $D_1 \cap D_2$ . Then p is an element in  $D_2$ and by (15),  $pE = (pD_2)D_1 = D_2D_1 = E$ . Now p is an element in  $D_1$ , therefore, by lemma 9, p is an element in E and we have  $D_1 \cap D_2 \subset E$ . And  $D_1 \cap D_2 \supset E$  holds by (23) and (24). Hence we have the following results:

THEOREM 15.  $E = D_1 \frown D_2$ .

THEOREM 16. The intersection of a minimal left ideal and a minimal right ideal is a group.

Department of Mathematics, Yamanashi University.

## References

- [1] A. Suschkewitsch, Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umgekehrbarkeit, Math. Ann., 99, (1928).
- [2] K. Numakura, On bicompact semigroups, Math. Jour. Okayama Univ., 1, (1952).
- [3] D. Rees, On semigroups, Proc. Cambridge Philos. Soc., 36, (1940).