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Introduction. In generalizing the classical notion of the radical in a
ring, different kinds of radicals have been defined by many authors, includ-
ing Azumaya $[$ 1 $]^{0)}$ Baer [2], Brown-McCoy [4], Jacobson [6], K\"othe [9],
Levitzki [10] and McCoy [12]. The main purpose of the present paper is
to give a unified treatment to these theories, though we do .llOt cl\’aim that
we cover all of them, to introduce some new kinds of radicals, and fur-
ther to study the properties of these radicals, both new and old. Our main
concern is about $p$-radical, J-radical, e-radical and M-radical, each being
a special case of C-radical; here $p$-radical and J-radical are the radicals in
the sense of McCoy $\lfloor 12$] and Jacobson [6] respectively.

In \S 1, we first introduce a general concept of C-radical, and the no-
tation $(1,R)$ which is a typical over-ring of a ring $R$ containing identity.
Further, we prove a fundamental characterization of prime ideals, and we de-
fine, by the way, the concept of irreducible ideals. In \S 2, we introduce
the notions of m-systems and m-families. A simmilar concept of m-systems
has been already defined by McCoy [12], and ours is its modification (cf.
foot-note I) ; it plays, combined with the concept of prime ideals, an im-
portant $r(\hat{y}1e$ in this paper. In \S 3, we treat semi-prime ideals, and define
the concept of $p$-radical. Further, a $fund^{l}\tilde{a}menta1$ characterization of semi-
primeness (Proposition 8) is proved and we see that a radical ideal in the
sense of Baer [2] is a semi-prime nil-ideal (and conversely) and therefore
his lower radical coincides with our $p$-radical. \S 4, is mostly devoted to
J-radical, considered as a special case of C-radical, while in \S 5, we intro-
duce a concept of e-radical, and in \S 6, we study some properties of J-radi-
cal and e-radical concerning idempotent elements. In \S 7, we define M-radical
and M-quasi-radical; the latter does not coincide with the classical notion of
radical even when minimum condition is assumed for right ideals; for this reason
we use the term quasi-radical. In \S 8, we study the correspondences bet-
ween radicals of $R$ and those of $(1,R)$ . In \S 9, we observe another typical
oVer-ring $[1,R]$ of a ring $[R]$ which contains the identity. Further, we study

(0) The numbers in brackets refer to the bibliography at the end.
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in \S 10, the correspondences between radicals of $R$ and those of a ring of
matrices over $R$ , under certain conditions. In \S 11. we observe rings satis-
fying maxImum condition for $semi- prim^{\sum_{\vee}}$ ideals, and we see that any semi-
prime ideal in such a ring is an intersection of a finite number of prime
ideals (this and other results in this section are evidently true for rings
satisfying the minimum condition for $semi-P^{1}’\cdot ime$ ideals). Finally, in Ap-
pendix some other radicals, namely, radicals in the sense of Baer [2], Fit-
ting [5], K\"othe [9] and Levitzki [10] are reviewed.

The writer is grateful to Prof. T. Nakayama and Prof. G. Azumaya for
their kind advices.

1. PRELIMINARIES
C-radicals. Definition $0$ . Let $C$ be a condition for rings; a ring

satisfying $C$ is called a C-ring, an ideal $\mathfrak{p}$ of a ring $R$ such that $R/\mathfrak{p}$ is a
C-ring is called a C-ideal, a ring which is isomorphic to a subdirect sum
of C-rings is called a semi-C-ring, an ideal which is an intersection of $C-$

ideals is called a semi-C-ideal, and the intersection of all C’-ideals of a ring
$R$ is called the C-radical of $R$ . Then evidently.

Proposition $0.1$ ) An ideal $\mathfrak{a}$ in a ring $R$ is a semi-C-ideal if and only
if $R/\mathfrak{a}$ is a semi-C-ring and 2) the C-radical of $R$ is the smallest semi-C-
ideal in $R$ .

$(1,R)$ . It is well known that we can define a ring $(1,R)$ for any ring
$R$ such that $(1,R)$ is the set of pairs $(n,a)$ with rational integers $n$ and
elements $a$ of $R$ , and $(m,a)+(n,b)=(m+n,a+b)$ . $(m,a)(n,b)=(mn,na+$

$mb+ab)$ . Further, every right (left) ideal in $R$ is also a right (left) ideal
in $(1,R)$ . (Throughout this paper, $(1,R)$ has this meaning.)

Prime ideals. Defnition 1. An ideal $\mathfrak{p}$ in a ring $R$ is called prime if
the following condition is satisfied: If $\mathfrak{a}$ and $\mathfrak{b}$ are ideals in $R$ such as $\mathfrak{a}\mathfrak{b}$

$\subseteq \mathfrak{p}$ then $\mathfrak{a}\subseteq \mathfrak{p}$ or $\mathfrak{b}\subseteq \mathfrak{p}$ . An ideal in $R$ is called semi-simple if it is an
intersection of prime ideals in $R$ .

LEMMA 1. Let $\mathfrak{p}$ be a prime ideal in a ring $R$ . Then $a$ $\epsilon \mathfrak{p}$ if $Ra$

(or $aR$) $\subseteq \mathfrak{p},$ $a$ being an element of R. (Cf. [12], \S 2, Lemma 1.)

Proof From the assumption that $Ra$ (or $aR$ ) $\subseteq \mathfrak{p}$ we have $R(a)$ (or
$(a)R)\subseteq \mathfrak{p}$ , where $(a)$ is the ideal generated by $a$ . Therefore a $\epsilon \mathfrak{p}$ .

$CoROLLARY$ . Let $\mathfrak{a}$ be a semi-prime ideai in a ring $R$ . Then $a$
.

$\epsilon \mathfrak{a}$ if
$Ra$ (or $aR$ ) $\subseteq \mathfrak{a}$ .

Proposition 1. A necessary and sufficient condition for an ideal $\mathfrak{p}$ to
be prime is that if $a$ and $b$ are two elements of $R$ such as $ R^{i_{1}}aR^{i_{2}}\delta R^{t_{\theta}}\subseteq$
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$\mathfrak{p}$ with some (whence, any) combinations of positive integer $i_{2}$ \dagger and non-
negative {

$i$ntegers $i_{1}\backslash $ and $i_{3}$ , then $a$ or $b\in \mathfrak{p}$ . (Cf. [12], Theorem 1.)

Proof. The necessity is evident in virtue of Lemma 1. Assume now
that $\mathfrak{p}$ is not prime. Then we can find two ideals $\mathfrak{a}$ and $\mathfrak{b}$ such as $\mathfrak{p}^{-}=|\supseteq \mathfrak{a}$ .
$\mathfrak{p}\sim b\mathfrak{b}$ and $\mathfrak{a}\mathfrak{b}\subseteq \mathfrak{p}$ . Let $a$ and $b$ be elements of ( $\mathfrak{j}$ and $b$ respectively which
are not contained in $\mathfrak{p}$ . Then $aRb\subseteq \mathfrak{p}$ therefore also $R^{i_{1}}aR^{i_{2}}bR^{:_{\theta}}\subseteq \mathfrak{p}$ if $i_{2}>0$ .

Irreducibl$e$ ideals. $Defi\prime lition2$ . We say that an ideal $\mathfrak{p}$ in a ring $R$

is irreducible (as an ideal) if $\mathfrak{p}$ satisfies the following condition: If $\mathfrak{p}=$

$\mathfrak{a}nb$ then $\mathfrak{p}=\mathfrak{a}$ or $\mathfrak{p}=\mathfrak{b}$ for any two ideals $\mathfrak{a}$ and $\mathfrak{b}$ in $R$

REMARK. It is clear that a prime ideal is irreducible. Further, if a
prime ideal $\mathfrak{p}$ is an intersection of a right ideal $\mathfrak{r}$ and a left ideal $\mathfrak{l},$

$\mathfrak{p}$ is
$\mathfrak{r}$ or $\mathfrak{l}$ .

2. m-systems AND m-FAMILIES.

Definition 3. A subset $M$ of a ring $R$ is called an m-syst$em$ if the fol-
lowing condition is satisfied: If $a,$

$ b\epsilon$ .t141 there exist $x,$ $y$ and 2 in $R$ , or
equivalently, in $(1,R)$ such as xayb2 $\epsilon M^{1)}$ .

Definition 4. A subfamily $\mathfrak{M}$ of ideals in a ring $R$ is called an m-
family if the following condition is satisfied: If $\mathfrak{a},b\in \mathfrak{M}$ , there exists an
ideal $c$ of $\mathfrak{M}$ such as $c\subseteq \mathfrak{a}\mathfrak{b}$ .

It is clear that the complementary set of a prime ideal $\mathfrak{p}$ is an m-system
(which does not meet $\mathfrak{p}$ ), in virtue of Proposition 1, and that the family of
ideals which are not contained in a prime ideal $\mathfrak{p}$ is an m-family (which
has no ideal contained in $\mathfrak{p}$). Conversely,

Proposilion 2. Let $M$ be an m-system in a ring $R$ which does not
meet an ideal $\mathfrak{a}$ . Then there exists an ideal $\mathfrak{p}$ such as 1) $\mathfrak{a}\subseteq \mathfrak{p},$ $\mathfrak{p}\cap M=\theta^{\underline{o}}$

)

and 2) every ideal properly containing $\mathfrak{p}$ meets $M$ ; this $\mathfrak{p}$ is necessarily
prime. (Cf. [12], \S 2, Lemma 4.) And

Proposition 3. Let $\mathfrak{M}$ be an m-family in a ring $R$ . Then an ideal
$\mathfrak{p}$ is prime, if $\mathfrak{p}$ satisfies the following conditions: 1) No ideal of $\mathfrak{M}$ is con-
tained in $\mathfrak{p}$ and 2) every ideal properly containing $\mathfrak{p}$ contains some ideals
of $\mathfrak{M}$ .

Proofs are immediate.
Definition 5. Such $\mathfrak{p}$ described in Proposition 2 (3) is called a maxi-

mal ideal with $re$spect to m-system $M$ (m-family $\mathfrak{M}$).

(1) This is a generalization of m-system introduced by McCoy [12]. This is $so_{1}newhat$

more covenient than his, as it seenis to the writer; cf. for instance Proposition 26, \S 10.
(2) $\theta$ denotes the $empty^{\iota}$ set.
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Proposition 4. Let $\mathfrak{M}$ be $\cdot anm$-family, in $a\backslash $ ring $R$ . If every ideal of
$\mathfrak{M}$ has a finite basis and if there. exists an ideal $\mathfrak{a}$ which contains no ideal
of $\mathfrak{M}$ , there exists a maximal ideal with respect to $\mathfrak{M}$ which contains $\mathfrak{a}$ .

Proof. This can be proved by Zorn’s Lemma.
Proposition 5. Let $S$ be a subring of a ring $R$ , and $\mathfrak{p}_{1}$ a prime ideal

in $S$. Then there exists a prime ideal $\mathfrak{p}$ in $R$ such as $\mathfrak{p}nS=\mathfrak{p}_{1}$ if (and
only if) there exists an ideal $\mathfrak{a}$ in $R$ such as $\mathfrak{a}nS=\mathfrak{p}_{1}$ . The last condition
is satisfied if $S$ is an ideal in $R$

Proof. Let $M$ be the complementary set of $\mathfrak{p}_{1}$ with respect to $S$. Then
we can find such $\mathfrak{p}$ by Proposition 2, because $M$ is an m-system in $S$ , whence
in $R$ . As for the $se^{-}.ond$ assertion, let $\mathfrak{a}$ be the ideal generated by $\mathfrak{p}_{I}$ in
$R$ . Then $S\mathfrak{a}S\subseteq \mathfrak{p}_{1}$ . Therefore $\mathfrak{a}nS=\mathfrak{p}_{1}$ since $\mathfrak{p}_{1}$ is a prime ideal in $S$.

REMARK 1. When $S$ is an ideal in $R$ and $\mathfrak{p}_{1}\neq S$, no ideal properly
containing $\mathfrak{p}$ has the property in our assertion.

REMARK 2. It follows that every semi-prime ideal in $S$ is an ideal in
$R$ if $S$ is an ideal in R. (Cf. Proposition $9a$ , below.)

On the other hand, it is known that
Proposition 6. If $S$ is an ideal in $R$ and $\mathfrak{p}$ is a prime ideal in $R$ , then

$\mathfrak{p}nS$ is a prime ideal in $S$ (considered as a ring). [12, \S 2, Lemma 2]
3. SEMI-PRIME IDEALS

Definition 6. A ring $R$ is called prime if the zero ideal in $R$ is
prime. A ring $R$ is called semi-prime if $R$ is isomorphic to a subdirect
sum of prime rings.

$D_{\ell j}fini\iota ion$ 7. The $p$-radical of an ideal $\mathfrak{a}$ in a ring $R$ is the inter-
section of all prime ideals containing $\mathfrak{a}$ which will be denoted by $\overline{\mathfrak{a}}$ through-
out this paper. The p-radical of $R$ is the $p$-radical of the zero ideal.

REMARK 1. It is easy to see that if a prime ideal $\mathfrak{p}$ contains an ideal
$\mathfrak{a}$ , there exists a minimal prime over-ideal of $\mathfrak{a}$ contained in $\mathfrak{p}$ . Therefore
the $p$-radical $\overline{\mathfrak{a}}$ of an ideal $\mathfrak{a}$ is the intersection of all minimal prime over-
ideal of $\mathfrak{a}$ .

REMARK 2. p-radical of an ideal $\mathfrak{a}$ is the radical of $\mathfrak{a}$ in the sense of
McCoy [12].

REMARK 3. An ideal $\mathfrak{a}$ is semi-prime if and only if $\overline{\mathfrak{a}}=\mathfrak{a}$ .
REMARK 4. Let $\mathfrak{a}$ be an ideal in a ring $R$. If $\mathfrak{a}$ is contained in the

$p$-radical of $R$ and if there exists an m-family $\mathfrak{M}$ consisting merely of pow-
ers of $\mathfrak{a}$ such that every ideal of $\mathfrak{M}$ has a finite basis, then a is nilpotent.
(This follows from Proposition 4.)
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REMARK 5. Remark 4 shows also the fact that the $p$-radical in a ring
which satisfies the maximum condition for ideals is nilpotent.

REMARK 6. The corollary to Lemma 1 (\S 1) shows also the fact that
a minimal ideal in a semi-prime ring is a simple t\’ing.

Proposition 7. If $\mathfrak{a}$ is an ideal in a ring $R$ , then $\overline{\mathfrak{a}}$ is the set of ele-
ments $r$ in $R$ such as any m-system meeting $r$ meets $\mathfrak{a}$ . (Cf. $\lfloor 12$ ], \S 3,
Definition 3.)

Proof is evident by virtue of Proposition 2.
Proposition 8. A ring $R$ is semi-prime if (and only if) $R$ contains

no non-zero nilpotent ideal.
Proof. Assume that $R$ is not semi-prime. Let $x_{1}\neq 0$ be an element

of the $p$-radical of $R$ . Begining with $x_{1}$ , we construct a sequence as follows:
If $x_{J},\cdots,$ $x_{n}$ are already defined, let $x_{\iota+1}$ be a non-zero element of the form
$y,$ $x_{l}y_{\underline{o}}x_{n}y_{3}(y_{i}\epsilon(1,R))$ if $(1,R)x_{n}(1,R)x_{\iota}(1,R)\neq 0$ . Since $x_{1}$ is an element
of the $p$-radical of $R$ , this sequence must be finite. Let $x_{m}$ be the last term.
Then the square of the ideal generated by $x_{m}$ is (0).

$CoROLLARY$ . An ideal $\mathfrak{a}$ is a radical ideal in the sense of Baer [2] if
and only if $\mathfrak{a}$ is a semi-prime nil-ideal. His lower radical is the $p$-radical;
for Baer’s radical ideal cf. Appendix.

Proposition $9a$ . An ideal $\mathfrak{a}$ in a ring $R,$ $R$ being an ideal in a ring
$R^{f}$ , is semi-prime if and only if $\mathfrak{a}$ is an intersection of $R$ and a semi-prime
ideal in $R^{t}$ . Therefore the $p$-radical of $R$ is the intersection of $R$ and the
$p$ -radical of $R^{\prime}$ .

Proof. This follows from Propositions 5 and 6.
We prove, by way, a characterization of prime ideals:
Proposition 10. A semi-prime ideal $\mathfrak{p}$ is prime if and only if $\mathfrak{p}$ is ir-

reducible, what amounts to the same that if an ideal $\mathfrak{a}$ is not only irredu-

cible but also non-prime, then $\overline{\mathfrak{a}}\neq \mathfrak{a}$ .
proof. We prove the last statement. Since $\mathfrak{a}$ is not prime, there exist

two ideals $\mathfrak{b}$ and $c$ in the same ring such as $\mathfrak{a}\subset \mathfrak{b},$ $\mathfrak{a}\subset c$ and $\mathfrak{a}\supseteq \mathfrak{b}c$ . Then
$\mathfrak{b}nc\supset \mathfrak{a}$ , for $\mathfrak{a}$ is irreducible. Therefore $\overline{\mathfrak{a}}\neq \mathfrak{a}$ because $(\mathfrak{b}nc)^{\underline{o}}\subseteq \mathfrak{a}$ .

4. $J$-RADICAL.

A ring which has a $f$aithful, irreducible right module is called primi-
tive3) .

(3) The term “ primitive” is $a\{ter$ Jacobson [6]. Primitive rings were called (right)
irreducible in Nakayama [14] and Nakayama-Azumaya [15].
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Dpfinition 8. An ideal $\mathfrak{p}$ in a ring $R$ is called $primitive^{\theta)}$ if $\dot{R}/\mathfrak{p}$ is
primitive. An ideal $\mathfrak{a}$ in a ring $R$ is called semi-primitive if $\mathfrak{a}$ is an inter-
section of primitive ideals. A ring $R$ is called semi-primitive4) if $R$ is iso-
morphic to a subdirect sum of primitive rings.

REMARK. It is we11 known that a primitive ideal is a prime ideal.
Definition 9. The J-radical of a ring $R$ is the intersection of all pri-

mitive ideals in $R$ .
REMARK. The J-radical of a ring $R$ is the radical of $R$ in the sense

of Jacobson [6]. It is well known that the J-radical of a ring $R$ contains
no idempotent element; we will say an element $e$ is idempotent if $e^{2}=e$ and
if $e\neq 0$ . Further, if we define the quasi-regularity5) as follows, the J-radi-
cal of $R$ is not only the largest quasi-regular ideal, but also the largest
right-quasi-regular right ideal: An element $a$ of $R$ is called right-quasi-
regular if there exist an element $x$ , which is called a right-quasi-inverse,
such that $a+x=ax$ , left-quasi-regularity is defined by a same way, and if
$a$ is both right- and left-quasi-regular we say that $a$ is $quasi- regular^{6)}$ ; a
(right) ideal $\mathfrak{a}$ in $R$ is called (right-) quasi-regular if every element of $\mathfrak{a}$

is (right-) quasi-regular.
It is evident that a semi-primitive ideal is a semi-prime ideal, that if $\mathfrak{a}$

is an ideal in a ring $R$ , then $R/\mathfrak{a}$ is semi-primitive if and only if $\mathfrak{a}$ is semi-
primitive and that the J-radical is the smallest semi-primitive ideal in the
same ring.

Proposition 11. Let $R$ be a semi-primitive ring. If (0) $=\mathfrak{p}n\mathfrak{a}$ with
an irreducible ideal $\mathfrak{p}$ and a non-zero ideal $\mathfrak{a}$ , then $\mathfrak{p}$ is semi-primitive.
Further, $\mathfrak{p}$ is prime.

Proof. We consider $R$ as a subdirect sum of $R/\mathfrak{p}$ and $R/\mathfrak{a}$ : Let $N$ be
the subset of $R$ the residue classes of whose elements are contained in the
J-radical of $R/\mathfrak{p}$ . Then $\Lambda^{7}$ is an ideal in $R$ . Then $1V\cap \mathfrak{a}$ is quasi-regular,
whence $\Lambda^{\Gamma}\cap \mathfrak{a}$ is (0). Therefore 1V $n(\mathfrak{a}+\mathfrak{p})=\mathfrak{p}$ , whence $N=\mathfrak{p}$ because $\mathfrak{p}$

is irreducible. This proves our first assertion. The remainder follows from
Proposition 10.

(4) A semi-primitive ring was called a semi-irreducible ring in $N\alpha kayAma\mathfrak{k}^{14]}$ . It was
called semi-simple in Jacobson [6] and others. Primitive and semi-primitive rings were first effective-
ly treated by Chevalley and applied $1$) $y$ Nakayama [13].

(5) Cf. Jacobson [5] and Perlis $|161$ .
(6) If $a$ is quasi-regular and if $x$ is a right-quasi-inverse of $a$, then $x$ is the unique both

right- and left-quasi-inverse of $a$, which is called the quasi-inverse of $a$.
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5. $e$-RADICAL.

Definition 10. A ring $R$ is call$ed$ e-primitive if every non-zero ideal
in $R$ contains a definite idempotent element, An ideal $\mathfrak{p}$ in a ring $R$ is cal-
led e-primitive if $\cdot$

$R/\mathfrak{p}$ is e-primitive. A ring $R$ is called semi-e-primitive if
$R$ is a subdirect sum of e-primitive rings. An ideal in a ring is called
semi-e-primitive if it is an intersection of e-primitive ideals.

Proposition 12. If an e-primitive ring (ideal) is a subdirect sum (an
intersection) of e-primitive rings (ideals), it coincides with one of them.
Therefore an e-primitive ring (ideal) is primitive.

$P/^{\prime}oof$. The first assertion is evident. The remainder follows from the
fact that the J-radical of a ring contains no idempotent element and from
the first assertion.

$CoROLLARy$ . A semi-e-primitive ring is a semi-primitive ring.
It is evident that if $\mathfrak{a}$ is an ideal in a ring $R$ , then $R/\mathfrak{a}$ is semi-e-pri-

mitive if and only if $\mathfrak{a}$ is semi-e-primitive.

Definilion 11. The e-radical of a ring $R$ is the intersection of all e-
primitive ideals in $R$ .

It follows from this definition that the e-radical of a ring $R$ is the smal-
lest semi-e-primitive ideal in $R$ .

Definition 12. An element $a$ of a ring $R$ is called semi-idempotent if
the ideal generated by $a^{2}-a$ in $R$ does not contain $a$ . An idcal in $R$ is
called quasi-nilpotent if it contains no semi-idempotent element.

Proposition 13. An element $a$ of a ring $R$ is semi-idempotent (if and)
only if there exists an e-primitive ideal $\mathfrak{p}$ such as $\mathfrak{p}\geq\iota z^{\underline{o}}-a,$

$\mathfrak{p}$ \S $a$ .
Proof. If $a$ is semi-idempotent, the residue class of $a$ modulo the ideal

$(a^{\underline{o}}-a)$ is an idempotent element in the residue ring $R/(a^{\wedge}-a)$ . This shows
the existence of such $\mathfrak{p}$ .

It follows that the e-radical is a quasi-nilpotent ideal. Furthermore,
Proposition 14. The e-radical $\mathfrak{e}$ is the largest quasi-nilpotent ideal.

$[$4, Corollary 3 to Theorem $1]^{7)}$

Proof. If an ideal $\mathfrak{a}$ is not contained in $\mathfrak{e}$ , then there exists an e-pri-
mitive ideal $\mathfrak{p}$ such as $\mathfrak{a}\not\subset \mathfrak{p}$ . Then $\mathfrak{a}+\mathfrak{p}/\mathfrak{p}$ contains an idempotent element
$e^{*}$ of $R/\mathfrak{p}$ . Let $a$ be an element of $\mathfrak{a}$ which is a representative of $e^{*}$ . Then
$a^{o}\sim-a\epsilon \mathfrak{p},$ a $\xi \mathfrak{p}$ .

Proposition 15. Let $R$ be a semi-e-primitive ring. If (0) $=\mathfrak{p}n\mathfrak{a}$ with

(7) This is the F-radical in the sense of Brown-McCoy [4] if we define $F(a)=(a^{2}-a)$ .
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an irreducible ideal $\mathfrak{p}$ and a non-zero ideal $a$ , then $\mathfrak{p}$ is semi-e-primitive.
Further, $\mathfrak{p}$ is prime.

Proof. This can be proved by the same way as Proposition 11.
REMARK. In this case, if $\mathfrak{p}$ is e-primitive then $\mathfrak{a}$ contains at least one

idempotent element.
We mention, by the way, the evident
Proposition 16. If every non-zero ideal in a ring $R$ contains some

idempotent elements, then $R$ is semi-e-primitive.
REMARK. It is evident that any right- or left-quasi-regular element is

also non-semi-idempotent. But the converse is not true. In fact, let $R$ be
a matrix ring of a definite dimension, say 2, over a field. Then $a=\left(\begin{array}{l}10\\11\end{array}\right)$

is neither right-nor left-quasi-regular. On the other hand, $a$ is non-semi-ide-
mpotent, because $a^{2}-a\neq 0$ and $R$ is simple. Further, there are primitive rings
which are quasi-nilpotent. This follows from the example of simple ring
having no minimal right ideal that was given by Jacobson [7], p. 237 and
the following.

LEMMA 2. Let $R$ be a simple ring, and $S$ a subring of $R$ which can
be expressed in the form $ARB,$ $A$ and $B$ being subsets of $R$ . If $SaS\neq 0$

for every non-zero element $a$ of $S$, then $S$ is a simple ring.

6. REMARKS ON $J$-RADICALS AND $e$-RADICALS CONCERNING IDEMPOTENT

ELEMENTS.

It is evident that if a ring $R$ posesses the radical $\mathfrak{m}_{0}$ in the sense of
Azumaya [1], the e-radical $\mathfrak{e}$ of $R$ is contained in $\mathfrak{m}_{0}$ . In general case we
have followings:

Definition 13. An element $a$ of a ring $R$ is called a root element of
$R$ if $aR$ contains no idempotent element 8). An ideal (right ideal, left ideal,
submodule) in $R$ consisting merely of root elements is called a root ideal
(right ideal, left ideal, submodule). The set $C$ of all root element of $R$ is
if $Ra$ called the root set of $R$ .

REMARK. An element $a$ of a ring $R$ is a root-element of $R$ if and only
contains no idempotent elenlent.

LEMMA 3. The subset $\mathfrak{M}=\{a;a+C\subseteq C\}$ of a ring $R$ is a root sub-
module of $R$ , where $C$ is the root set of $R$ .

Proof. If $a,b\in \mathfrak{M}$ , $-b+c\in C$ for. any $c\in C$, therefore $a-b+c\in C$ for
any $c\in C$. Hence $a-b\in \mathfrak{M}$

(8) Cf. Azumaya [1].
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Proposi $\dot{\hslash}on$ 17. Let $R$ be a ring. Then there exists an ideal in $R$

such that: 1) Its sum with a root right (left) ideal is again a root right
(left) ideal and 2) it is the largest among ideals which satisfy the condi-
tion 1). This ideal contains the J-radical $\mathfrak{m}$ of $R$ .

Proof. Let $\mathfrak{R}\mathfrak{i}$ be the module obtained by Lemma 3, and set $\mathfrak{m}_{1}=\{a$

$\epsilon \mathfrak{M};xay\in \mathfrak{M}$ for any $x,$ $y\in R$}. Then $\mathfrak{m}_{1}$ is the largest ideal contained
in $M$ ; therefore $\mathfrak{m}_{1}$ is the required one. As for the last assertion, let $a$ be
an element of $\mathfrak{m}$ , and $e$ an idempotent element. Set $c=e-a$ . Then ece $=$

e–eae and $eae$ is contained in the $\nearrow$-radical of $eRe$ . Therefore $(ece)eRe=$

$eRe$ . This shows that $ece$ , and therefore also $c$ is not a root element of
$R$ . Therefore $\mathfrak{m}\subseteq\iota \mathfrak{n}_{\iota}$ .

$CoROLLARY$ . Let $\iota \mathfrak{n}$ be the J-radical of a ring $R$ and $\mathfrak{r}$ a root right
(left) ideal of of $R$ . The $\iota\iota\iota+\mathfrak{r}$ is again a root right (left) ideal.

Proposition 18. Let $R$ be a ring. Then there exists an ideal in $R$

such that: 1) its sum with a root ideal is again a root ideal and 2) it is
the largest among ideals which satisfy the condition 1). This ideal is semi-
e-primitive. Therefore any sum of the e-radical with a root ideal is again
a root ideal.

Proof. The intersection of all maximal root ideals is the required ideal.
Therefore the el-e is evident.

7. $M$-RADICAL.

Definition 14. The M-radical of a ring $R$ is the intersection of all
prime ideals $\mathfrak{p}$ such that $R/\mathfrak{p}$ is simple. The M-quasi-radical of $R$ is the
intersection of all ideals $\mathfrak{a}$ such that $R/\mathfrak{a}$ is simple.

Definition 15. If $R$ is a subdirect sum of simple rings, $R$ is called
semi-simple 9)

Proposition 19. Let $M$ and $M$ be the M-radical and M-quasi-radical of
a ring $R$ respectively. The Zlf’$=M$.

Proof. Let $\mathfrak{b}$ be the intersection of all ideals $\mathfrak{a}$ such as $R/\mathfrak{a}$ is simple
and $R^{2}\subseteq \mathfrak{a}$ . Then $M^{\prime}=M\cap \mathfrak{b}$ Since $\mathfrak{b}\supseteq R^{9}\sim,\overline{\mathfrak{b}}=R$ . Therefore $M=\overline{M}=$

ua $\cap\overline{b}=\overline{M}$ ’.
$CoROLLtRY$ . The M-radical of a ring $R$ is (0) if and only if $R$ is semi-

simple and semi-prime.
REMARK 1. If $F^{\wedge}=R$ , then $M=M^{\prime}$ .
REMARK 2. If $R$ is a commutative ring, then the J-radical$=M$.

(9) Contrary to the usual usage of the term.
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We want to offer, by the way, a problem to construct a prime, simple
ring which is not primitive.

A special case (in some sense) of this problem is; “ Is there a prime,
simple, non-zero nil-ring ? “ This last problem is equivalent to the third pro-
blem of Levitzki [11].

8. CORRESPONDENCES BETWEEN RADICALS OF A RING $R$ AND THOSE OF
$(1,R)$ .

First, we observe a general case; let a ring $R$ be an ideal in a ring
$R^{\prime}$ . Then we have

Proposition $9b$ . Let $\mathfrak{p}_{1}$ be a primitive (e-primitive) ideal in $R$ . If
$\mathfrak{p}_{1}\neq R$ , every prime ideal $\mathfrak{p}$ in $R^{\prime}$ such that $\mathfrak{p}nR=\mathfrak{p}_{1}$ is a primitive (e-primitive)
ideal So, an ideal $\mathfrak{a}$ in $R$ is a (semi-) primitive ((semi-) e-primitive) ideal
in $R$ if and only if $\mathfrak{a}$ is an intersection of a (semi-) primitive) ((semi-)
e-primitive) ideal in $R$‘ and $R$ ; any $p$-radical of a semi-primitive (semi-
$\rho$-primitive) ideal in $R$ as an ideal in $R^{\prime}$ is a semi-primitive (semi-
e-primitive) ideal.

Proof. This follows immediately from Proposition 5 and Remark 1
to it.

$CoROLLARY$ . If $R$ is a semi-e-primitive ideal in $R^{\prime},$ p-,J- and e-radicals of
$R^{\prime}$ coincides with those of $R$ respectively. (As for $p$-radical, cf. Proposi-
tion $9a$).

Now, we apply this to the case $R^{\prime}=(1,R)$ .
If we observe the fact that $(1,R)/R$ is isomorphic to the ring of ra-

tional integers, we have
Proposilion 20. $R$ is a prime, semi-e-primitive ideal in $(1,R)$ .

This being said, we have, in virtue of Proposition $9a$ ,

Proposition 21. An ideal in a ring $R$ is semi-prime if and only if it
is semi-prime in $(1,R)$ .

COROLLARY 1. The $p$-radical of $R$ is the $p$-radical of $(1,R)$ .
COROLLARY 2. $R$ is semi-prime if and only if $(1,R)$ is so.
Proposition 22. The J-radical of a ring $R$ is the J-radical of $(1,R)$ .
$Proposirio;i$ 23. The e-radical of a ring $R$ is the e-radical of $(1,R)$ .
Proofs are trivial by virtue of Corollary to Proposision $9b$ .
REMARK. The same does not holds for M-radical. For example, if

$R$ is a simple ring without identity, the M-radical of $(1,R)$ is $R$ itself.
9. AN OVER-RING $[1,R]$ OF A RING $R$ .
De’nition 16. $An$ element $a$ of a ring $R$ is called an $n^{*_{\neg}}- fier^{1\ovalbox{\tt\small REJECT})}$ if $ba=ab=$

(10) The term “ n-fier” is after Brown-McCoy [3].
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$nb$ for every $b\in R$ , where $n$ is an integer.
Proposition 24. Let $\mathfrak{a}$ be an ideal in $(1,R)$ . Then. $\mathfrak{a}nR=(O)$ if and

only if a is consists merely of pairs $(n,a)$ such that -a is an n-fier in $R$ .
LEMMA 4. The totality of integers $n$ such that there exists an n-fie $r$

is an ideal in the ring 1 of integers; the non-negative generator of this
ideal is called the mode of the ring $R^{11)}$

Proofs are trivial.
Now, let $m$ be the mode of the ring $R$ , and $a$ an m-fie $r$ in $R$ . We

denote by [ $1,R\rfloor^{12)}$ the residue ring of $(1,R)$ modulo the ideal generated by
$(m,- a)$ . $[1,R]$ is an over-ring of the ring $R$ and a right (left) ideal in
$R$ is also a right (left) ideal in $[1,R]$ . Further, evidently

LEMMA 5. An intersection of a non-zero ideal in [ $ 1,R\rfloor$ and $R$ is
not (0).

Proposition 25. $[1,R]$ is a prime (semi-prime, primitive, semi-primitive,
e-primitive, semi-e-primitive) ring if and only if $R$ is so.

Proof. This is an immediate consequence of Lemma ’5.
REMMARK. As $f$ or the correspondences between radicals of $R$ and $[1,R]$ ,

cf. Propositions $9a$ and $9b$ .
10. A RING OF MATRICES OVER A RlNG $R$ .
Let $R^{*}$ be a ring of matrices of definite pimension over a ring $R$ such

as $R^{*}$ contains every matrix, of that dimension, which has only a finite num-
ber of non-zero components. Let $\mathfrak{n}$ and $\mathfrak{n}^{*}$ be the $p$-radicals of $R$ and $R^{*}$

respectively.
Proposition 26. Let $A^{*}$ be a subset of $R^{*}$ such that every matrix of

$A^{*}$ posesses at least one component which is not contained in a prime
ideal $\mathfrak{p}$ in $R$ Then there exists an m-system $J^{\prime}I^{*}$ in $R^{*}$ such as 1) $ M^{*}\supseteq$

$A^{*}$ and 2) every matrix of $M^{*}$ posesses at least one component which is
not contained in $\mathfrak{p}$ .

Proof. For every $a^{*}\epsilon A^{*}$ , we select one component $a_{\lambda\mu}$ such that
$a_{\lambda\mu}\xi \mathfrak{p}$ . Then we can find elements $b$ and $c$ in $R$ such as $ba_{\lambda\mu}c\xi \mathfrak{p}$ . Let
$b^{*}$ be a matrix whose $(1,\lambda)$ -component is $b$ and whose other components
are $0$ ; let $c^{*}$ be a matrix whose $(\mu,1)$ -component is $c$ and whose other
components are $0$ . Then $b^{*}a^{*}c^{*}$ is a matrix whose (l.l)-comonent is not
contained in $\mathfrak{p}$ and whose other components are $0$ . Therefore the union

(11) Cf. Brown-McCoy [3].
(12) [ $ 1,R\rfloor$ is uniquely determined if and only if $R$ contains no non-zero element $\tau$ such

that $xR=Rx=(O);[1,R]$ contains the identity if $R\neq(0)$ .



On tlee theory of radicals in a ring 341

$M_{1^{*}}\cup A^{*}$ is a required m-system, where $M_{1}^{*}$ denotes the set of all matrices
whose $(1,1)$ -components are not contained in $\mathfrak{p}$ and whose other components
are $0$ .

This being proved, we have evidently
Proposition 27. Any component of an arbitrary element of $\mathfrak{n}^{*}$

. is con-
tained in $\mathfrak{n}$

Proposition 28. $R^{*}$ is prime if and only if $R$ is so.
Proof. If $R$ is prime, then $R^{*}$ is so, by virtue of Proposition 26. Con-

versely, if $R$ is not prime, we can find two non-zero elements $a$ and $b$ such
as $aRb=0$ . Let $a^{*}$ and $b^{*}$ be matrices each of which has only one non-
zero component $a$ or $b$ respectively. Then clearly $a^{*}R^{*}b^{*}=0$ , whence $R^{*}$

is not prime.
$CoROLLARY$ . $R^{*}$ is semi-prime if and only if $R$ is so.
REMARK. It is easy to se $e$ that if $R^{*}$ is the set of all matrices (of a

definite dimension) each of which has only a finite number of non-zero com-
ponents, then the $p$-radical of $R^{*}$ is the set of all matrices contained in $R^{*}$

whose components are in $\mathfrak{n}$ . But in general case, such is not the case.
Similar assertions hold for J- and e-radicals. Let $\mathfrak{m}$ and $\uparrow \mathfrak{n}^{*}$ be the J-

radicals of $R$ and $R^{*}$ respectively, and let $\mathfrak{e}$ and $e^{*}$ be the e-radicals of $R$

and $R^{*}$ respectively.
Proposition 29. If an element $a^{*}$ of $R^{*}$ has a component which is not

contained in $\mathfrak{m}$ , then $a^{*}\xi \mathfrak{m}^{*}$ .
Proof. Assume that $a^{*}=(a_{\lambda\mu}),$ $a_{\lambda_{1}\mu_{1}}\not\in \mathfrak{m}$ . Then there exist two ele-

ments $b$ and $c$ in $R$ such as $ba_{\lambda_{1}\mu_{1}}c\xi \mathfrak{m}$ because $\mathfrak{m}$ is semi-prime, by Corol-
lary to Lemma 1 (\S 1). Therefore the ideal $(a^{*})$ generated by $a^{*}$ in $R^{*}$

contains an element ? whose $(1,1)$ -component is not contained in $\mathfrak{m}$ and
whose other components are $0$ . Therefore $(a^{*})$ contains a non-quasi-re-
gular element.

Proposition 30. $R^{*}$ is semi-primitive if and only if $R$ is so‘3).

Proof. It is evident by virtue of Proposition 29 that if $R$ is semi-primi-
tive, then $R^{*}$ is so. Converse follows from the fact that $a^{*}\epsilon \mathfrak{m}^{*}$ if every
component of $a^{*}$ is in $\mathfrak{m}$ and if $a^{*}$ has only a finite number of non-zero
components.

Proposition 31. If an element $a^{*}$ of $R^{*}$ has a component which is
not contained in $\mathfrak{e}$ , then $a^{*}f\mathfrak{e}^{*}$ .

(13) It is evident by virtue of the structure theorem of primitive rings (cf. Jacobson $[8\rceil$ ,
Nakayama [13], [14] and Nakayama-Azumaya [15]) that if $R$ is primitive then $R^{*}$ is primitive.
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Proof. This can be proved in the same way as Proposition 29.
Proposition 32. $R^{*}$ is e-primitive if $R$ is $so^{14)}$ .
Proof. Trivial.
$CoROLLARY$ . $R^{*}$ is semi-e-primitive if $R$ is so.

11. RINGS SATISFYING THE MAXIMUM CONDITION FOR SEMI-PRIME IDEALS.

Proposition 33. $Let^{\prime}R$ be a ring satisfying the maximum condition for
semi-prime ideals. Then any semi-prime ideal in $R$ can be represented
as an intersection of a finite number of prime ideals.

Proof. Our assertion follows easily from the fact that $\mathfrak{a}=\mathfrak{b}nc$ implies
$\overline{\mathfrak{a}}=\overline{\mathfrak{b}}n\overline{c}$ and Proposition 10.

It is evident that
Proposition 34. Let $\mathfrak{a}$ be a semi-prime ideal in a ring $R$ . If $\mathfrak{a}=\mathfrak{p}_{1}n\cdots$

$n\mathfrak{p}_{n}=\mathfrak{q}_{1}n\cdots n\mathfrak{q}_{n}$ are two irredundant representations as intersections of
prime ideals $\mathfrak{p}_{i}$ and $q_{j}$ , then we have $m=n$ , and in a suitable numbering
$\mathfrak{p}_{l}=\mathfrak{q}_{t}$ .

$CoROLLARY$ . There exists only a finite number of minimal prime over-
ideals for an ideal in a ring $R$ satisfying the maximum condition for semi-
prime ideals.

Proposition 3. Let $\mathfrak{a}$ be a semi-primitive (semi-e-primitive) ideal in a
ring $R$ satisfying the maximuni condition for semi-prime ideals. lf $\mathfrak{p}$ is a
minimal prime over-ideal of $\mathfrak{a}$ , then $\mathfrak{p}$ is semi-primitive (semi-e-primitive).

Proof. This follows from Proposition 11 (15).

APPENDIX

Baer’s radicals. Baer [2] defined radicals as follws: A radical ideal $\mathfrak{a}$

in a ring $R$ is an ideal such that 1) $\mathfrak{a}$ is a nil-ideal and 2) $R/\mathfrak{a}$ contains no
non-zero nilpotent ideal; the lower radical of $R$ is the intersection of all
radical ideals in $R$ , and the upper radical of $R$ is the union of all radical
ideals. It was already noticed (corollary to Proposition 8) that an ideal is
a radical ideal if and only if it is a semi-prime nil-ideal and that the lower
radical is the $p$-radical.

The upper radical is the radical in the sense of Fitting [5] (cf. below) ,

14) We want to offer a problem whether or not there exists a simple ring $R$ without idem-
potent element such that the matrix ring of dimension 2 over $R$ contains at least one $idem_{I)}xtent$

element. If there is not such a ring, we have that $R^{*}$ is e-primitive (if and) only if $R$ is so.
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because this last is the largest radical ideal.
Fitting’s radical Fitting [5] defined radical as follows: An element $a$

of a ring $R$ is called properly nilpotent if the ideal generated by $a$ is a nil-
ideal; the radical $N_{1}$ of $R$ is the set of all properly nilpotent elements.
Whence $N_{1}$ is the largest nil-ideal in $R$ .

It is evident that $N_{1}$ is contained in the J-radical of $R$ , that there ex-
ists such an example of $R$ that $ N_{1}\neq$ J-radical, and furthermore that the
radical in the same sense of $(1,R)$ is $N_{1}$ .

$K\ddot{o}the’ s$ radical K\"othe [9] defined radical as follows: If $\Lambda^{\gamma_{1}}$ (in the
same notation as above) of a ring $R$ contains every one-sided nil-ideal, then
$N$ is called the radical of $R$ . Whether there is a ring which has no radi-
cal in this sense is an unsolved problem.

Levitzki’s radical Levitzki [10] defined radical as follows: An ideal
or a left or right ideal, in a ring $R$ is called semi-nilpotent if every sub-
ring generated by a finite number of its elements is nilpotent; the radical
$N_{2}$ of $R$ is the sum of all semi-nilpotent ideals (and this coincides with the
sum of all one-sided semi-nilpotent ideals).

It is known that $iV_{1}\supseteq 11^{\gamma_{2}}\supseteq p$-radical and that there $exist\dot{s}$ an example
of a ring in which $N_{2}\neq p$-radical (cf. Baer [2] But the problem whether there
is a ring in which $N_{1}\neq N_{2}$ is an open question: This problem is equivalent
to the problem whether there is a ring such that 1) $R$ is a non-zero prime ring,
2) $R$ is a nil-ring, 3) $R$ has a finite number of generators and 4) any non-
zero ideal contains some power of $R$ .

Nagoya University.
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