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An imbedding theorcm on {inite covering
surfaces of the Riemann sphere.

By Akira Mori

(Receved April 10, 1053)

Let o4 Dbe a finite covering surface of the Riemann sphere ),
1. c. a covering surface consisting of a finite number of closed triangles.
Then, it was proved in |1 that o can be imbedded in a closed covering
surface of . According to the construction described therein, how-
ever, the genus of the resulting closed ‘surface is in general higher
than that of 4. In 31 of the present paper, we shall prove :

A Jfinite covering surface 4 of N can be imbedded in a closed
covering surface of the same ocnus.

In %2, an analogous thcorem concerning analytic differentials is
stated and proved. Finally, in % 3, an application is made to the theory
of open Riemann surfaces.

1. It is a trivial fact that, as an abstract Riemann surface, 4
can be imbedded in a closed Riemann surface of the same genus.  In
this connection, our thcorem may be formulated in  the following
form :

TuroreM 1. Let D be a subregion of a Ricmann surface F, such
that the closure D of D is coempact and that the boundary of D
consists of a finite number of Jordan curves. Let f(p) be a function

defined and analytic on D ( poles being admitted). Then, D can be
imbedded in a closed Ricmann surface D* of the same genus as D,
in such ¢ manner that f(p) can be continued to a Sfunction defined
and analytic on D*,

Proor. We assume that f(p) - const., since, otherwise, any closed
prolongation of D of the same genus has the required property. Fur-
ther, we may assume that f(p) is defined and analytic throughout F.
If the values of f(p) are represented by points on the Riemann sphere
Y, Fis mapped by f(p) onto a covering surface @ of 3. The image
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4 of D on @ is a finite covering surface of .

Let C denote one of the connected components of the boundary of
D, and I’ be the image of C on @. While deforming C and extending
D slightly, we may assume :

i) I’ is piece-wise smooth and passes no branch-point of @ ;

ii) 'the projection of I" on ¥ has only a finite number #n(I") of
double points and no multiple points of higher order;

iii) at each double point, the two branches of the projection of
I’ are smooth and intersect each other making a positive angle.

We shall first prove, by induction with respect to #(I’), that I’
can be imbedded in a closed covering surface ¥ of genus zero of 3,
in such a manner that /’ passes no branch-point of 7.

If »(I")=0, then I" can be imbedded in a replica of 3 itself.
Suppose that the imbedding is possible for any I” with »(Z7’) <k, and
that n(I")=k for I' in question. Let z, be one of the %2 double points
of the projection of I’. Dividing I’ into two arcs by the two points
lying above z, and identifying the two end-points of each arc respec-
tively, we obtain two closed curves I’; and I',, such that n(17), n(/%)
< k. By the assumption, 7”; and I, can be imbedded in closed cover-
ing surfaces ¥; and ¥, of genus zero respectively. Let P, and P,
denote the points on I’; and I’,, which have the common projection
z. Then, for a sufficiently small disc K about z, ¥; and ¥, contain
schlicht discs Kj, K, about P,, P, with the common projection K. Let
s be a segment in K which intersects the projections of /7y and I7;
at z, and has no other point in common with them. While cutting
¥, and ¥, along segments in K;, K, with the projection s respectively,
and joining them cross-wise along these slits, we obtain a closed
covering surface ¥. Since I’y and I', are imbedded in ¥%; and 7
respectively, I’ is imbedded in #. Further, #;, and ¥, being of genus
zero, ¥ is of genus zero. Evidently I’ passes no branch-point of ¥.
Thus, the possibility of the mentioned imbedding is proved.

Since ¥ is of genus zero and I’ is a simple closed curve on ¥, I”
divides ¥ into two parts, one of which, #’, lies to the right of I” taken
in positive direction with respect to 4. We join #’ to 4 along the
boundary curve I° to obtain a finite covering surface 4’ containing
4.

With natural local parameters, 4’ may be considered as an
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abstract Riemann surface I, in which D is imbedded. The mapping
function of I’ onto 4’ is analytic in D’ and is equal to f(p) in D and
on C. Further, since C is null-homologous in D/, D’ is of the same
genus as D.

Repeating the same construction for each connected component of
the boundary of D, we finally obtain a closed Riemann surface D*

containing D, which is of the same genus as D, and on which f(p)
can be continued to a function analytic everywhere, q.e. d.

2. Let F and D have the same meaning as in Theorem 1. We
shall further prove: _
THEOREM 2. Let do(p) be an analytic differential defined on D

(poles being admitted). Then, D can be imbedded in a closed Riemann
surface D* of the same genus as D, in such a manner that do(p) can
be continued to a differential defined and analytic on D*.

PrROOF. Let C denote one of the connected components of the
boundary of D. We may assume that no pole of de lies on C. Let
S be a doubly connected strip region of sufficiently small width on F

containing C, such that de is regular on S.
b
Suppose that L dp=0. Then, f( p)=5 dp is single-valued and

analytic on S. Hence, by Theorem 1, S can be imbedded in a closed
Riemann surface S™ of genus zero, on which f(p) can be continued
to a function analytic everywhere. Then, df is analytic on S* and
=d¢ on S.

If gcd<p=a=}:0, we put f(p)=exp ( 2;” r dcp). Then, we can
similarly construct a closed surface S* of genus zero, on which
(a/2mwi)df/f)=dp is everywhere analytic.

C divides S* into two parts, one of which lies to the right of C
taken in positive direction with respect to D. We join this part of
S* to D along C. Repeating the same construction for each connected
component of the boundary of D, we obtain a closed Riemann surface
D*, which obviously satisfies the requirements.

3. Let F be an open Riemann surface, and G be a subregion of
F, whose complement F-G is compact and is bounded by a finite
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number of Jordan curves. Let f(p) be a given function analytic on

the closure G of G.

While constructing another Riecmann surface containing G by
means of Theorem 1, we can deduce, in some cases, some properties
of f(p) in G from known propertics of functions analytic everywhere
on the new surface. Following this line, we shall give here a simple
proof of the following theorem, a special case of which was stated
and proved in [2].

We denote by O, the class of Riemann surfaces, on which no
non-constant bounded harmonic functions cxist, and by O the class
of those, which possess no Green’s functions.  As is well-known,
O¢ < Oy

THEOREM 3. Supposc that I belones to the class Oy, and that
z=f(p) ¥ const. is analytic on G and omits in ¢; a sct F of values z
of positive logarvithmic capacity. Then, f(p) takes in G any value z
at most a finitc number of times N, and, along any continuouns curve
L: p=pt) (0"t - ) extending itself to the ideal boundaiy of F,
lim f(p) exists. All these lmiting values form a closed set of loga-
vithmic capacity zervo. Fursther, I beiongs veally to the class O;.

A curve L: p-=-pt) on FF is said to be extended to the ideal
boundary of F, if, for any scquence ¢, - - of values of {, the point
sequence | p(¢,)r has no accumulation point on /. The existence of
lim A{p) along any such L may he stated in other words as follows:
at cach ideal boundary component of I, im j(p) cxists for p tending
to it. As for the precise definition of idcal boundary components
(éléments-fronticres), cf. {91 or [5].

PrOOF. Le¢t D be a subregion of genus zero of ¢, such that D
is compact and contains the relative boundary of . By Theorem 1,
D can be imbedded in a closed Riemann surface P* of genus zero, in
such a manner that f(p) can be continued to a function analytic
everywhere on D*. Since D* is of genus zero, each connected com-
ponent of the boundary of (¢ cuts off from D* a simply connccted

region lying outside D. Joining these regions to ‘G along the boundary

curves, we obtain an open Riemann surface ¥, in which (> is imbedded
and on which f(p) can be continued to a function analytic cverywhere.
Further, F*-G being compact, F* has thce same ideal boundary as F
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(cf. [4], or [8]).

Since € Ogyp is a boundary property (4], [8]), F* belongs,
together with F, to the class Oyp. Since f(p) omits in G the set E
of values, the image @* of F'* by z=f(p) covers the set E of positive
capacity at most a finite number of times. On the other hand, it is
known that a covering surface of the sphere belonging to Ogp covers
each point of the sphere exactly one and the same (finite or infinite)
number of times, except possibly those belonging to a set of capacity
zero ([3], [4], [6]). Hence, @* covers each point z, except those be-
longing to a closed set E* of capacity zero, exactly a finite number
of times N. Such a covering surface @* belongs really to the class
O¢ ([4]), so that F also.

Suppose that lim f{p) did not exist along a curve L: p=p(¢t)
extending. itself to the ideal boundary, so that the projection of the
image of L would not terminate at any point of the sphere. Since
E* is totally disconnected, we could then find a sequence #, — < and
a point z, ¢ £*, such that lim,H,_Cf<p(t,z)) =2z, Since, above a sufficiently
small disc on the sphere about z, there lie N discs on @*, it follows
that the image of {(#,)} would have an accumulation point on @*,
which is impossible by the hypothesis. Hence, lim f(p) exists along
any L. Similarly, we see that the limiting values belong to E*.

Further, since each point of £* is an accessible boundary point
of the complementary region, we see easily that the set of all the
limiting values of f(p) comprises E*.

Thus, Theorem 3 is proved.

Mathematical Institute, Tokyo University.
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