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1. Introduction.

Let $F$ be a closed Riemann surface of genus $p$ , and fi be an un-
ramified and unbounded covering surface of $F$. If, above any closed
curve on $F$, there never lie two curves on $\hat{F}$ , one of which is closed
and the other open, $R$ is said to be regular. As is well known, a
regular covering surface $F$ admits covering transformations onto itself,

which are one-to.one and continuous and carry each point $\tilde{P}$ on $\tilde{F}$ into
a point $\tilde{P}$ with the same projection as $\tilde{P}$. The totality of these trans-
formations forms the covering transformation group $I’(\beta)$ , which
characterizes $F$.

DEFINITION. A regular covering surface $F$ of $F$ is called an un-
ramified abelian covering surface, if its covering transformation group
$I^{7}(F)$ is abelian.1)

In the present note, we shall investigate the structure of un-
ramified abelian covering surfaces in some detail (\S \S 2-4), and prove
some function-theoretic properties of these surfaces (\S \S 5-6).

An example of such surfaces is given by the Riemann surface $\tilde{F}_{w}$

of an abelian integral $w^{2)}$ where $dw$ is an analytic differential of the
first or the second kind defined on F. $F_{w}$ is an unramified and un-
bounded covering surface of $F$ characterized by the following property:
a curve $\gamma\sim$ on $F_{w}$ is closed if and only if its projection $\gamma$ on $F$ is closed

1) An “ unramified abelian covering surface ” of a closed Riemann surface corresponds
to an “ unramified abelian extension ‘’ of an algebraic function field. L. Sario [6], [7]

used the term “ Abelsche \"Uberlagerungsflache ‘’ or “ abelian covering surface ’ for another
sort of covering surfaces (one of which is called “ die \"Uberlagerungsflache der Kommuta $\cdot$

toren” in [1]), whose covering transformation groups are not abelian except for some
simple cases.

2) The Riemann surface of a mulliplicative function gives a more general example.



A nole on unramified abelian covering surfaces. 163

and $\int_{\gamma}dw=0$ . Its covering transformation group $r(F_{w})$ is isomorphic

to the additive group of complex numbers generated by the $2p$ periods
of $dw$ , which are taken along $2p$ closed curves forming a homology
base on $F$ (cf. \S 2). If there exist, between these $2p$ periods, no linear
equations with not all vanishing integral coefficients, $I’(fl_{w})$ is a free
abelian group with $2p$ generators, and $\tilde{F}_{w}$ coincides with the covering
surface of integral functions3) (“ die Uberlagerungsfl\"ache der Integral-
funktionen “ in [91 or “ die \"Uberlagerungsfl\"ache der Homologien “ in
[1]) of $F$.

2. The group $I^{\prime}(\tilde{F})$ ; constructive definition of $\tilde{F}$.
Let $C_{2i-1},$ $C_{2i},$ $i=1,\cdots,p$ , be $2p$ (oriented) piecewise analytic simple

closed curves on $F$, such that
1) the system $C_{j},$ $j=1,\cdots,$ $2p$ does not divide $F$ intO two or more

parts;
2) any two of $C_{j}$ , except the $p$ pairs $C_{2i-1},$ $C_{2i},$ $i=1,\cdots,$ $p$ , have no

points in common; and
3) for each $i,$ $C_{2i-1}$ and $C_{2i}$ have precisely one point in common.
Let $\tilde{P}$ be an arbitrarily fixed point on $\tilde{F}$. For each $i=1,\cdots,$ $2p$ ,

we denote by $C_{j}(\tilde{P})$ the end point of a curve on $\tilde{F}$ starting from $\tilde{P}$,
whose projection on $F$ is closed and homotopic to the curve $C_{j}$ . Some
of these points may, of course, be mutually identical, or identical with
$\tilde{P}$. Since $\grave{F}$ is regular by the assumption, there exist unique covering

transformations of $\tilde{F}$, which carry $\tilde{P}$ into $C_{j}(\tilde{P}),$ $j=\backslash 1,\cdots,2p$ , respective.
ly. These transformations form a system of generators of the group
$I^{7}(F^{\dagger})$ , and shall be denoted by the same letters $C_{j}^{4)}$ As to these
matters, cf. $e$ . $g$ . $[1]$ or [9].

Now, $I^{7}(\beta)$ being an abelian group generated by $C_{j},$ $j=1,\cdots,$ $2p$,
there exists a number of defining relations between these elements:

3) I. $e$ . the “ minimal ‘’ regular covering surface of $F$, on which every integral function
defined on $F$ becomes $single\cdot valued$ .

4) In general, these transformations depend also on the choice of the point $P$. In
the case of abelian $\Gamma(\tilde{F})$ , however, they are uniquely determined by the curves $C_{j}$ .
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(1) $\sum_{j\leftarrow 1}^{2p}\gamma_{kj}C_{j}=0$ (the identical transformation),

$k=1,\cdots,$ $q$ $(0\leqq q\leqq 2p)$ ,

with integral coefficients $\gamma_{kj}$ , whose $q\times 2p$ matrix

(2) $(\gamma_{kj})_{k=1\ldots.,q;j=1\ldots..2p}$

is of rank $q$ . The number $2p-q=r$ is the rank of the abelian group
$r(F)$ .

We shall represent the elements $\sum_{1}^{2p}m_{j}C_{j}$ of $I^{7}(F)$ , where $m_{j}$ are
integers, by the lattice points $(m_{1},\cdots, m_{2p})$ of a $2p.dimensional$ euclidean
space $E^{2p}$. Let $\mathfrak{T}$ be the group of transformations of $E^{2p}$ generated by
the $2p$ translations carrying the origin into $(1, 0,\cdots, 0),$

$\cdots,$
$(0,\cdots, 0,1)$

respectively, and $\mathfrak{T}(ff)$ be its subgroup generated by the $q$ translations
carrying the origin into $(\gamma_{k1},\cdots, \gamma_{k2p}),$ $k=1,$ $\cdot\cdot,$ $q$ , respectively. Obviously,
two lattice points of $E^{2p}$ represent one and the same element of $r(F)$

if and only if they are equivalent with respect to $\sim(\tau_{(F)}$ and $I^{7}(\tilde{F})$ is
isomorphic to the factor group $(\tau\sim/\sim(v_{(\tilde{F})}$ .

Now, suppose that $I’(\grave{F})$ is given by the defining relations (1). We
shall construct the covering surface $\beta$ from $F$ as follows. Let the two
shores of each of the curves $C_{2i-1},$ $C_{2i},$ $i=1,\cdots,$ $p$ , be denoted by $C_{2i-1}^{+}$,
$C_{2i-1}^{-},$ $C_{2i}^{+},$ $C_{2i}^{-}$ respectively, in such a manner that the oriented curve
$C_{2i}$ intersects $C_{2i-1}$ from the shore $C_{2i-1}^{+}$ to the other shore $C_{2i-1}^{-},$ . and
that $C_{2i- 1}$ intersects $C_{2i}$ from $C_{2i}^{+}$ to $C_{2i}^{-}$ . We cut $F$ along the $2p$ curves
$C_{j}$ to obtain a surface $\Phi$ of planar character having $p$ boundary curves,
each of which consists of four sides $C_{2i-1}^{+},$ $C_{2i}^{+},$ $C_{2i-}^{-}{}_{1}C_{2i}^{-}$ . To each residue
class $(m_{1},\cdots, m_{2q})mod \mathfrak{T}(F)$ , we associate a replica $\Phi(m_{1},\cdots, m_{2p})$ of $\Phi$ .
Next, we identify the side $C_{2i}^{+}$ of each $\Phi(m_{1}, m_{2i-1}, m_{2i}, \cdots, m_{2p})$ with
the side $C_{2i}^{-}$ of $\Phi(m_{1},\cdots, m_{2i-1}+1, m_{2i},\cdots, m_{2p})$ , and $C_{2i-1}^{+}$ of $\Phi(m_{1},\cdots,$ $m_{2i-1}$ ,
$m_{2i},\cdots,$ $m_{2p}$) with $C_{2i-1}^{-}$ of $\Phi(m_{1},\cdots, m_{2i-1}, m_{2i}+1,\cdots, m_{2p})$ , where each point
on $C_{j^{+}}$ must be identified with the corresponding point on $C_{j}^{-}$

$(j=1,\cdots, 2p)$ .
By these procedures, each side of each $\Phi$ is identified with some

unique side of some other (or the same) $\Phi$ , and, at each vertex of each
$\Phi$ , there meet four $\Phi’ s$ : $\Phi(m_{1},\cdots, m_{2i-1}, m_{2i},\cdots, m_{2p}),$ $\Phi(m_{1},\cdots,$ $m_{2i-1}+1$ ,

$m_{2i},\cdots,$ $m_{2p}$)
$,$

$\Phi(m_{1},\cdots, m_{li-1}, m_{2i}+1,\cdots, m_{2p})$ , and $\Phi(m_{1},\cdots,$ $m_{2i-1}+1,$ $m_{2i}+$ ],
$m_{2p})$ (some of these four may be mutually identical). Thus, an un-
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ramified and unbounded covering surface of $F$ is constructed. It is
evident that this covering surface has $I^{7}(\tilde{F})$ as its covering transforma-
tion group.

REMARK. Obviously, $F$ is closed if and only if the group $r(F)$

is finite, $i$ . $e$ . $r=0$ . Further, it is easily proved that, if $r=1$ , the ideal
boundary of $\tilde{F}$ consists of two components (Randst\"ucke in [1]), and, if
$r\geqq 2$ , it consists of a single one (cf. \S 3). As for the genus $\tilde{p}$ of $F$, we
have the followings: if the order $g$ of 1 $(\tilde{F})$ is finite, then $\tilde{p}=g(p-1)$

$+1$ ; if $ g=\infty$ and $p=1$ , then $\tilde{p}=0$ ; and, if $ g=\infty$ and $\tilde{p}\geqq 2$ , then
$\tilde{p}=\infty$ .

3. An exhaustion $\{\tilde{F}_{n}\}$ of $\tilde{F}$.
Suppose that $r>0$, so that $\tilde{F}$ is open. Then, from the $2p$ basis

vectors $(1, 0,\cdots, 0),\cdots,$ $(0, \cdots, 0,1)$ of $E^{2p}$, we can choose $r$ ones:
$\mathfrak{y}_{1},\cdots,$ $\mathfrak{y}_{r}$ , such that the $q+r=2p$ vectors $\mathfrak{x}_{k}=(\gamma_{k1},\cdots, \gamma_{kzp}),$ $k=1,\cdots,$ $q$ ,
and $\mathfrak{y}_{l},$ $l=1,\cdots,$ $r$, are linearly independent. In order to construct a
convenient exhaustion of the surface $\tilde{F}$, we shall introduce in $E^{2p}$ a
new coordinate system $(x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{r})$ with the same origin as
before and with $\mathfrak{x}_{1},\cdots,$ $\mathfrak{x}_{q}$ ; $\mathfrak{y}_{1},\cdots,$ $\iota)_{r}$ as basis vectors:
(3) $(m_{1}, \cdots, m_{2p})=(x_{1}, \cdots, x_{q} ; y_{1}, \cdots,y_{r})T$ ,

where $T$ is a $2p\times 2p$ matrix obtained from (2) by attaching below $\gamma$

rows of the form $(0,\cdots, 0,1,0,\cdots, 0)$ , We put

(4) $T^{-1}=(\alpha_{jk}, \beta_{jl})$ ,

where $j=1,\cdots,$ $2p;k=1,\cdots,$ $q;l=1,\cdots,$ $r$.
Two lattice points $(m_{1,}m_{\sim})$ and $(m_{I}^{\prime},\cdots, m_{zp}^{\prime})$ are equivalent with

respect to $\mathfrak{T}(F^{i})\backslash $ if and only if their difference has integral x-coordinates
and vanishing y-coordinates:

$\sum_{j=1}^{2p}\alpha_{jk}(m_{\acute{j}}-m_{j})\equiv 0$ $mod 1$ , $k=1,\cdots,$ $q$ ,

(5)

$\sum_{j=1}^{2p}\beta_{jt}(m_{j}-m_{j})=0$ , $l=1,\cdots,$ $r$ .

The number $Q$ of lattice points $(m_{1},\cdots, m_{2p})$ contained in the $2p$ .
dimensional parallelepiped: $0\leqq x_{k}<1,0\leqq y_{l}<1,$ $k=1,\cdots,$ $q,$ $l=1,\cdots,$ $r$,
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is equal to the absolute value of the determinant of $T$ (cf. Minkowski
[2]).

Further we remark: if $(x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{l},\cdots,y_{r})$ represents a lattice
point in $E^{2p},$ $i$ . $e$ . if the components of the vector $(x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{r})T$

are all integers, $(x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{l}\pm 1,\cdots,y_{r})$ also represent lattice points,
and these are neighbours of the former one. In fact, as is seen from
(3), $(0,\cdots, 0;0,\cdots, \pm 1,\cdots, O)T$ have the form $(0,\cdots, \pm 1,\cdots, 0)$ .

Consider two $\Phi’ s$ of $F$ adjacent to each other along some side or
having some vertex in common: $\Phi(m_{1},\cdots, m_{2i- 1}, m_{2i},\cdots, m_{2p})=\Phi[x_{1},\cdots,$ $x_{q}$ ;
$y_{1},\cdots,y_{r}]^{5)}$ and $\Phi(m_{1},\cdots, m_{2i-1}+e_{1}, m_{2i}+e_{2},\cdots, m_{2p})=\Phi[x_{1}^{\prime},\cdots, x_{\acute{q}} ; y_{1}^{\prime},\cdots,y_{r}^{\prime}]$ ,
where $e_{1},$ $e_{2}=0,$ $\pm 1$ , not both zero. By (3) and (4), we have $yt-y_{l}=$

$e_{1}\beta_{2i-1.l}+e_{2}\beta_{2i.l},$ $l=1,\cdots,$ $r$. Hence, if we put

$M=[{\rm Max}(|\beta_{2i-1.l}|+|\beta_{2i.l}|)]+1i.l$

where $[]$ denotes the integral part of the number lying in, we have

(6) $|y_{l}^{\prime}-y_{l}|<M$ , $l=1,\cdots,$ $r$ .
Now, for any integer $n\geqq 0$ , let $F_{n}$ be the part of $F$, which con-

sists of all $\Phi(m_{1},\cdots, m_{2p})=\Phi[x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{r}]$ satisfying $-Mn\leqq y_{l}<$

$M(n+1),$ $l=1,\cdots,$ $r$. The number of such $\Phi’ s$ is equal to $M^{r}(2n+1)^{r}Q$ ;
and the sequence $PF_{n},$ $ n=0,1,\cdots$ , exhausts $F$. Further, as is seen from
(6), any $\Phi$ of $F$ having points in common with some $\Phi$ of $F_{n}$ belong
to $F_{n+1}$ . Hence, $R_{n}$ , together with its boundary, is contained in the
interior of $F_{n+1}$ .

Finally we shall prove that $\beta_{n}$ is connected if $n$ is sufficiently
large: $n\geqq n_{0}^{6)}$ First, we connect each of $M^{r}Q\Phi’ s$ of $F_{0}$ to $\Phi[0,\cdots,$ $0$ ;
$0,\cdots,$ $0$] by a chain of $\Phi’ s$ on $F$, and take $n_{0}$ so large that $F_{n}$ . contains
these $M^{r}Q$ chains. Suppose that $\Phi[x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{r}]=F_{n}$ . Then, while
reducing the absolute values of $y’ s$ one by one, we construct a chain
of $\Phi’ s$ on $\tilde{F}_{n}$ , which connects $\Phi[x_{1},\cdots, x_{q} ; y_{1},\cdots, y_{r}]$ to one of the $M^{r}Q$

$\Phi’ s$ of $F_{0}^{\backslash }$ . Thus, $\Phi[x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{r}]$ can be connected to $\Phi[0,\cdots,$ $0$ ;
$0,\cdots,$ $0$] in $B_{n}$ if $n\geqq n_{0}$ .

5) In the notation of replicas of $\Phi$ , we shall use square brackets instead of round
ones, if the corresponding lattice point is represented in terms of the $(x, y)$ -coordinates.

6) E. $g$ . it is sufficient to take $no^{=\Sigma}hj|\gamma kj|+rM$.
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4. Estimation of boundary lengths of $\tilde{F}_{n}$ .
Suppose that a curve on $F^{\backslash }$ consists of a finite number of the arcs

$C_{j}^{+},$ $C_{j}^{-},$ $j=1,\cdots,$ $2p$, of some $\Phi’ s$ on $\tilde{F}$. For simplicity, we shall call the
number of these arcs the‘ length “ of that curve.

1) We shall first evaluate the total length $L_{n}$ of the boundary $I_{n}^{v}$

of $F_{n}$ .
For any $r$ integers $t_{1},\cdots,$ $t_{r}$ , let $Z(t_{1},\cdots, t_{r})$ be the part of $B$ consisting

of $M^{r}Q\Phi[x_{1},\cdots, x_{q} ; y_{1},\cdots,y_{r}]$ satisfying $Mt_{l}\leqq y_{l}<M(t_{l}+1),$ $l=1,\cdots,$ $r$ .
As is seen from (6), any $\Phi$ of $\hat{F}$ adjacent to some $\Phi$ of $Z(t_{1},\cdots, t_{r})$ be.
longs to one of $Z(t_{1}+\delta_{1},\cdots, t_{r}+\delta_{r})$ , where $\delta_{l}=0,$ $\pm 1,$ $l=1,\cdots,$ $r$.

For not all vanishing $\delta’ s$ , let $\gamma(t_{1},\cdots, t_{r} ; \delta_{1},\cdots, \delta_{r})$ be the part of the
boundary of $Z(t_{1},\cdots, t_{r})$ , along which it adjoins to $Z(t_{1}+\delta_{1},\cdots, t_{r}+\delta_{r})$ , and
$L(\delta_{1},\cdots, \delta_{r})$ be its length. Since any $Z(t_{1},\cdots, t_{r})$ is congruent to $Z(0,\cdots, 0)$

$=\tilde{F}_{0},$ $L(\delta_{1},\cdots, \delta_{r})$ does not depend on $t_{J},\cdots,$ $t_{r}$ , The sum of $L(\delta_{1},\cdots, \delta_{r})$

for the $3^{r}-1$ admissible value combinations of $\delta’ s$ is equal to the
boundary length $L_{0}$ of $\tilde{F}_{0}$ .

Suppose that $Z(t_{1},\cdots, t_{r})\subset\tilde{F}_{n},$ $i$ . $e$ . $-n\leqq t_{l}\leqq n,$ $l=1,\cdots,$ $r$. The curve
$\gamma(t_{1},\cdots, t_{r} ; \delta_{1},\cdots, \delta_{r})$ belongs to the boundary of $F_{n}$ if and only if $Z(t_{1}+$

$\delta_{1},\cdots,$ $t_{r}+\delta_{r}$ ) $\mp\tilde{F}_{n}$ . As is easily seen, the number of such value com-
binations of $ts$ for fixed $\delta’ s$ is equal to $(2n+1)^{r}-(2n)^{r^{t}}(2n+1)^{r- r^{;}}$ ,
where $r^{\prime}$ is the number of non.vanishing $\delta s$ . Hence, the total boundary
length of $\tilde{F}_{n}$ is found to be: $L_{n}=\sum\{(2n+1)^{r}-(2n)^{r/}(2n+1)^{r-r^{t}}\}x$

$L(\delta_{1},\cdots, \delta_{r})\leqq\{(2n+1)^{r}-(2n)^{r}\}\sum L(\delta_{1},\cdots, \delta_{r})=\{(2n+1)^{r}-(2n)^{r}\}L_{0}$ , where
the summation ranges over the $3^{r}-1$ value combinations of $\delta’ s$ .

Thus, we have

(7) $L_{n}=O(n^{r^{-1}})$ .
2) Next, we shall estimate from above the length of each connected

component of $\Gamma_{n}$ .
Suppose that a boundary arc $\alpha$ , one of $C_{1^{+}},$ $C_{1^{-}},$ $C_{2^{+}},$ $C_{2}^{-}$ say, of a

$\Phi(m_{1},\cdots, m_{2p})$ of $\tilde{F}_{n}$ belon $gs$ to $I_{n}$ . At each end point of $\alpha$ , there meet
four $\Phi’ s$ of $\tilde{\Gamma}$ (not all belonging to $F_{n}$) $:\Phi(m_{1}, m_{2}, m_{3},\cdots, m_{2p}),$ $\Phi(m_{1}+e_{1}$ ,
$m_{2},$ $m_{3},\cdots,$ $m_{2p}$)

$,$

$\Phi(m_{1}, m_{2}+e_{2}, m_{3},\cdots, m_{2p})$ , and $\Phi(m_{1}+e_{1}, m_{2}+e_{2}, m_{3},\cdots, m_{2p})$ ,
where $e_{1},$ $e_{2}=\pm 1$ . Hence, the arc of $I^{v_{\hslash}}$ , which adjoins to $\alpha$ at this
point, must be one of $C_{1}^{+},$ $C_{1^{-}},$ $C_{2^{+}},$ $C_{2}^{-}$ of one of above four $\Phi’ s$ . Hence
we see: the connected component of $\Gamma_{n}$ containing $\alpha$ consists only of
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the arcs $C_{1}^{+},$ $C_{1^{-}},$ $C_{2^{\vdash}},$ $C_{2^{-}}$ of $\Phi’ s$ with constant $m_{3},\cdots,$ $m_{2p}(i.e$ . $\Phi’ s$ , which
allow one such representation respectively).

Now, let $\Phi(m_{1}^{*}, m_{2}^{*}, m_{3}^{*},\cdots, m_{2p}^{\not\simeq})$ be a $\Phi$ belonging to $\tilde{F}_{n}$ . We denote
by $\Delta_{n}^{12}=\Delta_{n}^{12}(m_{3}^{\star},\cdots, m_{2p}^{*})$ the part of $\tilde{F}_{n}$ consisting of $\Phi^{)}s$ of the form
$\Phi(m_{1}, m_{2}, m_{3}^{*},\cdots, m_{2p}^{i6})$ , and by $\gamma_{n}^{12}=\gamma_{n}^{12}(m_{3}^{*},\cdots, m_{2p}^{*})$ the part of the bound.
ary of $\Delta_{n}^{12}$ consisting of the arcs $C_{1^{+}},$ $C_{1^{-}},$ $C_{2^{\vdash}},$ $C_{2^{-}}$ . Then, in order to
estimate from above the length of a component of $I_{n}^{7}$ consisting of
$C_{1^{+}},$ $C_{1}^{-},$ $C_{2^{+}},$ $C_{2^{-}}$ , it suffices, by the above remark, to estimate the length
$L_{n}^{12}=L_{n}^{12}(m_{3}^{*},\cdots, m_{2p}^{*})$ of $\gamma_{n}^{12}$.

By the definition of $F_{n},$ $\Phi(m_{1}, m_{2}, m_{3}^{*},\cdots, m_{2^{*}p})$ belongs to $F_{n}$ if and
only if

(8) $-Mn\leqq\beta_{1l}m_{1}+\beta_{ll}m_{2}+\sum_{j=3}^{2p}\beta_{jl}m_{j}^{*}<M(n+1)$ , $l=1,\cdots,$ $r$ .

According to the rank of the $2\times r$ matrix

(9) $\left(\begin{array}{lll}\beta_{11}, & \ldots & \beta_{Jr}\\\beta_{21}, & \ldots, & \beta_{2r}\end{array}\right)$ ,

we distinguish three cases from each others.
(a) : The matrix (9) has the rank 2.
Then, the inequalities (8) define a bounded convex region $\delta_{n}^{12}$ on

the $(m_{1}, m_{2})$ -plane through $(m_{1^{96}}, m_{2}^{*}, m_{3}^{*},\cdots, m_{2p}^{*}),$ $i$ . $e$ . the plane $m_{3}=m3$ ,
$m_{2p}=m_{2p}^{*}$ in $E^{2p}$ . Further, there exists on this plane no pair of

mutually equivalent lattice points. For, if $(m_{1}, m_{2}),$ $(m_{1}^{\prime}, m_{2}^{\prime})$ are such a
pair, there hold by (5)

$\beta_{1l}(m_{1}^{\prime}-m_{1})+\beta_{2l}(m_{2}^{\prime}-m_{2})=0$ , $l=1,\cdots,$ $r$ ,

so that $m_{1}^{\prime}=m_{1},$ $m_{2}^{\prime}=m_{2}$.
To each lattice point $(m_{1}, m_{2})$ on this plane, we associate a square

$S(m_{1}, m_{2})$ , whose centre is at $(m_{1}, m_{2})$ and whose sides are parallel to the
coordinate axes and have the length unity respectively. $S(m_{1}, m_{2})$ may
be considered as a model of the replica $\Phi(m_{1}, m_{2}, m_{3}^{*},\cdots, m_{2p}^{*})$ ; the sides
parallel to the $m_{1}\cdot axis$ are the models of the boundary arcs $C_{1^{+}}$ and
$C_{1^{-}}$ , and the sides parallel to the $m_{2}$-axis are those of $C_{2^{+}}$ and $C_{2}^{-}$ . The
part $\Delta_{n}^{12}$ is represented by the sum $D_{n}^{I2}$ of all $S(m_{1}, m_{2})$ with $(m_{1}, m_{2})\in\delta_{n}^{12}$,
and $L_{n}^{12}$ is equal to the length of the boundary of $D_{n}^{12}$ .

Suppose, for instance, that $\beta_{11}\beta_{22}-\beta_{12}\beta_{21}\neq 0$ . Then, the first two
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inequalities of (8) define a parallelogram $\pi_{n}^{12}$ containing $\delta_{n}^{12}$. Let $P_{n}^{12}$ be
the sum of all $S(m_{1}, m_{2})$ with $(m_{1}, m_{2})\in\pi_{n}^{12}$ . Since $\delta_{n}^{12}$ is convex and
contained in $\pi_{n}^{12}$, it is easily seen that the boundary length $L_{n}^{12}$ of $D_{n}^{12}$

does not exceed that of $P_{n}^{12}$ .
The directions of the sides of $\pi_{n}^{12}$ are independent of $n$ , and their

lengths are respectively proportional to $n$ . Hence we see that the
boundary length of $P_{n}^{12}$ of is $\sim const$ . $n$ . This constant depends only on
$\beta_{11},$ $\beta_{12},$ $\beta_{21},$ $\beta_{22}$ , and not on $m_{3}^{*},\cdots,$ $m_{2p}^{*}$ , since, as is seen from (8), a
change in these latter quantities only causes a translation of $\pi_{n}^{12}$.

Hence, in the case (a), we have

$L_{n}^{12}(m_{3}^{*},\cdots, m_{2p}^{\star})\leqq const$ . $n$ $(n\geqq 1)$ ,

where the constant on the right-hand side depends only on the matrix $T$.
(b): The matrix (9) has the rank 1.
Suppose, for instance, that $|\beta_{11}|+|\beta_{21}|\neq 0$ . In this case, the in-

equalities (8) define a parallel strip region $\delta_{n}^{12}$ on the $(m_{1}, m_{2})$ -plane,
which is parallel to the straight-line $\beta_{11}m_{1}+\beta_{21}m_{2}=0$ .

A lattice point $(m_{1}, m_{2})$ on the $(m_{1}, m_{2})$ -plane is, by (5), an equi-
valent of the lattice point $(0,0)$ , if and only if

$\alpha_{1k}m_{1}+\alpha_{2k}m_{2}\equiv 0$ $mod 1$ , $k=1,\cdots,$ $q$ ,
(10)

$\beta_{Jl}m_{1}+\beta_{2l}m_{2}=0$ , $l=1,\cdots,$ $r$ .
Hence, any equivalent of $(0,0)$ on this plane lies on the straight.line
$\beta_{11}m]+\beta_{21}m_{2}=0$ . Further, since the elements of the matrix $QT^{-1}$ are
integers, the point $(-Q^{2}\beta_{21}, Q^{2}\beta_{11})$ is actually a lattice point $\neq(0,0)$

satisfying (10).
Let $(\mu_{1}, \mu_{2})\neq(0,0)$ be one of the equivalents of $(0,0)$ nearest to

$(0,0)$ . Then, any equivalent of $(0,0)$ is represented in the form
$(\nu\mu_{1}, \nu\mu_{2}),$ $\nu^{=0},$ $\pm 1,\cdots$ . Hence, two lattice points $(m_{1}, m_{2}),$ $(m_{1}^{\prime}, m_{2}^{\prime})$ are
mutually equivalent if and only if $m_{1}^{\prime}=m_{1}+\nu\mu_{1},$ $m_{2}^{\prime}=m_{2}+\nu\mu_{2}$ for some
integer $\nu$ .

As in (a), we may consider the square $S(m_{1}, m_{2})$ as a model of
$\Phi(m_{1}, m_{2}, m_{3}^{\star},\cdots, m_{2}^{\star_{p}})$ . Then, a model of $\Delta_{n}^{12}$ is constructed from the
sum of all $S(m_{1}, m_{2})$ with $(m_{1}, m_{2})\in\delta_{n}^{12}$ by identifying the squares
$S(m_{1}+\nu\mu_{1}, m_{2}+\nu\mu_{2}),$ $\nu=0,$ $\pm 1,\cdots$ , mutually. As is easily seen, the re-
sulting cylinder-shaped figure has two boundary components, each of
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which has the length $|\mu_{1}|+|\mu_{2}|$ . Hence, we have $L_{n}^{12}=2(|\mu_{1}|+|\mu_{2}|)$

$\leqq 2Q^{2}(|\beta_{11}|+|\beta_{21}|)$ .
Thus, in the case (b), we have

$L_{n}^{12}(m_{3}^{*},\cdots, m_{2^{+}p})\leqq const$ . ,

where the constant on the right-hand side depends only on the matrix $T$.
(c) : The matrix (9) has the rank $0$ .
In this case, any point on the $(m_{1}, m_{2})$ -plane satisfies (8); and the

lattice points $(Q, 0)$ and $(0, Q)$ both satisfy (10), $i$ . $e$ . they are equivalents
of $(0,0)$ . Then, by the well known Minkowski’s procedure [2], we can
find two lattice points $(\mu_{1}, \mu_{2})$ and $(\mu_{1}^{\prime}, \mu_{2}^{\prime})$ equivalent to $(0,0)$ , such
that any equivalent of $(0,0)$ is uniquely expressed in the form $(\nu\mu_{1}+$

$l^{J^{\prime}}\mu_{1}^{\prime},$ $\nu_{*2}+\nu^{\prime}\mu_{2}^{\prime}$ ) with integral coefficients $\nu,$

$\nu^{\prime}$ .
As before, we take the square $S(m_{1}, m_{2})$ as a model of $\Phi(m_{1},$ $m_{2}$ ,

$m_{3}^{*},\cdots,$ $m_{2^{*}p}$) and construct the model of $\Delta_{n}^{12}$ from the whole $(m_{1}, m_{2})-$

plane by identifying the mutually equivalent squares $S(m_{1}+\nu\mu_{1}+\nu^{\prime}\mu_{1}^{\prime}$ ,
$m_{2}+\nu\mu_{2}+\nu^{\prime}\mu_{2}^{\prime}),$

$\nu,$
$\nu^{\prime}=0,$ $\pm 1,\cdots$ . The resulting torus-shaped figure has

no boundary arcs, $i.e$ . $\gamma_{n}^{12}$ is empty.
Thus, in the case (c), we have

$L_{n}^{12}(m_{3}^{*},\cdots, m_{2p}^{*})=0$ .

5. Main theorem and lemmas.

As usual, let $O_{G}$ denote the class of Riemann surfaces with null
boundary, and $O_{AB},$ $O_{AD}$ the classes of those not tolerating non-constant
analytic functions which are bounded or have finite Dirichlet integrals
respectively. Now, we shall formulate our theorem in the following
form.

THEOREM. Let $\tilde{F^{\urcorner}}$ be an unramified abelian covering surface of a
closed Riemann surface $F$, and $I^{7}(F)$ be its covering transformation
group.

i) Let $r$ be the rank of the abelian group $l’(F)$ . Then, $F_{eO_{G}}$

$\iota f$ and only $lfr\leqq 2$ .
ii) $p_{eO_{AD}}$ .

iii) Let $C_{2i-1},$ $C_{2i},$ $i=1,\cdots,p$ , be the system of generators of $r(F)$

mentioned in \S 2. If there exists, for each $i=1,\cdots,$ $p$, a relation of the
form
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(11) $\gamma_{2i- 1}C_{2i-1}+\gamma_{2i}C_{2i}=0$

with not both vanishing integral coefficients $\gamma_{2i- 1}$ and $\gamma_{2i^{7)}}$ , then $\tilde{F}\in O_{AB}$ .
Let $\Psi$ be a surface of planar character obtained from $F$ by cutting

along $p$ disjoint non-dividing loop cuts. According to Royden [5], we
shall call an unramified and unbounded covering surface of $F$ a cover-
ing surface of type $S$, if it consists of a (finite or infinite) number of
replicas of $\Psi$ . Then,

COROLLARY OF iii). An abelian covering surface of type $S$ of a
closed Riemann surface belongs to the class $O_{AB}$ .

In fact, taking the $p$ loop cuts as $C_{2i-1},$ $i=1,\cdots,$ $p$ , we can easily
construct $p$ curves $C_{2i},$ $i=1,\cdots,$ $p$ , such that the system $C_{j},j=1,\cdots,$ $2p$ ,
satisfies the condition5 mentioned in \S 2. Then, (11) is satisfied with
$\gamma_{2i-1}=1,$ $\gamma_{2i}=0$ .

Our proof of the theorem is based on the following existence criteria
due to Royden, Nevanlinna, Sario, and Pfluger.

Let $\hat{F}$ be an unramified and unbounded covering surface of $F$,
which is composed of an infinite number of replicas of $\Phi^{8)}$ We may
then represent the structure of $\hat{F}$ by the well known Speiser linear

$A$

graph (Streckenkomplex), where each $\Phi$ of $F$ is represented by a knot
$t_{\mu}^{0}(\mu=0,1,\cdots)$ , and two knots representing two $\Phi’ s$ adjacent to each
other are connected by a segment $t_{\nu}^{1}(\nu^{=}0,1,\cdots)$ . If two $\Phi’ s$ of $\hat{F}$ adjoin
to each other along two or more sides, their representative knots are
connected by the same number of segments; and, if a $\Phi$ of $\hat{F}$ adjoins
to itself along a number of sides, its representative knot has the same
number of segments starting from it and returning to itself. Since $\Phi$

has $4p$ sides, there meet $4p$ segments at each knot (returning segments
being counted twice). We fix an orientation for each segment $t_{\nu}^{1}$ once
for all, and distinguish one knot $t_{()}^{0}$ from others.

LEMMA 1. $($Royden $[5])^{9)}$ . If there exists, on the linear graph of
$\hat{F}$, $a$ one-dimensional chain $\sum_{0}^{\infty}a_{\nu}t_{\nu}^{1}$ with real coefficients $a_{\nu}$ , such that
(12) $(\sum_{0}^{\infty}a_{\nu}t_{\nu}^{1})=t_{0}^{0}$ and $\sum_{0}^{\infty}|a_{\nu}|^{2}<+\infty$ ,

then $\hat{F}\not\in O_{G}$ .
7) Clearly, the effectiveness of this condition depends on the choice of the curves $C_{j}$ ,

$j=1,\cdots,$ $2p$ .
8) For the brevity of statements, we put this rather restrictive assumption.
9) A simple proof of this theorem was given by M. Tsuji [8].
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Let $W$ be an open Riemann surface, and $A_{n}^{\kappa},$ $\kappa=1$ ,–, $ k(n)<+\infty$ ,
$ n=0,1,\cdots$ , be a collection of doubly connected subregions of $W$ satisfy-
ing the following conditions:

1) each annulus $A_{n}^{\kappa}$ is bounded by two piecewise analytic curves
$\gamma_{n}^{\kappa}$ and $\gamma_{n}^{\kappa}$ ;

2) any two of the annuli $A_{n}^{\kappa}$ have no points in common;
3) the complementary set of $\bigcup_{\kappa=I}^{k(n)}A_{n}^{\kappa}$ with respect to $W$ has pre-

cisely one compact component $B_{n}$ ; and
4) $B_{n}$ is bounded by the $k(n)$ curves $\gamma_{n}^{\kappa}$ and contains the annuli

$A_{n^{\prime}}^{\kappa}$ with $n^{\prime}<n$ .
Let $u_{n}^{\kappa}$ be the harmonic measure of $\overline{\gamma}_{n}^{\kappa}$ with respect to $A_{n}^{\kappa},$ $i$ . $e$ . the

function harmonic in $A^{\kappa_{l}}$ , continuous on the closure of $A_{n}^{\kappa},$ $=0$ on $\gamma_{n}^{\kappa}$,
and $=1$ on $\overline{\gamma}^{\kappa_{l}}$ . We denote by $v_{n}^{\kappa}$ the conjugate harmonic function of
$u_{\alpha}^{\kappa}$ , and put

$\mu_{n}^{\kappa}=2\pi/\int_{\gamma_{n}^{\kappa}}dv_{n}^{\kappa}$ , $\sigma_{n}=1/\sum_{\kappa\cdot 1}^{k(n)}\mu^{\kappa}1_{n}$

These quantities are called the harmonic moduli of $A_{n}^{\kappa}$ and $U_{\kappa=1}^{k(n)}A_{n}^{\kappa}$

respectively. We put $\mu_{n}=Min_{\kappa}\mu_{n}^{\kappa}$ , and $K(N)={\rm Max}_{n\leq N}k(n)$ .
LEMMA 2. (Nevanlinna [3]). If

$\sum_{n}^{\infty}\sigma_{n}=+\infty$ ,

then $W\in O_{G}$ .
LEMMA 3. (Sario [6], [7]). If

$\sum_{n}^{\infty}\mu_{n}=+\infty$ ,

then $W\in O_{AD}$ .
LEMMA 4. $($Pfluger [41 $)^{}$ If

$\varlimsup_{N\rightarrow\infty}\{\sum_{n}^{N}\mu_{n_{2}^{--}}1_{-\log K(N)\}=+\infty}$

then $WeO_{AB}$ .

10) Pfluger states this theorem in terms of a conformal metric defined on $W$. Lemma
4 is proved by a slight modification of his proof.
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6. Proof of the theorem.

Since the theorem is trivial for closed covering surfaces $\tilde{F}$, we
assume that $\tilde{F}$ is open.

1) PROOF OF i): NECESSITY OF $r\leqq 2$ .
Suppose that $r\geqq 3$ . Since fi consists of an infinite number of

$\Phi’ s$ , it can be represented by the Speiser linear graph mentioned in \S 5.
We shall construct on this graph a one.dimensional chain $\sum_{0}^{\infty}a_{\nu}t_{\nu}^{1}$

satisfying (12).
Let $E^{2p}$ be the space mentioned in \S 2. By segments of unit length,

we connect every two neighbouring lattice points in $E^{2p}$ : $(m_{1},\cdots,$ $m_{j}$,

$m_{2p})$ and $(m_{1},\cdots, m_{j}+1,\cdots, m_{2p})$ , so that a net of segments is con-
structed in $E^{2p}$. If we identify the lattice points and the segments
with each others, which are mutually equivalent with respect to the
group $\mathfrak{T}(\tilde{F})$ , we obtain from this net a linear graph $G^{2p}$ representing
the structure of $\beta$.

Since $r\geqq 3$ , we can choose, from the $2p$ generators $C_{j}$ of $I’(\tilde{F})$ ,
three ones, $C_{1},$ $C_{2}$ , and $C_{3}$ say, which are mutually free. Then, the
three.dimensional subspace $E^{3}$ : $m_{4}=0,\cdots,$ $m_{2p}=0$ , of $E^{2p}$ contains no
pair of points equivalent to each other with respect to $\mathfrak{T}(?)$ . Let $G^{3}$

be the subgraph of $G^{2p}$ consisting of the knots (lattice points) and the
segments lying in $E^{3}$ .

To the segments $t_{\nu}^{1}$ of $G^{2p}$ not appearing in $G^{3}$, we attribute the
value $a_{\nu}=0$ . For the segments $t_{\nu}^{1}$ in $G^{3}$ , we determine $a_{\nu}$ as follows.
Let $M_{\nu}$ be the middle point of $t_{\nu}^{1}$, and $O$ be the origin $(0,0,0)$ of $E^{3}$ .
Through $M_{\nu}$ we draw a plane in $E^{3}$ parpedicular to $t_{\nu}^{1}$, and let $S_{\nu}$ be
the square on this plane, whose centre is at $M_{\nu}$ , and whose sides are
parallel to the coordinate axes of $E^{3}$ and have the length unity respec-
tively. Let $\omega_{\nu}$ be the solid angle spanned by $S_{\nu}$ at $O$ . We assume
that $t_{\nu}^{1}$ is so oriented that its positive direction and $\overline{OM}_{\nu}^{\succ}$ make an angle
$<\pi/2$ , and put $a_{\nu}=-\omega_{\nu}/(4_{\pi})$ .

Now, consider the boundary of the chain $\sum_{0}^{\infty}a_{\nu}t_{v}^{1}$ . Obviously, a
knot $t_{\mu}^{0}$ of $G^{2p}$ not appearing in $G^{3}$ has the coefficient zero in $(\sum_{0}^{\infty}a_{\nu}t_{\nu}^{1})$

$=\sum_{0}^{\infty}a_{\nu}i_{\nu}^{1}$ . Suppose that $t_{\mu}^{0}(\mu=1,2,\cdots)$ is a knot of $G^{3}$ other than the
origin denoted by $t_{0}^{0}$ . At $t_{\mu}^{0}$ there meet six segments $t_{\nu}^{1}$ of $G^{3}$ , and the
corresponding six squares $S_{\nu}$ form the surface of a unit cube with
centre at $t_{\mu}^{0}$ . By the mentioned orientation of the segments $t_{\nu}^{1}$ and by
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the fact that the origin lies outside that cube surface, we see that the
coefficient of $t_{\nu}^{0}$ in $\sum_{0}^{\infty}a_{\nu}i_{\nu}^{I}$ vanishes. Similarly, the coefficient of $t_{0}^{0}$ in
$\sum_{0}^{\wedge}a_{\nu}i_{\nu}^{1}$ is found to be $=1$ . Hence, we have

$(\sum_{0}^{\infty}a_{\mathcal{V}}t_{\nu}^{1})=t_{0}^{0}$ .
Since $\omega_{\nu}=o(1/\overline{OM}_{\nu}^{2})$ , we have $\sum_{0}^{\infty}|a_{\nu}|^{2}\leqq const$ . $\sum_{0}^{\infty}(1/\overline{OM}_{\nu}^{4})\leqq const$ .

$\sum^{\prime}\{1/(m_{1}^{2}+m_{2}^{2}+m_{3}^{2})^{2}\}<+\infty$ , where the summation $\sum^{\prime}$ ranges over all
lattice points $(m_{1}, m_{2}, m_{3})$ in $E^{3}$ except $(0,0,0)$ .

Hence, by Lemma 1, we have $\tilde{F}\not\in O_{G}$ .
2) CONSTRUCTION OF ANNULI $A_{n}^{\kappa}$ .
In order to prove the remaining parts of the theorem, we shall

construct on $F$ a collection of annuli $A^{\kappa_{l}}$ satisfying the four conditions
mentioned in \S 5.

For each $j=1,\cdots,$ $2p$, we construct on $F$ a doubly connected strip
region $D_{j}$ containing the curve $C_{j}$ in its interior, such that any two of
$D_{j}$ , except the $p$ pairs $D_{2i-1},$ $D_{2i},$ $i=1,\cdots,$ $p$ have no points in common,
and that, for each $i,$ $D_{2i-1}\cap D_{2i}$ is a simply connected region. Further,
we assume that, by the cutting of $F$ into $\Phi,$ $D_{j}$ is transformed into
two simply connected strip regions $D_{j}^{\neq}$ and $D_{j}^{-}$ on $\Phi$ , respectively ad-
jacent to the boundary arcs $C_{j}^{+}$ and $C_{j}^{-}$ of $\Phi$ . Then, $D_{2i-1}^{+}\cap D_{2i}^{+}$ ,
$D_{2^{\succ}i-1}\cap D_{2i}^{-},$ $D_{2i-1}^{-}\cap D_{2i}^{+},$ $D_{2_{l}^{-}-1}\cap D_{2i}^{-}$ are simply connectcd subregions of $\Phi$

respectively having a vertex of $\Phi$ on the boundary.
Let $\{F_{n}\}$ be the exhaustion of $F$ defined in \S 3, and $ I_{n}^{7\kappa}(\kappa=1,\cdots$ ,

$k(n))$ be a connected component of the boundary $I_{n}^{\gamma}$ of $\grave{F}_{n}$ . Let $A_{n}^{\kappa}$

be the sum cf the replicas of $D_{j}^{+},$ $D_{j}^{-},$ $D_{2i-1}^{+}\cap D_{2i}^{+},$ $D_{2i-1}^{+}\cap D_{2i}^{-},$ $D_{2i- 1}^{-}\cap D_{2i}^{+}$,
and $D_{2i-1}^{-}\cap D_{2i}^{-}$ on $F_{n}$ , which adjoin to the arcs of $I_{n}^{v\kappa}$ or have some
vertex of $ I_{n}^{7}\kappa$ on the boundary. $A_{n}^{\kappa}$ is a doubly connected subregion of
$F_{n}$ . Since $l_{n}^{7}=U_{\kappa=1}^{k(n)}\Gamma_{n}^{\kappa}$ is the whole boundary of $\tilde{\Gamma}_{n}$ , and since $F_{n}\cup\Gamma_{n}$

is contained in the interior of $\tilde{F}_{n+1}$ , the annuli $A_{n}^{\kappa},$ $\kappa^{=}1,\cdots,$ $k(n),$ $n=n_{0}$ ,
$ n_{0}+1,\cdots$ , satisfy the mentioned conditions.

Now, $A_{n}^{\kappa}$ is composed of $L_{n}^{\kappa}$ replicas of $D_{j}^{+}$ and $D_{j}^{-}$ , and at most
the same number of replicas of $D_{2i-1}^{+}\cap D_{2i}^{+},$ $D_{2i-1}^{+}\cap D_{2i}^{-},$ $D_{2i-1}^{-}\cap D_{2i}^{+}$, or
$D_{2i-1}^{-}\cap D_{2i}^{-}$ , where $L_{n}^{\kappa}$ is the “ length “ of $I_{n}^{7\kappa}$ . Hence, it is easily seen
that the harmonic modulus $\mu_{n}^{\kappa}$ of $A_{n}^{\kappa}$ satisfies an inequality

(13) $\mu_{n}^{\kappa}\geqq c/L_{n}^{\kappa}$

with a positive constant $c$ independent of $\kappa$ and $n$ . Hence, we have
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for the harmonic modulus $\sigma_{n}$ of $\bigcup_{\kappa=1}^{k(n)}A_{n}^{\kappa}$ ,

(14) $\sigma_{n}\geqq C/L_{n}$ ,

where $L_{n}=\sum_{\kappa=}^{k(n_{1})}L_{n}^{\kappa}$ is the total “ length) of $I_{n}^{\gamma}$ .
3) PROOF OF i): SUFFICIENCY OF $r\leqq 2$ .
If $r\leqq 2$ , we have, by (7) in 1) of \S 4 and by (14), $\sigma_{n}\geqq const$ . $(1/n)$

$>0$ . Hence

$\sum_{n}^{\infty}\sigma_{n}=+\infty$ ,

so that, by Lemma 2, $F\in O_{G}$ .
4) PROOF OF ii).
By the results of 2) of \S 4, we have ${\rm Max}_{\kappa}L_{n}^{\kappa}=O(n)$ . Hence, by

(13), $\mu_{n}={\rm Min}_{\kappa}\mu_{n}^{\kappa}\geqq const.(1/n)>0$ . Consequently

$\sum_{n}^{\infty}\mu_{n}=+\infty$ ,

so that, by Lemma 3, $F_{\in}o_{AD}$ .
5) PROOF OF iii).
Suppose that (11) holds for each $i=1,\cdots,$ $p$ . Then, the $p$ lattice

points $(\gamma_{1}, \gamma_{A}, 0,\cdots, 0),\cdots,$ $(0,\cdots, 0, \gamma_{2i-1}, \gamma_{2i}, 0,\cdots, 0),\cdots,$ $(0,\cdots, 0, \gamma_{2p-1}, \gamma_{2p})$ in
$E^{2p}$ are equivalents of $(0,\cdots, 0)$ with respect to the group $\mathfrak{T}(fl)$ , so that,
on any $(m_{2i- 1}, m_{2i})\cdot plane$ through any lattice point in $E^{2p}$, there exist
pairs of lattice points equivalent to each other. Hence, among the
three cases distinguished in 2) of \S 4, the case (a) cannot occur. Con-
sequently, we have $L_{n}^{\kappa}\leqq const$ . for any $n$ and $\kappa$ , whence, by (13),
$\mu_{n}={\rm Min}_{\kappa}\mu_{n}^{\kappa}\geqq const.>0$ . On the other hand, since $L_{n}=O(n^{r-1})$ , we have
$k(n)=O(n^{r-1})$ , so that $K(N)=O(N^{r-1})$ . Hence,

$\sum_{n}^{N}\mu_{n}-\frac{1}{2}\log K(N)\geqq const$ . $N-O(\log N)$ .

The right-hand side tends to $+\infty$ with $N$, whence, by Lemma 4,
$F_{\in}O_{AB}$ follows.
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