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over fields with non-archimedean valuations.
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If we wish to develop a theory of normed spaces over non.
archimedean fields after the model of the usual theory in archimedean
cases, the first thing to do would be to establish an analogue of the
Hahn-Banach theorem on linear functionals. We shall examine in the
prcsent note in which case this is possible. We shall prove a simple
theorem, which answers completely the question when the ground field
is $e$ . $g$ . the $p$-adic field. The idea of the “ binary intersection pro.
perty” given by L. Nachbin in his paperl) was very useful to our
purpose.

Let $k$ be a complete field with a non-trivial discrete valuation $|$ $|$ .
This field $k$ will be fixed throughout this paper.

Suppose a vector space $S$ over $k$ is $normed^{2)}$ ; $i$ . $e$ . to each element
$xeS$ corresponds a real number $||x||$ , $w1_{1}$ ich has the properties:

1. $||x||_{-}>0$ ; $||x||=0$ if and only if $x=0$

2. $||x+y^{l}||\leq||x||+||y$ li
3. $||\alpha x||=|\alpha|||x||$ for all $\alpha\in k$ .

A space $S$ in which the stronger form of the triangular inequality

2’. $||x+y||\leq{\rm Max}(||x||, ||y||)$

holds is called non-archimedean $\iota^{3)}$ .
A linear and continuous mapping $f$ from a normed space $S$ into $k$

is called a linear functional. The set of all such functionals is written
by $S^{*}$

As in the ordinary case, we call a linear mapping $f$ from $S$ into $k$

bounded if there exists a real number $c$ such that $|f(x)|\leq c||x||$ for
all $x\in S$.
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A linear mapping $f$ is continuous if and only if it is bounded. In
fact, first, suppose $f$ is bounded. Letting $x$. $\rightarrow x$ , we have

$|f(x)-f(x_{n})|=|f(x-x_{n})|\leqq c||x-x_{n}||$

and so $f(x_{n})\rightarrow f(x)$ , which proves the sufficiency. Next, suppose
$f$ is not bounded. Since $|$ $|$ is non-trivial, we can select a sequence
$\{\beta_{n}\}$ such that $|\beta_{n}|\rightarrow\infty$ . To each $\beta_{n}$ there existg $x.\in S$ such
that $|f(x_{\hslash})|>|\beta_{n}^{2}|||x_{n}||$ . Put $y_{n}=(\beta_{l}/f(x_{n}))x_{n}$ , then $||y_{n}||$

$=(|\beta_{n}|/|f(x_{n})|)||x_{n}||<1/|\beta_{n}$ ; hence $y_{n}\rightarrow 0$ . On the other hand,
$|f(y_{n})|=|(\beta_{n}/f(x_{n}))f(x_{n})|=|\beta_{n}|\rightarrow\infty$ and so $f$ is not continuous,
which proves the necessity.

Therefore, we may define norm for $f\in S^{*}$ as usual: $||f|_{1}^{I}=\sup_{z\neq 0}$

$(|f(x)|/||x||)$ . $S^{*}$ becomes thus a normed space over $k$ : the conjugate
space of $S$. From the definition of $||f||,$ $S^{*}$ is non.archimedean, and
it is complete.

Let $S$ be a normed space over $k$ . $S$ is said to have the extension
property if for any subspace $S_{0}$ of $S$ and for every $f_{0}\in S_{\mathfrak{l})}^{*}$ , there exists
$f\in S^{*}$ such that $f$ is identical with $f_{0}$ on $S_{0}$ (written $f\rightarrow f_{0}$) and $||f_{1}^{1}|=$

$||f_{0}|_{1}^{\dagger}$ .
We aim at the following
THEOREM. A normed space $S$ over $k$ has the extension property

if and only if $S$ is non-archimedean.
PROOF. Suppose $S$ is non.archimedean, and $f_{0}\in S_{0}^{*}$ , where $S_{0}$ is a

subspace of $S$. If $f_{0}=0,$ $f=0$ is the only norm-preserving extension.
So we may suppose that $f_{0}\neq 0$ . Put $\mathfrak{M}=\{f_{\lambda}$ ; $f_{\lambda}\in S_{\lambda}^{*},$ $S\supset S_{\lambda}2S_{0},$ $f_{\lambda}\rightarrow f_{0}$,
$||f_{\lambda}||=||f_{0}||\}$ . Since $f_{0}\in \mathfrak{M},$ $\mathfrak{M}$ is non.empty. For $f_{)_{\backslash }},$ $f_{\mu}\in \mathfrak{M}$, we shall
write $f_{\lambda}\succ f_{\mu}$ , if $f_{\lambda}\rightarrow f_{\mu}$ , i.e. if $f_{\lambda}$ is a norm-preserving extension of

$f_{\mu}$ . $\mathfrak{M}$ is inductively ordered by this $relation\succ$ , i.e. any non-empty
linearly ordered subset $\mathfrak{L}$ in $\mathfrak{M}$ has a supremum in $\mathfrak{R}t$ . In fact, put
$S_{\Omega,\sim}=\bigcup_{f_{\lambda}\epsilon_{\sim}^{\Omega}}S_{\lambda}$

, $f_{0}\sim(x)=f_{\lambda}(x),$ $x\in S_{\lambda}$ , then $f_{\sim}Q\in S_{t\sim}^{*_{)}}$ and $||f_{\Omega}\sim||=||f_{0}|I|$ , hence
$f_{\sigma\iota}\sim\in \mathfrak{M}$ . 0bviously

$f_{\Omega}\sim=\sup_{f_{\lambda}e_{\sim}^{\Omega}}f_{\lambda}$ . By Zorn’s lemma there exists at least

one maximal $f_{\mathfrak{M}}\in \mathfrak{M}$ . The ‘ if’-part of our theorem will be proved, if
we show that the domain $S_{\mathfrak{M}}$ of $f_{\ovalbox{\tt\small REJECT}}$ is identical with $S$, or that the $f_{\mu}$

whose domain $S_{\mu}$ is not identical with $S$, is not maximal.
For this purpose we prove the following
LEMMA. Let $\{C_{\alpha}\}$ be a set of $circles^{\{)}$ in $k$ , and suppose that for
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any $\alpha,$ $\beta,$ $C_{\alpha}\cap C_{\beta}\neq 0$ . Then the total $intersection\bigcap_{\alpha}C_{\alpha}\neq 0^{5)}$ .
PROOF OF LEMMA. As the valuation of $k$ is non.archimedean,

every point of the circle may be considered as a center6). Hence,
$C_{\alpha}\cap C_{\beta}\neq 0$ implies that two circles are concentric. So $\{C_{\alpha}\}$ is linearly

ordered with respect to the inclusion relation.
Now, it is to be noted that a circle may have different radii, i.e. we

may have $C=\{\eta;\eta\in k, |\eta-\xi|\leqq r\}=\{\eta;\eta\in k, |\eta-\xi|\leqq r^{t}\}$ for $r\neq r^{t}$ .
We shall call the radius of the circle $C$ the infimum of all such $\sqrt s$ ,

and denote with $r_{\alpha}$ the radius of $C_{\alpha}$ .
Then, $C_{\alpha}\underline{\supset}C_{\beta}$ if and only if $ r_{\alpha}\geqq’’\beta$ , particularly $C_{\alpha}=C_{\beta}$ if and

only if $r_{\alpha}=r_{\beta}$ .
If $r_{\alpha}=0$ for some $\alpha$ , then $C_{a}$ consists of a single point, and the

lemma is trivial. So we may exclude this case, and suppose $r_{\alpha}$ are
all $>0$ . We consider separately the following two cases.

First, let $\inf_{\alpha}r_{\alpha}=0$. Then we can select a decreasing sequence of

the radii $\{r_{n}\}$ such that $r_{n}\rightarrow 0$ . We take a point $\gamma_{n}\in C_{n}-C_{n+1}$ for
$ n=1,2,\cdots$ , then $\{\gamma_{n}\}$ forms a $Cauchy\cdot sequence$ in $k$ . The limit $\gamma$ of
this sequence belongs to the total intersection.

Next, let $\inf_{\alpha}r_{a}>0$ , and $\beta$ be an arbitrarily fixed index. Then,

according to the discreteness of $k$ , we have only a finite number of $r_{\alpha}$ ,

such that $r_{a}\leqq r_{\beta}$ . So we have only a finite number of $C_{\alpha}$ , such that
$C_{\alpha}\subseteq C_{\beta}$ . Hence the total intersection $\Omega C_{\alpha}=\cap C_{a}\neq 0ar_{\alpha}\leq r_{\beta}$

q.e.d.

We return to our $f_{\mu}$ , whose domain $S_{\mu}$ is not identical with $S$. As
$f_{\mu}\neq 0$ , we have $f_{\mu}(S_{\mu})=k$ . Since we can select $z\in S-S_{\mu},$ $\rho(\beta)=||f_{0_{I}^{1}}|$

$dist(z,f_{\mu}^{-1}(\beta))$ is defined for all $\beta\in k$ . We consider the set of circles
$\{C_{\beta} ; \beta^{e}k\}$ , where $C_{\beta}=\{\alpha;|\alpha-\beta|\leqq\rho(\beta)\}$ . It follows that

1 $\beta-\beta^{\prime}|=|f_{\mu}(x)-f_{\mu}(x^{\prime})|=|f_{\mu}(x-x^{\prime})|\leqq||f_{\mu}||||x-x^{\prime}||$

$=||f_{0}$ II I $x-x^{\prime}||\leqq{\rm Max}$ (II $f_{0}$ Il 1 $z-x||,$ $||f_{0}||||z-x^{\prime}\}|$ ).

So we get
$|\beta-\beta^{\prime}|\leqq{\rm Max}(\rho(\beta), \rho(\beta^{\prime}))$ .

This means that $C_{\beta}\cap C_{\beta^{\prime}}\neq 0$ . From the lemma there exists $\gamma\in\bigcap_{\beta ek}C_{\beta}$ .
Namely, $|\gamma-\beta|\leqq\rho(\beta)$ for all $\beta ek$, or

$|\gamma-f_{\mu}(x)|\leqq||f_{0}||||z-x$ Il $(*)$
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for all $x\in S_{\mu}$ . Let $S^{\prime}$ be the space spanned by $S_{\mu}$ and $z$ . Then, $x^{\prime}\in S^{\prime}$

can be written as $x^{\prime}=x+\alpha z,$ $x\in S_{\mu},$ $\alpha\in k$, uniquely. Put $f$
‘

$(x^{\prime})=f_{\mu}(x)$

$+\alpha\gamma$ , then obviously $f^{\prime}$ is linear and $f^{\prime}\rightarrow f_{0}$ . If $\alpha\neq 0,$ $|_{\gamma}-f_{\mu}(-x./\alpha)|$

$\leqq|_{1}^{1}f_{0}||||z-(-x/\alpha)||$ from $(\#)$ . And so $|\alpha\gamma+f_{\mu}(x)|\leqq||f_{0}||||\alpha z+x||$ .
This inequality holds even for $\alpha=0$ . Hence, for all $x^{\prime}\in S^{\prime}$ , we get
$|f^{\prime}(x^{\prime})|_{-<}-||f_{0}||||x^{t}||$ . So $||f^{\prime}||\leq||f_{0}||$ (bounded), and $f^{\prime}$ is continuous.
Thus, $f^{\prime}\in S^{\prime*}$ . Since $f^{\prime}\rightarrow f_{0}$ , we have $||f^{\prime}||\geq||f_{0}||$ . Therefore $f^{\prime}\in 9Jt$ .
Since $S^{\prime}$ is not identical with $S_{\mu},$ $f_{\mu}$ can not be maximal. Thus the
‘ if’.part of the theorem is proved.

To prove the converse, suppose that $S$ has the extension property.
As the conjugate $S^{\#}$ is non-archimedean, $s!^{\prime}\cdot*is$ also non-archimedean.
Thus, it is sufficient to show that $S$ can be imbedded in $S^{**}$ .

Defining $X(f)=\int(x),$ $x\in S,f\in S^{*},$ $X$ may be considered $as\in S^{**}$ .
The mapping: $x\rightarrow X$ is a k-homorphism and we have $||X||\leq_{-}||x||$ .
Moreover, we shall show that $x\rightarrow Xi_{\grave{3}}|$ a norm-preserving k-isomor-
phism: $||X||=||x||$ . Suppose, namely, $x\neq 0$ . The functional $f_{0}$ for
subspace $S_{0}=\{\alpha x; \alpha\in k\}$ , defined by $ f_{0}(\alpha x)=\alpha$ is $\in S_{0}^{*}$ , and $f_{1)}(x)=1$ ,
$||f_{0}||=1/||x||$ . According to the extension property of $S$, there exists
at least one $f\in S$ ’ such that $f\rightarrow f_{0},$ $||f||=||f_{0}||$ . Then, $f(x)=f_{0}(x)=1$
$\neq 0$ . Hence $x\rightarrow X$ is a k-isomorphism. Lastly, for above $f$ we have
$|X(f)|/||f||=|f(x)|/||f||=1/||f||=||x|’|$ and so $||X||=\sup(|X(f)|$

$/||f||)\geqq||x||$ , namely $||X||=||x||$ , which proves the ‘ $only^{f10}if$ ‘-part.

Addendum. After this paper had been prepared, we knew that
the same subject was treated by A. W. lngleton;) A. F. Monna5) and
I. S. Cohen9). We have not yet access to the papers of A. F. Monna
and I. S. Cohen. We acknowledge that this paper has the essential
part in common with the pap $\wedge$ of Ingleton, but we submit this paper
to publication, as there is some difference in the formulation of the
final result in both papers, and we have a certain generalization of our
result in view, which will be published on a later occasion.

University of Tokyo.
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