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On the zeros of integral functions
of integral order.

By Kihachiro ARIMA

(Received Dec. 26, 1949)

1. Let $f(z)$ be an integral function of integral order $\rho>0$ , and
$M(r)$ be its maximum modulus on the circumference $|z|=r$ . Further,
let $n(r, \alpha)$ denote the number of zeros of $ f(z)-\alpha$ for any complex $\alpha$ .
In this note we shall prove the following two theorems:

THEOREM 1. If $\log_{2}M(r)/\log r$ has the limit $\rho$ for $ r\rightarrow\infty$ , then
$\log n(r, \alpha)/\log r$ has the same limit for $ r\rightarrow\infty$ , except possibly for some
values of $\alpha$ belonging to a set of inner logarithmic capacity zero.

THEOREM 2. If $\log M(r)/r^{p}$ is bounded from zero and infinity, $so$

is $n(r, \alpha)/r^{\rho}$ , except possibly for some values of $\alpha$ belonging to a set of
inner capacity zero.

It is known that these theorems hold with an exceptional set
whose projection on any straight-line is of zero content1).

Our proof is based on the following well-known fact:
LEMMA 1. For an integral function of non-integral order, above

two theorems hold for any $\alpha$ without exception1).
2. Let $f(z)$ be meromorphic in $|z|<+\infty$ and $s$ be a positive

integer. We put

$F_{\alpha}(W)=_{k=0}^{s-1}L1[f(zt^{k})-\alpha]$ , $W=z^{s}$ and $R=r^{s}$ ,

where $t$ is a primitive s.th root of 1, so that $F_{\alpha}(W)$ is meromorphic
in $|W|<+\infty$ . Then,

LEMMA 2. There $h0lds$

$T(R, F_{\alpha})\sim sT(r,f)$

except possibly for some values of $\alpha$ belgnging to a set of inner capacity
zero.
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$T(R, F_{\alpha})$ and $T(r,f)$ denote the Nevanlinna’s characteristic func-
tions of $F_{\alpha}$ and $f$, and $p\sim q$ means $\lim_{r\rightarrow\infty}p/q=1$ .

PROOF. Let $z_{n}(n=1,2, \cdots)$ be the poles of $f(z)$ . Then, if $\alpha\neq f(z_{n}t^{k})$

$(n=1,2, \cdots ; k=0, \cdots, s-1)$ , the zeros of $F_{\alpha}(W)$ in the W-plane corres-
pond exactly to those of $ f(z)-\alpha$ in the z.plane, so that we have

(1) $n(r, \alpha,f)=n(R, 0, F_{\alpha})$ .
Hence, we have

$N(R, 0, F_{a})=\int_{0}^{R}n(R, 0, F_{\alpha})\frac{dR}{R}=s\int_{0}^{\prime}n(r, \alpha,f)\frac{dr}{r}=sN(r, \alpha,f)$ .

Since there holds
(2) $N(r, \alpha,f)\sim T(r,f)$

except for some $\alpha$ belonging to a set of inner capacity zero2), we have

(3) $N(R, O, F_{\alpha})\sim sT(r,f)$

with similar exceptions.
On the other hand, we have

$ m(R, 0, F_{\alpha})=\frac{1}{2\pi}\int_{0^{\iota t}}^{2}1o^{+}g\frac{1}{|F_{\alpha}(Re^{i\Theta})|}d\Theta$

$\leqq\frac{1}{2\pi}\sum_{k=0}^{s-1}\int_{0^{i}}^{21}1o^{+}g\frac{1}{|f(re^{i\theta}t^{k})-\alpha|}d\theta+O(1)$

$=\frac{s}{2\pi}|_{0^{ll}}^{2}1o^{+}g\frac{1}{|f(re^{i\Theta})-\alpha|}d\theta+O(1)=sm(r, \alpha,f)+O(1)$ ,

so that, by (2),

(4) $m(R, 0, F_{\alpha})=0[T(r,f)]$

with exception of a set of $\alpha$ of inner capacity zero.
By (2), (3) and (4), we have

$sT(r,f)\sim N(R, 0, F_{\alpha})\leqq T(R, F_{\alpha})$

$=N(R, 0, F_{\alpha})+m(R, 0, F_{\alpha})=sT(r,f)+0[T(r,f)]$ ,

so that $T(R, F_{\alpha})\sim sT(r,f)$ with exception of a set of $\alpha$ of inner
capacity zero, $q$ . $e$ . $d$ .
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3. If $f(z)$ is an integral function, so is $F_{\alpha}(W)$ . Putting

$M(r,f)=\max_{1z1=r}|f(z)|$ and $M(R, F_{\alpha})=\max_{IWl=R}|F_{\alpha}(W)|$ ,

we have
$T(r,f)<\log M(r,f)<3T(2r,f)$

and $T(R, F_{\alpha})<\log M(R, F_{\alpha})<3T(2R, F_{\alpha})$ .
Hence, by Lemma 2, we can state:
LEMMA 3. Let $f(z)$ be an integral function, and $F_{\alpha}(W)$ be the

function defined in $n^{o}2.$ . Then, for any $\alpha$ with exception of a set of
inner capacity zero, there exist two positive functions $h_{\alpha}(r)$ and $H_{\alpha}(r)$

bounded from zero and infinity, such that
$\log M(R, F_{\alpha})=H_{\alpha}\log M(h_{\alpha}r,f)$ .

R. C. Young proved the same with an exceptional set of $\alpha$ whose
projection on any straight-line is of zero contentl).

4. Proof of Theorems 1 and 2.
We take an integer $s$ greater than $\rho$ , so that $\rho/s$ is not an integer.

Suppose that $\lim_{\gamma\rightarrow\infty}\log_{2}M(r,f)/^{\prime}\log r=\rho$ exists, then, by Lemma 3, we
see that, for any $non\vee exceptional\alpha,\lim_{R\rightarrow\infty}\log_{2}M(R, F_{\alpha})/\log R$ exists and
$=\rho/s$ . Hence, by Lemma 1, $\lim_{R\rightarrow\infty}\log n(R, 0, F_{\alpha})/\log R$ exists and $=\rho/s$ ,

so that, by (1) in $ n^{o}2,\lim_{r\rightarrow\infty}\log n(,’, \alpha,f)/\log r=\rho$ .
Theorem 2 can be proved similarly.
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