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Theorems in the geometry of numbers for
Fuchsian groups.
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1. We introduce a non-euclidean metric in |z| <1 by

2|dzj
ds= =121
1— ]z
so that the non-euclidean radius » of a circle [z|=p <1 is
y=log 1P (1)
1—p

and the non-euclidean measure «(F) of a measurable set E in {z]| <1
is

E)= ( 4 7’d7’d 9

o(E)= UE (1— 2

hence the non-euclidean area of a disc 4:|z|<»<1 is

(z=7re") ,

4 s 7’
1—22 " - @

Let G be a Fuchsian group of linear transformations, which make
| z{ <1 invariant and D, be its fundamental domain. Let E be a
measurable set in |z|<1 and E, (»=0,1, 2,---) be its equivalents by G
and A(r, E,) be the non-euclidean measure of the part of E, contamed
in |z| <7 and put

o-(A)—‘

Alr,E)= 3 A(r, E.). 3)
If o(D,) < o, then I have proved in another paper? that
| ABE) gy 2malE) 1og 1 Lo01)  (r—1). @)
0 v o(.DO) 1—»

1) M. Tsuji: Theory of Fuchsian groups. * Jap. Journ. Math. 21 (1951).
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By means of (4), we shall prove
THEOREM 1. Let G be a Fuchsian group and D, be its funda-
mental domain, such that o(D,) < . Let E be a wmeasurable set in
|z|<<1. If o(E)> o(D,), then the equivalents E, of E overlap.
ProOF. Suppose that E, do not overlap, then

P (2 4td1d0 _ Awr?
A By < |7 4ddo _ dmr
(r )WL L (1—f£p  1-#2

so that

jr A(r,i)_ dré Qar log .,1,.. - +O(1) (1’-’ 1) ’
0 ' 1—7’

hence by (4),

2 wa(E) 1
oDy) log - 1—y +0(1) < 27 log - 1 +O(1)
so that, making » — 1, we have o(E) < (D). Hence if o(E) > o(D,),
then E, overlap.

THEOREM 2. Let G be a Fuchsian group and D, be its fzmda-
mental domain, such that o(Dy) << o, and z,(v=0, 1, 2,---) be equivalents
of z=0. Let 4:|2|<p<1 be a disc. If

D) o
o(4) = 4 o(D,) + — or p= ,/ — (o’(Do)+27r)2 ,
then 4 contains one z,(=F 0).
This is an analogue of Minkowski’s theorem.
ProoF. Let 4,:1z2|<¢t (0<t<1). We increase ¢t from ¢#=0 to
t=1 and let p be the smallest value of ¢, such that 4, contains z, (3= 0).
We choose p,, such that the non-euclidean radius of 4,, is one-half of

’ — 2
that of 4,, so that log 1=p _iog <1+ P,o\) or
1—p 1—po

— _2po 5

Then the equivalents of 4,, do not overlap, so that by Theorem 1,

old,)= 4P < o(Dy),
1—p§

hence from (5),
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_ 4mwp® _ 16mp} _ 16mwp} pi
4= TP = O07P0_— OTPy (1, Pu _
o) 1—p*  (1—pp? 1—p} ( 1—P3>
< 40(Dy)(1+ o(Dy)/4a) =4o(Dy) + o Do)/, or

< _ 47
e e 6)

so that, if o(4,) > 4a(Dy) +oXDy)/m, then 4 contains one z,(==0). If
a(d,)=40(Dy)+ ¥ (Dy)/7, then considering a slightly larger disc, we see
that 4 contains one z,(=0). Hence our theorem is proved. ,
2. We consider special cases of Let F be a closed
Riemann surface of genus p = 2 spread over the w-plane and we map
the universal covering surface F ¢ of FF on |z|<1l. Then we have
a Fuchsian group G in |[z|<{1, whose fundamental domain D, is

bounded by 4p orthogonal circles to |z |=1, such that o(Dy))=4=(p—1).

Then (6) becomes p < i/'_*_,*_l_,;; . Henc

© PV iy ) |
THEOREM 3. Let G be a Fuchsian group, which corresponds to a

closed Riemann surface of genus p>2. If

> /1—__1
P= V1 Gty

then a disc 4:)z| < p <1 contains one z, (5= 0).

Let D, be a domain in |z| <1 bounded by p(=3) orthogonal
circles C; (=1, 2,---,p) to | z|=1, where C;, C;.; touch each other at a
point on |z|=1. We invert D, on one of C; and performing inver-
sions indefinitely, we obtain a modular figure and let G be the group
of all inversions and z, (»r=0,1, 2,---) be equivalents of z=0 by G, then
D, is its fundamental domain, such that o(Dy)==(p—2), hence by
[Theorem 3, we have

THEOREM 4. If,o__>:~/1—— ;"2 , then a disc 4:1z2|<p<1 con-

tains one z,(=0).

3. We divide the z=x+¢y-plane by parallel lines x=#» and y=m
(m,m=0, 1, +2,--) into squares of equal sides, which we call cells.
In each cell, let & points be given, which are congruent mod. 1 to
those in other cells. We call the totality of these points lattice points.
Let E be a measurable set of measure m E. Then we can translate
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E into E’, such that the number of lattice points contained in E’ is
> kmE and we can translate E into E”, such that the number of
lattice points contained in E” is < & m E¥. We shall prove an an-
-alogous theorem for Fuchsian groups.

Let G be a Fuchsian group and D, be its fundamental domain,
and & points 2+, 2k be given in D, and Z (»=0, 1, 2,---) be equivalents
of z{. We call the totality of these points lattice points. We call a
linear transformation of the form :

7= T2 (la]<)
1+az
:a (non-euclidean) translation. Then we shall prove
THEOREM 5. Let G be a Fuchsian group and D, be its funda-
-mental domain, such that o(D,) < . Let 4:1z2|<py<<1 be e disc,
then we can translate 4 into 4', such that the number of lattice points

contained in 4’ is =k "((5”) and we can translate 4 into 4", such
oDy

that the number of lattice points contained in 4" is < k "((l‘;)).
o)y
ProoF. For a fixed i (1<i< k), we put a mass 1 at each 2z
(»=0,1, 2,---), then we have a mass distribution ¢ in |z| <1, so that
- the number of zi contained in a set E is

WE)=| duia).

Let T,: 2= —?+?— (la]|<<1) be a translation and put
1+az
A(a)=T,4). If 4(a) contains zi, then
ATE Ly, (7)
1-zZa

.so that a is contained in an equivalent 4% of the disc

2) Blichfeld: A new principle in the geometry of numbers, with some applications.
“Trans. Amer. Math. Soc. 15 (1914).
M. Tsuji: On Blichfeld’s theorem in the geometry of numbers. Jap. Journ. Math.
19 (1948).
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45 11Z Z:O |<Po’ (8)

so that
|, . wila@) doley="3 Alr, £)=Ar, 4) .

Hence if we put p=p!+---+ u*, then
| w(4@) do(@)=Aw, H+-+A(r, 4b),

where ,u(d(a)) is the number of lattice points contained in 4(a).
If we put M=‘Max M(A(a)), then

Mj do(a)= 2"M7" — Ay, )+ + Ay, 43
tal< » 1—#2

We multiply dr/r and integrate on (0, #), then by (4), since o(4))=:--
=a'(4g)=0'(4), we have

Zverogll

k 7ra'(40) 1¥ 3
+0(1) = ,Zﬂ (Do log - . +0(1)

oDy og s (1),
hence, making » — 1, we have M = ko(4)/a(D,). Since M is an integer,
there exists @, (] @,| <1), such that M———p(d(ao)), so that

w(4(a0)) = k o(4)/a(Dy) . 9)
Similarly putting m=Min p(A(a)), we have for a suitable a;
(l a I < 1)’ )
p(4(@) < ko(4)/a(Dy) - (10)
Hence our theorem is proved.
If k=1 and o(4) <o(D,), then w(4(a;))=0, so that

THEOREM 6. If o(4) < o(Dy), then we can translate 4 into 4',
such that 4' does not contain equivalents of z=0.
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