Journal of the Mathematical Society of Japan

A note on unramified abelian covering surfaces of a closed Riemann surface.

By Akira MORI

(Received Feb. 11, 1954)

1. Introduction.

Let F be a closed Riemann surface of genus p, and \tilde{F} be an unramified and unbounded covering surface of F. If, above any closed curve on F, there never lie two curves on \tilde{F} , one of which is closed and the other open, \tilde{F} is said to be *regular*. As is well known, a regular covering surface \tilde{F} admits *covering transformations* onto itself, which are one-to-one and continuous and carry each point \tilde{P} on \tilde{F} into a point \tilde{P}' with the same projection as \tilde{P} . The totality of these transformations forms the *covering transformation group* $I'(\tilde{F})$, which characterizes \tilde{F} .

DEFINITION. A regular covering surface \tilde{F} of F is called an unramified abelian covering surface, if its covering transformation group $\Gamma(\tilde{F})$ is abelian.¹⁾

In the present note, we shall investigate the structure of unramified abelian covering surfaces in some detail (\$ 2–4), and prove some function-theoretic properties of these surfaces (\$ 5–6).

An example of such surfaces is given by the Riemann surface \tilde{F}_w of an *abelian integral* w,²⁾ where dw is an analytic differential of the first or the second kind defined on F. \hat{F}_w is an unramified and unbounded covering surface of F characterized by the following property: a curve $\tilde{\gamma}$ on \tilde{F}_w is closed if and only if its projection γ on F is closed

¹⁾ An "unramified abelian covering surface" of a closed Riemann surface corresponds to an "unramified abelian extension" of an algebraic function field. L. Sario [6], [7] used the term "Abelsche Überlagerungsfläche" or "abelian covering surface" for another sort of covering surfaces (one of which is called "die Überlagerungsfläche der Kommutatoren" in [1]), whose covering transformation groups are not abelian except for some simple cases.

²⁾ The Riemann surface of a *multiplicative function* gives a more general example.

and $\int_{\gamma} dw = 0$. Its covering transformation group $\Gamma(\tilde{F}_w)$ is isomorphic to the additive group of complex numbers generated by the 2p periods of dw, which are taken along 2p closed curves forming a homology base on F (cf. § 2). If there exist, between these 2p periods, no linear equations with not all vanishing integral coefficients, $\Gamma(\tilde{F}_w)$ is a free abelian group with 2p generators, and \tilde{F}_w coincides with the *covering surface of integral functions*³⁾ ("die Überlagerungsfläche der Integralfunktionen" in [9] or "die Überlagerungsfläche der Homologien" in [1]) of F.

2. The group $\Gamma(\widetilde{F})$; constructive definition of \widetilde{F} .

Let $C_{2i-1}, C_{2i}, i=1, \dots, p$, be 2p (oriented) piecewise analytic simple closed curves on F, such that

1) the system $C_j, j=1, \dots, 2p$ does not divide F into two or more parts;

2) any two of C_j , except the *p* pairs $C_{2i-1}, C_{2i}, i=1, \dots, p$, have no points in common; and

3) for each *i*, C_{2i-1} and C_{2i} have precisely one point in common.

Let \tilde{P} be an arbitrarily fixed point on \tilde{F} . For each $j=1,\dots,2p$, we denote by $C_j(\tilde{P})$ the end point of a curve on \tilde{F} starting from \tilde{P} , whose projection on F is closed and homotopic to the curve C_j . Some of these points may, of course, be mutually identical, or identical with \tilde{P} . Since \tilde{F} is regular by the assumption, there exist unique covering transformations of \tilde{F} , which carry \tilde{P} into $C_j(\tilde{P})$, $j=1,\dots,2p$, respectively. These transformations form a system of generators of the group $\Gamma(\tilde{F})$, and shall be denoted by the same letters C_j .⁴⁾ As to these matters, cf. e.g. [1] or [9].

Now, $\Gamma(\tilde{F})$ being an abelian group generated by C_j , $j=1,\dots,2p$, there exists a number of *defining relations* between these elements:

³⁾ I.e. the "minimal" regular covering surface of F, on which every integral function defined on F becomes single-valued.

⁴⁾ In general, these transformations depend also on the choice of the point \widetilde{P} . In the case of abelian $\Gamma(\widetilde{F})$, however, they are uniquely determined by the curves C_j .

A. Mori

(1) $\sum_{j=1}^{2^{p}} \gamma_{kj} C_{j} = 0$ (the identical transformation),

$$k=1,\cdots,q$$
 $(0\leq q\leq 2p),$

with integral coefficients γ_{kj} , whose $q \times 2p$ matrix

(2) $(\gamma_{kj})_{k=1,\cdots,q}; j=1,\cdots,2p$

is of rank q. The number 2p-q=r is the rank of the abelian group $\Gamma(\tilde{F})$.

We shall represent the elements $\sum_{1}^{2^{p}} m_{j} C_{j}$ of $\Gamma(\tilde{F})$, where m_{j} are integers, by the lattice points (m_{1}, \dots, m_{2p}) of a 2p-dimensional euclidean space $E^{2^{p}}$. Let \mathfrak{T} be the group of transformations of $E^{2^{p}}$ generated by the 2p translations carrying the origin into $(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)$ respectively, and $\mathfrak{T}(\tilde{F})$ be its subgroup generated by the q translations carrying the origin into $(\gamma_{k1}, \dots, \gamma_{k 2p}), k=1, \dots, q$, respectively. Obviously, two lattice points of $E^{2^{p}}$ represent one and the same element of $\Gamma(\tilde{F})$ if and only if they are equivalent with respect to $\mathfrak{T}(\tilde{F})$, and $\Gamma(\tilde{F})$ is isomorphic to the factor group $\mathfrak{T}/\mathfrak{T}(\tilde{F})$.

Now, suppose that $\Gamma(\tilde{F})$ is given by the defining relations (1). We shall construct the covering surface \tilde{F} from F as follows. Let the two shores of each of the curves C_{2i-1} , C_{2i} , $i=1, \dots, p$, be denoted by C_{2i-1}^+ , C_{2i-1}^- , C_{2i}^+ , C_{2i}^- respectively, in such a manner that the oriented curve C_{2i} intersects C_{2i-1} from the shore C_{2i-1}^+ to the other shore C_{2i-1}^- , and that C_{2i-1} intersects C_{2i} from C_{2i}^+ to C_{2i}^- . We cut F along the 2p curves C_j to obtain a surface ϕ of planar character having p boundary curves, each of which consists of four sides C_{2i-1}^+ , C_{2i}^- , C_{2i-1}^- , C_{2i}^- . To each residue class $(m_1, \dots, m_{2q}) \mod \tilde{z}(\tilde{F})$, we associate a replica $\phi(m_1, \dots, m_{2p})$ of ϕ . Next, we identify the side C_{2i}^+ of each $\phi(m_1, \dots, m_{2i-1}, m_{2i}, \dots, m_{2p})$ with the side C_{2i}^- of $\phi(m_1, \dots, m_{2i-1}+1, m_{2i}, \dots, m_{2p})$, and C_{2i-1}^+ of $\phi(m_1, \dots, m_{2i-1}, m_{2i}, \dots, m_{2p})$ with C_{2i-1}^- of $\phi(m_1, \dots, m_{2i-1}+1, m_{2i}, \dots, m_{2p})$, where each point on C_j^+ must be identified with the corresponding point on C_j^-

By these procedures, each side of each Φ is identified with some unique side of some other (or the same) Φ , and, at each vertex of each Φ , there meet four Φ 's: $\Phi(m_1, \dots, m_{2i-1}, m_{2i}, \dots, m_{2p})$, $\Phi(m_1, \dots, m_{2i-1}+1, m_{2i}, \dots, m_{2p})$, $\Phi(m_1, \dots, m_{2i-1}+1, m_{2i}+1, \dots, m_{2p})$, and $\Phi(m_1, \dots, m_{2i-1}+1, m_{2i}+1, \dots, m_{2p})$ (some of these four may be mutually identical). Thus, an un-

ramified and unbounded covering surface of F is constructed. It is evident that this covering surface has $\Gamma(\tilde{F})$ as its covering transformation group.

REMARK. Obviously, \tilde{F} is closed if and only if the group $\Gamma(\tilde{F})$ is finite, i. e. r=0. Further, it is easily proved that, if r=1, the ideal boundary of \tilde{F} consists of two components (Randstücke in [1]), and, if $r\geq 2$, it consists of a single one (cf. § 3). As for the genus \tilde{p} of \tilde{F} , we have the followings: if the order g of $\Gamma(\tilde{F})$ is finite, then $\tilde{p}=g(p-1)+1$; if $g=\infty$ and p=1, then $\tilde{p}=0$; and, if $g=\infty$ and $\tilde{p}\geq 2$, then $\tilde{p}=\infty$.

3. An exhaustion $\{\widetilde{F}_n\}$ of \widetilde{F} .

Suppose that r > 0, so that \tilde{F} is open. Then, from the 2p basis vectors $(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)$ of E^{2p} , we can choose r ones: y_1, \dots, y_r , such that the q+r=2p vectors $x_k=(\gamma_{k1}, \dots, \gamma_{k-2p}), k=1, \dots, q$, and y_l , $l=1,\dots, r$, are linearly independent. In order to construct a convenient *exhaustion* of the surface \tilde{F} , we shall introduce in E^{2p} a new coordinate system $(x_1,\dots, x_q; y_1,\dots, y_r)$ with the same origin as before and with $x_1,\dots, x_q; y_1,\dots, y_r$ as basis vectors:

(3)
$$(m_1, \dots, m_{2p}) = (x_1, \dots, x_q; y_1, \dots, y_r)T_{p}$$

where T is a $2p \times 2p$ matrix obtained from (2) by attaching below r rows of the form $(0, \dots, 0, 1, 0, \dots, 0)$, We put

(4)
$$T^{-1}=(\alpha_{jk},\beta_{jl}),$$

where $j = 1, \dots, 2p$; $k = 1, \dots, q$; $l = 1, \dots, r$.

Two lattice points (m_1, \dots, m_{2p}) and (m'_1, \dots, m'_{2p}) are equivalent with respect to $\mathfrak{T}(\tilde{F})$ if and only if their difference has integral *x*-coordinates and vanishing *y*-coordinates :

(5)
$$\sum_{j=1}^{2p} \alpha_{jk}(m'_{j} - m_{j}) \equiv 0 \mod 1, \quad k = 1, \cdots, q,$$
$$\sum_{j=1}^{2p} \beta_{jl}(m'_{j} - m_{j}) = 0, \qquad l = 1, \cdots, r.$$

The number Q of lattice points (m_1, \dots, m_{2p}) contained in the 2pdimensional parallelepiped: $0 \leq x_k < 1$, $0 \leq y_l < 1$, $k=1,\dots,q$, $l=1,\dots,r$, is equal to the absolute value of the determinant of T (cf. Minkowski [2]).

Further we remark : if $(x_1, \dots, x_q; y_1, \dots, y_l, \dots, y_r)$ represents a lattice point in E^{2^p} , i. e. if the components of the vector $(x_1, \dots, x_q; y_1, \dots, y_r)T$ are all integers, $(x_1, \dots, x_q; y_1, \dots, y_l \pm 1, \dots, y_r)$ also represent lattice points, and these are neighbours of the former one. In fact, as is seen from (3), $(0, \dots, 0; 0, \dots, \pm 1, \dots, 0)T$ have the form $(0, \dots, \pm 1, \dots, 0)$.

Consider two Φ 's of \tilde{F} adjacent to each other along some side or having some vertex in common: $\Phi(m_1, \dots, m_{2i-1}, m_{2i}, \dots, m_{2p}) = \Phi[x_1, \dots, x_q;$ $y_1, \dots, y_r]^{5}$ and $\Phi(m_1, \dots, m_{2i-1} + \epsilon_1, m_{2i} + \epsilon_2, \dots, m_{2p}) = \Phi[x'_1, \dots, x'_q; y'_1, \dots, y'_r]$, where $\epsilon_1, \epsilon_2 = 0, \pm 1$, not both zero. By (3) and (4), we have $y'_l - y_l = \epsilon_1 \beta_{2i-1, l} + \epsilon_2 \beta_{2i, l}, l = 1, \dots, r$. Hence, if we put

$$M = [\max_{i, l} (|\beta_{2i-1, l}| + |\beta_{2i, l}|)] + 1,$$

where [] denotes the integral part of the number lying in, we have

(6) $|y'_l-y_l| < M, \quad l=1,\cdots,r.$

Now, for any integer $n \ge 0$, let \tilde{F}_n be the part of \tilde{F} , which consists of all $\Phi(m_1, \dots, m_{2p}) = \Phi[x_1, \dots, x_q; y_1, \dots, y_r]$ satisfying $-Mn \le y_l < M(n+1)$, $l=1,\dots,r$. The number of such Φ 's is equal to $M^r(2n+1)^r Q$; and the sequence \tilde{F}_n , $n=0, 1, \dots$, exhausts \tilde{F} . Further, as is seen from (6), any Φ of \tilde{F} having points in common with some Φ of \tilde{F}_n belong to \tilde{F}_{n+1} . Hence, \tilde{F}_n , together with its boundary, is contained in the interior of \tilde{F}_{n+1} .

Finally we shall prove that \tilde{F}_n is connected if n is sufficiently large: $n \ge n_0.^{60}$ First, we connect each of M^rQ Φ 's of \tilde{F}_0 to $\Phi[0, \dots, 0;$ $0, \dots, 0]$ by a chain of Φ 's on \tilde{F} , and take n_0 so large that \tilde{F}_{n_0} contains these M^rQ chains. Suppose that $\Phi[x_1, \dots, x_q; y_1, \dots, y_r] < \tilde{F}_n$. Then, while reducing the absolute values of y's one by one, we construct a chain of Φ 's on \tilde{F}_n , which connects $\Phi[x_1, \dots, x_q; y_1, \dots, y_r]$ to one of the M^rQ Φ 's of \tilde{F}_0 . Thus, $\Phi[x_1, \dots, x_q; y_1, \dots, y_r]$ can be connected to $\Phi[0, \dots, 0;$ $0, \dots, 0]$ in \tilde{F}_n if $n \ge n_0$.

⁵⁾ In the notation of replicas of \emptyset , we shall use square brackets instead of round ones, if the corresponding lattice point is represented in terms of the (x, y)-coordinates.

⁶⁾ E.g. it is sufficient to take $n_0 = \sum_{k,j} |\gamma_{kj}| + rM$.

4. Estimation of boundary lengths of \vec{F}_n .

Suppose that a curve on \tilde{F} consists of a finite number of the arcs $C_j^+, C_j^-, j=1, \dots, 2p$, of some Φ 's on \tilde{F} . For simplicity, we shall call the number of these arcs the "length" of that curve.

1) We shall first evaluate the *total length* L_n of the boundary I'_n of \tilde{F}_n .

For any r integers t_1, \dots, t_r , let $Z(t_1, \dots, t_r)$ be the part of \hat{F} consisting of $M^r Q$ $\Phi[x_1, \dots, x_q; y_1, \dots, y_r]$ satisfying $Mt_l \leq y_l < M(t_l+1), l=1, \dots, r$. As is seen from (6), any Φ of \hat{F} adjacent to some Φ of $Z(t_1, \dots, t_r)$ belongs to one of $Z(t_1+\delta_1, \dots, t_r+\delta_r)$, where $\delta_l=0, \pm 1, l=1, \dots, r$.

For not all vanishing δ 's, let $\gamma(t_1, \dots, t_r; \delta_1, \dots, \delta_r)$ be the part of the boundary of $Z(t_1, \dots, t_r)$, along which it adjoins to $Z(t_1 + \delta_1, \dots, t_r + \delta_r)$, and $L(\delta_1, \dots, \delta_r)$ be its length. Since any $Z(t_1, \dots, t_r)$ is congruent to $Z(0, \dots, 0)$ $= \tilde{F}_0, \ L(\delta_1, \dots, \delta_r)$ does not depend on t_1, \dots, t_r , The sum of $L(\delta_1, \dots, \delta_r)$ for the $3^r - 1$ admissible value combinations of δ 's is equal to the boundary length L_0 of \tilde{F}_0 .

Suppose that $Z(t_1, \dots, t_r) \leq \tilde{F}_n$, i.e. $-n \leq t_l \leq n$, $l=1,\dots,r$. The curve $\gamma(t_1,\dots,t_r; \delta_1,\dots,\delta_r)$ belongs to the boundary of \tilde{F}_n if and only if $Z(t_1 + \delta_1,\dots,t_r+\delta_r) \oplus \tilde{F}_n$. As is easily seen, the number of such value combinations of t's for fixed δ 's is equal to $(2n+1)^r - (2n)^{r'} (2n+1)^{r-r'}$, where r' is the number of non-vanishing δ 's. Hence, the total boundary length of \tilde{F}_n is found to be: $L_n = \sum \{(2n+1)^r - (2n)^{r'} (2n+1)^{r-r'}\} \times L(\delta_1,\dots,\delta_r) \leq \{(2n+1)^r - (2n)^r\} \sum L(\delta_1,\dots,\delta_r) = \{(2n+1)^r - (2n)^r\} L_0$, where the summation ranges over the $3^r - 1$ value combinations of δ 's.

Thus, we have

(7)
$$L_n = O(n^{r-1})$$
.

2) Next, we shall estimate from above the length of each connected component of Γ_n .

Suppose that a boundary arc α , one of $C_1^+, C_1^-, C_2^+, C_2^-$ say, of a $\Phi(m_1, \dots, m_{2p})$ of \tilde{F}_n belongs to Γ_n . At each end point of α , there meet four Φ 's of \tilde{F} (not all belonging to \tilde{F}_n): $\Phi(m_1, m_2, m_3, \dots, m_{2p})$, $\Phi(m_1 + \epsilon_1, m_2, m_3, \dots, m_{2p})$, $\Phi(m_1, m_2 + \epsilon_2, m_3, \dots, m_{2p})$, and $\Phi(m_1 + \epsilon_1, m_2 + \epsilon_2, m_3, \dots, m_{2p})$, where $\epsilon_1, \epsilon_2 = \pm 1$. Hence, the arc of Γ_n , which adjoins to α at this point, must be one of $C_1^+, C_1^-, C_2^+, C_2^-$ of one of above four Φ 's. Hence we see: the connected component of Γ_n containing α consists only of

the arcs C_1^+ , C_1^- , C_2^+ , C_2^- of Φ 's with constant m_3, \dots, m_{2p} (i. e. Φ 's, which allow one such representation respectively).

Now, let $\Phi(m_1^*, m_2^*, m_3^*, \dots, m_{2p}^*)$ be a Φ belonging to \tilde{F}_n . We denote by $\Delta_n^{12} = \Delta_n^{12}(m_3^*, \dots, m_{2p}^*)$ the part of \tilde{F}_n consisting of Φ 's of the form $\Phi(m_1, m_2, m_3^*, \dots, m_{2p}^*)$, and by $\gamma_n^{12} = \gamma_n^{12}(m_3^*, \dots, m_{2p}^*)$ the part of the boundary of Δ_n^{12} consisting of the arcs $C_1^+, C_1^-, C_2^+, C_2^-$. Then, in order to estimate from above the length of a component of I'_n consisting of $C_1^+, C_1^-, C_2^+, C_2^-$, it suffices, by the above remark, to estimate the length $L_n^{12} = L_n^{12}(m_3^*, \dots, m_{2p}^*)$ of γ_n^{12} .

By the definition of \tilde{F}_n , $\Phi(m_1, m_2, m_3^*, \dots, m_{2p}^*)$ belongs to \tilde{F}_n if and only if

(8)
$$-Mn \leq \beta_{1l} m_1 + \beta_{2l} m_2 + \sum_{j=3}^{2p} \beta_{jl} m_j^* < M(n+1), \quad l=1,\cdots,r.$$

According to the rank of the $2 \times r$ matrix

(9)
$$\begin{pmatrix} \beta_{11}, \cdots, \beta_{1r} \\ \beta_{21}, \cdots, \beta_{2r} \end{pmatrix},$$

we distinguish three cases from each others.

(a): The matrix (9) has the rank 2.

Then, the inequalities (8) define a bounded convex region δ_n^{12} on the (m_1, m_2) -plane through $(m_1^*, m_2^*, m_3^*, \dots, m_{2p}^*)$, i.e. the plane $m_3 = m_3^*$, $\dots, m_{2p} = m_{2p}^*$ in E^{2p} . Further, there exists on this plane no pair of mutually equivalent lattice points. For, if (m_1, m_2) , (m'_1, m'_2) are such a pair, there hold by (5)

$$\beta_{1l}(m_1'-m_1)+\beta_{2l}(m_2'-m_2)=0$$
, $l=1,\dots,r$,

so that $m'_1 = m_1, m'_2 = m_2$.

To each lattice point (m_1, m_2) on this plane, we associate a square $S(m_1, m_2)$, whose centre is at (m_1, m_2) and whose sides are parallel to the coordinate axes and have the length unity respectively. $S(m_1, m_2)$ may be considered as a model of the replica $\Phi(m_1, m_2, m_3^*, \dots, m_{2p}^*)$; the sides parallel to the m_1 -axis are the models of the boundary arcs C_1^+ and C_1^- , and the sides parallel to the m_2 -axis are those of C_2^+ and C_2^- . The part \mathcal{A}_n^{12} is represented by the sum D_n^{12} of all $S(m_1, m_2)$ with $(m_1, m_2) \in \delta_n^{12}$, and L_n^{12} is equal to the length of the boundary of D_n^{12} .

Suppose, for instance, that $\beta_{11} \beta_{22} - \beta_{12} \beta_{21} \neq 0$. Then, the first two

inequalities of (8) define a parallelogram π_n^{12} containing δ_n^{12} . Let P_n^{12} be the sum of all $S(m_1, m_2)$ with $(m_1, m_2) \in \pi_n^{12}$. Since δ_n^{12} is convex and contained in π_n^{12} , it is easily seen that the boundary length L_n^{12} of D_n^{12} does not exceed that of P_n^{12} .

The directions of the sides of π_n^{12} are independent of n, and their lengths are respectively proportional to n. Hence we see that the boundary length of P_n^{12} of is $\sim \text{const. } n$. This constant depends only on $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}$, and not on m_3^*, \dots, m_{2p}^* , since, as is seen from (8), a change in these latter quantities only causes a translation of π_n^{12} .

Hence, in the case (a), we have

$$L_n^{12}(m_3^*, \cdots, m_{2p}^*) \leq \text{const. } n \qquad (n \geq 1),$$

where the constant on the right-hand side depends only on the matrix T.

(b): The matrix (9) has the rank 1.

Suppose, for instance, that $|\beta_{11}| + |\beta_{21}| \neq 0$. In this case, the inequalities (8) define a parallel strip region δ_n^{12} on the (m_1, m_2) -plane, which is parallel to the straight-line $\beta_{11} m_1 + \beta_{21} m_2 = 0$.

A lattice point (m_1, m_2) on the (m_1, m_2) -plane is, by (5), an equivalent of the lattice point (0, 0), if and only if

$$\alpha_{1k} m_1 + \alpha_{2k} m_2 \equiv 0 \mod 1, \quad k = 1, \cdots, q,$$

(10)

$$\beta_{1l} m_1 + \beta_{2l} m_2 = 0$$
, $l = 1, \dots, r$.

Hence, any equivalent of (0, 0) on this plane lies on the straight-line $\beta_{11} m_1 + \beta_{21} m_2 = 0$. Further, since the elements of the matrix QT^{-1} are integers, the point $(-Q^2\beta_{21}, Q^2\beta_{11})$ is actually a lattice point $\pm (0, 0)$ satisfying (10).

Let $(\mu_1, \mu_2) \neq (0, 0)$ be one of the equivalents of (0, 0) nearest to (0, 0). Then, any equivalent of (0, 0) is represented in the form $(\nu\mu_1, \nu\mu_2), \nu=0, \pm 1, \cdots$. Hence, two lattice points $(m_1, m_2), (m'_1, m'_2)$ are mutually equivalent if and only if $m'_1 = m_1 + \nu\mu_1, m'_2 = m_2 + \nu\mu_2$ for some integer ν .

As in (a), we may consider the square $S(m_1, m_2)$ as a model of $\Phi(m_1, m_2, m_3^*, \dots, m_{2p}^*)$. Then, a model of Δ_n^{12} is constructed from the sum of all $S(m_1, m_2)$ with $(m_1, m_2) \in \delta_n^{12}$ by identifying the squares $S(m_1 + \nu \mu_1, m_2 + \nu \mu_2), \nu = 0, \pm 1, \cdots$, mutually. As is easily seen, the resulting cylinder-shaped figure has two boundary components, each of

A. Mori

which has the length $|\mu_1| + |\mu_2|$. Hence, we have $L_n^{12} = 2(|\mu_1| + |\mu_2|) \le 2Q^2(|\beta_{11}| + |\beta_{21}|)$.

Thus, in the case (b), we have

$$L_n^{12}(m_3^*, \cdots, m_{2p}^*) \leq \text{const.},$$

where the constant on the right-hand side depends only on the matrix T.

(c): The matrix (9) has the rank 0.

In this case, any point on the (m_1, m_2) -plane satisfies (8); and the lattice points (Q, 0) and (0, Q) both satisfy (10), i. e. they are equivalents of (0, 0). Then, by the well known Minkowski's procedure [2], we can find two lattice points (μ_1, μ_2) and (μ'_1, μ'_2) equivalent to (0, 0), such that any equivalent of (0, 0) is uniquely expressed in the form $(\nu \mu_1 + \nu' \mu'_1, \nu \mu_2 + \nu' \mu'_2)$ with integral coefficients ν, ν' .

As before, we take the square $S(m_1, m_2)$ as a model of $\Phi(m_1, m_2, m_3^*, \dots, m_{2,p}^*)$ and construct the model of Δ_n^{12} from the whole (m_1, m_2) -plane by identifying the mutually equivalent squares $S(m_1 + \nu \mu_1 + \nu' \mu'_1, m_2 + \nu \mu_2 + \nu' \mu'_2)$, $\nu, \nu' = 0, \pm 1, \cdots$. The resulting torus-shaped figure has no boundary arcs, i.e. γ_n^{12} is empty.

Thus, in the case (c), we have

 $L_n^{12}(m_3^*, \cdots, m_{2p}^*)=0$.

5. Main theorem and lemmas.

As usual, let O_G denote the class of Riemann surfaces with null boundary, and O_{AB} , O_{AD} the classes of those not tolerating non-constant analytic functions which are bounded or have finite Dirichlet integrals respectively. Now, we shall formulate our theorem in the following form.

THEOREM. Let \tilde{F} be an unramified abelian covering surface of a closed Riemann surface F, and $\Gamma(\tilde{F})$ be its covering transformation group.

i) Let r be the rank of the abelian group $I'(\tilde{F})$. Then, $\tilde{F} \in O_G$ if and only if $r \leq 2$.

ii) $\widetilde{F} \in O_{AD}$.

iii) Let $C_{2i-1}, C_{2i}, i=1, \dots, p$, be the system of generators of $\Gamma(\tilde{F})$ mentioned in § 2. If there exists, for each $i=1,\dots,p$, a relation of the form

(11)
$$\gamma_{2i-1} C_{2i-1} + \gamma_{2i} C_{2i} = 0$$

with not both vanishing integral coefficients γ_{2i-1} and γ_{2i} , then $\hat{F} \in O_{AB}$.

Let Ψ be a surface of planar character obtained from F by cutting along p disjoint non-dividing loop cuts. According to Royden [5], we shall call an unramified and unbounded covering surface of F a covering surface of type S, if it consists of a (finite or infinite) number of replicas of Ψ . Then,

COROLLARY OF iii). An abelian covering surface of type S of a closed Riemann surface belongs to the class O_{AB} .

In fact, taking the p loop cuts as C_{2i-1} , $i=1,\dots,p$, we can easily construct p curves C_{2i} , $i=1,\dots,p$, such that the system C_j , $j=1,\dots,2p$, satisfies the conditions mentioned in $\S 2$. Then, (11) is satisfied with $\gamma_{2i-1}=1, \gamma_{2i}=0.$

Our proof of the theorem is based on the following existence criteria due to Royden, Nevanlinna, Sario, and Pfluger.

Let \widehat{F} be an unramified and unbounded covering surface of F. which is composed of an infinite number of replicas of ϕ .⁸⁾ We may then represent the structure of \hat{F} by the well known Speiser linear graph (Streckenkomplex), where each ϕ of \hat{F} is represented by a knot t^0_{μ} ($\mu=0,1,\cdots$), and two knots representing two Φ 's adjacent to each other are connected by a segment t_{ν}^1 ($\nu=0, 1, \cdots$). If two Φ 's of \hat{F} adjoin to each other along two or more sides, their representative knots are connected by the same number of segments; and, if a ϕ of \hat{F} adjoins to itself along a number of sides, its representative knot has the same number of segments starting from it and returning to itself. Since ϕ has 4p sides, there meet 4p segments at each knot (returning segments being counted twice). We fix an orientation for each segment t_{ν}^1 once for all, and distinguish one knot t_0^0 from others.

LEMMA 1. (Royden [5])⁹⁾. If there exists, on the linear graph of \hat{F} , a one-dimensional chain $\sum_{0}^{\infty} a_{\nu} t_{\nu}^{1}$ with real coefficients a_{ν} , such that $(\sum_{0}^{\infty} a_{\nu} t_{\nu}^{1}) = t_{0}^{0}$ and $\sum_{0}^{\infty} |a_{\nu}|^{2} < +\infty$, (12)

then
$$\widehat{F} \oplus O_G$$
.

⁷⁾ Clearly, the effectiveness of this condition depends on the choice of the curves C_j , $j=1, \dots, 2p$. 8) For the brevity of statements, we put this rather restrictive assumption.

⁹⁾ A simple proof of this theorem was given by M. Tsuji [8].

Let W be an open Riemann surface, and A_n^{κ} , $\kappa = 1, \dots, k(n) < +\infty$, $n=0, 1, \dots$, be a collection of doubly connected subregions of W satisfying the following conditions:

1) each annulus A_n^{κ} is bounded by two piecewise analytic curves γ_n^{κ} and γ_n^{κ} ;

2) any two of the annuli A_n^{κ} have no points in common;

3) the complementary set of $\bigcup_{\kappa=1}^{k(n)} A_n^{\kappa}$ with respect to W has precisely one compact component B_n ; and

4) B_n is bounded by the k(n) curves γ_n^{κ} and contains the annuli $A_{n'}^{\kappa}$ with n' < n.

Let u_n^{κ} be the harmonic measure of $\overline{\gamma}_n^{\kappa}$ with respect to A_n^{κ} , i.e. the function harmonic in A_n^{κ} , continuous on the closure of A_n^{κ} , =0 on γ_n^{κ} , and =1 on $\overline{\gamma}_n^{\kappa}$. We denote by v_n^{κ} the conjugate harmonic function of u_n^{κ} , and put

$$\mu_n^{\kappa} = 2\pi \Big/ \int_{\gamma_n^{\kappa}} dv_n^{\kappa}, \qquad \sigma_n = 1 \Big/ \sum_{\kappa=1}^{k(n)} \frac{1}{\mu_n^{\kappa}}.$$

These quantities are called the *harmonic moduli* of A_n^{κ} and $\bigcup_{\kappa=1}^{k(n)} A_n^{\kappa}$ respectively. We put $\mu_n = \operatorname{Min}_{\kappa} \mu_n^{\kappa}$, and $K(N) = \operatorname{Max}_{n \leq N} k(n)$.

LEMMA 2. (Nevanlinna [3]). If

$$\sum_{n}^{\infty}\sigma_{n}=+\infty,$$

then $W \in O_G$.

LEMMA 3. (Sario [6], [7]). If

$$\sum_{n}^{\infty} \mu_{n} = +\infty ,$$

then $W \in O_{AD}$.

LEMMA 4. (Pfluger [4]).¹⁰⁾ If
$$\overline{\lim_{N \to \infty}} \left\{ \sum_{n=1}^{N} \mu_n - \frac{1}{2} \log K(N) \right\} = +\infty,$$

then $W \in O_{AB}$.

¹⁰⁾ Pfluger states this theorem in terms of a conformal metric defined on W. Lemma 4 is proved by a slight modification of his proof.

6. Proof of the theorem.

Since the theorem is trivial for closed covering surfaces \vec{F} , we assume that \hat{F} is open.

1) Proof of i): Necessity of $r \leq 2$.

Suppose that $r \ge 3$. Since \tilde{F} consists of an infinite number of Φ 's, it can be represented by the Speiser linear graph mentioned in § 5. We shall construct on this graph a one-dimensional chain $\sum_{0}^{\infty} a_{\nu} t_{\nu}^{1}$ satisfying (12).

Let $E^{2^{p}}$ be the space mentioned in § 2. By segments of unit length, we connect every two neighbouring lattice points in $E^{2^{p}}$: $(m_{1}, \dots, m_{j}, \dots, m_{2^{p}})$ and $(m_{1}, \dots, m_{j} + 1, \dots, m_{2^{p}})$, so that a net of segments is constructed in $E^{2^{p}}$. If we identify the lattice points and the segments with each others, which are mutually equivalent with respect to the group $\mathfrak{T}(\tilde{F})$, we obtain from this net a linear graph $G^{2^{p}}$ representing the structure of \tilde{F} .

Since $r \ge 3$, we can choose, from the 2p generators C_j of $\Gamma(\tilde{F})$, three ones, C_1, C_2 , and C_3 say, which are mutually free. Then, the three-dimensional subspace $E^3: m_4=0, \cdots, m_{2p}=0$, of E^{2p} contains no pair of points equivalent to each other with respect to $\mathfrak{T}(\tilde{F})$. Let G^3 be the subgraph of G^{2p} consisting of the knots (lattice points) and the segments lying in E^3 .

To the segments t_{ν}^{1} of $G^{2,p}$ not appearing in G^{3} , we attribute the value $a_{\nu}=0$. For the segments t_{ν}^{1} in G^{3} , we determine a_{ν} as follows. Let M_{ν} be the middle point of t_{ν}^{1} , and O be the origin (0, 0, 0) of E^{3} . Through M_{ν} we draw a plane in E^{3} parpedicular to t_{ν}^{1} , and let S_{ν} be the square on this plane, whose centre is at M_{ν} , and whose sides are parallel to the coordinate axes of E^{3} and have the length unity respectively. Let ω_{ν} be the solid angle spanned by S_{ν} at O. We assume that t_{ν}^{1} is so oriented that its positive direction and $\overrightarrow{OM}_{\nu}$ make an angle $\langle \pi/2$, and put $a_{\nu} = -\omega_{\nu}/(4\pi)$.

Now, consider the boundary of the chain $\sum_{0}^{\infty} a_{\nu} t_{\nu}^{1}$. Obviously, a knot t_{μ}^{0} of $G^{2^{p}}$ not appearing in G^{3} has the coefficient zero in $(\sum_{0}^{\infty} a_{\nu} t_{\nu}^{1})^{\cdot} = \sum_{0}^{\infty} a_{\nu} t_{\nu}^{1}$. Suppose that $t_{\mu}^{0} (\mu = 1, 2, \cdots)$ is a knot of G^{3} other than the origin denoted by t_{0}^{0} . At t_{μ}^{0} there meet six segments t_{ν}^{1} of G^{3} , and the corresponding six squares S_{ν} form the surface of a unit cube with centre at t_{μ}^{0} . By the mentioned orientation of the segments t_{ν}^{1} and by

the fact that the origin lies outside that cube surface, we see that the coefficient of t_{ν}^{0} in $\sum_{0}^{\infty} a_{\nu} \dot{t}_{\nu}^{1}$ vanishes. Similarly, the coefficient of t_{0}^{0} in $\sum_{0}^{\infty} a_{\nu} \dot{t}_{\nu}^{1}$ is found to be =1. Hence, we have

$$(\sum_{0}^{\infty} a_{\nu} t_{\nu}^{1}) = t_{0}^{0}$$
.

Since $\omega_{\nu} = o(1/\overline{OM_{\nu}^2})$, we have $\sum_{0}^{\infty} |a_{\nu}|^2 \leq \text{const.} \sum_{0}^{\infty} (1/\overline{OM_{\nu}^4}) \leq \text{const.}$ $\sum' \{1/(m_1^2 + m_2^2 + m_3^2)^2\} < +\infty$, where the summation \sum' ranges over all lattice points (m_1, m_2, m_3) in E^3 except (0, 0, 0).

Hence, by Lemma 1, we have $\tilde{F} \notin O_G$.

2) Construction of annull A_n^{κ} .

In order to prove the remaining parts of the theorem, we shall construct on \tilde{F} a collection of annuli A_n^* satisfying the four conditions mentioned in § 5.

For each $j=1,\dots,2p$, we construct on F a doubly connected strip region D_j containing the curve C_j in its interior, such that any two of D_j , except the p pairs D_{2i-1} , D_{2i} , $i=1,\dots,p$ have no points in common, and that, for each i, $D_{2i-1} \cap D_{2i}$ is a simply connected region. Further, we assume that, by the cutting of F into ϕ , D_j is transformed into two simply connected strip regions D_j^+ and D_j^- on ϕ , respectively adjacent to the boundary arcs C_j^+ and C_j^- of ϕ . Then, $D_{2i-1}^+ \cap D_{2i}^+$, $D_{2i-1}^+ \cap D_{2i}^-$, $D_{2i-1}^- \cap D_{2i}^-$ are simply connected subregions of ϕ respectively having a vertex of ϕ on the boundary.

Let $\{\tilde{F}_n\}$ be the exhaustion of \tilde{F} defined in §3, and Γ_n^{κ} ($\kappa=1,\cdots,k(n)$) be a connected component of the boundary Γ_n of \tilde{F}_n . Let A_n^{κ} be the sum of the replicas of D_j^+ , D_j^- , $D_{2i-1}^+ \cap D_{2i}^+$, $D_{2i-1}^- \cap D_{2i}^-$, $D_{2i-1}^- \cap D_{2i}^+$, and $D_{2i-1}^- \cap D_{2i}^-$ on \tilde{F}_n , which adjoin to the arcs of Γ_n^{κ} or have some vertex of Γ_n^{κ} on the boundary. A_n^{κ} is a doubly connected subregion of \tilde{F}_n . Since $\Gamma_n = \bigcup_{\kappa=1}^{k(n)} \Gamma_n^{\kappa}$ is the whole boundary of \tilde{F}_n , and since $\tilde{F}_n \cup \Gamma_n$ is contained in the interior of \tilde{F}_{n+1} , the annuli A_n^{κ} , $\kappa=1,\cdots,k(n)$, $n=n_0$, n_0+1,\cdots , satisfy the mentioned conditions.

Now, A_n^{κ} is composed of L_n^{κ} replicas of D_j^+ and D_j^- , and at most the same number of replicas of $D_{2i-1}^+ \cap D_{2i}^+$, $D_{2i-1}^- \cap D_{2i}^-$, $D_{2i-1}^- \cap D_{2i}^+$, or $D_{2i-1}^- \cap D_{2i}^-$, where L_n^{κ} is the "length" of I_n^{κ} . Hence, it is easily seen that the harmonic modulus μ_n^{κ} of A_n^{κ} satisfies an inequality

(13)
$$\mu_n^{\kappa} \ge c/L_n^{\kappa}$$

with a positive constant c independent of κ and n. Hence, we have

for the harmonic modulus σ_n of $\bigcup_{\kappa=1}^{k(n)} A_n^{\kappa}$,

(14) $\sigma_n \geq c/L_n,$

where $L_n = \sum_{\kappa=1}^{k(n)} L_n^{\kappa}$ is the total "length" of Γ_n .

3) Proof of i): Sufficiency of $r \leq 2$.

If $r \leq 2$, we have, by (7) in 1) of § 4 and by (14), $\sigma_n \geq \text{const.}(1/n) > 0$. Hence

$$\sum_{n}^{\infty}\sigma_{n}=+\infty,$$

so that, by Lemma 2, $\tilde{F} \in O_G$.

4) **Proof of ii**).

By the results of 2) of §4, we have $\operatorname{Max}_{\kappa} L_n^{\kappa} = O(n)$. Hence, by (13), $\mu_n = \operatorname{Min}_{\kappa} \mu_n^{\kappa} \ge \operatorname{const.}(1/n) > 0$. Consequently

$$\sum_{n}^{\infty} \mu_n = +\infty ,$$

so that, by Lemma 3, $\widetilde{F} \in O_{AD}$.

5) **Proof of iii**).

Suppose that (11) holds for each $i=1, \dots, p$. Then, the p lattice points $(\gamma_1, \gamma_2, 0, \dots, 0), \dots, (0, \dots, 0, \gamma_{2i-1}, \gamma_{2i}, 0, \dots, 0), \dots, (0, \dots, 0, \gamma_{2p-1}, \gamma_{2p})$ in E^{2p} are equivalents of $(0, \dots, 0)$ with respect to the group $\mathfrak{T}(\widehat{F})$, so that, on any (m_{2i-1}, m_{2i}) -plane through any lattice point in E^{2p} , there exist pairs of lattice points equivalent to each other. Hence, among the three cases distinguished in 2) of § 4, the case (a) cannot occur. Consequently, we have $L_n^{\kappa} \leq \text{const.}$ for any n and κ , whence, by (13), $\mu_n = \text{Min}_{\kappa} \, \mu_n^{\kappa} \geq \text{const.} > 0$. On the other hand, since $L_n = O(n^{r-1})$, we have $k(n) = O(n^{r-1})$, so that $K(N) = O(N^{r-1})$. Hence,

$$\sum_{n}^{N} \mu_{n} - \frac{1}{2} \log K(N) \geq \text{const. } N - O(\log N).$$

The right-hand side tends to $+\infty$ with N, whence, by Lemma 4, $\hat{F} \in O_{AB}$ follows.

Mathematical Institute, Tokyo University.

A. MORI

References.

- [1] Kerékjártó, B. v.: Vorlesungen über Topologie, I, Berlin, 1923.
- [2] Minkowski, H.: Diophantische Approximationen, Leipzig, 1907.
- [3] Nevanlinna, R.: Ein Satz über offene Riemannsche Flächen, Ann. Acad. Sci. Fenn.
 (A), vol. 54, no. 3, pp. 1-18 (1940).
- [4] Pfluger, A.: Sur l'existence de fonctions non constantes, analytiques, uniformes et bornées sur une surface de Riemann ouverte, C. R. Acad. Sci. Paris, t. 230, pp. 166-168 (1950).
- [5] Royden, H. L.: Harmonic functions on open Riemann surfaces, Trans. Amer. Math. Soc. vol. 73, pp. 40-94 (1952).
- [6] Sario, L.: Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. A, I, 50 (1948).
- [7] Sario, L.: Modular criteria on Riemann surfaces, Duke Math. Journ., vol. 20, pp. 279-286 (1953).
- [8] Tsuji, M.: On Royden's theorem on a covering surface of a closed Riemann surface, Journ. Math. Soc. Japan, vol. 6, no. 1, pp. 32-36 (1954).
- [9] Weyl, H.: Die Idee der Riemannsche Fläche, Leipzig, 1913.