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1. We introduce a non-euclidean metric in $|z|<1$ by

$ds=\frac{2|dz}{1-|z}|_{2}-$ ,

so that the non-euclidean radius $r$ of a circle $|z|=\rho<1$ is

$r=\log\frac{1+\rho}{1-\rho}$ (1)

and the non-euclidean measure $\sigma(E)$ of a measurable set $E$ in $|z|<1$

is

$\sigma(E)=\int\int_{E^{-}}^{4_{(1}r}\frac{drd}{-r^{2}})^{\theta_{2^{-}}}$ $(z=re^{i\theta})$ ,

hence the non.euclidean area of a disc $\Delta;|z|\leqq r<1$ is

$\sigma(\Delta)=4\pi-r_{2}1-r^{2}$ (2)

Let $G$ be a Fuchsian group of linear transformations, which make
$|z|<1$ invariant and $D_{0}$ be its fundamental domain. Let $E$ be a
measurable set in $|z|<1$ and $E$, $(\nu=0,1,2,--)$ be its equivalents by $G$

and $A(r, E_{\nu})$ be the non-euclidean measure of the part of $E_{\nu}$ contained
in $|z|\leqq r$ and put

$A(r, E)=\sum_{\nu=0}^{\infty}A(r, E_{\nu})$ . (3)

If $\sigma(D_{0})<\infty$ , then I have proved in another paperl) that

$\int_{0}^{r}\frac{A(r,E)}{r}dr=\frac{2\pi\sigma(E)}{\sigma(D_{0})}\log\frac{1}{1-r}+O(1)$ $(r\rightarrow 1)$ . (4)

1) M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 21 (1951).
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By means of (4), we shall prove
THEOREM 1. Let $G$ be a Fuchsian group and $D_{0}$ be its funda-

mental domain, such that $\sigma(D_{0})<\infty$ . Let $E$ be a measurable set in
$|z|<1$ . If $\sigma(E)>\sigma(D_{0})$ , then the equivalents $E_{\nu}$ of $E$ overlap.

PROOF. Suppose that $E_{\nu}$ do not overlap, then

$A(r, E)\leqq\int_{0^{r}}\int_{(1-t)}^{4tdtd_{\&},\theta_{2}}02-.=\frac{4\pi\gamma^{9}}{1-r^{2}}$ ,

so that

$\int_{0}^{r}\frac{A(r,E)}{r}dr\leqq 2\pi\log i-\overline{r}1+O(1)$ $(r\rightarrow 1)$ ,

hence by (4),

$\frac{2\pi}{\sigma(}\sigma(E)D_{0})\log 1-r1+O(1)\leqq 2\pi\log 1^{-}-r1_{-}+O(1)$ ,

so that, making $r\rightarrow 1$ , we have $\sigma(E)\leqq\sigma(D_{0})$ . Hence if $\sigma(E)>\sigma(D_{0})$ .
then $E_{\nu}$ overlap.

THEOREM 2. Let $G$ be a Fuchsian group and $D_{0}$ be its funda-
mental domain, such that $\sigma(D_{0})<\infty$ , and $z_{\nu}(\nu=0,1,2,\cdots)$ be equivalents
of $z=0$ . Let $\Delta;|z|\leqq\rho<1$ be a disc. If

$\sigma(\Delta)\geqq 4\sigma(D_{0})+\frac{\sigma^{2}(D_{0})}{\pi}$ or $\rho\geqq\sqrt{1-\frac{4}{(\sigma(D_{0})}\frac{\pi^{2}}{+2\pi)^{2}}}$ ,

then $\Delta$ contains one $z_{\nu}(\neq 0)$ .
This is an analogue of Minkowski’s theorem.
PROOF. Let $\Delta_{t}$ : $|z|\leqq t(0\leqq t<1)$ . We increase $t$ from $t=0$ to

$t=1$ and let $\rho$ be the smallest value of $t$ , such that $\Delta_{\rho}$ contains $z_{\nu}(\neq 0)$ .
We choose $\rho_{0}$, such that the non-euclidean radius of $\Delta_{\rho_{0}}$ is one-half of

that of $\Delta_{\rho}$, so that $\log 1-\rho 1-\rho=\log(\frac{1+}{1-}\rho\frac{0}{0})^{2}\rho$ or

$\rho=_{\frac{2}{1}-}^{\rho_{0}}$ . (5)

Then the equivalents of $\Delta_{\rho_{0}}$ do not overlap, so that by Theorem 1,

$\sigma(\Delta_{\rho_{0}})=-4\pi\rho_{0}^{2}\leqq\sigma(D_{0})$ ,
$1-\rho_{0}^{2}$

hence from (5),
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$\sigma(\Delta_{\rho})=\frac{4\pi}{1-}\rho^{2}-\rho^{2}=\frac{16\pi\rho_{0}^{2}}{(1-\rho_{0})^{2}}=\frac{16\pi\rho_{0}^{2}}{1-\rho_{0}^{2}}(1+\frac{\rho_{0}^{2}}{1-\rho_{0}^{2}})$

$\leqq 4\sigma(D_{0})(1+\sigma(D_{0})/4\pi)=4\sigma(D_{0})+\sigma^{9_{\vee}}(D_{0})/\pi$ , or

$\rho\leqq\sqrt{1-\frac{4\pi}{(\sigma(D_{0})+2\pi)^{2}}}$ , (6)

so that, if $\sigma(\Delta_{p})>4\sigma(D_{0})+\sigma^{2}(D_{0})/\pi$ , then $\Delta$ contains one $z_{v}(\neq 0)$ . If
$\sigma(\Delta_{\rho})=4\sigma(D_{0})+\sigma^{2}(D_{0})/\pi$ , then considering a slightly larger disc, we see
that $\Delta$ contains one $z_{\nu}(\neq 0)$ . Hence our theorem is proved.

2. We consider special cases of Theorem 2. Let $F$ be a closed
Riemann surface of genus $p\geqq 2$ spread over the w-plane and we map
the universal covering surface $F^{(\infty)}$ of $F$ on $|z|<1$ . Then we have
a Fuchsian group $G$ in $|z|<1$ , whose fundamental domain $D_{0}$ is
bounded by $4p$ orthogonal circles to $|z|=1$ , such that $\sigma(D_{0})=4\pi(p-1)$ .
Then (6) becomes $\rho\leqq\sqrt{}\overline{1-\frac{1}{(2p-1)^{2}}}$ . Hence

THEOREM 3. Let $G$ be a Fuchsian group, which corresponds to a
closed Riemann surface of genus $p\geqq 2$ . If

$\rho\geqq\sqrt{1-\frac{1}{(2p-1)^{2}}}$ ,

then a disc $\Delta;|z|\leqq\rho<1$ contains one $z_{\nu}(\neq 0)$ .
Let $D_{0}$ be a domain in $|z|<1$ bounded by $p(\geqq 3)$ orthogonaI

circles $C_{i}(i=1,2,\cdots, p)$ to $|z|=1$ , where $C_{i},$ $C_{i+1}$ touch each other at a
point on $|z|=1$ . We invert $D_{0}$ on one of $C_{i}$ and performing inver-
sions indefinitely, we obtain a modular figure and let $G$ be the group
of all inversions and $z_{\nu}$ $(\nu=0,1,2,--)$ be equivalents of $z=0$ by $G$ , then
$D_{0}$ is its fundamental domain, such that $\sigma(D_{0})=\pi(p-2)$ , hence by
Theorem 3, we have

THEOREM 4. If $\rho\geqq\sqrt{1-\frac{4}{p^{2}}}$ , then a disc $\Delta;|z|\leqq\rho<1$ con-

tains one $z_{v}(\neq 0)$ .
3. We divide the $z=x+iy\cdot plane$ by parallel lines $x=n$ and $y=m$

$(n, m=0, \pm 1, \pm 2,\cdots)$ into squares of equal sides, which we call cells.
In each cell, let $k$ points be given, which are congruent $mod$ . $1$ to
those in other cells. We call the totality of these points lattice points.
Let $E$ be a measurable set of measure $mE$. Then we can translate
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$E$ into $E^{\prime}$ , such that the number of lattice points contained in $E^{\prime}$ is
$\geqq kmE$ and we can translate $E$ into $E^{\prime\prime}$, such that the number of
lattice points contained in $E^{\prime\prime}$ is $\leqq kmE^{2)}$. We shall prove an an-
alogous theorem for Fuchsian groups.

Let $G$ be a Fuchsian group and $D_{0}$ be its fundamental domain,
and $k$ points $z_{0}^{1},\cdots,$ $z_{0}^{k}$ be given in $D_{0}$ and $z_{\nu}^{i}(\nu=0,1,2,\cdots)$ be equivalents
of $z_{0}^{i}$. We call the totality of these points lattice points. We call a
linear transformation of the form:

$z^{t}=1^{z+_{\frac{a}{a}}}+z$ $(|a|<1)$

a (non-euclidean) translation. Then we shall prove
THEOREM 5. Let $G$ be a Fuchsian group and $D_{0}$ be its funda-

mental domain, such that $\sigma(D_{0})<\infty$ . Let $\Delta;|z|<\rho_{0}<1$ be a disc,
then we can translate $\Delta$ into $\Delta^{\prime}$ , such that the number of lattice points

.contained in $\Delta^{\prime}$

$is\geqq k\sigma(\Delta)$ and we can translate $\Delta$ into $\Delta^{\prime\prime}$, such
$\sigma(D_{0})$

that the number of lattice points conlained in $\Delta^{\prime\prime}$

$is\leq-k\frac{\sigma(\Delta)}{\sigma(D_{0})}$ .
PROOF. For a fixed $i(1\leqq i\leqq k)$ , we put a mass 1 at each $z_{\nu}^{\dot{*}}$

$(\nu=0,1,2,\cdots)$ , then we have a mass distribution $\mu^{i}$ in $|z|<1$ , so that
the number of $z_{\nu}^{i}$ contained in a set $E$ is

$\mu^{i}(E)=\int_{E}d\mu^{i}(a)$ .

Let $T_{a}$ : $z^{\prime}=\frac{z+a}{1+\overline{a}z}$ $(|a|<1)$ be a translation and put

$\Delta(a)=T_{a}(\Delta)$. If $\Delta(a)$ contains $z_{\nu}^{i}$ , then

$|\frac{a-z_{\nu}^{i}}{1-\overline{z}_{\nu}^{i}a}|<\rho_{0}$ , (7)

so that $a$ is contained in an equivalent $\Delta_{1/}^{i}$ of the disc

2) Blichfeld: A new principle in the geometry of numbers, with some applications.

Trans. Amer. Math. Soc. 15 (1914).
M. Tsuji: On Blichfeld’s theorem in the geometry of numbers. Jap. Journ. Math.

19 (1948).
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$\Delta_{0}^{i}$ ; $|\frac{z-z_{0}^{i}}{1-\overline{z}_{0}^{i}z}|<\rho_{0}$ , (8) $\cdot$

so that
$\int_{|a|<r}\mu^{i}(\Delta(a)_{\grave{)}}d\sigma(a)=\sum_{\nu=0}^{\infty}A(r, \Delta_{\nu}^{i})=A(r, \Delta_{0}^{i})$ .

Hence if we put $\mu=\mu^{1}+\cdots+\mu^{k}$ , then

$\int_{ra1<r}\mu(\Delta(a))d\sigma(a)=A(r, \Delta_{0}^{1})+\cdots+A(r, \Delta_{0}^{k})$ ,

where $\mu(\Delta(a))$ is the number of lattice points contained in $\Delta(a)$ .
If we put $M=_{\dot{t}aJ}{\rm Max}_{<r}\mu(\Delta(a))$ , then

$M\int_{\lceil a1<r}d\sigma(a)=\frac{4\pi Mr^{2}}{1-r^{2}}\geqq A(r, \Delta_{0}^{1})+\cdots+A(r, \Delta_{0}^{k})$ .

We multiply $dr/r$ and integrate on $(0, r)$ , then by (4), since $\sigma(\Delta_{0}^{1})=\cdot\cdot-$

$=\sigma(\Delta_{0}^{k})=\sigma(\Delta)$ , we have

2 $\pi M\log\frac{1}{1-r}-+O(1)\geqq\sum_{i=1}^{k}\frac{2\pi\sigma(\Delta}{\sigma(D_{0}}0\underline{)}\log\frac{1}{1-r}+O(1))i$

$=\frac{2\pi k_{\sigma}(\Delta)}{\sigma(D_{0})}\log\frac{1}{1-r}+O(1)$ ,

hence, making $r\rightarrow 1$ , we have $M\geqq k_{\sigma}(\Delta)/\sigma(D_{0})$ . Since $M$ is an $integer_{r}$

there exists $a_{0}(|a_{0}|<1)$ , such that $M=\mu(\Delta(a_{0}))$ , so that
$\mu(\Delta(a_{0}))\geqq k_{\sigma}(\Delta)/\sigma(D_{0})$ . (9)$|$

Similarly putting $m={\rm Min}\mu(\Delta(a))$ , we have for a suitable $a_{I}$

$(|a_{1}|<1)$ ,
$\mu(\Delta(a_{1}))\leqq k_{\sigma}(\Delta)/\sigma(D_{0})$ . ( $ 10\rangle$

Hence our theorem is proved.
If $k=1$ and $\sigma(\Delta)<\sigma(D_{0})$ , then $\mu(\Delta(a_{1}))=0$ , so that
THEOREM 6. If $\sigma(\Delta)<\sigma(D_{0})$ , then we can translate $\Delta$ into $\Delta^{\prime}$,

such that $\Delta^{\prime}$ does not contain equivalents of $z=0$ .
Mathematical Institute,

Tokyo University.
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