On the zeros of integral functions of integral order.

By Kihachiro ARIMA

(Received Dec. 26, 1949)

1. Let f(z) be an integral function of integral order $\rho > 0$, and M(r) be its maximum modulus on the circumference |z| = r. Further, let $n(r, \alpha)$ denote the number of zeros of $f(z) - \alpha$ for any complex α . In this note we shall prove the following two theorems:

THEOREM 1. If $\log_2 M(r)/\log r$ has the limit ρ for $r \to \infty$, then $\log n(r,\alpha)/\log r$ has the same limit for $r \to \infty$, except possibly for some values of α belonging to a set of inner logarithmic capacity zero.

THEOREM 2. If $\log M(r)/r^{\circ}$ is bounded from zero and infinity, so is $n(r,\alpha)/r^{\circ}$, except possibly for some values of α belonging to a set of inner capacity zero.

It is known that these theorems hold with an exceptional set whose projection on any straight-line is of zero content¹⁾.

Our proof is based on the following well-known fact:

LEMMA 1. For an integral function of non-integral order, above two theorems hold for any α without exception¹⁾.

2. Let f(z) be meromorphic in $|z| < +\infty$ and s be a positive integer. We put

$$F_{\alpha}(W) = \prod_{k=0}^{s-1} \left[f(zt^k) - \alpha \right], \quad W = z^s \text{ and } R = r^s,$$

where t is a primitive s-th root of 1, so that $F_{\alpha}(W)$ is meromorphic in $|W| < +\infty$. Then,

LEMMA 2. There holds

$$T(R, F_{\alpha}) \sim s T(r, f)$$

except possibly for some values of α belonging to a set of inner capacity zero.

68 K. Arima

 $T(R, F_{\alpha})$ and T(r, f) denote the Nevanlinna's characteristic functions of F_{α} and f, and $f \sim q$ means $\lim f/q = 1$.

PROOF. Let z_n $(n=1, 2, \cdots)$ be the poles of f(z). Then, if $\alpha \neq f(z_n t^k)$ $(n=1, 2, \cdots; k=0, \cdots, s-1)$, the zeros of $F_{\alpha}(W)$ in the W-plane correspond exactly to those of $f(z)-\alpha$ in the z-plane, so that we have

(1)
$$n(r, \alpha, f) = n(R, 0, F_{\alpha}).$$

Hence, we have

$$N(R, 0, F_{\alpha}) = \int_0^R n(R, 0, F_{\alpha}) \frac{dR}{R} = s \int_0^r n(r, \alpha, f) \frac{dr}{r} = sN(r, \alpha, f).$$

Since there holds

(2)
$$N(r, \alpha, f) \sim T(r, f)$$

except for some α belonging to a set of inner capacity zero²⁾, we have

(3)
$$N(R, 0, F_{\alpha}) \sim sT(r, f)$$

with similar exceptions.

On the other hand, we have

$$egin{align} m(R,0,F_{lpha}) &= rac{1}{2\pi} \int_0^{2\pi} \log rac{1}{\mid F_{lpha}(Re^{i\Theta})\mid} d\Theta \ &\leq rac{1}{2\pi} \sum_{k=0}^{s-1} \int_0^{2\pi} \log rac{1}{\mid f(re^{i\Theta}t^k) - lpha\mid} d\theta + O(1) \ &= rac{s}{2\pi} \int_0^{2\pi} \log rac{1}{\mid f(re^{i\Theta}) - lpha\mid} d\theta + O(1) = sm(r, lpha, f) + O(1) \; , \end{align}$$

so that, by (2),

(4)
$$m(R, 0, F_{\alpha}) = o \left[T(r, f) \right]$$

with exception of a set of α of inner capacity zero.

By (2), (3) and (4), we have

$$sT(r,f) \sim N(R,0,F_{\alpha}) \leq T(R,F_{\alpha})$$

$$= N(R,0,F_{\alpha}) + m(R,0,F_{\alpha}) = sT(r,f) + o\left[T(r,f)\right],$$

so that $T(R, F_{\alpha}) \sim sT(r, f)$ with exception of a set of α of inner capacity zero, q. e. d.

3. If f(z) is an integral function, so is $F_{\alpha}(W)$. Putting $M(r,f) = \max_{|z|=r} |f(z)|$ and $M(R,F_{\alpha}) = \max_{|w|=R} |F_{\alpha}(W)|$,

we have

$$T(r,f) < \log M(r,f) < 3T(2r,f)$$

and

$$T(R, F_{\alpha}) < \log M(R, F_{\alpha}) < 3T(2R, F_{\alpha})$$
.

Hence, by Lemma 2, we can state:

LEMMA 3. Let f(z) be an integral function, and $F_{\alpha}(W)$ be the function defined in $n^{\circ}2$. Then, for any α with exception of a set of inner capacity zero, there exist two positive functions $h_{\alpha}(r)$ and $H_{\alpha}(r)$ bounded from zero and infinity, such that

$$\log M(R, F_{\alpha}) = H_{\alpha} \log M(h_{\alpha}r, f).$$

R. C. Young proved the same with an exceptional set of α whose projection on any straight-line is of zero content¹⁾.

4. Proof of Theorems 1 and 2.

We take an integer s greater than ρ , so that ρ/s is not an integer. Suppose that $\lim_{r\to\infty}\log_2 M(r,f)/\log r=\rho$ exists, then, by Lemma 3, we see that, for any non-exceptional α , $\lim_{R\to\infty}\log_2 M(R,F_\alpha)/\log R$ exists and $=\rho/s$. Hence, by Lemma 1, $\lim_{R\to\infty}\log n(R,0,F_\alpha)/\log R$ exists and $=\rho/s$, so that, by (1) in $n^\circ 2$, $\lim_{R\to\infty}\log n(r,\alpha,f)/\log r=\rho$.

Theorem 2 can be proved similarly.

References.

- 1) Borel: Leçons sur les fonctions entières, Paris, 1921. Valiron: Lectures on the general theory of integral functions, Toulouse, 1923.
 - 2) Nevanlinna: Eindeutige analytische Funktionen, Berlin, 1936.