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On the kernel of semigroups.

By Hiroshi HASHIMOTO

(Received October 20, 1953)

The structure of the kernel of finite semigroups was studied by
Suschkewitsch [1], and his study has been extended to bicompact
semigroups by Numakura [2]. In the latter case, the set of idem-
potents plays an important r\^ole. In this note we shall define the
kernel of semigroups which have minimal left and minimal right ideals,
and investigate the relation between the kernel and minimal left (right)
ideals. Thus we propose to extend the theory of bicompact semigroups
to more general semigroups.

Let $D_{1}$ be a minimal left ideal, $D_{2}$ a minimal right ideal, and $D$ the
product of $D_{1}$ and $D_{2}$ . Then, in order that a subset $L(R)$ of $S$ be a
minimal left (right) ideal of $S$, it is necessary and sufficient that $L(R)$

be represented in the following form:
$L=D_{1}a$ $(R=aD_{2})$ ,

where $a$ is an element in $L(R)$ . From this fact it follows that the product
of any minimal left ideal and any minimal right ideal is always equal
to $D$ . Therefore $D$ is determined uniquely irrespective of the selection
of $D_{1}$ and $D_{2}$ . $D$ is a simple semigroup and is called the kernel of $S$.
If we put $E=D_{2}D_{1}$ , then $E$ is a group contained in $D_{1}$ and $D_{2}$ .
Therefore every semigroup which has its kernel contains at least one
idempotent. We obtain the following result, which shows the relation
between the kernel and minimal left (right) ideals: the kernel $D$ is
decomposed into join of minimal left (right) ideals which have no
element in common. On the other hand every minimal left (right)
ideal can be divided into groups, which have no element in common.
The structure of the kernel $D$ is thus completely determined.

The author wishes to express here his hearty thanks to professor
M. Moriya to whom he has been greatly indebted for his many valu.
able remarks and suggestions.

1. In this paper we limit ourselves to semigroups which have
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minimal left ideals and minimal right ideals.
Let $D_{1}$ be a minimal left ideal and $D_{\angle}$ a minimal right ideal of $S$.

Then $Sd_{1}$ is a left ideal contained in $D_{1}$ for any element $d_{1}eD_{1}$ , so that
by definition
(1) $Sd_{1}=D_{1}$ for every element $d_{1}$ in $D_{1}$ ,

and similarly

(2) $d_{2}S=D_{2}$ for every element $d_{2}$ in $D_{2}$ .
Accordingly

(3) $SD_{1}=D_{1}$ ,

(4) $D_{2}S=D_{2}$ .
Now, if we put

(5) $D=D_{1}D_{2}$ ,

then by (3) and (4)

$SD=SD_{1}D_{2}=D_{1}D_{2}=D$ ,

$DS=D_{1}D_{2}S=D_{1}D_{2}=D$ ,
namely

(6) $SD=DS=D$ .

Thus $D$ is an ideal in $S$ and furthermore, by (1) and (2), $D$ is a
minimal ideal in $S$.

THEOREM 1 L. Every minimal left ideal $L$ of $S$ can be represented
in the form $L=Da$, where $a$ is any element in $L$ .

PROOF. Since $SL\subset L$ , we have $Da\subset L$ for any element $a$ in $L$ .
However $Da$ is a left ideal of $S$. Thus we have $L=Da$.

THEOREM 1 R. Every minimal right ideal $R$ of $S$ can be repre-
sented in the form $R=aD$ , where $a$ is any element in $R$ .

By these theorems we have

(7) $D_{1}=Dd_{1}$ for every element $d_{1}$ in $D_{1}$ ,

(8) $D_{2}=d_{2}D$ for every element $d_{2}$ in $D_{2}$ ,

and so
(9) $DD_{1}=D_{1}$ , $D_{2}D=D_{2}$ .
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By (6), (7) and (8)

(10) $D_{1}\subset D$ , $D_{2}\subset D$ .
On the other hand, we have by (9),

(11) $D^{2}=DD_{1}D_{2}=D_{1}D_{2}=D$ .
Therefore $D=D_{1}D_{2}\subset DD_{2}\subset D^{2}=D$ ,

$D=D_{1}D_{2}\subset D_{1}D\subset D^{2}=D$ ,
hence
(12) $D_{1}D=DD_{2}=D$ .

THEOREM $2L$ . Every minimal left ideal $L$ of $S$ can be represented
in the form $L=D_{1}a$ , where $a$ is any element in $L$ .

PROOF. Since $SL=L,$ $D_{1}a\subset L$ for any element $a$ in $L$. However
$D_{1}a$ is a left ideal of $S$ by (3) and hence $L=D_{1}a$ for every $a$ in $L$ .

THEOREM 2 R. Every minimal right ideal $R$ of $S$ can be repre-
sented in the form $R=aD_{2}$ , where $a$ is any element in $R$ .

$D_{1}$ is a minimal left ideal of $S$. Then we have
(13) $D_{1}=D_{1}d_{1}$ for every element $d_{1}$ in $D_{1}$ ,

accordingly

(14) $D_{1}^{2}=D_{1}$ .
Similarly, we have
(15) $D_{2}=d_{2}D_{2}$ for every element $d_{2}$ in $D_{2}$ ,

(16) $D_{2}^{2}=D_{2}$ .
From (6) and theorem 1 we can obtain the following theorems:

THEOREM 3. Every minimal left (right) ideal is contained in $D$.
THEOREM 4 L. Every minimal left ideal $L$ of $S$ can be represented

in the form $L=D_{1}d$, where $d$ is an element in $D$.
THEOREM 4 R. Every minimal right ideal $R$ of $S$ can be repre $\cdot$

sented in the form $R=dD_{2}$, where $d$ is an element in $D$.
2. $E$ is defined by the product of $D_{2}$ and $D_{1}$. Then by (10) we

see at once that
(17) $E\subset D$ .
By (9) and (16) we can obtain the following results:
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(1S) $D_{1}=DD_{1}=D_{1}D_{2}D_{1}=D_{1}E$ ,

(19) $DE=D_{1}D_{2}D_{2}D_{1}=D_{1}D_{2}D_{1}=DD_{1}=D_{1}$ .
Similarly

(20) $D_{2}=D_{2}D=D_{2}D_{1}D_{2}=ED_{2}$ ,

(21) $ED=D_{2}$ .
(22) $E^{2}=D_{2}D_{1}D_{2}D_{1}=D_{2}DD_{1}=D_{2}D_{1}=E$ .
By (17) (19) and (22) we have

(23) $D_{!}=DE\supset E^{2}=E$

and similarly

(24) $D_{2}\supset E$ .
Finally by (14) and (16) we have
(25) $ED_{1}=D_{2}E=E$ .
Here we remark that
(26) $E=d_{2}D_{1}=D_{2}d_{1}$ , where $d_{1\in}D_{1},$ $d_{2}\in D_{2}$ ,

because from (7), (8) and (11) we obtain $E=D_{2}D_{1}=d_{2}DDd_{1}=d_{2}Dd_{1}$

$=d_{2}D_{1}=D_{2}d_{1}$ .
THEOREM 5. $E$ is a group.
PROOF. Let $e$ be any element in $E$. From (23) and (24) we see

that $e$ is an element in $D_{1}$ and $D_{2}$. Therefore by (13) and (15) we have

$Ee=D_{2}(D_{1}e)=D_{2}D_{1}=E$ ,

$eE=(eD_{2})D_{1}=D_{2}D_{1}=E$

for every element $e$ in $E$ . Hence $E$ is a group.
3. LEMMA 1. Let $p$ be any element in $D_{1}d$, where $d$ is an ele-

ment in D. Then $D_{1}p$ is identical with $D_{1}d$.
PROOF. Since $p$ is an element in $D_{1}d,$ $p$ can be represented in

the form $d_{1}d$, where $d_{1}$ is an element in $D_{1}$ . By (13) we have $D_{1}p=$

$D_{1}d_{1}d=D_{1}d$.
LEMMA 2. If $d$ and $d^{\prime}$ are elements in $D$, then either $D_{1}d=D_{1}d^{\prime}$

or $ D_{1}d\rightarrow D_{1}d^{\prime}=\phi$ .
PROOF. Let $p$ be a common element in $D_{1}d$ and $D_{1}d^{\prime}$ . By lemma 1
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we have $D_{1}p=D_{1}d=D_{1}d^{\prime}$ .
LEMMA 3. $D$ is covered by the family $\{D_{1}d, d\in D\}$ .
PROOF. This is evident by (12).
LEMMA 4. $D_{1}d$ is a minimal left ideal of $S$ for any element $d$

in $D$ .
PROOF. It is easy to see that $D_{1}d$ is a left ideal. If $L$ is a left

ideal of $S$ in $D_{1}d$, then, for any element $d_{1}d$ in $D_{1}d$, we have $ L\supset SL\supset$

$D_{1}d_{1}d=D_{1}d$ by theorem 2 L. Hence $D_{1}d$ is a minimal left ideal.
By lemma 4 and $theorem^{\wedge}4$ we have
THEOREM 6 L. In order that a subset $L$ of $S$ be a minimal left

ideal of $S$, it is necessary and sufficient that $L$ be represented in the
following form:

$L=D_{1}d$ where $d$ is an element in $D$ .
Similarly we obtain
THEOREM 6 R. In order that a subset $R$ of $S$ be a minimal right

ideal of $S$, it is necessary and sufficient that $R$ be represented in the
following form:

$R=dD_{2}$ where $d$ is an element in $D$ .

THEOREM 7. Let $L$ be any minimal left ideal and $R$ any minimal
right ideal, then

(i) $LR=D$ ,

(ii) $RL$ is a group.
PROOF. By theorem 6, $L$ and $R$ can be represented as follows:

$L=D_{1}d$ , $R=d^{\prime}D_{2}$ ,

where $d,$ $d^{\prime}$ are elements in $D$ . Since $dd^{\prime}eD$ and $D_{1}$ is a minimal left
ideal, we have $D_{1}=D_{1}dd^{t}$ by lemma 4. Hence we obtain $LR=D$ .

Next, we have $RL=d^{\prime}D_{2}D_{1}d=d^{\prime}Ed$. Any element $p$ in $d^{\prime}Ed$ can be
represented in the form $p=d^{\prime}ed$, where $e\in E$ . Then d’edd’Ed $=d^{\prime}ed^{\prime\prime}Ed$,
where $d^{\prime\prime}=dd^{\prime}$ is an element in $D$ . Therefore $d^{\prime\prime}$ can be represented
as $d^{\prime\prime}=d_{1}d_{2}$ , where $d_{1\in}D_{1},$ $d_{2}\in D_{2}$ ; and by (26), $E=d_{2}D_{1},$ $d_{2}\in D_{2}$ , therefore
$ed^{\prime\prime}E=ed_{1}d_{2}d_{2}^{\prime}D_{1}$ . By (16) $d_{2}d_{2}^{\prime}$ is an element in $D_{2}$ . If we put $d_{2}^{\prime\prime}=d_{2}d_{2}^{\prime}$ ,
we have $ed^{r/}E=ed_{1}d_{2}^{\prime\prime}D_{1}=ed^{\prime\prime\prime}D_{1}$ , where $d^{\prime\prime\prime}=d_{1}d_{2}^{\prime\prime}$ is an element in $D$ .
Since $ed^{\prime\prime\prime}\in ED=D_{2}$ by (21), $d_{2}^{\prime\prime\prime}=ed^{\prime\prime\prime}$ is an element in $D_{2}$ and then



64 H. $H_{ASHIMOTO}$

$ed^{\prime\prime}E=d_{2}^{\prime\prime\prime}D_{1}=E$ by (26). Hence d’edd’Ed $=d^{\prime}Ed$ for every element $e$

in $E$ . And also we have d’Edd’ed$=d^{\prime}Ed$ for every element $e$ in $E$ .
Therefore $d^{\prime}Ed$ is a group.

Since, by theorem 7, $D$ is equal to the product of any minimal left
ideal and any minimal right ideal, we shall define $D$ as the kernel
of $S$.

THEOREM 8. The kernel $D$ is a simple semigroup.
PROOF. Let $d$ be any element in $D$, then $d=d_{1}d_{2}$ where $d_{1}eD_{1}$ and

$d_{2}eD_{2}$ . Therefore we have $DdD=Dd_{1}d_{2}D=D_{1}D_{2}=D$ by (7) and (8).
Hence $D$ is a simple semigroup. [3]

From theorem 5 we have
THEOREM 9. Every semigroup which has its kernel contains at

least one idempotent.
By lemmas 1-4 we have the following theorem which gives the

relation between the kernel and minimal left (right) ideals:
THEOREM 10. The kernel $D$ is decomposed into ioin of minimal

left (right) ideals which have no element in common.
LEMMA 5. Let $p$ be any element in $dE$ , where $d$ is an element

in D. Then $pE=dE$.
PROOF. Since $p$ is an element in $dE,$ $p$ can be represented in

the form $de$ , where $e$ is an element in $E$. Then $pE=deE=dE$ by
theorem 5.

LEMMA 6 L. $D_{1}$ is decomposed into ioin of disioint subsets $dE$

with $d\in D$.
PROOF. Let $p$ be a common element in $dE$ and $d^{\prime}E$ . Then by

lemma 5 we have $pE=dE=d^{\prime}E$ . Thus if $d$ and $d^{\prime}$ are two elements
in $D$, either $dE=d^{\prime}E$ or $ dE\rightarrow d^{\prime}E=\phi$ holds. Since $DE=D_{1}$ by (19),
$D_{1}$ is covered by the family $\{dE, d\in D\}$ .

LEMMA 6 R. $D_{2}$ is decomposed into join of disioint subsets $Ed$

with $d\in D$.
By theorem 6, 10 and lemma 6, we can see that the kernel $D$ is

decomposed into join of subsets $dEd^{t}$ , where $d$, d’ are elements in $D$ .
Now we have
LEMMA 7. Let $p$ be any element in $dEd^{\prime}$ , where $d$ and $d^{\prime}$ are

elements in D. Then $pEd^{\prime}=dEd^{\prime}$ .
PROOF. Since $p$ is an element in $dEd^{\prime},$ $p$ can be represented in

the form $p=ded^{\prime}$ with $e\in E$ . Then $pEd^{\prime}=ded^{\prime}Ed^{\prime}$ . But we have
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$ed^{t}E=E$ from the proof of theorem 7. Hence $pEd^{\prime}=dEd^{\prime}$ . Therefore,
if there is a common element $p$ in $d^{\prime}Ed$ and $d^{\prime\prime}Ed$, where d’ and $d^{\prime\prime}$ are
elements in $D$ , we have by lemma 7 $pEd=d^{\prime}Ed=d^{\prime\prime}Ed$. So, if $d^{\prime}$ and $d^{\prime\prime}$

are two elements in $D$, then either $aEd=bEd$ or $ aEd\leftrightarrow bEd=\phi$ holds.
Thus we have the following results:

THEOREM 11 L. A minimal left ideal $D_{1}d$ with $d\in D$ is decomposed
into ioin of disioint subsets $d^{\prime}Ed$, where d’ belongs to $D$ .

Similarly we have
THEOREM 11 R. A minimal right ideal $dD_{2}$ with $d\in D$ is decomposed

into ioin of disioint subsets $dEd^{\prime}$ , where $d^{\prime}$ belongs to $D$.
By theorem 6, 10 and 11 we have
THEOREM 12. The kernel $D$ is decomposed into ioin of disjoint

subsets $dEd^{\prime}$ , where $d$ and $d^{\prime}$ are elements in $D$.
If we put $d=d_{1}d_{2}$ and $d’=d_{1}^{\prime}d_{2}^{\prime}$ , where $d_{1},$ $d_{1}^{\prime}$ are elements in $D_{1}$ and

$d_{2},$ $d_{2}^{\prime}$ elements in $D_{2}$ , then by (13) and (15) we have
$dEd^{\prime}=d_{1}(d_{2}D_{2})(D_{1}d_{1}^{\prime})d_{2}^{\prime}=d_{1}D_{2}D_{1}d_{2}^{\prime}=d_{1}Ed_{2}^{\prime}$ .

LEMMA 8. If $d_{1}\in D_{1}$ and $d_{2}\in D_{2}$ , then $d_{1}Ed_{2}$ is a group.
PROOF. Let $p$ be any element in $d_{1}Ed_{2}$ . Then $p=d_{1}ed_{2},$ $e\in E$ and

$d_{1}ed_{2}d_{1}Ed_{2}=d_{1}Ed_{2}d_{1}ed_{2}=d_{1}Ed_{2}$ for every element $e$ in $E$. Thus $d_{1}Ed_{2}$ is
a group.

Now, theorem 11 and 12 can be expressed as follows:
THEOREM 13. Every minimal left (right) ideal is decomposed into

join of groups which have no element in common.
THEOREM 14. The kernel $D$ is decomposed into ioin of groups

$d_{1}Ed_{2}$ , which have no element in common, where $d_{1}\in D_{1}$ , and $d_{2}\in D_{2}$. In
this case $d_{1}Ed_{2}d_{1}^{\prime}Ed_{2}^{\prime}=d_{1}Ed_{2}^{\prime}$ holds $tme$ .

Let $p$ be any element in $d_{1}E$ where $d_{1}eD_{1}$ . Then $p=d_{1}e,$ $e\in E$ and
$pE=d_{1}eE=d_{1}E$. Therefore if $d_{1}$ and $d_{1}^{\prime}$ are two elements in $D_{1}$ , then
we can see that $d_{1}E=d_{1}^{\prime}E$ or $ d_{1}E\leftrightarrow d_{1}^{\prime}E=\phi$ . Similarly, if $d_{2}$ and $d_{2}^{\prime}$ are
two elements in $D_{2}$ , then $Ed_{2}=Ed_{2}^{\prime}$ or $ Ed_{2}\leftrightarrow Ed_{2}^{\prime}=\phi$ . We shall remark
here that the following relations hold:

$d_{1}Ed_{1}^{J}E=d_{1}E$ , $Ed_{2}Ed_{2}^{\prime}=Ed_{2}^{\prime}$ .
LEMMA 9. For an element $d_{1}$ in $D_{1}$ every element $d_{1}^{\prime}$ in $D_{1}$ which

satisfies $d_{1}E=d_{1}^{\prime}E$ is contained in $d_{1}E$.
PROOF. Let $d_{1}^{\prime}$ be an element in $D_{1}$ which satisfies $d_{1}E=d_{1}^{\prime}E$ .
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Since $D_{1}E=D_{I}$ by (18), $D_{1}$ is covered by the family $\{d_{1}E, d_{1}\in D_{1}\}$ , so
that there exists in $D_{1}$ an element $d_{1}^{\prime\prime}$ such that $d_{1}^{\prime}\in d_{1}^{\prime\prime}E$ . Therefore we
have $d_{1}E=d_{1}^{\prime}E=d_{1}^{\prime\prime}E\ni d_{1}^{\prime}$ by lemma 5.

Let $p$ be any element in $D_{1}\sim D_{2}$ . Then $p$ is an element in $D_{2}$

and by (15), $pE=(pD_{2})D_{1}=D_{2}D_{1}=E$. Now $p$ is an element in $D_{1}$ ,
therefore, by lemma 9, $p$ is an element in $E$ and we have $D_{1}\sim D_{2}\subset E$ .
And $D_{1}\rightarrow D_{2}\supset E$ holds by (23) and (24). Hence we have the following
results:

THEOREM 15. $E=D_{1}\sim D_{2}$ .
THEOREM 16. The intersection of a minimal left ideal and a

minimal right ideal is a group.

Department of Mathematics,
Yamanashi University.
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