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On uniform topologies in general spaces.

By Isao KoONISHI

(Received April 28, 1952)

The important notion of the uniformity, introduced by A. Weil?
and others, shows its full effectiveness, when the space is completely
regular. However, we can define the ‘ generalized uniformity ” of any
neighbourhood space, as an arbitrary collection of correspondences as-
signing to every point of the space a neighbourhood. We shall show in
§ 2 of this paper, that the most part of the theory of uniformity holds
also in the spaces with the generalized uniformity. We can consider
also the completion of such spaces in several manners (§§3, 4). The
usual way of completion by means of Cauchy filters (we have named
it C-extension, §5) does not give a complete space in general cases.
In §6 we shall consider some additional conditions on such spaces,
and investigate the behaviour of the C-extensions of spaces satisfying
these conditions.

I express here my thanks to Professor S. Iyanaga who encouraged
me throughout this study.

§1 Generalized uniformity.

1.1 Definition. We say that X is a space, if X is an aggregate of
points, where a closure operator is defined which assigns to each
subset M of X a closure M with the following properties :

(1) MpM, (2) M,c M, implies M= M,  (3) ¢=¢.

Topological concepts, such as wneighbourhood (abbr. nbd) of a point,
continuity of mappings, etc., may be defined in our space in the well-
known way.?

1) A. Weil: Sur les espaces a structure uniforme et sur la topologie générale.
Actual. Sci. Ind. 551 (1938).

2) cf. e.g. J.W. Tukey: Convergence and uniformity in topology. Princeton Univ.
(1940).
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Let @ be a correspondence, which assigns to each point x of X a
nbd @(x) of x. We shall consider in general an aggregate ¥ of such
correspondences, and call it a generalized uniformity (abbr. GU). For
example, a GU may consist of only one correspondence assigning to
every point the whole space. This GU is called the #rivial GU. The
maximal GU, which we denote by the special letter ¢, is the maximal
collection of such correspondences.

A GU v of a space X is called basic at x, if the family of sets
{p(x), pew} is a nbd basis of the point x of X. A basic GU is a
GU, which is basic at every point of X. We say that a GU 7 is
additive, if there exists an element @ of ¥ for any pair of elements
@1, ¢, of ¥, such that @(x)= @i(x) D @)(x) for each point xe X. A
GU v is called open, if @(x) is an open set of X for every @ e # and
xe X. Clearly, the trivial GU is an open additive GU, and the maximal
GU is basic. "

The following proposition is evident. |

ProOPOSITION 1. The closure operator of the space is additive if
and only if there -exists an additive basic GU, and a closure of any
subset is closed if and only if therve exists an open basic GU,

Let Y be a subspace of a space X with a GU #y. We denote by
@y the contraction of an element @y of ¥y to Y, i.e., ¢y is defined
on Y and gp(x)=g@p(x)Y. The collection 7y ={py; @xec ¥y} is called
a contraction of wx to Y. '

Clearly, the contraction 7y of a GU wx to its subspace Y isa GU

of Y, and conversely, any GU of Y is a contraction of a certain GU
of X. If wx is basic (additive or open), then the contraction #y of
vx to Y is also basic (additive or open respectively)
1.2 Equivalence of GU. Now, let ¥ be any collection of correspon-
dences, whose element @ assigns to each point x of X a subset o(x)3x
of X (not necessarily a nbd of x). Then we can define a closure
operator with the properties (1), (2) and (3) above, taking {p(x); pecw}
as a nbd basis of a point x, and speak of the topology of X induced
by w. The words such as “ w-closure” or “#-converge” will indicate
that they refer to this topology. It is evident that # is a basic GU of
X with respect to #-topology.

For two collections #; and #,, we denote:
¥, < ¥, if there exists an element @, of ¥, for any element ¢; of 7,
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such that @i(x) <= @(x) to every point x of X.
gy ~w, if w1<w, and ¥ > v,
Clearly, the relation “ <” is reflexive and transitive, and the relation
“~” is an equivalence relation.
Let [w]=w{w’; ¥' ~w)}. Then the following proposition is proved
easily.
ProrosiTION 2. (1) vy, D, tmplies vy, > w,, and v, >w, if and
only if [w] D[]
(2) If w, is a GU, v, a basic GU, and w,”> w,, then v, is also basic.
(3) If wy>w,, then the w\-topology is stronger than the w,-topology.
4) If w is a GU of a space X, then the w-topology is weaker than
, the original topology of X.
(5) If w is a basic GU of a space X, then the w-topology is equivalent
with the original topology of X.
(6) Let M be a filter® and v a basic GU of X, then
M — x if and only if pew tmplies ¢(x)e M.
M—x if and only if pew and MeW implies p(x) "M = ¢.
Here 9 — x means that x is a limit point of 9%, i.e., MM contains every

nbd of x, and M — x means that x is contained in the intersection
~{M; MeM}.

§2 Some properties defined by GU.

2.1 Uniformly continuous mapping. Let f: X — Y be a mapping
of a space X into another space Y, and vy, #y be GU’s of X and Y
respectively. A mapping f is called uniformly continuous with respect
to vx and vy (abbr. ¥y - ¥y-u-continuous), if it satisfies the following
condition :
(U) For any @y of 7y, there exists an element @y of %y such that
fox(x)< @y f(x) for every point x of X.
The following propositions and theorem are proved easily.
ProrosITION 3. If f: X —Y and 9:Y — Z are uniformly con-
linuous mappings with respect to wx and vy, vy and w, respectively,
then the composite gf : X — Z is uniformly continuous with respect to
x and ¥ 3.

3) Cf. e.g. N. Bourbaki: Topologie générale. Actual. Sci. Ind. 858 (1940).
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- PrOPOSITION 4. Let x> vy and wy >v%y. If a mapping f:
X—>Y is v wyu-continuous, then f is wx-wy-u-continuous and
Uy Uy-u-continuous.

THEOREM 1. If wy is a basic GU of a space Y, then we have :
(1) A wx-wy-u-continuous mapping f of a space X into X is a

conlinuous mapping.

(2) A mapping f of a space X into Y is continuous if and only if f

is Qx * Uy-u-continuous. (Px means the maximal GU of X).

A one-to-one onto mapping f: X— Y is called a wunimorphism,
when f and f~! is uniformly continuous. Let f be any mapping of a
space X into Y. We denote by f~Y#y) the collection of correspon-
dences @y of xe X to the subset f! ¢y f(x) of X, where @yewy, i.e.
F X ry)={ex; px(x)=f oy f(x), pyewy}.

PROPOSITION 5. (1) When wy is basic, a mapping f: X —>Y is
continuous if and only if fwy) is a GU of the space X.

(2) A mapping f: X—>Y is ?[fX ry-u-continuous if and only if

vx > (wy).

(3) A ome-to-one onto mapping f : X Y is a unimorphism if and
only if wx~f"1(wy).

2.2 Totally bounded set. A subset X; of a space X with a GU ¢

is called [self] totally bounded with respect to ¥ (abbr. [self] z-t-

bounded), if for any <pc 7 there exist finite number of points x;, -, x,

[e Xi] such that X, = 7 @(x;). We can prove easily the following pro-

perties.

ProPrOSITION 6. (1) If w >w', then a [self] w-t-bounded set is
also [self] v'-t-bounded.
(2) If a mapping f: X - Y is wx - wy-u-continuous and @ subset X, of
X is[self ] wx-t-bounded, then the image f(X,)is [self ] wy-t-bounded.
A subset X, of aspace X is called conditionally compact [compact],
if for any family 93 X, of subsets of X with the finite intersection
property, there exists a point x[e X;] such that xe N{#M; MeMm}.
THEOREM 2. A subset X, of a space X is conditionally compact
Lcompact] if and only if X, is [self] @-t-bounded. Therefore every
conditionally compact subset of a space X is totally bounded with
respect to any GU ¢ of X.

PrROOF. As N {Xj—opx), xe X}=¢ [ {X;—p(x), xe X1} = X—X1]
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for any @ e @, the condition is necessary. Let {M,; a ¢ A} be a family
of subsets M, of X;, and M={i,; ac A}=¢ [M~X,=¢]. Then
there exists ¢ € @ such that @(x)=X—-M,,, alx)eA to each point
x[e Xj]. Thus the condition is also sufficient. The rest follows easily
from the proposition 6.

This theorem shows that compactness can be defined as the totally

boundedness with respect to the special GU @. It is a special case
of (2) of the proposition 6, that a continuous image of a compact set
is compact.
23 y-filter. A filter M in a space X with a GU v is called a v-filter,
if for any element @ of ¥ there exists a point x such that @(x)e M.
A maximal filter, which is also a y-filter, is called a maximal w-filter.
Clearly, if ¥ > v/, then a w-filter is also a ¥’'-filter.

Now ‘we can prove easily the following theorems.

THEOREM 3. A filter M has a limit point if and only if M is a
@-filter.

THEOREM 4. If a mapping f: X = Y is wx - wy-u-continuous and
M is @ vx-filter of the space X, then, f(M) (i.e. the family of subsets
N of Y such that f\(N)eW) is a wy-filter.

THEOREM 5. A subset X, is y-t-bounded if and only if any
maximal filter M > X, is a w-filler. Therefore X, is conditionally compact
if and only if any maximal filker M > X, has a limit point.

Proor. We shall prove only the theorem 5. If X, w{e(x;);
i=1,--, n}, then a maximal filter Me X; contains actually a certain
@(x;). Thus the condition is necessary. Let the condition be fulfilled,
and pew. If M,=X,—U{p(x); xea}=F¢ for any finite subset «
of X, then M,’s belong to a certain maximal filter M 2 X;, and there
exists a point x, such that @(x)eM. But M, =X—@(x)¢M is in
contradiction with M, e M. Thus the condition is also sufficient. The
rest follows from the theorem 2 and the theorem 3.

2.4 y-completeness. We call ¥-set every non vacuous finite inter-

section of sets expressed as @(x) or X—@(x). A subset X; of a space

X with a GU v is called conditiorally w-complete [w-complete] if any

of the following three equivalent conditions is fulfilled.

(1) Any maximal z-filter M 3 X, has a y-limit point x[e Xi].

(2) For any w-filter M > X,, there exists a point x[e X;] such that
ey, MeM imply @(x)M == ¢.
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(3) For any w-filter M 3 X, there exists a point x[e X;] such that
pew, v-set MeM imply @(x) M == ¢.

Clearly any subset of X is conditionally @-complete, and any closed
subset is @-complete. If a space X is w-complete with respect to a
basic GU # of X, then any maximal w-filter has a limit point. A
subset X; of X is w-complete if and only if X; is w;-complete with
respect to the contraction z; of ¥ to X.

From theorem 2 and 5, we have directly.

THEOREM 6. If a subset X, is conditionally compact [compact],
then X, is [self ] w-t-bounded and conditionally w-complete [w-complete].
When w is a basic GU, the converse is also true.

Remark. A simple example shows that, in case ¥ is not basic,
w-t-bounded and #-complete space is not necessarily compact.

ProrosiTiON 7. If w > o' and w' is a basic GU, then a con-
ditionally w'-complete set is conditionally w-complete.

§3 Completion of a space.

3.1 Space Z. Let wx be a GU of a space X. We introduce the
following notations: For two w-filters 9y, MV,
M <9I, means that o(x)eM; implies @(x) e M, for any element
: @ of ¥y and any point x of X. ‘
My~ M, means that M; <M, and MW; > M,. (We say that M, is
’ equivalent to M).
For a maximal wx-filter I,

[Mm] is the class of maximal ¥ - filters equivalent to 9.

[0t] 2 X; means that there exists a ¥ x-set M of I such that M X,

[M] — x means that Na[M] if N is a nbd of x.

Clearly two maximal 7y -filters 9, M, are equivalent to each other if
and only if any wy-set M of 9 belongs also to 9M; Therefore the
definition of [M]2> X; does not depend on the choice of M from the
class [M]. Obviously, [] — x implies M — x, and if ¥y is basic, then
conversely I — x implies [I] — x.

The class ["] of maximal y-filters is called a non-convergent class,
if [(!M]— x for no point x of X. We consider a non-convergent class
of maximal ¥ yfilters as a point, and denote by Z, the set of all these
classes, by Z the set-union of Z; and X.
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PrOPOSITION 8. Let ¢(X)=X,+ {z; ze Zy, z=[M]2 X}, then we have

(1) (XD X=X;, 9X)=Z,  (p)=¢.

(2) XioX, implies ¢(X;) 2 y(X5).

(3) 9 X)=79(X;) for any finite number of subsets X; of X.

(4) If {X;} is a jfinite family of wx-sets, then Z— §(X,)=y(X—X)) and

97 X)) =" 9(Xp).

ProOoOF. (1) and (2) are evident. (3) follows from (1) and (2), for a
finite intersection of w-sets is also a w-set. (4) follows from (1) and
(3), for the complement of #-set X; is a finite union of #-sets.

Now, we define a nbd system of Z as follows: a) For a point x
of X, a nbd of x is a such subset U of Z that g(N)c U for a certain
nbd N of x in the space X. b) For a point z of Z;, a nbd of z=[M]
is a such subset U of Z that (7 @;(x;))< U for some ;e @x, @;(x)
e[Mm], i=1, ---, n.

Then Z is a space, and the nbd system of a point z of Z;, forms
a filter. Clearly, for a subset M of X, the closure of M in the space
X is the intersection of X and the closure M of M in the space Z.
A subset U=g("{p;(x;); i=1,--,n}) is a nbd of any point z in UM Z,
If 2z, 2, are distinct points of Z;, then there exist a point x in X and
an element @ of ¥y such that ¢(x)ez;, ¢2;;(,7)=(1,2). This shows
Z; 2;. Thus we have proved.

PrROPOSITION 9. The extended space Z has the following properties :
(1) X is a subspace of Z.

(2) ED&(XI) for any subset X; of X.

3) (KUH)~Zy=(KUH)™Z, for any two subsets K, H of Z.

4) Any nbd (7 @ix;)) of a point z of Zy is relatively open in the
subspace Zz,.

(5) The subspace Z, is a Ty space.

PROPOSITION 10. If z=[M]e Z, then Z=(N{id; Me M})Z, es-
pecially z2={Id; M e W} = Z, when ¥y is basic.

ProOOF. zZc Z, since to any point x < X there exists a nbd N of x
in the space X such that N¢[9M]. Let 2’ €2, then any nbd (7 @i(x;))
of 2/, contains z, that is 7 @;(x;)e M. Thus MeM implies Mg
@:(x;)) == ¢. This shows that z is a subset of ™{if; MeMm}. Con-
versely, if 2’ € Z;—Z, then there exists a nbd (7 @;(x;)) of 2/, which

does not contain z. As M=7"g@,(x;) is a wxset, (M)?9z implies
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Me¢mm. Thus X—MeMm and X--A1 does not intersect with the nbd
G(M) of z/. Therefore we have 2o (N {M; MeMm}Z, When wx is
basic, there exists for any xe X an element @ of ¥ x such that ¢(x) ¢ .
Thus we have x¢ ™ {M; MM}, since X—qp(x)e M. Therefore {iM ;
Mem} < Z,

ProroSITION 11. For any @<y and xeX, we have Zgp
(X—px)=Z,~"X—p(x). Especially op(x)=Z—X—q(x), and this set
is open in Z, when @(x) is an open subset of the space X.

Proor. Let z=[M]eZ,. If ze g(X—p(x))=Z—ge(x), then ze X— p(x)

by proposition 9. If z¢ 9(X—¢(x)), then we have z¢ X—o(x), since

gp(x) is a nbd of z. Thus the first half is proved. The rest is an

easy consequence of this.

3.2 GU of the space Z. Now we define a GU of Z as follows: For

any finite system {@, -, @,} of elements of %y, let Y be a corres-

pondence assigning to each point xe X a nbd Y¥(x)=ye;(x) of x, and
to each point ze Z, a nbd ¥(2)=4(" @;(x;)) of z. Then the element

@; can be regarded as the contraction of ¥ to X, so it is also denoted

by 4x. The collection of all correspondences such as v, taking

{®1, -, @} in every possible way, constitutes clearly a GU of Z, and #x

is a contraction of this GU to X. We denote this GU of Z by 7.

The space Z with this GU w; is called a space obtained by comple-

tion of the space X with respect to 7.

PROPOSITION 12. The space Z with the GU v, has the following
properties :

(1) w2 is basic at each point z of Z, Therefore v, is basic if wx is
basic in X.

(2) If X; is a [self ] wx-t-bounded subset of X, then ¢(X) is [self]
v o-t-bounded.

(3) Any maximal wy-filter converges to a point z in Z. Therefore
§(X1) is conditionally wz-complete for any subset X, of X, and
9(X)) is conditionally compact if X, is a wx-1-bounded subset of X.

(4) The completion of Z with respect to w, adds no new point.
Proor. (1) and (2) are proved easily. (3): Let & be a maximal

v - filter containing ¢(X)) as an element. Then M={M; Mc X, (M )e &}

is a wx-filter. Therefore any maximal filter D DM is a maximal ¥ x-

filter containing X; as an element. If o(x)¢M, then go(x)¢ F and
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X—p(x) e M follows from ¢(X—@(x))=Z—yp(x)e®. Similarly X—e(x)
¢ M implies @(x)e M. This shows that any maximal #x-filter M DM
belongs to the same class [;]. Let [9] — x,e X, and N be a nbd of

x, in the space X. There exists a #y-set M such that NoMeM.

This shows that § converges to x; in the space Z. Let [9] be a non

convergent class, then z=["] is a point of Z,. If ¢(7 @;(«x;)) is a nbd

of z;, then we have 7 ¢, (x;)eM. This shows that § converges to z

in the space Z. The rest follows easily from the theorem 6. (4) is

evident by (3).

PrOPOSITION 13. The space Z obtained by completion of X has
the following properties :

(1) Z is an additive space (i.e. with the additive closure operator) if
X is an additive space.

(2) Z is a T-space if X is a T-space and & is open and basic.

(3) Zis a Tyspace if X is a Ty-space and ¥ x is open and basic.

3.3 Uniqueness of completion. The completion considered above is

characterized by
THEOREM 7. Let wx be a basic GU of a space X. The space Z

obtained by the completion of X with vespect to \rx has the following pro-
perties (described for S). Conversely, a space S with these properties
is mapped on Z by a homeomorphism leaving each point of X fixed.

(1) X is a subspace of S.

(2) If py, p, are distinct points of S—X, then pyc S—X and p, == p..

(3) There exists a basic GU ws, whose contraction to X is & y.

4) (U, U=7v¥ix))op,VYiews, x;e X,i=1,--,n} is a nbd basis of
peS—X.

(5) Any non-convergent maximal W x-filier W in X has a point peS—X
such that ¥(x)s p if and only if Y(x)XeW for any ¥ ews, x e X,
and conversely, for any point pe S—X there exists a non-con-
vergent maximal w-filter M for which p salisfies the above condi-
tion. :

Proor. We have proved already that Z has these properties (1)-(5).

Let S be another space with these properties (1)-(5). For a non-con-

vergent maximal ¥ y-filter 9, there exists a point p=f(M) such that

Y(x) 3 p if and only if Y(x)NXeM. Let p;=fM;),i=1,2. If p = ps,

then there exists a point ge S—X such that ge p;, ¢ p;, (4,7)=(1,2). By

(4), we have a nbd y(x) of ¢ which contains p; but not p;, that is
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V()X eM;, ¢ M;.  This shows My M, by (3). If p=p,=p, then
Y(x)"X e My if and only if Y(x)NX e M,. This shows M; =~ M,. There-
fore we can define a mapping f of Z into S by putting f(x)=x for
xe X, and f(2)=f(M) for z=[M]eZ—X. Clearly f is a one-to-one
mapping of Z onto S and we have fg(¥(x)X)=+v(x). Therefore f is
a topological mapping, since ze g((7 ¥i(x;))X) if and only if f(z)e
T Y dxNNX) =7 Yilx)).

Example. Let R be a space of real numbers with the usual topology,
and X be a subspace of R contituted by all rational numbers. #x
={@.;e >0} be an open basic GU (named ¢-GU), where ¢. is defined
by @x)={x"; | ' —x | < ¢} for any positive real number e. ¥y={g,;7
is rational} is a sub-collection of ¥x. Clearly ¥y is an open basic
GU of X, and is equivalent to ¥y A filter M is a wx-filter if and
only if 9 is a Cauchy filter in the usual sence. Therefore to each
maximal ¥ y-filter M corresponds a point A of R, to which It converges
in R. If A is rational, then 9 converges to A in X, if A is irrational,
then [I] is non-convergent. Let M — A in R. Then we have @,(x) e M
if and only if |x—A | <# for any ¢, cw% Therefore the space ob-
tained by the completion of X with respect to ¥% is topologically
equivalent to R. On the other hand, a maximal % x-filter 9, which
corresponds to an irrational number A, contains the subset (A, o) or
(—oo, A) of X. We denote the first case by I — A*, the second case
by m—a~. If M —r* and M, — A", then clearly M; ~ M, with re-
spect to #x. Butif M; — At and M, — 1™, then we have Ny & M, and
M, does not converge to A~ =[M,] in the space Z obtained by the
completion of X with respect to #y. This example shows that equi-
valent GU’s of a space do not necessarily lead to equivalent spaces by
the completion.

§4 Compactification.

4.1 Special filter. If a space X is wx-f-bounded, then the space Z
obtained by the completion of X is a compact space. For example,
we obtain the ‘“trivial compactification” of X, taking the trivial GU
as ¥x. But for purpose of compactification, it happens that the com-
pletion considered in §3 adds some superfluous points, even if ¥y is
basic. So it seems more adequate to restrict with some conditions the
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classes of equivalent filters taken as new points. We assume that

¥x is basic and X is ¥ x-f-bounded throughout this section.

A maximal w-filter M is called a special filter, if any maximal
filter M’ <9 is equivalent to M. A point z=[I] of Z, is called a
special point, if M is a special filter.

PrOPOSITION 14. If a space X is totally bounded with respect
to a basic GU vy, then we have:

(1) M is a special filter if and only if there exist for any o(x)eM a
finite number of elements @; of wx and points x; of X such that
P(x) D T(X—@i(x;) e M.

2) If z;=[W;]e Z, i=1, 2, then My <M, is equivalent to z,e 2,.

(3) For any point z of Z,, z=Z if and only if z is a special point.

(4) For any puint z of Z, there exists a special point z, such that
2eZ.

Proor. (1): If the condition is not fulfilled for a certain ¢y (x,) € M,
then any finite number of sets X—g;(x;)e M, i=1,---, 7 and X —g@y(x,)
have a non vacuous intersection. Thus there exists a maximal filter
M, containing all of these sets. As @'(x') ¢ M implies @'(x') ¢ My, so
we have M, <M. But clearly M, 2 M. Thus the condition is neces-
sary. The condition is also sufficient, for Dy <M, @(x)eM imply
<p(x)e‘m1.

(2): This is proved easily.

(3): Let z=[M] and z=2, and M; < M be a maximal filter. Then I,

is a wy-filter for X is wx-t-bounded. If [94]— x, then [M]—x in

contradiction with zeZ,. Thus z,=[M]e 4, and 2z eZ=z implies

M=~ M by (2). Therefore the condition is necessary. The condition

is clearly sufficient by (2).

(4): By the proposition 10, we can prove easily that z— Z,. Therefore

zZ=z2 since the subspace Z;is a T-space. Let § 22z be a maximal family

of closed sets with the finite intersection property. The compactness
of Z shows that the intersection M of all sets of § contains a point

2. Clearly z,€2, Ze® and M >3z, If z,eZ then 2z belongs to %,

and z,=2, follows from Z,52z;, Z 2. This shows that z is special.

ProrosiTiON 15. Let R be a set-union of X and the set of all
special points. Then we have :

(1) The subspace R of X is compact.

(2) The subspace R—X is a T space.
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(B) If X is compact, then R=X.

Proor. For any maximal filter tin R, ={H; Hc=Z, HNR e %}
is a maximal filter in Z converging to a point z. If ze R, then clearly
N—zin R. If ze Z-- R, then there exists a point z,e¢Z of R, and
Y(2) is a nbd of z for any ¥, since Y(z;)22. Thus y(z) e &, and this
shows that & converges to z. Therefore t converges to a point in
the space R. The rest is evident.

4.2 Uniqueness of compactification. The compactification con-
sidered above is characterized by

THEOREM 8. Let X be wx-t-bounded and wx be basic. The space
R obtained by the compactification of X with respect to wx has the
following properties (described for S). Conversely, a space S with these
properties is mapped on R by a hemeomorphism leaving each point of
X invariant.
(1) X is a subspace of S.
(2) S is a compact space.
(3) p=S—X for any point p of S—X.
4) If a special filter ™ (with respect to wyx) in X converges to a
point p of S—X, then p is the unique limit point of M.
(5) For any point p of S—X theve exists a special filler M in X
which converges to p.
(6) There exists a basic GU wg of S, which satisfies the conditions :

a) ¥x is the contraction of ws.
b) If ¥(x)sp, yews, xeX, pe S—X, then ¥(x) is a nbd of p.
c) If p, p' are distinct points of S—X, theve exist ¥ and x such
that v ews, xe X and y(x)sp, ? .
d) Y v¥ix;) X implies 7 vi(x;)=S for any finite number of V¥;
and x; such that ¥;ews, x;¢ X, i=1,-, n.
e) V() (S—X)=S—X—(X—v(x)) for any v ews and xe X.
ProoF. We prove first that R has these properties (1)—(6). (1)-(3)
and (5) are evident. Let ¥y be the contraction of ¥, to R, then a)-d)
are evident. and e) follows from the proposition 11. Let 2t be a special
filter in X and z;=[M]e R—X. If M 2 M, then there exists ¢(x’) such
that @(x')=v(x')~X and @(x')eM;, X—p(x’)e M. This shows that
M— z1e R—X implies [M]=2z. Thus (4) is proved. Next, we shall
construct a one-to-one mapping f: R — S. Let S be a space with the
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properties (1)-(6). If [M]=ze R—X, then M is a special filter. As S
is a compact space, there exists a limit point p of M. Clearly pe S—X,
thus p is determined uniquely by 9. We denote this point p by f(M).
Let p,=f(M;) and p;==p,. Then there exists a certain y(x) such that
V(x)apy, PP As @p(x)=Y(x)"Xe M, we have ¥, (x;), i=1,---, » such
that @ {(x;)=v¥(x)"X and ¢(x) D T(X—@i(x;)) e M. Then Y(x) o
- u¥r,(x,)=S by the condition d). Therefore V;(x;)sp, for a certain
7, and this shows M, % M. Let fM)=Ff(D)=p. If o(x)eM;, then
there exist @,(x;), i=1,---, 7 such that ¢;(x;)=v(x;)"X and ¢(x) >
(X—@(x;) e M. Clearly, X—@(x;) 3 p implies V¥,(x;)?p, so we have
@(x) e M, similarly as above. This shows M; <M,. Thus we have
M ~ M, by symmetry. Therefore we can define a one-to one mapping
of R into S by putting f(x)=x for xe X and f(z)=f(M) for z=[M]e
R—X. By the condition (5), f maps R onto S. Finally, we shall
prove the continuity of f and f~!. It is evident that fis a topological
mapping if we have ¥(x)=f¢*(XY(x)) for any ¥ e¥s and xeX,
where ¢*(M)=g(M)~R to any subset M of X. For any point 1’ of
X, we have clearly x'eV¥(x) if and only if x'efi*(XOy(x)). Let
p=f(2), z=[M]e R—X. If pey(x), then ze g"(XV¥(x)). If zeyg*(X
—wWr(x)), then we have as above V;(¥;) i=1,---, # such that ¥ (x) ¥ (x;)
U Ya(x,)=S and p¢ Yi(x)o--wYu(x,). Thus we have Y(x)=
fi*(XY(x)) and the proof is completed.

As a special case of the theorem 8, we have

THEOREM 9.2 Let X be a space with open nbd basis, and &> X
a basis of open sets. Then there exisis a space S with the following
properties. Moreover such a space is unique up to homeomorphism.

(1) S is a compact space with open nbd basis.

(2) X is a subspace of S.

(3) FEach point of S—X is closed.

(4) u={U; U=S—X—G, Ge@®)} is a basis of open sets of S.

(5) ¥ G;=X implies T(S—X—G;)=S for any finite number of sets
G;, i=1,---,u of &.

4) Cf. N.A. Shanin: On special extension of topological spaces, Doklady URSS. 38.
K. Morita: On the simple extension of a space with respzsct to uniformity. 1I,
Prcc. Japan Acad. 27.
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Proor. For any finite number of sets G,, i=1,--,n of & such
that Y G;=X, we can define a correspondence ¢ :x — @(x)=G; s x.
Let #wx be the collection of all such correspondences. Then clearly v x
is an open GU of X, and X is wx-f-bounded. Similarly, we can define
an open basic GU wg of S using 1l instead of 8. We can check easily
that the space S with this #s satisfies the conditions (1)-(6) of the
theorem 8.

§5 C-extension.

5.1 Cauchy filter. Let X be again a general space and % any GU
of X. By the completion considered in §3, we obtain a complete
space Z. But Z is not necessarily the ‘ minimal” complete space
containing X, and equivalent GU’s do not lead to Z’s topologically
equivalent with each other. For this reason, we shall consider in this
section another way to extend the space by means of Cauchy filters.

We denote by S(M, @) the set-union L{p(x); e(x)"M=F ¢} for
any subset M of X, and by Mm* the family of sets {M'; M' - S(M, p),
MeMm,  Mey} for any filter M in X. A filter M is called a Cauchy
filter, if for any @ e there exists a point x such that @(x)e M*.
Two Cauchy filters 0y, M, are called a Cauchy pair and denote by
93'?1~ 9)22, lf 9)1;:913;.

ProprosiTION 16. Let M, and M, be Cauchy filters. Then My ~
M, if and only if for any set MyeI and @, ew there exist a set
M;eW, and @,e v such that S(M,, ;)= S(M,, @,). Therefore Wy My
implies My ~ M.

Proor. Clearly the condition is necessary. If the condition is
fulfilled, then My < My is evident. Let MeM, and @ ew. Then there
exist a point x, a sot M;eM, and @, e such that @(x,) o S(M, ¢,).
For this pair of M, and ,, we have a set M, e M, and @, e ¥ such that
S(M,, @) = S(My, @,). Thus @(x) M == ¢ follows from @(x) D S(M,, @)
e M,. This shows S(M, @) > @(x,) o S(M,, ;). Therefore M > M5.

The following properties are evident.

ProroSITION 17. If w~uw' then a filter WM is a Cauchy filter with
respect to w if and only if WM is a Cauchy filter with respect to ',
and two Cauchy filters ave a Cauchy pair with wespect to v if and
only if they are a Cauchy pair with respect to y’.

Remark. A Cauchy filter is clearly a w-filter, but a -filter is not
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necessarily a Cauchy filter. M~M, and M, — x does not necessarily
imply M, — x, even if ¥ is an open basic GU. A uniformly continuous
image of a Cauchy filter is not necessarily a Cauchy filter. We shall
show this by an example. Let X be the interval [0,1] of rational
numbers. For any point xe X and any nbd N of x, we define ¢’
putting ¢'(x)=Nif ¥'=x; ¢'(2')=[0,2/3)if 1/2=4" F+ x; ¢'(x)=(1/3,1]
if 1/2 <434 x. Let us denote by #’ the collection of all such ¢’
taking x and N in every possible way, and by ¥ the ¢-GU of X. (see
example in 3.3) Clearly #’ is an open basic GU and %' <w. Any
filter containing the interval [0,1/3] is a Cauchy filter, and any two
such filters are a Cauchy pair with respect to #’. The filter containing
1/2 as an element is a convergent filter, but not a Cauchy filter with
respect to #’/. The identity mapping is clearly ¢ - ¢’-u-continuous.

5.2 Space Y. We consider M* obtained from a maximal filter M of
a space X with ¥y as a point y, M being a Cauchy filter having no
Hmit point. We denote by Y, the set of all these points, and by Y
the set-union of X and Y. ~

PropPosITION 18. Let Xi=X+{y;yve Yy, v=m*2X,}. Then we
have: (1) Xi{ N X=X, X*=Y, d*=¢,

(2) Xy X, implies X< X5,
(3) T Xir=¢, if and only if "X;=¢, for any finite number of subsets

X,' of X.

Now, we introduce a topology into the set Y by defining a nbd
system as follows: A nbd of a point x of X is a such subset U of Y
that U oD N* for a certain nbd N of x in the space X. A nbd of a
point y=M* of Y is such subset U of Y that U>oe¢x)*sy for a
certain point xe X and @ e 7.

PrOPOSITION 19. The space Y has the following properties :

(1) X is a subspace of Y.

(2) XD X7, where the bar indicates the closure operation in Y.
(B) XiaY,=¥V,—X—X,.
(4) If G is an open subsel of the space X, then G*=Y—X—G and
G* is an open subset of the space Y.
Proor. (1) is evident. (2): Let y=""* be a point of X{ Y, then
any nbd ¢o(x)* of y intersects with X, since X;eMm*. (3): Let y=Mm*
be a point of X{ Y, Then there exist aset MeM and @ e¥x such
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that X; o S(M, ), and there exists a point x such that o(x)eM*.
Clearly @(x)* is a nbd of y, and (X—X))"e(x)*=¢. This shows
XinY,c Y,—X—X,. The inverse inclusion follows from the fact that
there exists a nbd ¢(x)* of y for any point ye Y,—X—X,, such that
(X—X)oplx)*=¢. (4): As G=X—X—G, we have G*=GU(G*"Y))
=Y—X—G. Clearly any point of G* is an inner point of G*.

PROPOSITION 20. If ye XY, for a subset X, of X, then there
exists p e wx such that ¢(x)* sy implies p(x)* < X, for any point x of
X. Therefore X5 is relatively ocpen in Y,

PROPOSITION 21. If y=W* is a point of Y, then y=7={M;
M e m}.

PROOF. As 9 is a non-convergent maximal filter, we have N {ii;
Mem}c Y, Let y,="; be another point of Y,. Then there exist a
set MeMm and @ e vy such that S(M, @) ¢ M by the proposition 16.
As Me(x')*=¢ for a nbd ¢(x')* of y;, we have M $y,. On the other
hand, we have clearly ye ~{M; MeM}. Therefore y={M; MeM}.
If xe7nX and MeM, then for any nbd N of x in the space X, we
have MN==¢. This shows that xe 7 X implies xe ~{M; MeMm}
in contradiction with the above result. Thus 7 Y,. Therefore 7=y,
since the subspace Y, has an open nbd basis.

5.3 Characterization of space Y. Now we define a GU of Y as
follows: For any element @ of ¥y, let ¥ be a correspondence assign-
ing to each point xe X a nbd Y (x)=¢lx)* of x, and to each point
y=M"e Y, a nbd Y(y)=p(x’)* of y. Then the element ¢ can be re-
garded as the contraction of ¥ to X, so it is also denoted by .
The collection of all correspondences such as vy constitutes clearly a
GU of Y, and 5 is a contraction of this GU to X. We denote by
vy this GU of Y. The space Y with the GU %y, constructed above

is called a space obtained by the C-extemsion of the space X with
respect to the GU vy of X.

We say that a GU ¢y of X agrees with the topology at x, if for
any nbd N of x there exists ¢ e ¥y such that N> S(x, #), and that
¥'x agrees with the topology in X, if ¥y agrees with the topology at
each point of X. By the proposition 20, 7y agrees with the topology
of Y at each point of Y,. Thus we have

ProrosiTiON 22. (1) vy is @ GU of Y, which agrees with the
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topology at each point of Y,

(2) If wx is a basic GU of X, then wy is a basic GU of Y.

(3) If wx agrees with the topology in X, then wy agrees also with
the topology in Y.

ProOPOSITION 23. If wx is a basic GU of a space X, then the space
Y with vy obtained by C-extension of X with respect to wx has the
following properties (described for a space R with wg):

a) X is a subspace of R.

b) FEach point of R—X is closed.

c) wg is a basic GU of R, which agrees with the topology of R at
each point of R— X, and whose contraction vy to X is equivalent
with vx.

d) {¥(p); pe R}={¥(x); xe X} for any ¥ecwg.

e) If pey(p)—X,¥ewg, then ¥(p') is a nbd of p.

f) Y(PYOX oV (V)X if and only if V(p) DV (D) for any ¥, ¥' e v,
b, D eR.

g) For any Cauchy filter M>X, there exists a point p such that
pe O{M:McWM} (the bar indicates the closure operation of R).

h) For any point p of R—X, there exists a Cauchy filter M s X such
that pe N{M; MeM}.

Proor. All these properties but g) are proved already. The pro-

perty g) follows from the next lemma 1.

LEMMA 1. Let R and wy satisfy the conditions a)-f). Then a filter
MmaX is a Cauchy filter with respect to vy if and only if W={M';
M'=M~X,MeW} is a Cauchy filter in X with respect v .

Proor. By the proposition 17, we may assume that v%x=vy. Let Mm
be a Cauchy filter with respect to ¥, and ¢=+vx, ¥ e . Then there
exist #' eY¥g, MeM, pe R such that ¥(p) > S(M,¥') (in R). If ¥(p)
=vY(x) and Y¥5x=¢’, then we have @(x)=Y(P)X DSM, Yy )X >
S(MX,, ¢’). Thus the condition is necessary. Conversely let M be
a Cauchy filter with respect to ¥y and Vv e¥p. Then there exist
Vepr MelW, xe X such that ¢(x) DS(M', ¢') (in X) for ¢=vx
@' =v¥%. Thus we have ¥(x) >S(M’,¥') (in R). Therefore the condi-
tion is also sufficient.

For simplicity, we shall write from now on M for M’. Thus we
may consider, by the lemma 1, a Cauchy filter MsX in R also a
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Cauchy filter in X and conversely. ‘

LEMMA 2. Let R and wy salisfy the conditions a)-f). Then ¥(p)
=(¥(p)"X)(R—X—X—V¥(p)) for any v ewx and pe R.

LEMMA 3. Let R and vy, satisfy the conditions a)-f), and M s X be a
Canchy filter converging lo a point pe R—X. Then for any Yevp
there exist a set M of W and an element ' of wp such that y(p)
ODS(M, ). Therefore y(p)X e M* for any ¥ e wp.

Proor. By the condition c), there exists an element yr, of ' such
that y(p) o S(p, ¥1), and there exist also V' e pp, MeM and p' e R for
this ¥, such that ¥~(p') 2 S(M, ¥'). Therefore ¥(p) 24Y~(p') D S(M, ¥').
Thus for any ¢’ e #wx such that ¢/(x) = V¥'x(x) to each point xe X, we
have Y(p)"X DS(M, ¢'). This shows Y(p)HX e NM*.

LeMMA 4. Let R and wg satisfy the conditions a)-f), and y;=M¥e Yo,
M; — p;, 1=1,2. Then p,e R—X, and we have Wy ~ M, if and only if
D1=De. .

Proor. By the proposition 17, we may assume that ¥ x=¢%. Clear-
ly p;e S—X since M; is a non-convergent maximal filter in X. Let
M1~ M. Then for any Y e g, we have Y(p,) X e MF=MF by lemma
3. Thus there exists ¥’ e such that ¥ (p)X 2V¥'(p,)~X. This
shows p,=p, by the conditions b), ¢) and f). Conversely let p=p,=p
and M e Wy, p=vyx, ¥ e ¥ Then there exist a set M, of M, and
¥’ e wp such that y(p) DS(M,, ') by the lemma 3. If ¢'=v%, then
M,"¢/(x) &= ¢ implies ¥(p) DV¥'(x) D¢'(x). On the other hand v (p)
NM;== ¢ since Y(p)nX e M. Thus S(M,, @) DY (p)X. Therefore
we have S(M,, ») ©S(M,, #') and this implies M ~ M, by the proposi-
tion 16. ‘

THEOREM 10. If wx is a basic GU of a space X, then the C-exten-
sion Y with vy of X with respect to ¥ is characterized as a space R
with the properties a)-h) of the proposition 23. That is, such a space
R is mapped on Y by a topological mapping leaving each point of X
invariant. Moreover a space R with the properties a)-g) contains a
subspace which is mapped topologically onto Y.

PrROOF. Suppose a space R has the properties a)-g). Let us define
a mapping f: Y — R as follows: For a point x of X we put flx)=x,
and for a point y=Mm" of Y, we take a point pe S—X such that
M — p and put f(¥)=p. Such a point p is determined uniquely by ».
By lemma 4, this mapping f is a one-to-one mapping defined on Y.
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To prove that the mapping f is a topological mapping of Y onto f(Y),
we may assume that f(Y)=R. We denote by K* the subset (KnX)*
of Y for any subset K of R. We shall show first that f(¥(p)*)=v(p)
for any Yy eyr and pe R. For any point x of X, we have clearly
x e f(¥(p)*) if and only if x € Y (p). Let p,e R—X and p,=f(3), =Ny
If pef(Y(p)*), then there exist a set MeM, and ¢'=v%, ¥ € ¥y such
that Y(p)~X D S(M, ¢') since ¥(p)~XeMF. On the other hand, we
have ¥'(p)) X eM™* by the lemma 3. Therefore ¥(p) DV (p) s p
follows from Y (p)NX DY (p)X. Thus we have ¥(p) DA¥(p)*).
If p1e ¥(p), then there exists ¥' e x such that ¥(p) D¥'(p,). There-
fore ¥(p)* sy, since Y(p)NX DY (p)"XeM¥. Thus we have V(p)
< f(¥(p)*). The continuity of the mapping f! is proved easily using
the relation f~}(Y(x))=+v(x)* proved above. Finally we shall show that

f is wy - wp-u-continuous. Let ¥ € ¥ and o=+ 5. For any y € Y, there

exists a point x=x(y) such that ¥(f(y)=v(x). As @(x)*=f"(f(y))

contains y, the set @(x)* is a nbd of y. Thus ¥y > f Ywg) and f is

7'y - ¥p-u-continuous by proposition 5.

COROLLARY. If vx and wy are two equivalent basic GU’s of a
space X, then we obtain the unimorphic spaces by the C-extensions of X
with respect to vy and v. ’

LEMMA 5. Let X be a space with a basic GU yx satisfying the
following conditions :

(1) X is wx-t-bounded.

(2) If ¥ pix;)=X for any finite number of p;e Wy, i=1,---,n, then
there exists an element @ of wx such that {p(x); xe X}Y={@;x;);
i=1,-,n}.

Then the C-extension of X with respect to ¥vx is a compact space.
ProoF, We can prove easily that the C-extensioned space Y of X

is ¥ y-t-bounded. Let ¥ be a non-convergent maximal zy-filter in Y.

Then for any ye Y there exists ¥ e #x such that y(y)¢F. Let ¥(y)

=@(x)* and M,=X—¢(x). If 7 M,;=¢ for a certain finite number

of M,;=X—qix;) i=1,---,n, then 7 ¢;(x;)=X and there exists pe 7y
such that {@(x); xe X }={®i(x;); i=1,---,n}. But this is impossible
for § is a yy-filter. Thus the family {M,; ye Y} has the finite inter-
section property. Let Mt ©{M,;ye Y} be a maximal family of sets
expressed as M=X—q(x) with the finite intersection property. We
can easily prove that % is a Cauchy filter with respect to 7y, and
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N, Mem}c Y, If M DM is any maximal filter in X, then M,
is a Cauchy filter and y,=Mm{e Y, But M, ?y, and M, e MM, in
contradiction with the proposition 21. Therefore any maximal 7y-
filter has a limit point. Thus the space Y is compact by theorem 6.

THEOREM 11. If a space X with a basic GU wx satisfies the con-
dition of the lemma 5, then the C-extension of X coincides with the com-
bactification considered in § 4.

Proor. If @yx,) e M for a special filter M, then there exist a finite
number of ¢(x;), i=1,---, n, such that {@(x) 27 (X—o{x;)=MeMN.
Let @ be an element of ¥y such that {@(x); x e X} ={@(x0), #:(x1), ",
Pu(%x)}. Then we have @yx,) ©S(M, ). This shows that any special
filter in X is a Cauchy filter, and ¥, of R obtained by compactifica-
tion agrees with the topology of R at pe¢ R—X. Thus we can check
easily that all conditions of the proposition 23 are satisfied in the
space K.

§6 Uniformity.

6.1 Definition. An open GU w of a space X is called a uwniformity
if ¥ agrees with the w-topology of X. A uniformity ¥ with the fol-
lowing condition is called a T-uniformity :

(A) For any @, @;e v, there exists o e ¥ such that to each point

xe X we can find two point x;, x2 with @(x)<= @,(x) D e(x.).

A uniformity » is called regular or completely regular, according as

v satisfies the condition (B) or (C):

(B) For any @ e v, there exists @, ¢ ?1f such that to each point xe X
we can find a point &’ € X and ¢’ e ¥ with ¢(x1') 2 S(e(x), @’).

(C) For any @ e v, there exist @, ;e # such that to each point xe X
we can find a point &’ with o(x") D S(e)(x), @,).

Now we have the following propositions.

PROPOSITION 24. (1) A GU w of X is a basic uniformity, if and

only if ¥ is open and agrees with the topology of X.

(2) A filter M in X is a Cauchy filter with respect to a regular uni-
formity w of X, if and only if W is a w-filter.

ProroSITION 25. Let w be any GU of X, and Wy, M, be two Cauchy
filters. The filter My N\ My, which is composed of the sets belonging to
Wy and M, simultancously, is a w-filter if My~ M,, and we have My ~
My of MUAM, is a Cauchy filter. Therefore, when ¥ is a regular
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uniformity, Wy ~ W, if and only if Dy, AWM, is a Cauchy filter.
PROPOSITION 26. Let v be a regular unifermity, and M, be a filter
containing x as an element. Then a Cauchy filter M w-converges to
the point x, if and only if N~ M,.
PROPOSITION 27. Lei w be a basic uniformity of a space X. Then
M — x implies M — x for any Cauchy filter M. Therefore a Cauchy
filter M has at mosi onz limit point if each point of X is closed.
Proor. First three propositions 24-26 are proved without any diffi-
culty. We shall prove the last proposition. For any nbd N of x, there
exists an element ¢ of # such that N> S(x, ) by the proposition 24.
For this @, we have a set M of M, a point ' and ¢’ e ¥ such that
o) >S(M, ¢'). Thus we have @(x') D¢/(x)sx, since M — x and
#'(x) is a nbd of x. Therefore, we have N o p(x’) > Me M, and this
shows that M converges to the point x. Let x, be a limit point of M
and %,=x,. Then we have NoS(M, ¢') > sx, and hence x e ¥,
This shows that the point x is the unique limit point of M, when each
point of X is closed.
6.2 Extension with respect to a uniformity. Now, let us consider
the relation between the topology of X and the topology of Y obtained
by the C-extension of X. For this purpose, we shall prove first the
following theorem.
THEOREM 112 (1) A space X has a basic uniformity, if and
only if a closure of any set is closed and X< U for each point x
of any open set U in X.
(2) A space X has a basic T-uniformity, if and only if X is a T-space
and X< U for each point x of any open set U in X.
(3) A space X has a basic regular uniformity, if and only if for any
nbd N of any potnt x, therve exists an open set G such that xe G

—Gc N. .

(4) A space X has a basic completely regular uniformity, if and only
if for any abd N of any point x, there exists a non negative real-
valued continuous function f defined on X such that f(x,)=0 and
Ax)=1 for each point x ¢ N.

Proor. (1), (2) and (3) are proved without any difficulty, for the

5) Cf. K. Morita: On the simple extension of a space with respect to a uniformity.
1. Proc. Japan Acad. 27 (1951).
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maximal open GU of X gives the desired uniformity. (4): Clearly the
condition is sufficient. Let NV be a nbd of a point x;, and N o S(x;, ¢).
We can find ¢,; n=1,2,---, such that @,_i(x") > S(%,(x), »,) for each
point x with a certain point ' and ¢, ew%. Then using the open
covering W,={S(x, #,); x ¢ X} we can define a desired function in the
well known way.

THEOREM 12. If wx is a uniformity [T-uniformity, regular or
completely regular uniformitly], then the GU wy of C-extension Y ts a
uniformity [ T-uniformity, regular or completely regular uniformity
respectively].

ProoOF. Clearly v is an open GU of the space Y agreeing with the
ry-topology of Y by the proposition 22, since ¥ x agrees with the ¥ x-
topology of X. Thus %y is a uniformity by the proposition 24. The
rest is proved directly from the definitions in 6.1.

By the theorems 11 and 12, we can formulate the relations between
topologies and its C-extensions as follows :

THEOREM 13.° If a space X and its basic GU ¥ x have the proper-
ties in the first two columns of the following table, then the C-extension
Y of X with respect to wx has the properties in the third column
mentioned in the corvesponding place.

space X basic GU zx C-extension
1) there exists an open nbd uniformity there exists an open nbd
basis, each point is closed basis, each point is closed
2) Ti-space T-uniformity T1-space
3) regular space regular T -uniformity regular space
4) completely regular space completely regular completely regular space

T -uniformity

Proor. It is sufficient to prove that each point x of X is closed in
the space Y. Let y=Mm* be a point of Y. Then for any pe¥x
there exists ¢'ewyx such that o(x) >S(x, ¢). If @'(x')eM*, then
p(x) D @p'(x') e M* since @'(&/)* is a nbd of y in Y. This shows M — x
in contradiction with ye Y,.

THEOREM 14. If wx is a regnlar uniformity of a space X, then
the C-extension Y of X is wy-complete.

PROOF. Let & be a wy-filter in Y, and I be the family of all subsets

6) Cf. K. Morita: loc. cit.
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of X containing an intersection of a certain finite number of subsets
M of X with M*eg. M is clearly a wx-filter. Let M — x, then M
¥ x-converges to the point x, by the proposition 27. For any v ey,
there exist V',V ewy such that V¥(x) DS (xp), ¥’). If ¥'(y)=
¥''(x)e F, then @”’(x)e M for ¢ =v¥% and ¥(x) oV¥"(x). Thus x, is a
#y-limit point of § in Y. Let N{i; MeM}= Y—X. Then there
exists a point y,=M¢ e Y—X such that M M,. Let ¢=v 5 and ¥(y,)
=@(x,)*. Then we can find a set Me M, and ¥’ e ¥y such that ¢(x,)
DSM, ¢') for ¢'=V¥%. IV (Y )=¢'(x')* e §, then M ¢'(x') = ¢ since
@'(x)eM. Thus ¥(¥) o2V (y) e follows from o(x) > @'(x’). This
shows that y, is a Zy-limit point of .

THEOREM 15. Let vy be a regular uniformily of a space X. If a
subset X, of X is wx-t-bounded, then Xi{ is wy-t-bounded. Therefore
X5 is conditionally compact if wx is basic and X, is a ¥ x-t-bounded set.

Proor. For any @=vy, ¥ e ¥y, there exists @, e ¥y satisfying the
condition (B) of 6.1 for . Let {x;,---, x,} be a finite set such that
Xic Y @(x}). Then we have for each i=1,--,n#, a point x; and
@; e x such that ¢(x;) o S(ei(x)), #;). Clearly, we have X;c 7 ¥(x;).
Let y=<M* be any point of X;{7—X. Then for each i=1,---,#n, there
exists a point x; such that @;(x;) e M*. The set M="7 @|x;) intersects
with X;. Thus for a certain j=1,---,#, we have MO g@(x;)=¢ and
o(x;) D S(p(x;), #;) D pi(x;) e M*. Therefore we have X} Y ¥(x;).

Tokyo University of Education.
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