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1. Introduction. ILet f(r) be a real measurable function defined in
the interval (027) we write f(x) € Z?(p>0) when |f(x)|? is integrable in
(027), and f(x) € L**(a>0) when [f(x)|log*(1+/°(x)) is integrable in
(027). L*! is the function class which was introduced by A. Zygmund [1].

In the theory of Fourier series, the transformations of the following
type play an important role: that is, 71 f(x)]=g(x) transforms every in-
tegrable function f(x) to another g(x), both being defined in (0,27), such
that the inequalities

(1) UTLA@IF det? < 41T @i (p>1),
and .
(12) (7A@ dv < 4] (f@)| Tog (L477(2)) do+ B,

hold where A4,, A,, B, are constants depending only on p, 2 and 4, res-
pectively.

The inequalities and (1.2) are usually proved independently.
We shall now give a general principle to deduce the inequality of the type
(12) from that of the type [(I.I). That is,

Theorem. Lot T be a transformation whick transforms every integrable
function to a wmeasurable function, both being defined in a finite interval (ab),
suck that (i)

(1.3) f@ =2/ implies |7 < |71
and

(1.4) | 7L =1T1—711,

(i) 2ke inequality

s 17U depe 44§17 ey
kolds with the constant A, satifying the inequality

(1.6) 4, = 4/(p—1)*

for all p, 1<p X 2, for some k>0, and for a constant A depending only on
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2he length of the tnterval (a, 8). Tnen we have
> ’ b .
(1.7) 1 71f Jax = 4| F(#) | log* (1+/°(x)) dx+ B,

wheve Ay and B, are constants depending only on k and 6—a.
In §2 we shall prove this theorem and in the remaining part we shall
show that, by means of this key theorem, almost all inequalities of the form

(1.2) alréady known can be deduced from the inequalies of the form [(I.1).
2. Proof of theorem. The idea of the proof is essentially due to E.

C. Titchmarsh [2] and J. Marcinkiewicz [3].
It is sufficient to prove (1.7) for f(#)=1 in (a, ) for the general

case, if we put

S(x) =f1(x) +fo(x)
=(fi(®)+1)—(—f2(») +1)
=g1(#) —g:(%),

where f,(x) =0, f,(#) <O, then g,(») =1, g;(»)=1. If inequality (1.7) is
proved for g; and g, it holds also for f(#) by (1.3) and [(1.4).
Let us define f,(x) by

£ (@) =F(2), (* € £),
‘ =0 - (xe E),
where B,={z; 2" < f(x) <2"*'}®, v=0,12,.-- Then
ﬂx)zéofv(x) =_‘§ 2y¢v(x)’ |
where ¢,(2) =/£,(x)/2"." By (,1'3)’
7171 £ BITLANE 217 ()
Integrating both sides over («, ), we have

Q170 N < 3 2+ 700 ax

® b . 5
< B2l 7Ipd st (] depi,

where 2 > 2,>1, pl v L1 Applying for every ¢,(x), we have

v v

1) We suppose that all sets which we consider in this section are contained in the interval
(ll, &)o » .
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f | T [f]l dx < ya 2 2 Ap {S’p"v(‘{x)} s,
SIT[f]l dx<A’Z} 24, {g,m(x) dx e,

=fp Loty ()i,

A’ and A" depending only on é—a. If we put p,=1+1/v, then
4 © 4 v '
(| T[fllde = A" 33 2% {{ g, (x)dz} v+1
a . y=0 a .
© 1
< A 2 Vg, (%) de+BP
y=0 a

< Af)f@)] log* f(x) drtBa

where A, and B, depend only on %4 and 6—a. This proves the theorem.

Remark. In the formulation of our theorem, we have supposed that
f(x) is defined in a finite interval (a, 4) and that 7'[ f] is a function on
the same. interval, but it is obvious from the above proof that our theorem
remains true even when T transforms a real integrable function defined on
an abstract measure-space L with a finite total measure into a real integrable
function in another space 2' with the same property as L.

3. Applications. We shall give some applications of our theorem.

3.1. Conjugate functions. Let f(x) be an integrable function in
(0,27) with period 27 and its conjugate function be

__ 1 (*fler) —fz—2)
(3.1.1) F(z) 0 TRy dt.
. As is well known, #ke inequalities
(3.12) (1@ de < B[ A1 dx (9> 1),
and |
G13)  [F @] dr £ 4fif(@)|log (1+£(x)) dw+B,

hold where A, depends only on p and AB are absolute constants.

2) From Young’s inequality, we can easily see gV/(v+1) <2a+ for a >0 and y=1, so

it follows that 2vy% {j%, a'x}‘l"‘"1 < A2vyk 5¢y dx+1[y2.
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It is also known that A, satisfies v with 2=1.

We can deduce [(3.1.3) from ((3.1.2). Since we cannot apply our ex-
trapolation theorem directly, it requxres some modifications. Let us define

fe(x) by

(3.1.4) fim ==1[f (z+ 2;;’ (t" ~D gt (x> e>0).

Then it is well known (cf. M. Riesz [3]) that
(3.1.5) Sl Fo) | dx < A”S Lf ()| dx (p>1),

with 4, in If we define the transformation by F)=/. and
apply our theorem to (3.1.5), we have

|7 e =<4 (|F ()| log A+/()) dx+5,
with absolute constants 4 and B. Making &€ —0, we have

20 __ 27v

|7 ()] dx = Af| (#)] log (1+f*(x))dx+ 5.

This method proving [(3.1.3) is quite analogous to that of Titchimarsh [2]
Moreover, if we put

@) =sup [Fu(®)],
olelnm

(3.16) (7P ax < 4 {If@1 dx (5> D),
(317 ?‘of(x) dr < A4 ng(x)I log (1+f*(x)) dx+B.

The inequality can similarly be deduced from the inequality |( 3.1.6).
3.2. Maximal theorems of Hardy-Littlewood [4]. For an integrable
function in an interval (@,4), let us put '

(3:2.1) Fr@=sp 2o [1A)] @t (@=E<0),
e x—& Je
then the following inequalities hold:

622 [rr@r a<2(GL) [ IAar a (o> D,

@23) [ @ @ <Al 1/ log (t+£@))er+B,
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wherve A and B depend only on é—a. :
In this case if we put 7{ f]=f*(#), T satishes the conditions (1.3) and
(1.4). Hence .we can.deduce the inequality from by our

theorem.

2.3. Inequalities of Marcinkiewicz for the double Fourier series.

J. Marcinkiewicz [5] has proved the following theorems: Let f(x,y) ée
an integrable function with period 2w for each variables, and the (mn)-th
partial sum of its Fourier series be Spn(fi)) =Suu(%,¥). Let us define

(2.3.1) H(# 9) = (n+1 )-*é:’o{ Smm—f }

H(z, y) =sup Hu(%,7)-

Ten
2.3.2) (CH"(59) dv & < 4§ [f=) dx dy, (p>1)
(2.3.3) f“ {H1=4(2, 5) de dy< Al §“| A) | log (1+(x)) dx+B,

(O <e<),
where A, depends only on p and A., B, depend only on e. Moreover A,
satisfies the inequality with £=2.
If we put 7] f]=H(x,»), then we can deduce from the fol-
lowing inequality :

2x 25t 25 2% .
(2.34) j; jo H(x,y) dx a’_yéAof jolf(x,y))] log® (1+/%(x)) dx+ B, where
A and B are absolute constants.

2.4. Differentiation of multiple integrals. B. Jessen, J. Marcinkiewicz
and A. Zygmund [6] proved the following theorems: ZLet f(xy,--+,x,) b&e
an integrable function on the vectangle (0,1 ; 0,1 ;---; 0,1) in the k-dimensional
Euclidean space, and let us put

@41) () =sup T% § 1o a) | dyeeediv

where I is an interval in (0,1 ;+++;0,1) containing the point (xy,---x:), then we
have the following inequalitics ;

(2.4.2) j'f f PR (g Zgpeoe) dy dtyedy
0Jo [
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1 (1 1 .
éAg’kyo Io .”j‘o | f(21 2o 0) |7 dxy Ay dz, (p> 1),

101 '
(2'4'3) .‘- j "'jof* (xjy xzv”'yx) dx, dﬂf2"'dxk
0Jo v
- 1 . -
éAkjo jo "'jo !f(xv xm“"xk) [log"(l +f2(x1, xzy"'rx)) dx,

dxy-drg+ By,

wherve A,y satisfies the inequality of A, in (1.6), and A, B, depend only
on k. :
The inequality can be deduced from by our theorem.
2.5. For an integrable function f(x), defined on (0,27) and periodic
with period 27, let us define #(x) by

@5.1) p(R)=p(x f)={[ LA TEC=D) 2D,

where F(x) =f JS(?) dt+c, c being a constant, then we have the inequality
[

(25.2) {[[w@war V7 <al[" 1 /epa)” @ =551,

where A, depends only on p. »

' This inequality was conjectured first by J. Marcinkiewicz [7] and prov-
ed by him for the special case p=2. Recently A. Zygmund [8] has prov-
ed it for the general case 1< » < 2. From his proof, we can see that 4,
satisfies the inequality with £=2. If we put 7] f]=p(x), this trans-
formation satisfies the conditions of the theorem in §1 and then we have
immediately the inequality

(2.5.3) @) dr < A[f@)| log® (L+f@))d+B.

2.6. Trigonometrical interpolation. Let Z(x) be a periodic continu-
ous function with period 27. We shall consider thetrigonometrical poly-
nomials

(2.6.1) Un(l) =a,™ /2 + 37 (™ cos 45 sin vx)
v=1

defined by the equalities ' - ] N
(2.6.2) Un(k, x‘) =k(x¢) » (i=0, _'t ]-v.-_tga"'y)
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§ 4 —i 0—2L
T 2nal.
Let us put

4
(2.6.3) Un, i(2t, ) =a™ /243 («f® cos jx+6 sin jx),

¥=1
(2.6.4) Vall ) = 33 Us, ol 2).

7 =1

If f(x) is a periodic integrable function with period 27, let us write #( f,x)

x 27
=F(x)= fof(t)a't—c, c= Sof(x)a'x.
Under these notations, the following facts are known (see [10], [11]):

If f(x) € LP(p> 1) and {n,} is a sequence of positive integers satisfying the
tnequalities 1y fn, >a>1 for £=12,---, then

(2.6.5) (07, 2~/ dx < 43 ([ f(0) 17 a,
(2.6.6) (&I 0 E 0 =V (& ) fny de < B[ f@ P 2
@6.7) [0, & ) =V (5 ) ) ae < 45 BY 1 f) P,

where the constant AP's satisfy the inequality with k=2, and B, de-
pends only on a. From these inequalities it follows

{10 (7 2)—f() | dx—0, % SNULF, )= f@) =0, U, (F. )~ (2)

almost everywhere.

Using our key-theorem, we can easily deduce the following theorem
from above.

If f(x) € L* and {n} is same as above, then

@68) ([N D) —f(2)|dx S A[[f@)] log® (1+f(2)dx+B,
269)  [(SIUNE ) —VI(F 2)/n) de < 4[] f(@)] log* (14+£1))
dx+ B,

(2.6.10) f‘ SN, (F )=V (F, 2)| dx
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S AS[f@)] log® (1 +f2(»)) dr+B,
where A and B are absolute constants and so it follows

S |Un(F, 2) IU’(F %) —f(2) (=0, and U, ! (F.x)—=f(x)

almost everywlhere.
Corresponding results for Fourier series may be found in Zygmund [12].

2.7. Walsh-Kacmarz series. Let {/,(x)} be the Walsh-Kacmarz
system in the interval (0.1), and f(x) be integrable with the Fourier ex-
pansion by the system {¢,(x)} ‘

e F®) ~3én ().
Let us put
@) S/ D=8 (=S Co (0,
®) oD (S 2)= o () = Am Sn(@) ASSD, AP = ("3,
4) Aot (f, ) =4, (,t) ch () (2=0), 4,(f, x)
= 4(x) =¢,,
() 45(f, ) =d% () =3 endln (),

where {¢,} is a system of arbitrary unit factors. Then the following ine-
qualities are known:

(6) f sup|Syr () [P dx = 4 5 AP dx (#>1),

fsup 1Se ()] do 2 4 { |f@)] log (L+77(2))dw+5,

;,, [[Zaw] as] () P = af [Sa [ @ >,

(8)

Gl @ 2 [ f@ e a4 @ias (2> 1),

®  [Is@pra<afir@r e o>,
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1

10) [ sup o2 = 3] | F@ I dx (4>1),

(11) n(” | S, (x)—a(‘)(x)l p/2a’x§AZ§: (@) P de (p>1),

J 0 \n=1 7

2 [(3IS: @—or D" @< af |fax (5>1)

o

1
5 < sup
]

Among the above inequalities (6)— (10) were proved by R.F.A.C. Paley
[7] and the others were proved by G. Sunouchi [10]. The constants A,
in (6)—(8) satisfies the inequality for £=1, and those in (9)—(13)
satisfies it for £=2, so we have immediately by our theorem the following
inequalitiés :

P S- O~ @F) s 21 e (5> D).

(7)’ j:) [éodi(x) 1/2 dx _S_AS: |f(x)l (1 +f2(1’)) dx + B,
(87 j:, |[4* (%) |dx = Aj; | f(2) llog (1 +£2(x)) dx+ B,
@ [ 1S.@)lar £ 4 1) logt(14/2@) dr+ 8,

r1

(10) | sup |69z < 4[| ()] log? (14+/*(x)) du+B,

avy (|5 BO=a@ %0 < 4l 7)) ogr (4£2(2)) dw+ B,

a=1 7

12) [ [S1Sn @) —o@ @[ ar=al | £ log? Q+r2G))dr+8,

Y

a3y [ [ sw 23 1Sue) @ 1]

dx < A[ 1)) log (L+£7(2))da+ B.
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