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On uniform topologies in general spaces.
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The important notion of the uniformity, introduced by A. Weill)

and others, shows its full effectiveness, when the space is completely
regular. However, we can define the “ generalized uniformity” of any
neighbourhood space, as an arbitrary collection of correspondences as-
signing to every point of the space a neighbourhood. We shall show in
\S 2 of this paper, that the most part of the theory of uniformity holds
also in the spaces with the generalized uniformity. We can consider
also the completion of such spaces in several manners (\S \S 3, 4). The
usual way of completion by means of Cauchy filters (we have named
it C-extension, \S 5) does not give a complete space in general cases.
In \S 6 we shall consider some additional conditions on such spaces,
and investigate the behaviour of the C-extensions of spaces satisfying
these conditions.

I express here my thanks to Professor S. Iyanaga who encouraged
me throughout this study.

\S 1 Generalized uniformity.

1.1 Definition. We say that $X$ is a space, if $X$ is an aggregate of
points, where a closure operator is defined which assigns to each
subset $M$ of $X$ a closure $\overline{M}$ with the following properties:

(1) $J\overline{M}_{\Leftrightarrow}M$, (2) $M_{1}\subset M_{2}$ implies $1\overline{\Psi}_{1}\subset\overline{M}_{2}$ , (3) $\overline{\phi}=\phi$ .
Topological concepts, such as neighbourhood (abbr. nbd) of a point,
continuity of mappings, etc., may be defined in our space in the well-
known way.2)

1) A. Weil: Sur les espaces \‘a $s^{t}$-ructure uniforme et sur la topologie g\’en\’erale.
Actual. Sci. $Ind$ . $551$ (1938).

2) cf. $e.g$ . J. W. Tukey: Convergence and uniformity in topology. Princeton Univ.
(1940).
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Let $\varphi$ be a correspondence, which assigns to each point $x$ of $X$ a
nbd $\varphi(x)$ of $x$. We shall consider in general an aggregate $\Psi$ of such
correspondences, and call it a generalized uniformity (abbr. GU). For
example, a GU may consist of only one correspondence assigning to
every point the whole space. This GU is called the trivial GU. The
maximal GU, which we denote by the special letter $\Phi$ , is the maximal
collection of such correspondences.

A GU $\Psi$ of a space $X$ is called basic at $x$, if the family of sets
$\{\varphi(x), \varphi\in\Psi\}$ is a nbd basis of the point $x$ of $X$. A basic GU is a
GU, which is basic at every point of $X$. We say that a GU $\Psi$ is
additive, if there exists an element $\varphi$ of $\Psi$ for any pair of elements
$\varphi_{1},$ $\varphi_{2}$ of $\Psi$, such that $\varphi(x)\subset\varphi_{I}(x)\cap\varphi_{2}(x)$ for each point $x\in X$. A
GU $\Psi$ is called open, if $\varphi(x)$ is an open set of $X$ for every $\varphi\in\Psi$ and
$x\in X$. Clearly, the trivial GU is an open additive GU, and the maximal
GU is basic.

The following proposition is evident.
PROPOSITION 1. The closure opemtor of the space is additive if

and only if there exists an additive basic GU, and a closure of any
subset is closed if and only if there exists an open basic GU.

Let $Y$ be a subspace cf a space $X$ with a GU $\Psi_{X}$ . We denote by
$\varphi_{Y}$ the contraction of an element $\varphi_{X}$ of $\Psi x$ to $Y,$ $i$ . $e.,$ $\varphi_{Y}$ is defined
on $Y$ and $\varphi_{Y}(x)=\varphi_{Y}(x)\cap Y$. The collection $\Psi_{Y^{=}}\{\varphi_{Y} ; \varphi_{X}\in\Psi_{X}\}$ is called
a contraction of $\Psi_{X}$ to Y.

Clearly, the contraction $\Psi_{Y}$ of a GU $\Psi x$ to its subspace $Y$ is a GU
of $Y$, and conversely, any GU of $Y$ is a contraction of a certain GU
of $X$. If $\Psi x$ is basic (additive or open), then the contraction $\Psi_{Y}$ of
$\Psi x$ to $Y$ is also basic (additive or open respectively)
1.2 Equivalence of GU. Now, let $\Psi$ be any collection of correspon-
dences, whose element $\varphi$ assigns to each point $x$ of $X$ a subset $\varphi(x)\ni x$

of $X$ (not necessarily a nbd of $x$). Then we can define a closure
operator with the properties (1), (2) and (3) above, taking $\{\varphi(x);\varphi\in\Psi\}$

as a nbd basis of a point $x$, and speak of the topology of $X$ induced
by $\Psi$ . The words such as “

$\Psi\cdot closure$ or “
$\Psi\cdot converge$ will indicate

that they refer to this topology. It is evident that $\Psi$ is a basic GU of
$X$ with respect to $\Psi$-topology.

For two collections $\Psi_{1}$ and $\Psi_{2}$ , we denote:
$\Psi_{1}<\Psi_{2}$ if there exists an element $\varphi_{2}$ of $\Psi_{2}$ for any element $\varphi_{1}$ of $\Psi_{1}$
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such that $\varphi_{2}(x)\subset\varphi_{1}(x)$ to every point $x$ of $X$.
$\Psi_{1}\sim\Psi_{2}$ if $\Psi_{1}<\Psi_{2}$ and $\Psi_{1}>\Psi_{2}$

Clearly, the relation $‘‘<$ is reflexive and transitive, and the relation
$‘‘\sim$ is an equivalence relation.

Let $[\Psi]=\cup\{\Psi^{\prime} ; \Psi^{\prime}\sim\Psi\}$ . Then the following proposition is proved
easily.

PROPOSITION 2. (1) $\Psi_{1}\supset\Psi_{2}$ implies $\Psi_{1}>\Psi_{2}$, and $\Psi_{1}>\Psi_{2}$ if and
only if $[\Psi_{1}]\supset[\Psi_{2}]$ .

(2) If $\Psi_{1}$ is $a$ GU, $\Psi_{2}$ a basic GU, and $\Psi_{1}>\Psi_{2}$ , then $\Psi_{1}$ is also basic.
(3) If $\Psi_{1}>\Psi_{2}$ , then the $\Psi_{1}$-topology is stronger than the $\Psi_{2}$-topology.
(4) If $\Psi$ is $a$ GU of a space $X$, then the $\Psi\cdot topology$ is weaker than

the $ori\dot{g}nal$ topology of $X$.
(5) If $\Psi$ is a basic GU of a space $X$, then the $\Psi$-topology is equivalent

with the original topology of $X$.
(6) Let $\mathfrak{M}$ be a filter3) and $\Psi$ a basic GU of $X$, then

$\mathfrak{M}\rightarrow x$ if and only if $\varphi\in\Psi$ implies $\varphi(x)\in 9Jl$ .
$\mathfrak{M}\rightarrow x$ if and only if $\varphi\in\Psi$ and $M\in \mathfrak{M}$ implies $\varphi(x)\cap M\neq\phi$ .

Here $\mathfrak{M}\rightarrow x$ means that $x$ is a limit point of $\mathfrak{M},$ $i.e.,$ $\mathfrak{M}$ contains every
nbd of $x$, and $\mathfrak{M}-\sim x$ means that $x$ is contained in the intersection
$\cap\{\overline{M};M\in \mathfrak{M}\}$ .

\S 2 Some properties defined by GU.

2.1 Uniformly continuous mapping. Let $f:X\rightarrow Y$ be a mapping
of a space $X$ into another space $Y$, and $\Psi x,$ $\Psi_{Y}$ be GU’s of $X$ and $Y$

respectively. A mapping $f$ is called uniformly continuous with respect
to $\Psi x$ and $\Psi_{Y}$ (abbr. $\Psi_{X}\Psi_{Y}- u$ -continuous), if it satisfies the following
condition :
(U) For any $\varphi_{Y}$ of $\Psi_{Y}$, there exists an element $\varphi_{X}$ of $\Psi x$ such that

$f\varphi x(x)\subset\varphi_{Y}f(x)$ for every point $x$ of $X$.
The following propositions and theorem are proved easily.
PROPOSITION 3. If $f:X\rightarrow Y$ and $g:Y\rightarrow Z$ are umformly con-

tinuous mappings with respect to $\Psi x$ and $\Psi_{Y},$ $\Psi_{Y}$ and $\cdot$

$\Psi z$ respectively,
then the composite $gf:X\rightarrow Z$ is uniformly continuous with respect to
$\Psi_{X}$ and $\Psi z$.

3) Cf. $e$ . $g$ . N. Bourbaki: Topologie g\’en\’erale. Actual. Sci. $lnd$ . $858$ (1940).
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PROPOSITION 4. Let $\Psi_{X}>\Psi_{X}^{\prime}$ and $\Psi_{Y}>\Psi_{Y}^{\prime}$. If a mapping $f$ :
$X\rightarrow Y$ is $\Psi_{X}^{\prime}\Psi_{Y}\cdot u$ -continuous, then $f$ is $\Psi_{X}\cdot\Psi_{Y}\cdot u$ -continuous and
$\Psi_{X}^{\prime}$ . $\Psi_{Y}^{\prime}- u$-continuous.

THEOREM 1. If $\Psi_{Y}$ is a basic GU of a space $Y$, then we have:
(1) A $\Psi_{X}\Psi_{Y}$-u.continuous mapping $f$ of a space $X$ into $X$ is a

continuous mapping.
(2) A mapping $f$ of a space $X$ into $Y$ is continuous if and only $lff$

is $\Phi x\Psi_{Y}$-u.continuous. ( $\Phi x$ means the maximal GU of $X$).
A one-to.one onto mapping $f:X\rightarrow Y$ is called a unimorphism,

when $f$ and $f^{-1}$ is uniformly continuous. Let $f$ be any mapping of a
space $X$ into $Y$. We denote by $f^{-1}(\Psi_{Y})$ the collection of correspon-
dences $\varphi_{X}$ of $x\in X$ to the subset $f^{-1}\varphi_{Y}f(x)$ of $X$, where $\varphi_{Y}\in\Psi_{Y}$, i. e.
$f^{-1}(\Psi_{Y})=\{\varphi_{X};\varphi_{X}(x)=f^{-1}\varphi_{Y}f(x), \varphi_{Y}\in\Psi_{Y}\}$ .

PROPOSITION 5. (1) When $\Psi_{Y}$ is basic, a mapping $f:X\rightarrow Y$ is
continuous if and only if $f^{-1}(\Psi_{Y})$ is $a$ GU of the space $X$.
(2) A mapping $f:X\rightarrow Y$ is $\Psi_{X}\cdot\Psi_{Y}\cdot u$ -continuous if and only $lf$

$\Psi_{X}>f^{-1}(\Psi_{Y})$ .
(3) $A$ one-to-one onto mapping $f:X\rightarrow Y$ is a unimorphism if and

only if $\Psi_{X}\sim f^{-1}(\Psi_{Y})$ .
2.2 Totally bounded set. A subset $X_{1}$ of a space $X$ with a GU $\Psi$

is called [self] totally bounded with respect to $\Psi$ (abbr. [self] $\Psi$-l-
bounded), if for any $\varphi\in\Psi$ there exist finite number of points $x_{1},\cdots,$ $x_{n}$

$[\in X_{1}]$ such that $X_{1}\subset i\varphi(x_{i})$ . We can prove easily the following pro-
perties.

PROPOSITION 6. (1) If $\Psi>\Psi^{\prime}$ , then a [self] $\Psi- t$-bounded set is
also [self] $\Psi^{\prime}- t$-bounded.
(2) If a mapping $f:X\rightarrow Y$ is $\Psi_{X}\cdot\Psi_{Y}\cdot u$ -continuous and a subset $X_{1}$ of

$X$ is [self] $\Psi_{X}\cdot t$-bounded, then the image $f(X_{1})$ is [self] $\Psi_{Y}- t$-bounded.
A subset $X_{1}$ of a space $X$ is called conditionally compact [compact],

if for any family $\mathfrak{M}\ni X_{1}$ of subsets of $X$ with the finite intersection
property, there exists a point $x[\in X_{1}]$ such that $x\in\cap\{\pi_{;}M\in \mathfrak{M}\}$ .

THEOREM 2. A subset $X_{1}$ of a space $X$ is conditionally compact
[compact] $lf$ and only if $X_{1}$ is [self] $\Phi- t$-bounded. Therefore every
conditionally compact subset of a space $X$ is totally bounded with
respect to any GU $\Psi$ of $X$.

PROOF. As $\cap\{\overline{X_{1}-\varphi(x),}x\in X\}=\phi[\cap\{\overline{X_{1}-\varphi(x)}, x\in X_{1}\}\subset X-X_{1}]$
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for any $\varphi e\Phi$ , the condition is necessary. Let $\{M_{\alpha} ; \alpha\in A\}$ be a family
of subsets $M_{\alpha}$ of $X_{1}$ , and $M=\cap\{]\overline{\{I}_{\alpha} ; \alpha\in A\}=\phi[M\cap X_{1}=\phi]$. Then
there exists $\varphi\in\Phi$ such that $\varphi(x)=X-M_{\alpha(x)},$ $\alpha(x)\in A$ to each point
$x[eX_{1}]$ . Thus the condition is also sufficient. The rest follows easily
from the proposition 6.

This theorem shows that compactness can be defined as the totally
boundedness with respect to the special GU $\Phi$ . It is a special case
of (2) of the proposition 6, that a continuous image of a compact set
is compact.
2.3 $\Psi$-filter. A filter $\mathfrak{M}$ in a space $X$ with a GU $\Psi$ is called a $\Psi$ filter,
if for any element $\varphi$ of $\Psi$ there exists a point $x$ such that $\varphi(x)e\mathfrak{M}$ .
A maximal filter, which is also a $\Psi^{fi]ter}$, is called a maximal $\Psi- filter$.
Clearly, if $\Psi>\Psi^{\prime}$ , then a $\Psi- filter$ is also a $\Psi^{\prime}$-filter.

Now we can prove easily the following theorems.
THEOREM 3. $A$ filter $\mathfrak{M}$ has a limit point if and only if $\mathfrak{M}$ is a

$\Phi- filter$.
THEOREM 4. If a mapping $f:X\rightarrow Y$ is $\Psi x\Psi_{Y}\cdot u$-continuous and

$\mathfrak{M}$ is a $\Psi_{X}$ filter of the space $X$, then, $f(\mathfrak{M})(i$. $e$. the family of subsets
$N$ of $Y$ such that $f^{-1}(N)\in \mathfrak{R}l)$ is a $\Psi_{Y}\cdot filter$.

THEOREM 5. A subset $X_{1}$ is $\Psi- t$ -bounded if and only if any
maximal filter $9Jt^{3}X_{1}$ is a $\Psi- filter$. Therefore $X_{1}$ is conditionally compact
$lf$ and only $\iota f$ an-v maximal filter $\mathfrak{M}\ni X_{1}$ has a limit point.

PROOF. We shall prove only the theorem 5. If $X_{1}\subset\cup\{\varphi(x_{i})$ ;
$i=1,\cdots,$ $n$ }, then a maximal filter $9Jl\in X_{1}$ contains actually a certain
$\varphi(x_{i})$ . Thus the condition is necessary. Let the condition be fulfilled,
and $\varphi\in\Psi$ If $ M_{\alpha}=X_{1^{-\cup}}\{\varphi(x);x\in\alpha\}\neq\phi$ for any finite subset $\alpha$

of $X$, then $M_{\alpha}’ s$ belong to a certain maximal filter $\mathfrak{M}\ni X_{1}$ , and there
exists a point $x_{J}$ such that $\varphi(x_{0})\in 9J?$ . But $M_{x_{0}}=X-\varphi(x_{0})\not\in \mathfrak{M}$ is in
contr\’adiction with $M_{x_{0}}\in \mathfrak{M}$ . Thus the condition is also sufficient. The
rest follows from the theorem 2 and the theorem 3.
2.4 $\Psi$-completeness. We call $\Psi$ -set every non vacuous finite inter.
section of sets expressed as $\varphi(x)$ or $X-\varphi(x)$ . A subset $X_{1}$ of a space
$X$ with a GU $\Psi$ is called conditionally $\Psi\cdot complete$ [ $\Psi$ -complete] if any
of the following three equivalent conditions is fulfilled.
(1) Any maximal $\Psi- filter\mathfrak{M}\ni X$] has a $\Psi$-limit point $x[\in X_{1}]$ .
(2) For any $\Psi- filter\mathfrak{M}\ni X_{1}$ , there exists a point $x[eX_{1}]$ such that

$\varphi\in\Psi,$
$Me\mathfrak{M}$ imply $\varphi(x)\cap M\neq\phi$ .
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(3) For any $\Psi^{fi1ter}\mathfrak{M}\ni X_{1}$ , there exists a point $x[\in X_{1}]$ such that
$\varphi\in\Psi,$ $\Psi$ -set $M\in \mathfrak{M}$ imply $\varphi(x)\tau\backslash M\neq\phi$ .
Clearly any subset of $X$ is conditionally $\Phi$ -complete, and any closed

subset is $\Phi\cdot complete$ . If a space $X$ is $\Psi$ -complete with respect to a
basic GU $\Psi$ of $X$, then any maximal $\Psi- filter$ has a limit point. A
subset $X_{1}$ of $X$ is $\Psi\cdot complete$ if and only if $X_{1}$ is $\Psi_{1}$-complete with
respect to the contraction $\Psi_{1}$ of $\Psi$ to $X_{1}$ .

From theorem 2 and 5, we have directly.
THEOREM 6. If a subset $X_{1}$ is conditionally compact [compact],

then $X_{1}$ is [self] $\Psi- t$-bounded and conditionally $\Psi$ -complete [ $\Psi$-complete].
When $\Psi$ is a basic GU, the converse is also true.

Remark. A simple example shows that, in case $\Psi$ is not basic,
$\Psi\cdot t\cdot bounded$ and $\Psi\cdot complete$ space is not necessarily compact.

PROPOSITION 7. If $\Psi>\Psi^{\prime}$ and $\Psi^{\prime}$ is a basic GU, then a con-
ditionally $\Psi^{\prime}$ -complete set is $\omega nd/tionally\Psi$ -complete.

\S 3 Completion of a space.

3.1 Space Z. Let $\Psi_{X}$ be a GU of a space $X$. We introduce the
following notations: For two $\Psi- filters\mathfrak{M}_{1},$ $\mathfrak{M}_{2}$ ,

$\mathfrak{M}_{1}<\mathfrak{M}_{2}$ means that $\varphi(x)\in \mathfrak{M}_{1}$ implies $\varphi(x)\in \mathfrak{M}_{2}$ for any element
$\varphi$ of $\Psi x$ and any point $x$ of $X$.

$\mathfrak{M}_{1}\approx \mathfrak{M}_{2}$ means that $\mathfrak{M}_{1}<\mathfrak{M}_{2}$ and $\mathfrak{M}_{1}>\mathfrak{M}_{2}$ . (We say that $\mathfrak{M}_{1}$ is
equivalent to $\mathfrak{M}_{2}$).

For a maximal $\Psi_{X}- fi1ter\mathfrak{M}$ ,
$[\mathfrak{M}]$ is the class of maximal $\Psi_{X}$ . filters equivalent to $\mathfrak{M}$ .
$[\mathfrak{M}]\ni X_{1}$ means that there exists a $\Psi_{X}$-set $M$ of $\mathfrak{M}$ such that $M\subset X_{1}$.
$[\mathfrak{M}]\rightarrow x$ means that $N\ni[\mathfrak{M}]$ if $N$ is a nbd of $x$.

Clearly two maximal $\Psi_{X}\cdot fi1ters\mathfrak{M}_{1},$ $\mathfrak{M}_{2}$ are equivalent to each other if
and only if any $\Psi_{X}\cdot setM$ of $\mathfrak{M}_{1}$ belongs also to $\mathfrak{M}_{2}$ . Therefore the
definition of $[\mathfrak{M}]\ni X_{1}$ does not depend on the choice of $\mathfrak{M}$ from the
class $[\mathfrak{M}]$ . Obviously, $[\mathfrak{M}]\rightarrow x$ implies $\mathfrak{M}\rightarrow x$, and if $\Psi x$ is basic, then
conversely $\mathfrak{M}\rightarrow x$ implies $[\mathfrak{M}]\rightarrow x$ .

The class $[\mathfrak{M}]$ of maximal $\Psi$ -filters is called a non.convergent class,
if $[\mathfrak{M}]\rightarrow x$ for no point $x$ of $X$. We consider a non.convergent class
of maximal $\Psi_{X}\cdot fi1ters$ as a point, and denote by $Z_{0}$ the set of all these
classes, by $Z$ the set-union of $Z_{0}$ and $X$.
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PROPOSITION 8. Let. $(X_{1})=X_{1}+\{z;z\in Z_{0}, z=[9Jt]\ni X_{1}\}$ , then we have
(1) $g(X_{1})\cap X=X_{1}$ , $g(X)=Z$, $((\phi)=\phi$ .
(2) $X_{1}\supset X_{2}$ implies $g(X_{1})\supset((X_{2})$ .
(3) $g(\wedge X)=_{i/}^{\wedge}((X_{i})$ for any finitc number of subsets $X_{i}$ of $X$.
(4) If $\{X_{i}\}$ is a $7\prime nite$ family of $\Psi_{X}$-sets, then $Z-g\cdot(X_{1})=_{J}((X-X_{1})$ and

$g(iX_{;})=i{}_{\prime}C(X_{i})$ .
PROOF. (1) and (2) are evident. (3) follows from (1) and (2), for a

finite intersection of $\Psi$ -sets is also a $\Psi$ -set. (4) follows from (1) and
(3), for the complement of $\Psi$ -set $X_{1}$ is a finite union of $\Psi\cdot sets$ .

Now, we define a nbd system of $Z$ as follows: a) For a point $x$

of $X$, a nbd of $x$ is a such subset $U$ of $Z$ that $g(N)\subset Ufor$ a certain
nbd $N$ of $x$ in the space X. b) For a point $z$ of $Z_{0}$ , a nbd of $z=[\mathfrak{M}]$

is a such subset $U$ of $Z$ that ($/(\bigwedge_{l}\varphi_{i}(x_{i}))\subset U$ for some $\varphi_{i}\in\Psi_{X},$ $\varphi_{i}(x)$

$\in[\mathfrak{M}],$ $i=1,$ $\cdots,$ $n$ .
Then $Z$ is a space, and the nbd system of a point $z$ of $Z_{0}$ forms

a filter. Clearly, for a subset $M$ of $X$, the closure of $M$ in the space
$X$ is the intersection of $X$ and the closure $\overline{M}$ of $M$ in the space $Z$.
A subset $U=g(\cap\{\varphi_{i}(x_{i});i=1,\cdots, n\})$ is a nbd of any point $z$ in $U\cap Z_{0}$ .
If $z_{1},$ $z_{2}$ are distinct points of $Z$ , then there exist a point $x$ in $X$ and
an element $\varphi$ of $\Psi_{X}$ such that $\varphi(x)\in z_{i},$

$\not\in z_{j}$ ; $(i,j)=(1,2)$ . This shows
$\overline{z}_{j}3z_{i}$ . Thus we have proved.

PROPOSITION 9. The extended space $Z$ has the following properties:
(1) $X$ is a subspace of $Z$.
(2) $\overline{X_{1}}\supset(\sqrt{}(X_{1})$ for any subset $X_{1}$ of $X$.
(3) $(\overline{K}\cup\overline{H})\cap Z_{0}=(K_{\cup}H)\cap Z_{0}$ for any two subsets $K,$ $H$ of $Z$.
(4) Any $ nbd\sqrt{}^{((\varphi;(x_{i}))}i\wedge$ of a point $z$ of $Z_{0}$ is relatively open in the

subspace $Z_{0}$ .
(5) The subspace $Z_{0}$ is a $T_{0}$-space.

PROPOSITION 10. If $z=[9Jl]\in Z_{c}$ , then $\overline{z}=(\cap\{1\overline{M};M\in \mathfrak{M}\})\cap Z_{0}$ , es-
pecially $\overline{z}=\cap\{\overline{M};M\in 9Jl\}\subset Z_{0}$ when $\Psi_{X}$ is basic.

PROOF. $\overline{z}\subset Z_{0}$ , since to any point $x\in X$ there exists a nbd $N$ of $x$

in the space $X$ such that $N\not\in[\mathfrak{M}]$ . Let $z^{\prime}\in\overline{z}$ , then any nbd ${}_{j}C(i\wedge\varphi;(x_{i}))$

of $z^{\prime}$ , contains $z$ , that is 7 $\varphi_{i}(x_{i})\in 9Jl$ . Thus $M\in \mathfrak{M}$ implies $ M\cap g(i\wedge$

$\varphi_{i}(x_{i}))\neq\phi$ . This shows that $\overline{z}$ is a subset of $\cap\{1^{:}\overline{\iota T};M\in \mathfrak{M}\}$ . Con-
versely, if $z^{\prime}\in Z_{d}-\overline{z}$ , then there exists a nbd $\sim|/(_{i}^{\wedge}\varphi_{i}(x_{i}))$ of $z^{\prime}$ , which
does not contain $z$ . As $M=_{i}^{\leftrightarrow}\varphi_{i}(x_{i})$ is a $\Psi_{X}\cdot set,$ $\sqrt{}((M)*z$ implies
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$M\not\in \mathfrak{M}$ . Thus $X-M_{\in}\mathfrak{M}$ and $X-M$ does not intersect with the nbd
$g(M)$ of $z^{\prime}$ . Therefore we have $\overline{z}\supset(\cap\{l^{-}\overline{VI};M\in \mathfrak{M}\}\cap Z_{0}$ . When $\Psi_{X}$ is
basic, there exists for any $x\in X$ an element $\varphi$ of $\Psi_{X}$ such that $\varphi(x)\not\in \mathfrak{M}$ .
Thus we have $x\not\in\cap\{i\overline{\Psi};M\in \mathfrak{M}\}$ , since $X-\varphi(x)\in \mathfrak{M}$ . Therefore $\cap\{\overline{M}$ ;
$M\in \mathfrak{M}\}\subset Z_{0}$ .

PROPOSITION 11. For any $\varphi\not\subset_{\rightarrow\Psi}$ and $x\in X$, we have $ Z_{0}^{\prime}\cap g\varphi$

$(X-\varphi(x))=Z_{0}\cap\overline{X-\varphi(x})$ . Especially $g\varphi(x)=Z-\overline{X-\varphi(x)}$ , and this set
is open in $Z$, when $\varphi(x)$ is an open subset of the space $X$.

PROOF. Let $z=[\mathfrak{M}]\in Z_{0}$ . If $zeg(X-\varphi(x))=Z-g\varphi(x)$, then $z\in\overline{X-\varphi(x)}$

by proposition 9. If $z\not\in g(X-\varphi(x))$ , then we have $z\not\in\overline{X-\varphi(x)}$ , since
$g\varphi(x)$ is a nbd of $z$ . Thus the first half is proved. The rest is an
easy consequence of this.
3.2 GU of the space $Z$. Now we define a GU of $Z$ as follows: For
any finite system $\{\varphi_{1},\cdots, \varphi_{n}\}$ of elements of $\Psi_{X}$, let $\psi$ be a corres-
pondence assigning to each point $x\in X$ a nbd $\psi(x)=g\varphi_{i}(x)$ of $x$, and
to each point $zeZ_{0}$ a nbd $\psi(z)=y(i^{\wedge}\varphi;(x_{i}))$ of $z$. Then the element
$\varphi_{1}$ can be regarded as the contraction of $\psi$ to $X$, so it is also denoted
by $\psi_{X}$. The collection of all correspondences such as $\psi$ , taking
$\{\varphi_{1},\cdots, \varphi_{n}\}$ in every possible way, constitutes clearly a GU of $Z$, and $\Psi x$

is a contraction of this GU to $X$. We denote this GU of $Z$ by $\Psi z$.
The space $Z$ with this GU $\Psi z$ is called a space obtained by comple-
tion of the space $X$ with respect to $\Psi_{X}$.

PROPOSITION 12. The space $Z$ with the GU $\Psi z$ has the following
properties:
(1) $\Psi_{Z}$ is basic at each point $z$ of $Z_{0}$ . Therefore $\Psi_{Z}$ is basic if $\Psi_{X}$ is

basic in $X$.
(2) If $X_{1}$ is a [self] $\Psi_{X}- t$-bounded subset of $X$, then $g(X_{1})$ is [self]

$\Psi z^{-t}$-bounded.
(3) Any maximal $\Psi_{Z}$ filter converges to a point $z$ in Z. Therefore

$g(X_{1})$ is conditionally $\Psi_{Z}$-complete for any subset $X_{1}$ of $X$, and
$g(X_{1})$ is conditionally compact if $X_{1}$ is a $\Psi_{X}\cdot t$-bounded subset of $X$.

(4) The completion of $Z$ with respect to $\Psi z$ adds no new point.
PROOF. (1) and (2) are proved easily. (3): Let $\mathfrak{F}$ be a maximal

$\Psi z- filter$ containing $g(X_{1})$ as an element. Then $\mathfrak{M}=\{M;M\subset X, g(M)\in \mathfrak{F}\}$

is a $\Psi_{X}- fi1ter$ . Therefore any maximal filter $\mathfrak{M}_{1}\supset \mathfrak{M}$ is a maximal $\Psi_{X^{-}}$

filter containing $X_{1}$ as an element. If $\varphi(x)\not\in \mathfrak{M}$ , then $g\varphi(x)\not\in \mathfrak{F}$ and
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$X-\varphi(x)\in \mathfrak{M}$ follows from $/\Gamma(X-\varphi(x))=Z_{L}-(\varphi(x)\in \mathfrak{F}$ . Similarly $X-\varphi(x)$

$\not\in \mathfrak{M}$ implies $\varphi(x)\in 9J\mathfrak{i}$ . This shows that any maximal $\Psi_{X}\cdot fi1ter\mathfrak{M}^{\prime}\supset \mathfrak{M}$

belongs to the same class $[\backslash JJl_{1}]$ . Let $[9Jl_{1}]\rightarrow x_{1}\in X$, and $N$ be a nbd of
$x_{1}$ in the space $X$. There exists a $\Psi_{X}$-set $M$ such that $N\supset M\in \mathfrak{M}$ .
This shows that $\mathfrak{F}$ converges to $x_{1}$ in the space $Z$. Let $[\mathfrak{M}_{1}]$ be a non
convergent class, then $z_{1}=[\mathfrak{M}_{1}]$ is a point of $Z_{0}$ . If $j(_{i}^{\wedge}\varphi_{i}(x_{i}))$ is a nbd
of $z_{1}$ , then we have $\wedge i\varphi_{i}(x_{i})\in \mathfrak{M}$ . This shows that $\mathfrak{F}$ converges to $z_{1}$

in the space $Z$. The rest follows easily from the theorem 6. (4) is
evident by (3).

PROPOSITION 13. The space $Z$ obtained by completion of $X$ has
the following properties:
(1) $Z$ is an additive space ( $i$. $e$ . with the additive closure operator) if

$X$ is an additive space.
(2) $Z$ is a T.space if $X$ is a T-space and $\Psi_{X}$ is open and basic.
(3) $Z$ is a $T_{0}\cdot space$ if $X$ is a $T_{0}$-space and $\Psi x$ is open and basic.
3.3 Uniqueness of completion. The completion considered above is
characterized by

THEOREM 7. Let $\Psi x$ be a basic GU of a space X. The space $Z$

obtained by the completion of $X$ with respect to $\psi_{X}$ has the following pro-
perties (described for $S$). Conversely, a space $S$ with these properties
is mapped on $Z$ by a homeomorphism leaving each point of $X$ fixed.
(1) $X$ is a subspace of $S$.
(2) If $p_{1},$ $p_{2}$ are distinct points of $S-X$, then $\overline{p}_{1}\subset S-X$ and $\overline{p}_{1}\neq p_{2}$ .
(3) There exists a basic GU $\Psi s$ , whose contraction to $X$ is $\Psi_{X}$.
(4) $\{U;U=_{i}\wedge\psi_{i}(x_{i})\ni p, \psi_{i}\in\Psi_{S}, X_{i}\in X, i=1,\cdots, n\}$ is a $nbd$ basis of

$p_{eS-X}$.
(5) Any non.convergent maximal $\Psi x- filter9J\mathfrak{i}$ in $X$ has a point $p\in S-X$

such that $\psi(x)\ni p$ if and only $lf\psi(x)\cap X\in 9Jt$ for any $\psi\in\Psi_{S},$ $x\in X$,
and conversely, for any point $p\in S-X$ there exists a non-con-
vergent maximal $\Psi- filter\mathfrak{M}$ for which $p$ satisfies the above condi-
tion.
PROOF. We have proved already that $Z$ has these properties (1) $-(5)$ .

Let $S$ be another space with these properties (1)$-(5)$ . For a non-con-
vergent maximal $\Psi_{X}- fi1ter\mathfrak{M}$ , there exists a point $p=f(\mathfrak{M})$ such that
$\psi(x)\ni p$ if and only if $\psi(x)\cap X\in \mathfrak{M}$ . Let $p_{i}=f(9Jt_{i}),$ $i=1,2$ . If $p_{1}\neq p_{2}$ ,
then there exists a point $q\in S-X$ such that $q\in\overline{p}_{i},$ $\not\in\overline{p}_{j},$ $(i,j)=(1,2)$ . By
(4), we have a nbd $\psi(x)$ of $q$ which contains $p_{i}$ but not $p_{j}$ , that is
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$\psi(x)\cap X\in \mathfrak{M}_{i},$ $\not\in \mathfrak{M}_{j}$ . This shows $\mathfrak{M}_{1}*\mathfrak{R}\mathfrak{i}_{2}$ by (3). If $p_{1}=p_{2}=p$, then
$\psi(x)\cap X\in \mathfrak{M}_{1}$ if and only if $\psi(x)\cap X\in \mathfrak{M}_{2}$ . This shows $\mathfrak{M}_{1}\approx \mathfrak{M}_{2}$ . There-
fore we can define a mapping $f$ of $Z$ into $S$ by putting $f(x)=x$ for
$x\in X$, and $f(z)=f(\mathfrak{M})$ for $z=[\mathfrak{M}]eZ-X$. Clearly $f$ is a one-to-one
mapping of $Z$ onto $S$ and we have $fg(\psi(x)\cap X)=\psi(x)$ . Therefore $f$ is
a topological mapping, since $z\in g((i\wedge\psi_{i}(x_{i}))\cap X)$ if and only if $ f(z)\in$

$fg_{\backslash ^{\prime}}(i\wedge\psi_{i}(x_{i}))\cap X)=_{i}\wedge\psi_{i}(x_{i})$ .
Example. Let $R$ be a space of real numbers with the usual topology,

and $X$ be a subspace of $R$ con tituted by all rational numbers. $\Psi x$

$=\{\varphi_{e} ; e>0\}$ be an open basic GU (named e.GU), where $\varphi_{\epsilon}$ is defined
by $\varphi_{\epsilon}(x)=\{x^{\prime} ; |x^{\prime}-x|<\epsilon^{\iota}\}$ for any positive real number $e$ . $\Psi\acute{x}^{=}\{\varphi_{r};r$

is rational} is a sub-collection of $\Psi_{X}$. Clearly $\Psi_{\acute{X}}$ is an open basic
GU of $X^{\cdot}$, and is equivalent to $\Psi_{X}$. A filter $\mathfrak{M}$ is a $\Psi_{X}\cdot fi1ter$ if and
only if $\mathfrak{M}$ is a Cauchy filter in the usual sence. Therefore to each
maximal $\Psi_{X}- fi1ter\mathfrak{M}$ corresponds a point $\lambda$ of $R$ , to which $\mathfrak{M}$ converges
in $R$. If $\lambda$ is rational, then $\mathfrak{M}$ converges to $\lambda$ in $X$, if $\lambda$ is irrational,
then $[\mathfrak{M}]$ is non-convergent. Let $\mathfrak{M}\rightarrow\lambda$ in $R$ . Then we have $\varphi_{r}(x)e\mathfrak{M}$

if and only if $|x-\lambda|<r$ for any $\varphi_{r}\in\Psi^{\prime}x$. Therefore the space ob.
tained by the completion of $X$ with respect to $\Psi_{X}^{\prime}$ is topologically
equivalent to $R$ . On the other hand, a maximal $\Psi_{X}- fi1ter\mathfrak{M}$ , which
corresponds to an irrational number $\lambda$ , contains the subset $(\lambda, \infty)$ or
$(-\infty, \lambda)$ of $X$. We denote the first case by $\mathfrak{M}\rightarrow\lambda^{+}$ , the second case
by $\mathfrak{M}\rightarrow\lambda^{-}$ If $\mathfrak{M}_{1}\rightarrow\lambda^{+}$ and $\mathfrak{M}_{2}\rightarrow\lambda^{+}$ , then clearly $\mathfrak{M}_{1}\approx \mathfrak{M}_{2}$ with re-
spect to $\Psi_{X}$ But if $\mathfrak{M}_{1}\rightarrow\lambda^{+}$ and $\mathfrak{M}_{2}\rightarrow\lambda^{-}$ , then we have $\mathfrak{M}_{1}\not\simeq \mathfrak{M}_{2}$ and
$\mathfrak{M}_{1}$ does not converge to $\lambda^{-}=[\mathfrak{M}_{2}]$ in the space $Z$ obtained by the
completion of $X$ with respect to $\Psi_{X}$. This example shows that equi.
valent GU) $s$ of a space do not necessarily lead to equivalent spaces by
the completion.

\S 4 Compactification.

4.1 Special filter. If a space $X$ is $\Psi_{X}\cdot t$-bounded, then the space $Z$

obtained by the completion of $X$ is a compact space. For example,
we obtain the “ trivial compactification” of $X$, taking the trivial GU
as $\Psi_{X}$. But for purpose of compactification, it happens that the com-
pletion considered in \S 3 adds some superfluous points, even if $\Psi_{X}$ is
basic. So it seems more adequate to restrict with some conditions the
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classes of equivalent filters taken as new points. We assume that
$\Psi_{X}$ is basic and $X$ is $\Psi x^{f}$ -bounded throughout this section.

A maximal $\Psi- filter\mathfrak{M}$ is called a special filter, if any maximal
filter $\mathfrak{M}^{\prime}<\mathfrak{M}$ is equivalent to $\mathfrak{M}$ . A point $z=[\mathfrak{M}]$ of $Z_{0}$ is called a
special point, if $\mathfrak{M}$ is a special filter.

$PROPOS1^{\prime}1’ ION14$ . If a space $X$ is totally bounded with respect
to a basic GU $\Psi_{X}$ , then we have:
(1) $\mathfrak{M}$ is a special filter if and only $lf$ there exist for any $\varphi(x)\in \mathfrak{M}a$

finite number of elements $\varphi_{i}$ of $\Psi_{X}$ and points $x_{i}$ of $X$ such that
$\varphi(x)\supset i\wedge(X-\varphi_{i}(x_{i}))\in \mathfrak{M}$ .

(2) If $z_{i}=[\mathfrak{M}_{i}]\in Z_{0},$ $i=1,2$ , then $\mathfrak{M}_{1}<\mathfrak{M}_{2}$ is equivalent to $z_{1}e\overline{z}_{2}$ .
(3) For any point $z$ of $Z_{0},$ $z=\overline{z}$ if and only if $z$ is a special point.
(4) For any $po$ int $z$ of $Z_{0}$, there exists a special point $z_{1}$ such that

$z_{16}Z$ .
PROOF. (1): If the condition is not fulfilled for a certain $\varphi_{0}(x_{0})e\mathfrak{M}$ ,

then any finite number of sets $X-\varphi_{i}(x_{i})e\mathfrak{M},$ $i=1,\cdots,$ $n$ and $X-\varphi_{0}(x_{0})$

have a non vacuous intersection. Thus there exists a maximal filter
$\mathfrak{M}_{1}$ containing all of these sets. As $\varphi^{\prime}(x^{\prime})\not\in \mathfrak{M}$ implies $\varphi^{\prime}(x^{\prime})\not\in \mathfrak{M}_{1}$ , so
we have $\mathfrak{M}_{1}<\mathfrak{M}$ . But clearly $\mathfrak{M}_{1}*\mathfrak{M}$ . Thus the condition is neces-
sary. The condition is also sufficient, for $9J_{t_{1}}^{\backslash }<\mathfrak{M},$ $\varphi(x)\in \mathfrak{M}$ imply
$\varphi(x)\in \mathfrak{M}_{1}$ .
(2): This is proved easily.
(3): Let $z=[\mathfrak{M}]$ and $z=\overline{z}$, and $\mathfrak{M}_{1}<\mathfrak{M}$ be a maximal filter. Then $\mathfrak{M}_{1}$

is a $\Psi_{X}$-filter for $X$ is $\Psi x^{-t}$-bounded. If $[\mathfrak{M}_{1}]\rightarrow x$ , then $[\mathfrak{M}]\rightarrow x$ in
contradiction witn $z\in Z_{0}$. Thus $z_{1}=[\mathfrak{M}_{1}]\in Z_{0}$ , and $z_{1}\in\overline{z}=z$ implies
$\mathfrak{M}_{1}\approx \mathfrak{M}$ by (2). Therefore the condition is necessary. The condition
is clearly sufficient by (2).
(4): By the proposition 10, we can prove easily that $z\subset=Z_{0}$. Therefore
$\overline{\overline{z}}=\overline{z}$ since the subspace $Z_{0}$ is a T-space. Let $\mathfrak{F}\ni\overline{z}$ be a maximal family
of closed sets with the finite intersection property. The compactness
of $Z$ shows that the intersection $M$ of all sets of $\mathfrak{F}$ contains a point
$z_{1}$ . Clearly $z_{1}e\overline{z}_{1},\overline{z}_{1}e\mathfrak{F}$ and $M\supset\overline{z}_{1}$ . If $z_{2}e\overline{z}_{1}$ then $\overline{z}_{2}$ belongs to $\mathfrak{F}$ ,

and $z_{1}=z_{2}$ follows from $\overline{z^{\prime}}_{2}\ni z_{1},\overline{z}_{1}$ a $z_{2}$ . This shows that $z_{1}$ is special.
PROPOSITION 15. Let $R$ be a set-union of $X$ and the set of all

special points. Then we have:
(1) The subspace $R$ of $X$ is compact.
(2) The subspace $R-X$ is a $T_{1}- space$ .
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(3) If $X$ is compact, then $R=X$.
FROOF. For any maximal filter ee in $R,$ $\mathfrak{F}=\{H;H\subset Z, H\cap R\in \mathfrak{N}\}$

is a maximal filter in $Z$ converging to a point $z$ . If $z\in R$ , then clearly
$\mathfrak{N}\rightarrow z$ in $R$ . If $z\in Z-R$ , then there exists a point $z_{1}\in\overline{z}$ of $R$ , and
$\psi(z_{1})$ is a nbd of $z$ for any $\psi$ , since $\psi(z_{1})\ni z$ . Thus $\psi(z_{1})\in \mathfrak{F}$ , and this
shows that $\mathfrak{F}$ converges to $z_{1}$. Therefore ee converges to a point in
the space $R$ . The rest is evident.
4.2 Uniqueness of compactification. The compactification con-
sidered above is characterized by

THEOREM 8. Let $X$ be $\Psi_{X}\cdot t\cdot bounded$ and $\Psi_{X}$ be basic. The space
$R$ obtained by the compactification of $X$ with respect to $\Psi x$ has the
following properties (described for $S$). Conversely, a space $S$ with these
properties is mapped on $R$ by a hcmeomorphism leaving each point of
$X$ invariant.
(1) $X$ is a subspace of $S$.
(2) $S$ is a compad space.
(3) $\overline{p}\subset S-X$ for any point $p$ of $S-X$.
(4) If a special filter $\mathfrak{M}$ (with respect to $\Psi_{X}$) in $X$ converges to a

point $p$ of $S-X$, then $p$ is the unique limit point of $\mathfrak{M}$ .
(5) For any point $p$ of $S-X$ there exists a special filter $\mathfrak{M}$ in $X$

which converges to $p$.
(6) There exists a basic GU $\Psi_{S}$ of $S$, which satisfies the conditions:

a) $\Psi_{X}$ is the contraction of $\Psi s$ .
b) If $\psi(x)\ni p,$ $\psi\in\Psi_{S},$ $x\in X,$ $p_{eS-X}$, then $\psi(x)$ is a $nbd$ of $p$.
c) If $p,$ $p^{\prime}$ are distinct points of $S-X$, there exist $\psi$ and $x$ such

that $\psi e\Psi sx\in X$ and $\psi(x)\ni p$, $ $p^{J}$ .
d) $i\psi_{i}(x_{i})\supset X$ implies $i\psi_{i}(x_{i})=S$ for any finite number of $\psi_{i}$

and $x_{i}$ such that $\psi_{j}\in\Psi s’ x_{i}\in X,$ $i=1,\cdots,$ $n$ .
e) $\psi(x)\cap(S-X)=S-X-(\overline{X}\overline{-\psi(x))}$ for any $\psi\in\Psi s$ and $x\in X$.

PROOF. We prove first that $R$ has these properties (1)$-(6)$ . (1)$-(3)$

and (5) are evident. Let $\Psi_{R}$ be the contraction of $\Psi z$ to $R$ , then $a$)$-d$ )
are evident. and e) follows from the proposition 11. Let $\mathfrak{M}$ be a special
filter in $X$ and $z_{1}=[\mathfrak{M}_{1}]\in R-X$. If $\mathfrak{M}*\mathfrak{M}_{1}$ then there exists $\varphi(x^{\prime})$ such
that $\varphi(x^{\prime})=\psi(x^{\prime})\cap X$ and $\varphi(x^{\prime})\in \mathfrak{M}_{1},$ $X-\varphi(x^{\prime})\in \mathfrak{M}$ . This shows that
$\mathfrak{M}\rightarrow z_{1}\in R-X$ implies $[\mathfrak{M}]=z_{1}$ . Thus (4) is proved. Next, we shall
construct a one.to.one mapping $f:R\rightarrow S$. Let $S$ be a space with the
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properties (1)$-(6)$ . If $[\mathfrak{M}]=z\in R-X$ , then $\mathfrak{M}$ is a special filter. As $S$

is a compact space, there exists a limit point $p$ of $\mathfrak{M}$ . Clearly $p\in S-X$,
thus $p$ is determined uniquely by $\mathfrak{M}$ . We denote this point $p$ by $f(\mathfrak{M})$ .
Let $p_{i}=f(\mathfrak{M}_{i})$ and $p_{1}\neq p_{2}$ . Then there exists a certain $\psi(x)$ such that
$\psi(x)\ni p_{1}$ , $ $p_{2}$ . As $\varphi(x)=\psi(x)\cap X\in \mathfrak{M}_{1}$ , we have $\psi_{i}(x_{i}),$ $i=1,\cdots,$ $n$ such
that $\varphi_{i}(x_{i})=\psi_{i}(x_{i})\cap X$ and $\varphi(x)\supset^{\wedge}i(X-\varphi_{i}(x_{i}))\in \mathfrak{M}_{1}$ . Then $\psi(x)\cup\psi_{1}\cup$

$...\cup\psi_{n}(x_{n})=S$ by the condition d). Therefore $\psi_{i}(x_{i})\ni p_{2}$ for a certain
$i$, and this shows $\mathfrak{M}_{I^{r_{\wedge}}}^{\Delta_{\check{Y}}}\mathfrak{M}_{2}$. Let $f(\mathfrak{M}_{1})=f(\mathfrak{R}\mathfrak{i}_{2})=p$. If $\varphi(x)\in \mathfrak{M}_{1}$ , then
there exist $\varphi;(x_{i}),$ $i=1,\cdots,$ $n$ such that $\varphi_{i}(x_{i})=\psi_{i}(x_{i})\cap X$ and $\varphi(x)\supset\wedge i$

$(X-\varphi_{i}(x_{i}))e\mathfrak{M}_{1}$ . Clearly, $X-\varphi_{i}(x_{i})\ni p$ implies $\psi_{i}(x_{i})*p$, so we have
$\varphi(x)e\mathfrak{M}_{2}$ similarly as above. This shows $\mathfrak{M}_{1}<\mathfrak{M}_{2}$ . Thus we have
$\mathfrak{M}_{]}\approx \mathfrak{M}_{2}$ by symmetry. Therefore we can define a one-to one mapping
of $R$ into $S$ by putting $f(x)=x$ for $x\in X$ and $f(z)=f(\mathfrak{M})$ for $ z=[\mathfrak{M}]\in$

$R-X$. By the condition (5), $f$ maps $R$ onto $S$. Finally, we shall
prove the continuity of $f$ and $f^{-1}$ . It is evident that $f$ is a topological
mapping if we have $\psi(x)=f.(i^{*}(X\cap\psi(x))$ for any $\psi\in\Psi s$ and $xeX$,
where $9^{*}(M)=g(M)\cap R$ to any subset $M$ of $X$. For any point $x^{\prime}$ of
$X$, we have clearly $x^{\prime}\in\psi(x)$ if and only if $x^{\prime}\in f^{*}(X\cap\psi(x))$ . Let
$p=f(z),$ $z=[\mathfrak{M}]_{\sim}cR-X$. If $p\in\psi(x)$ , then $z\in g^{*}(X\cap\psi(x))$ . If $zeg^{*}(X$

$r^{-})\psi(x))$ , then we have as above $\psi_{i}(x_{i})i=1,\cdots,$ $n$ such that $\psi(x)_{\cup}\psi_{1}(x_{1})$

$\cup\cdots\cup\psi_{n}(x_{n})=S$ and $p\not\in\psi_{1}(x_{1})\cup\cdots\cup\psi_{n}(x_{n})$ . Thus we have $\psi(x)=$

$f.(/^{*}(X\cap\psi(x))$ and the proof is completed.
As a special case of the theorem 8, we have
THEOREM 9 Let $X$ be a space with open $nbd$ basis, and $\mathfrak{G}\ni X$

a basis of open sets. Then there exists a space $S$ with the following
properties. Moreover such a space is unique up to homeomorphism.

(1) $S$ is a compact space with open $nbd$ basis.
(2) $X$ is a subspace of $S$.
(3) Each point of $S-X$ is closed.
(4) $\mathfrak{U}=\{U;U=S-\overline{X-G}, G\in \mathfrak{G}\}$ is a basis of open sets of $S$.
(5) $iG_{i}=X$ implies $\vee i(S-\overline{X}\overline{-G_{i}})=S$ for any finite number of sets

$G_{i},$ $i=1,\cdots,$ $u$ of $\mathfrak{G}$ .

4) Cf. N. A. Shanin: On special extension of topological spaces, Doklady URSS. 38.
K. Morita: On the simple extension of a space with $resp\circ.ct$ to uniformity. II,

Prcc. Japan Acad. 27.
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PROOF. For any finite number of sets $G_{i},$ $i=1,\cdots,$ $n$ of $\mathfrak{G}$ such
that $iG_{i}=X$, we can define a correspondence $\varphi:x\rightarrow\varphi(x)=G_{i\ni}x$ .
Let $\Psi_{X}$ be the collection of all such correspondences. Then clearly $\Psi_{X}$

is an open GU of $X$, and $X$ is $\Psi_{X}$-t.bounded. Similarly, we can define
an open basic GU $\Psi s$ of $S$ using $\mathfrak{U}$ instead of $\mathfrak{G}$ . We can check easily
that the space $S$ with this $\Psi s$ satisfies the conditions (1)$-(6)$ of the
theorem 8.

\S 5 $C$-extension.
5.1 Cauchy filter. Let $X$ be again a general space and $\Psi$ any GU
of $X$. By the completion considered in \S 3, we obtain a complete
space $Z$ But $Z$ is not necessarily the ” minimal “ complete space
containing $X$, and equivalent GU’s do not lead to $Z’ s$ topologically
equivalent with each other. For this reason, we shall consider in this
section another way to extend the space by means of Cauchy filters.

We denote by $S(M, \varphi)$ the set-union $\cup\{\varphi(x);\varphi(x)\cap M\neq\phi\}$ for
any subset $M$ of $X$, and by $\mathfrak{M}^{*}$ the family of sets { $M^{\prime}$ ; $M^{\prime}\supset S(M, \varphi)$ ,
$M\in \mathfrak{M},\cdot M\in\Psi\}$ for any filter $\mathfrak{M}$ in $X$. A filter $\mathfrak{M}$ is called a Cauchy
filter, if for any $\varphi\in\Psi$ there exists a point $x$ such that $\varphi(x)\in \mathfrak{M}^{*}$ .
Two Cauchy filters $\mathfrak{M}_{1},$ $\mathfrak{M}_{2}$ are called a Cauchy pair and denote by
$\mathfrak{M}_{1}\sim \mathfrak{M}\cap\angle$

’ if $\mathfrak{M}_{1}^{*}=\mathfrak{M}_{2}^{*}$ .
PROPOSITION 16. Let $\mathfrak{M}_{1}$ and $\mathfrak{M}_{2}$ be Cauchy filters. Then $\mathfrak{M}_{1}\sim$

$\mathfrak{M}_{2}$ if and only if for any set $M_{1}\in \mathfrak{M}$ and $\varphi_{1}\Leftarrow\Psi$ there exist a set
$M_{2}\in \mathfrak{M}_{2}$ and $\varphi_{2}\in\Psi$ such that $S(M_{2,\varphi_{2}})\subset S(M_{1}, \varphi_{1})$ . Therefore $\mathfrak{M}_{1}\subset \mathfrak{M}_{2}$

implies $\mathfrak{M}_{1}\sim \mathfrak{M}_{2}$.
PROOF. Clearly the condition is necessary. If the condition is

fulfilled, then $\mathfrak{M}_{1}^{*}\subset \mathfrak{M}_{2}^{\star}$ is evident. Let $M\in \mathfrak{M}_{2}$ and $\varphi\in\Psi$ Then there
exist a point $x_{0}$ , a $s_{\vee}^{\circ}tM_{1}\in \mathfrak{M}_{1}$ and $\varphi_{1}\in\Psi$ such that $\varphi(x_{0})\supset S(M_{1}, \varphi_{1})$ .
For this pair of $M_{1}$ and $\varphi_{1}$ , we have a set $M_{2}\in \mathfrak{M}_{2}$ and $\varphi_{2}\in\Psi$ such that
$S(M_{2}, \varphi_{2})\subset S(M_{1}, \varphi_{1})$ . Thus $\varphi(x_{0})\cap M\neq\phi$ follows from $\varphi(x_{0})\supset S(M_{2}, \varphi_{2})$

$\in \mathfrak{M}_{0,d}$. This shows $S(M, \varphi)\supset\varphi(x_{0})\supset S(M_{1}, \varphi_{1})$ . Therefore $\mathfrak{M}_{i}^{*}\supset \mathfrak{M}_{2}^{*}$ .
The following properties are evident.
PROPOSITION 17. If $\Psi\sim\Psi^{\prime}$ then a filter $\mathfrak{M}$ is a Cauchy filter with

respect to $\Psi$ if and only $lf\mathfrak{M}$ is a Cauchy filter with respect to $\Psi^{\prime}$ ,
and two Cauchy filters are a Cauchy pair with respect to $\Psi$ if and
only if they are a Cauchy pair with respect to $\Psi^{\prime}$

Remark. A Cauchy filter is clearly a $\Psi- filter$ , but a $\Psi$ -filter is not
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necessarily a Cauchy filter. $\mathfrak{M}_{1}\sim \mathfrak{M}_{2}$ and $\mathfrak{M}_{1}\rightarrow x$ does not necessarily
imply $\mathfrak{M}_{2}\rightarrow x$ , even if $\Psi$ is an open basic GU. A uniformly continuous
image of a Cauchy filter is not necessarily a Cauchy filter. We shall
show this by an example. Let $X$ be the interval $[0,1]$ of rational
numbers. For any point $x\in X$ and any nbd $N$ of $x$, we define $\varphi^{\prime}$

putting $\varphi^{t}(x)=N$ if $x^{\prime}=x;\varphi^{t}(x^{t})=[0,2/3)$ if $1/2\geqq x^{\prime}\neq x;\varphi^{\prime}(x^{\prime})=(1/3,1$ ]
if $1/2<x^{\prime}\neq x$ . Let us denote by $\Psi^{\prime}$ the collection of all such $\varphi^{\prime}$

taking $x$ and $N$ in every possible way, and by $\Psi$ the e-GU of X. (see
example in 3.3) Clearly $\Psi^{\prime}$ is an open basic GU and $\Psi^{\prime}<\Psi$ . Any
filter containing the interval [0,1/3] is a Cauchy filter, and any two
such filters are a Cauchy pair with respect to $\Psi^{\prime}$ . The filter containing
1/2 as an element is a convergent filter, but not a Cauchy filter with
respect to $\Psi^{\prime}$ . The identity mapping is clearly $\Psi$

$\Psi^{\prime}$ -u-continuous.
5.2 Space $I^{7}$ . We consider $\mathfrak{M}^{*}$ obtained from a maximal filter $\mathfrak{M}$ of
a space $X$ with $\Psi_{X}$ as a point $y,$ $!Dl$ being a Cauchy filter having no
rimit point. We denote by $Y_{0}$ the set of all these points, and by $Y$

the set-union of $X$ and $Y_{0}$.
PROPOSITION 18. Let $X_{1}^{\#}=X_{1}+\{y;y\in Y_{0}, \tau/=9Jt^{*}\ni X_{1}\}$ . Then we

have: (1) $X_{1}^{*}\cap X=X_{1}$ , $X^{*}=Y$, $\phi^{*}=\phi$ ,
(2) $X_{1}\subset X_{2}$ implies $X_{1}^{*}\subset X_{2}^{*}$ ,
(3) $\wedge iX^{*}i=\phi$ , if and only $ if\cap X_{i}=\phi$ , fttr any finite number of subsets

$X_{i}$ of $X$.
Now, we introduce a topology into the set $Y$ by defining a nbd

system as follows: A nbd of a point $x$ of $X$ is a such subset Uof $Y$

that $U\supset N^{*}$ for a certain nbd $N$ of $x$ in the space $X$. A nbd of a
point $y=\mathfrak{R}l^{*}$ of $Y$ is such subset $U$ of $Y$ that $U\supset\varphi(x)^{*}\ni y$ for a
certain point $x\in X$ and $\varphi\in\Psi_{X}$.

PROPOSITION 19. The space $Y$ has the following properties:
(1) $X$ is a subspace of Y.
(2) $\overline{X}_{1}\supset X_{1}^{*}$ , where the bar indicates the closure operation in $Y$.
(3) $X_{1}^{*}\cap Y_{0}=I_{0}^{\prime}-\overline{X-}X_{1}^{-}$.
(4) If $G$ is an open subset of the space $X$, then $G^{*}=Y-\overline{X}-G-$ and

$G$ “ is an open subset of the space Y.
PROOF. (1) is evident. (2): Let $y=\mathfrak{M}^{*}$ be a point of $X_{1}^{*}\cap Y_{0}$, then

any nbd $\varphi(x)^{*}$ of $y$ intersects with $X_{1}$ , since $X_{1}\in \mathfrak{M}^{*}$ . (3): Let $y=\mathfrak{M}^{*}$

be a point of $X_{1}^{*}\cap Y_{0}$ . Then there exist a set $M\in \mathfrak{M}$ and $\varphi\in\Psi_{X}$ such
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that $X_{1}\supset S(M, \varphi)$ , and there exists a point $x$ such that $\varphi(x)\in \mathfrak{M}^{*}$ .
Clearly $\varphi(x)^{*}$ is a nbd of $y$ , and $(X-X_{1})\cap\varphi(x)^{*}=\phi$ . This shows
$X_{1}^{*}\cap Y_{0}\subset Y_{0}-\overline{X-X_{1}}$. The inverse inclusion follows from the fact that
there exists a nbd $\varphi(x)^{*}$ of $y$ for any point $y\in Y_{0}-\overline{X-X_{1}}$, such that
$(X-X_{1})\cap\varphi(x)^{*}=\phi$ . (4): As $G=X-\overline{X-G}$, we have $G^{*}=G_{\cup}(G ’\cap Y_{0})$

$=Y-\overline{X-G}$ . Clearly any point of $G^{*}$ is an inner point of $G$“.
PROPOSITION 20. If $y\in X_{1}^{*}\cap Y_{0}$ for a subset $X_{1}$ of $X$, then there

exists $\varphi\in\Psi_{X}$ such that $\varphi(x)^{*}\ni y$ implies $\varphi(x)^{*}\subset X_{1}$ for any point $x$ of
X. Therefore $X_{1}^{*}$ is relatively open in $Y_{0}$ .

PROPOSITION 21. If $y=\mathfrak{M}^{\mathfrak{l}<}is$ a point of $Y_{0}$, then $y=\overline{y}=\cap\{\overline{M}$ ;
$M_{\in \mathfrak{M}}\}$ .

PROOF. As $\mathfrak{M}$ is a non-convergent maximal filter, we $have\cap\{\grave{1}\overline{V1}$ ;
$M\in \mathfrak{M}\}\subset Y_{0}$ . Let $y_{1}=\mathfrak{M}_{1}^{*}$ be another point of $Y_{0}$ . Then there exist a
set $M\in \mathfrak{M}$ and $\varphi\in\Psi_{X}$ such that $S(M, \varphi)\not\in \mathfrak{M}_{1}^{\star}$ by the proposition 16.
As $ M\cap\varphi(x^{\prime})^{*}=\phi$ for a nbd $\varphi(x^{\prime})^{*}ofy_{1}$ , we have $1\overline{V1}iPy_{1}$ . On the other
hand, we have clearly $y\in\cap\{l\overline{\Psi};M\in \mathfrak{M}\}$ . Therefore $y=\cap\{\overline{M};M\in \mathfrak{M}\}$ .
If $x\in\overline{y}\cap X$ and $M_{\in}\mathfrak{M}$ , then for any nbd $N$ of $x$ in the space $X$, we
have $ M\cap N\neq\phi$ . This shows that $x\in\overline{y}^{rt}X$ implies $x\in\cap\{\underline{l}\overline{\Psi};M\in \mathfrak{M}\}$

in contradiction with the above result. Thus $\overline{y}\subset Y_{0}$ . Therefore $\overline{J}=y$ ,
since the subspace $Y_{0}$ has an open nbd basis.
5.3 Characterization of space Y. Now we define a GU of $Y$ as
follows: For any element $\varphi$ of $\Psi_{X}$, let $\psi$ be a correspondence assign-
ing to each point $x\in X$ a nbd $\psi(x)=\varphi(x)^{*}$ of $x$ , and to each point

$y=\mathfrak{M}_{\overline{c}}^{*}Y_{0}$ a nbd $\psi(y)=\varphi(x^{\prime})^{*}$ of $y$ . Then the element $\varphi$ can be re-
garded as the contraction of $\psi$ to $X$, so it is also denoted by $\psi_{X}$.
The collection of all correspondences such as $\psi$ constitutes clearly a
GU of $Y$, and $\Psi_{X}$ is a contraction of this GU to $X$. We denote by
$\Psi_{Y}$ this GU of Y. The space $Y$ with the GU $\Psi_{Y}$ constructed above
is called a space obtained by the C-extension of the space $X$ with
respect to the GU $\Psi_{X}$ of $X$.

We say that a GU $\Psi_{X}$ of $X$ agrees with the topology at $x$ , if for
any nbd $N$ of $x$ there exists $\varphi\in\Psi_{X}$ such that $N\supset S(x, \varphi)$ , and that
$\Psi_{X}$ agrees with the topology in $X$ , if $\Psi x$ agrees with the topology at
each point of $X$. By the proposition 20, $\Psi_{Y}$ agrees with the topology
of $Y$ at each point of $Y_{0}$ . Thus we have

PROPOSITION 22. (1) $\Psi_{Y}$ is $a$ GU of $Y$, which agrees with the
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topology at each point of $Y_{0}$ .
(2) If $\Psi_{X}$ is a basic GU of $X$, then $\Psi_{Y}$ is a basic GU of Y.
(3) If $\Psi_{X}$ agrees with the topology in $X$, then $\Psi_{Y}$ agrees also with

the topology in $Y$.
PROPOSITION 23. If $\Psi_{X}$ is a basic GU of a space $X$, then the space

$Y$ with $\Psi_{Y}$ obtained by C.extension of $X$ with respect to $\Psi_{X}$ has the
following properties (described for a space $R$ with $\Psi_{R}$):

a) $X$ is a subspace of $R$ .
b) Each point of $R-X$ is closed.
c) $\Psi_{R}$ is a basic GU of $R$ , which agrees with the topology of $R$ at

each point of $R-X$, and whose contraction $\Psi_{X}^{\prime}$ to $X$ is equivalent
with $\Psi_{X}$.

d) $\{\psi(p);p\in R\}=\{\psi(x);xeX\}$ for an-v $\psi\in\Psi_{R}$ .
e) If $p\in\psi(p^{\prime})-X,$ $\psi\in\Psi_{R}$ , then $\psi(p^{\prime})$ is a $nbd$ of $p$ .
f) $\psi(p)\cap X\supset\psi^{\prime}(p^{\prime})\cap X$ if and only if $\psi(p)\supset\psi^{\prime}(p^{\prime})$ for any $\psi,$ $\psi^{t}\in\Psi_{R}$ ,

$p,$ $p^{\prime}\in R$ .
g) For any Cauchy filter $\mathfrak{M}\ni X$ , there exists a point $p$ such that

$p_{e}\cap\{\overline{M}\cdot M\in \mathfrak{M}\}$ (the bar indicates the closure operation of $R$).
h) For any $p_{0}$int $p$ of $R-X$, there exists a Cauchy filter $\mathfrak{R}l\ni X$ such

that $p_{\in}\cap\{\overline{M};M\in \mathfrak{M}\}$ .
PROOF. All these properties but g) are proved already. The pro-

perty g) follows from the next lemma 1.
LEMMA 1. Let $R$ and $\Psi_{R}$ satisfy the conditions $a$) $-f$). Then a filter

$\mathfrak{M}\ni X$ is a Cauchy filter with respect to $\Psi_{R}$ if and $ onl\gamma$ if $\mathfrak{M}^{\prime}=\{M^{\prime}$ ;
$M^{\prime}=M\cap X,$ $M\in \mathfrak{M}$ } is a Cauchy filter in $X$ with respect $\Psi_{X}$.

PROOF. By the proposition 17, we may assume that $\Psi\acute{x}^{=}\Psi x$. Let $\mathfrak{M}$

be a Cauchy filter with respect to $\Psi_{R}$ , and $\varphi=\psi_{X},$ $\psi\in\Psi_{R}$ . Then there
exist $\Psi^{t}e\psi_{R},$ $Me\mathfrak{M},$ $p_{eR}$ such that $\psi(p)\supset S(M, \psi^{\prime})$ (in $R$). If $\psi(p)$

$=\psi(x)$ and $\psi_{\acute{X}}=\varphi^{\prime}$ , then we have $\varphi(x)=\psi(p)\cap X\supset S(M, \psi^{\prime})\cap X\supset$

$S(M\cap X_{1}, \varphi^{\prime})$ . Thus the condition is necessary. Conversely let $\mathfrak{M}$ be
a Cauchy filter with respect to $\Psi_{X}$ and $\psi\in\Psi_{R}$ . Then there exist
$\psi^{\prime}\in\Psi_{R},$ $M^{\prime}\in \mathfrak{M}^{\prime},$ $x\in X$ such that $\varphi(x)\supset S(M^{\prime}, \varphi^{\prime})$ (in $X$ ) for $\varphi=\psi_{X}$

$\varphi^{\prime}=\psi_{\acute{X}}$ . Thus we have $\psi(x)\supset S(M^{\prime}, \psi^{\prime})$ (in $R$). Therefore the condi-
tion is also sufficient.

For simplicity, we shall write from now on $\mathfrak{M}$ for $\mathfrak{M}^{\prime}$ . Thus we
may consider, by the lemma 1, a Cauchy filter $\mathfrak{M}\ni X$ in $R$ also a
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Cauchy filter in $X$ and conversely.
LEMMA 2. Let $R$ and $\Psi_{R}$ satisfy the conditions $a$ ) $-f$). Then $\psi(p)$

$=(\psi(p)\cap X)\cup(R-X-X-\psi(p))$ for any $\psi\in\Psi_{R}$ and $p\in R$ .
LEMMA 3. Let $R$ and $\Psi_{R}$ satisfy the conditions $a$) $-f$), and $\mathfrak{M}\ni X$ be a

Canchy filter converging to a point $p\in R-X$. Then for any $\psi\in\Psi_{R}$

there exist a set $M$ of $\mathfrak{M}$ and an element $\psi^{\prime}$ of $\Psi_{R}$ such that $\psi(p)$

$\supset S(M, \psi^{\prime})$ . Therefore $\psi(p)\cap X\in \mathfrak{M}^{*}$ for any $\psi\in\Psi_{R}$

PROOF. By the condition c), there exists an element $\psi_{1}$ of $\Psi_{R}$ such
that $\psi(p)\supset s(p, \psi_{1})$ , and there exist also $\psi^{\prime}\in\Psi_{R},$ $M\in \mathfrak{M}$ and $p^{\prime}\in R$ for
this $\psi_{1}$ such that $\psi_{1}(p^{\prime})\supset S(M, \psi^{\prime})$ . Therefore $\psi(p)\supset\psi_{1}(p^{t})\supset S(M, \psi^{\prime})$ .
Thus for any $\varphi^{\prime}\in\Psi x$ such that $\varphi^{\prime}(x)\subset\psi_{X}^{f}(x)$ to each point $x\in X$, we
have $\psi(p)\cap X\supset S(M, \varphi^{\prime})$ . This shows $\psi(p)\cap X\in \mathfrak{M}^{*}$ .

LEMMA 4. Let $R$ and $\Psi_{R}$ satisfy the conditions $a$)$-f$), and $y_{i}=\mathfrak{M}_{i}^{*}\in Y_{0}$,
$\mathfrak{M}_{i}\rightarrow p_{i},$ $i=1,2$ . Then $p_{j}\in R-X$, and we have $\mathfrak{M}_{1}\sim \mathfrak{M}_{2}$ if and only if
$p_{1}=p_{2}$ .

PROOF. By the proposition 17, we may assume that $\Psi_{X}=\Psi_{\acute{X}}$, Clear-
ly $p_{i}\in S-X$ since $\mathfrak{M}_{i}$ is a non-convergent maximal filter in $X$. Let
$\mathfrak{M}_{1}\sim \mathfrak{M}_{2}$ . Then for any $\psi\in\Psi_{R}$ , we have $\psi(p_{1})\cap X\in \mathfrak{M}_{1}^{*}=\mathfrak{M}_{2}^{*}$ by lemma
3. Thus there exists $\psi^{\prime}\in\Psi_{R}$ such that $\psi(p_{1})\cap X\supset\psi^{\prime}(p_{2})\cap X$. This
shows $p_{1}=p_{2}$ by the conditions b), c) and f). Conversely let $p_{1}=p_{2}=p$

and $M_{1}\in \mathfrak{M}_{1},$ $\varphi=\psi_{X},$ $\psi\in\Psi_{R}$ . Then there exist a set $M_{2}$ of $\mathfrak{M}_{2}$ and
$\psi^{\prime}\in\Psi_{R}$ such that $\psi(p)\supset S(M_{2}, \psi^{\prime})$ by the lemma 3. If $\varphi^{\prime}=\psi_{X}^{\prime}$, then
$ M_{2}\cap\varphi^{\prime}(x)\neq\phi$ implies $\psi(p)\supset\psi^{\prime}(x)\supset\varphi^{\prime}(x)$ . On the other hand $\psi(p)$

$\cap M_{1}\neq\phi$ since $\psi(p)\cap X\in \mathfrak{M}_{I}^{*}$ . Thus $S(M_{1}, \varphi)\supset\psi(p)\cap X$. Therefore
we have $S(M_{1}, \varphi)\supset S(M_{2}, \varphi^{\prime})$ and this implies $\mathfrak{M}_{1}\sim \mathfrak{M}_{2}$ by the proposi-
tion 16.

THEOREM 10. If $\Psi_{X}$ is a basic GU of a space $X$, then the $C\cdot exlen-$

sion $Y$ with $\Psi_{Y}$ of $X$ with respect to $\Psi_{X}$ is characterized as a space $R$

with the properties $a$ )$-h$ ) of the proposition 23. That is, such a space
$R$ is mapped on $Y$ by a topological mapping leaving each point of $X$

invaliant. Moreover a space $R$ with the properties $a$ )$-g$ ) contains a
subspace which is mapped topologically onto Y.

PROOF. Suppose a space $R$ has the properties $a$ )$-g$ ). Let us define
a mapping $f:Y\rightarrow R$ as follows: For a point $x$ of $X$ we put $f(x)=x$,
and for a point $y=\mathfrak{M}^{*}$ of $Y_{0}$, we take a point $p\in S-X$ such that
$\mathfrak{M}\rightarrow p$ and put $f(y)=p$ . Such a point $p$ is determined uniquely by $y$ .
By lemma 4, this mapping $f$ is a one.to.one mapping delined on Y.
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To prove that the mapping $f$ is a topological mapping of $Y$ onto $f(Y)$ ,
we may assume that $f(Y)=R$ . We denote by $K^{*}$ the subset $(K\cap X)^{*}$

of $Y$ for any subset $K$ of $R$ . We shall show first that $f(\psi(p)^{*})=\psi(p)$

for any $\psi\in\Psi_{R}$ and $p\in R$ . For any point $x$ of $X$, we have clearly
$x\in f(\psi(p)^{*})$ if and only if $x\in\psi(p)$ . Let $p_{1}\in R-X$ and $p_{1}=f(y_{1}),$ $y_{1}=\mathfrak{M}_{1}^{*}$ .
If $p_{1}\in f(\psi(p)^{*})$ , then there exist a set $M\in 9]_{(}^{1}1$ and $\varphi^{\prime}=\psi_{X}^{\prime},$ $\psi^{\prime}e\Psi_{R}$ such
that $\psi(p)\cap X\supset S(M, \varphi^{\prime})$ since $\psi(p)\wedge x\in \mathfrak{M}_{1}^{*}$ . On the other hand, we
have $\psi^{\prime}(p_{1})\cap X\in \mathfrak{M}_{1^{*}}$ by the lemma 3. Therefore $\psi(p)\supset\psi^{t}(p_{1})\ni p_{1}$

follows from $\psi(p)\cap X\supset\psi^{\prime}(p_{1})\cap X$. Thus we have $\psi(p)\supset f(\psi(p)^{*})$ .
If $p_{I}\in\psi(p)$ , then there exists $\psi^{\prime}\in\Psi_{R}$ such that $\psi(p)\supset\psi^{\prime}(p_{1})$ . There-
fore $\psi(p)^{*}\ni y_{1}$ since $\psi(p)\cap X\supset\psi^{\prime}(p_{1})\cap X\in \mathfrak{R}l_{1}^{\star}$ . Thus we have $\psi(p)$

$\subset f(\psi(p)^{*})$ . The continuity of the mapping $f^{-1}$ is proved easily using
the relation $f^{-1}(\psi(x))=\psi(x)^{*}$ proved above. Finally we shall show that
$f$ is $\Psi_{Y}\cdot\Psi_{R}- u$-continuous. Let $\psi\in\Psi_{R}$ and $\varphi=\psi_{X}$. For any $y\in Y_{0}$ there
exists a point $x=x(y)$ such that $\psi(f(y))=\psi(x)$ . As $\varphi(x)^{*}=f^{-1}\psi(f(y))$

contains $y$ , the set $\varphi(x)^{*}$ is a nbd of $y$ . Thus $\Psi_{Y}>f^{-1}(\Psi_{R})$ and $f$ is
$\Psi_{Y}\cdot\Psi_{R}\cdot u$-continuous by proposition 5.

$CoROLLARY$ . If $\varphi_{X}^{\sim}$ and $\Psi_{X}^{\prime}$ are two equivalent basic GU’s of a
space $X$, then we obtain the unimorphic spaces by the C.extensions of $X$

with respecl to $\Psi_{X}$ and $\Psi_{X}^{\prime}$.
LEMMA 5. Let $X$ be a space with a basic GU $\Psi_{X}$ satisfying the

following conditions:
(1) $X$ is $\Psi_{X}- t$-bounded.
(2) If $i\varphi_{i}(x_{i})=X$ for any finite number of $\varphi_{i}\in\Psi_{X},$ $i=1,\cdots,$ $n$ , then

there exists an element $\varphi$ of $\Psi_{X}$ such that $\{\varphi(x);x\in X\}=\{\varphi_{i}(x_{i})$ ;
$i=1,\cdots,$ $n$ }.

Then the C-extension of $X$ with respect to $\Psi x$ is a compact space.
PROOF, We can prove easily that the C-extensioned space $Y$ of $X$

is $\Psi_{Y}$-t.bounded. Let $\mathfrak{F}$ be a non-convergent maximal $\Psi_{Y}- fi1ter$ in Y.
Then for any $y\in Y$ there exists $\psi\in\Psi_{X}$ such that $\psi(y)\not\in \mathfrak{F}$ . Let $\psi(y)$

$=\varphi(x)^{*}$ and $M_{y}=X-\varphi(x)$ . $ 1f\leftrightarrow iMyi=\phi$ for a certain finite number
of $M_{yi}=X-\varphi_{i}(x_{i})i=1,\cdots,$ $n$ , then $i\varphi_{i}(x_{i})=X$ and there exists $\varphi\in\Psi_{X}$

such that $\{\varphi(x);x\in X\}=\{\varphi_{i}(x_{i});i=1,\cdots, n\}$ . But this is impossible
for $\mathfrak{F}$ is a $\Psi_{Y}- fi1ter$ . Thus the family $\{M_{y} ; y\in Y\}$ has the finite inter.
section property. Let $\mathfrak{M}\supset\{M_{y} ; y\in Y\}$ be a maximal family of sets
expressed as $M=X-\varphi(x)$ with the finite intersection property. We
can easily prove that $\mathfrak{M}$ is a Cauchy filter with respect to $\Psi_{X}$ , and
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$\cap\{1^{-}\overline{\sqrt I};M\in \mathfrak{M}\}\subset Y_{0}$ . If $\mathfrak{M}_{1}\supset \mathfrak{M}$ is any maximal filter in $X$, then $\mathfrak{M}_{1}$

is a Cauchy filter and $y_{1}=\mathfrak{M}_{1}^{*}\in Y_{0}$ . But $1\overline{\psi}_{y_{1}}\oplus y_{I}$ and $M_{y_{1}}\in \mathfrak{M}\subset \mathfrak{M}_{1}$ in
contradiction with the proposition 21. Therefore any maximal $\Psi_{Y}$ .
filter has a limit point. Thus the space $Y$ is compact by theorem 6.

THEOREM 11. If a space $X$ with a basic GU $\Psi_{X}$ satisfies the con-
dition of the lemma 5, then the C-extension of $X$ coincides with the com-
pactification considered in \S 4.

PROOF. If $\varphi_{0}(x_{0})e\mathfrak{M}$ for a special filter $\mathfrak{M}$ , then there exist a finite
number of $\varphi_{i}(x_{i}),$ $i=1,\cdots,$ $n$ , such that $\{\varphi(x_{0})\supset^{\wedge}i(X-\varphi_{i}(x_{i}))=Me\mathfrak{R}\mathfrak{i}$ .
Let $\varphi$ be an element of $\Psi_{X}$ such that $\{\varphi(x);x\in X\}=\{\varphi_{0}(x_{0}),$ $\varphi_{1}(x_{1}),\cdots$ ,
$\varphi_{n}(x_{n})\}$ . Then we have $\varphi_{0}(x_{0})\supset S(M, \varphi)$ . This shows that any special
filter in $X$ is a Cauchy filter, and $\Psi_{R}$ of $R$ obtained by compactifica.
tion agrees with the topology of $R$ at $p\in R-X$. Thus we can check
easily that all conditions of the proposition 23 are satisfied in the
space $R$ .

\S 6 Uniformity.

6.1 Definition. An open GU $\Psi$ of a space $X$ is called a umformity
if $\Psi$ agrees with the $\Psi$-topology of $X$. A uniformity $\Psi$ with the fol-
lowing condition is called a T-uniformity:
(A) For any $\varphi_{1},$ $\varphi_{2}\in\Psi$ , there exists $\varphi\in\Psi$ such that to each point

$x\in X$ we can find two point $x_{1},$ $x_{2}$ with $\varphi(x)\subset\varphi_{1}(x_{1})\cap 7^{J}2(x_{2})$ .
A uniformity $\Psi$ is called regular or completely regular, according as
$\Psi$ satisfies the condition (B) or (C):
(B) For any $\varphi\in\Psi$ , there exists $\varphi_{1}\in\Psi$ such that to each point $x\in X$

we can find a point $x^{\prime}\in X$ and $\varphi^{t}\in\Psi$ with $\varphi(x^{\prime})\supset S(\varphi_{1}(x), \varphi^{\prime})$ .
(C) For any $\varphi\in\Psi$, there exist $\varphi_{1},$ $\varphi_{2}\in\Psi$ such that to each point $x\in X$

we can find a point $x^{\prime}$ with $\varphi(x^{\prime})\supset S(\varphi_{1}(x), \varphi_{2})$ .
Now we have the following propositions.
PROPOSITION 24. (1) $A$ GU $\Psi$ of $X$ is a basic umformily, $lf$ and
only $ lf\psi$ is cpen and agrees with the topology of $X$.

(2) $A$ filter $\mathfrak{M}$ in $X$ is a Cauchy filter with respect to a regular uni-
formity $\Psi$ of $X,$ $tf$ and only $lf\mathfrak{M}$ is a $\Psi- filter$.
PROPOSITION 25. Let $\Psi$ be any GU of $X$, and $\mathfrak{M}_{1},$ $\mathfrak{M}_{2}$ be two Cauchy

filters. The filter $\mathfrak{M}_{1}\wedge \mathfrak{M}_{2}$ , which is composed of the sets belonging to
$\mathfrak{M}_{1}$ and $\mathfrak{R}\mathfrak{i}_{2}$ simultaneously, is a $\Psi- filter$ if $\mathfrak{M}_{\hat{1}}\sim \mathfrak{M}$ ) and we have $\mathfrak{M}_{1}\sim$

$\mathfrak{M}_{2}$ if $\mathfrak{M}_{1}\wedge \mathfrak{M}_{2}$ is a Cauchy filter. Therefore, when $\Psi$ is a regular
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umformity, $9Jl_{1}\sim\backslash JJ\mathfrak{i}_{2}lf$ and only if $JJ_{(}^{\backslash }1\wedge\backslash JJ1_{2}$ is a Cauchy filter.
PROPOSITION 26. Let $\Psi$ be a regular umformity, and $\mathfrak{M}_{X}$ be a filter

containing $x$ as an element. Then a Cauchy filter $\mathfrak{M}\Psi-\omega nverges$ to
the point $x$ , if and only $\iota f\mathfrak{Y}l\sim\backslash JJ^{\backslash }(x\cdot$

PROPOSITION 27. Let $\Psi$ be a basic uniformity of a space X. Then
$\mathfrak{M}\rightarrow x$ implies $9Jl\rightarrow x$ for any Cauchy filter $JJ\mathfrak{i}$ . Therefore a Cauchy
filter $\mathfrak{M}$ has at most $on/2$ limit point $lf$ each point of $X$ is closed.

PROOF. First three propositions 24-26 are proved without any diffi-
culty. We shall prove the last proposition. For any nbd $N$ of $x$, there
exists an element $\varphi$ of $\Psi$ such that $N\supset S(x, \varphi)$ by the proposition 24.
For this $\varphi$ , we have a set $M$ of $\mathfrak{Y}l$ , a point $x^{\prime}$ and $\varphi^{\prime}\in\Psi$ such that
$\varphi(x^{\prime})\supset S(M, \varphi^{t})$ . Thus we have $\varphi(x^{\prime}’)\supset\varphi^{\prime}(x)\ni x$, since $\mathfrak{M}-x$ and
$\varphi^{\prime}(x)$ is a nbd of $x$ . Therefore, we have $N\supset\varphi(x^{\prime})\supset M\in \mathfrak{M}$ , and this
shows that $\mathfrak{M}$ converges to the point $x$ . Let $x_{1}$ be a limit point of $\mathfrak{M}$

and $\overline{x}_{1}=x_{1}$. Then we have $N\supset S(M, \varphi^{\prime})\supset\grave{1}\overline{M}\ni x_{1}$ , and hence $x\in\overline{x}_{1}$.
This shows that the point $x$ is the unique limit point of $\mathfrak{M}$ , when each
point of $X$ is closed.
6.2 Extension with respect to a uniformity. Now, let us consider
the relation between the topology of $X$ and the topology of $Y$ obtained
by the C-extension of $X$. For this purpose, we shall prove first the
following theorem.

THEOREM 11 (1) A space $X$ has a basic uniformity, $lf$ and
only if a closure of any set is closed and $\overline{x}\subset U$ for each point $x$

of any open set $U$ in $X$.
(2) A space $X$ has a basic T-uniformity, if and only if $X$ is a T-space

and $\overline{x}\subset U$ for each point $x$ of any open set $U$ in $X$.
(3) A space $X$ has a basic regular umformity, if and only if for any

$nbdN$ of any potnt $x$, there exists an open set $G$ such that $x\in G$

$\subset\overline{G}\subset N$.
(4) A space $X$ has a basic completely regular uniformity, $lf$ and only

if for any $abdN$ of any point $x_{1}$ there exists a non negative real-
valued continuous function $f$ defined on $X$ such that $f(x_{1})=0$ and
$f(x)=1$ for each point $x\not\in N$.
PROOF. (1), (2) and (3) are proved without any difficulty, for the

5) Cf. K. Morita: On the simple extension of a space with respect to a uniformity.
I. Proc. Japan Acad. 27 (1951).
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maximal open GU of $X$ gives the desired uniformity. (4): Clearly the
condition is sufficient. Let $N$ be a nbd of a point $x_{1}$ , and $N\supset S(x_{1}, \varphi_{0})$ .
We can find $\varphi_{n}$ ; $ n=1,2,\cdots$ , such that $\varphi_{n-1}(x^{\prime})\supset S(\varphi_{n}^{\prime}(x), \varphi_{n})$ for each
point $x$ with a certain point $x^{\prime}$ and $\varphi_{\acute{n}}\in\Psi$ Then using the open
covering $u_{n}=\{S(x, \varphi_{n});x\in X\}$ we can define a desired function in the
well known way.

THEOREM 12. If $\Psi_{X}$ is a umformity [T-umformity, regular or
completely regular unift rmity], then the GU $\varphi_{Y}$ of C-extension $Y$ is a
umformity [T.uniformity, regular or completely regular uniformity
respectively].

PROOF. Clearly $\Psi_{Y}$ is an open GU of the space $Y$ agreeing with the
$\Psi_{Y}$-topology of $Y$ by the proposition 22, since $\Psi_{X}$ agrees with the $\Psi_{X}$ .
topology of $X$. Thus $\Psi_{Y}$ is a uniformity by the proposition 24. The
rest is proved directly from the definitions in 6.1.

By the theorems 11 and 12, we can formulate the relations between
topologies and its C-extensions as follows:

THEOREM 13 If a space $X$ and its basic GU $\Psi x$ have the proper-
ties in the first two columns of the following table, then the C-extension
$Y$ of $X$ with respect to $\Psi_{X}$ has the properties in the third column
mentioned in the corresponding place.

space $X$ basic GU $\Psi_{X}$ C-extension
1) there exists an open nbd uniformity there exists an open nbd

basis, each point is closed basis, each point is closed
2) $T_{1}$-space T-uniformity $T_{1}$-space
3) regular space regular T-uniformity regular space
4) completely regular space completely regular completely regular space

T-uniformity

PROOF. It is sufficient to prove that each point $x$ of $X$ is closed in
the space $Y$. Let $y=\mathfrak{M}^{*}$ be a point of $\overline{x}\cap Y_{0}$ . Then for any $\varphi\in\Psi x$

there exists $\varphi^{\prime}\in\Psi_{X}$ such that $\varphi(x)\supset S(x, \varphi^{\prime})$ . If $\varphi^{t}(x^{\prime})\in \mathfrak{M}^{*}$ , then
$\varphi(x)\supset\varphi^{\prime}(x^{\prime})\in \mathfrak{M}^{*}$ since $\varphi^{\prime}(x^{\prime})^{*}$ is a nbd ofy in Y. This shows $\mathfrak{M}\rightarrow x$

in contradiction with $y\in Y_{0}$ .
THEOREM 14. If $\Psi_{X}$ is a regnlar uniformity of a space $X$, then

the C.extension $Y$ of $X$ is $\Psi_{Y}$-complete.
PROOF. Let $\mathfrak{F}$ be a $\Psi_{Y}$-filter in $Y$, and $\mathfrak{M}$ be the family of all subsets

6) Cf. K. Morita: loc. cit.
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of $X$ containing an intersection of a certain finite number of subsets
$M$ of $X$ with $M^{*}\in \mathfrak{F}$ $\mathfrak{M}$ is clearly a $\Psi_{X}- fi1ter$ . Let $\mathfrak{M}\rightarrow x_{0}$ then $\mathfrak{M}$

$\Psi_{X}\cdot converges$ to the point $x_{0}$ by the proposition 27. For any $\psi e\psi_{Y}$,
there exist $\psi^{\prime},$ $\psi^{\prime\prime}\in\Psi_{Y}$ such that $\psi(x_{0})\supset S(\psi^{\prime}(x_{0}), \psi^{\prime\prime})$ . If $\psi^{\prime\prime}(y)=$

$\psi^{\prime\prime}(x)\in \mathfrak{F}$ , then $\varphi^{\prime\prime}(x)\in \mathfrak{M}$ for $\varphi^{\prime\prime}=\psi_{X}^{\prime\prime}$ and $\psi(x_{0})\supset\psi^{\prime\prime}(x)$ . Thus $x_{0}$ is a
$\Psi_{Y}\cdot limit$ point of $\mathfrak{F}$ in Y. Let $\cap\{1\overline{M};M\in \mathfrak{M}\}\subset Y-X$. $Tl\downarrow en$ there
exists a point $y_{0}=\mathfrak{M}_{\dot{0}}^{x}\in Y-X$ such that $\mathfrak{M}\subset \mathfrak{M}_{0}$ . Let $\varphi=\psi_{X}$ and $\psi(y_{0})$

$=\varphi(x_{0})^{*}$ . Then we can find a set $M\in \mathfrak{M}_{0}$ and $\psi^{\prime}\in\Psi_{Y}$ such that $\varphi(x_{0})$

$\supset S(M, \varphi^{\prime})$ for $\varphi^{\prime}=\psi_{X}^{\prime}$ . If $\psi^{\prime}(y^{\prime})=\varphi^{\prime}(x^{\prime})^{i\backslash }’\in \mathfrak{F}$ , then $ M\cap\varphi^{t}(x^{\prime})\neq\phi$ since
$\varphi^{\prime}(x^{\prime})\in \mathfrak{M}$ . Thus $\psi(y_{0})\supset\psi^{\prime}(y^{\prime})\in \mathfrak{F}$ follows from $\varphi(x_{0})\supset\varphi^{\prime}(x^{\prime})$ . This
shows that $y_{0}$ is a $\Psi_{Y}$-limit point of $\mathfrak{F}$

THEOREM 15. Let $\Psi_{X}$ be a regular uniformity of a space X. If a
subset $X_{1}$ of $X$ is $\Psi_{X}$ -t.bounded, then $X_{1}^{*}$ is $\Psi_{Y}\cdot t$-bounded. Therefore
$X_{1}^{*}$ is conditionally compact $lf\Psi_{X}$ is basic and $X_{1}$ is a $\Psi_{X}$ -t.bounded set.

PROOF. For any $\varphi=\psi_{X},$ $\psi\in\Psi_{Y}$, there exists $\varphi_{1}\in\Psi_{X}$ satisfying the
condition (B) of 6.1 for $\varphi$ . Let $\{x_{1}^{\prime},\cdots, x_{n}^{\prime}\}$ be a finite set such that
$X_{1}\subset i\varphi_{1}(x_{i}^{\prime})$ . Then we have for each $i=1,\cdots,$ $n$ , a point $x_{i}$ and
$\varphi_{\acute{i}}\in\Psi_{X}$ such that $\varphi(x_{i})\supset S(\varphi_{1}(x_{i}^{\prime}), \varphi_{i}^{\prime})$ . Clearly, we have $X_{1}\subset i\psi(x_{j})$ .
Let $y=\mathfrak{M}^{*}$ be any point of $X_{1}^{*}-X$. Then for each $i=1,\cdots,$ $n$ , there
exists a point $x_{i}^{\prime\prime}$ such that $\varphi_{i}^{\prime}(x_{i}^{\prime\prime})\in \mathfrak{M}^{*}$ . The set $M=_{i}^{\wedge}\varphi_{i}^{\prime}(x_{i}^{u})$ intersects
with $X_{1}$ . Thus for a certain $i=1,\cdots,$ $n$ , we have $ M\cap\varphi_{1}(x_{j}^{\prime})\neq\phi$ and
$\varphi(x_{j})\supset S(\varphi_{1}(x_{j}^{\prime}), \varphi_{j}^{\prime})\supset\varphi_{j}^{\prime}(x_{j}^{l/})\in \mathfrak{M}^{*}$ . Therefore we have $X_{i^{*}}\subset i\psi(x_{j})$ .

Tokyo University of Education.
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