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Algebraic Correspondences between Algebraic Varieties

Jun-ichi IGUSA

Let $V^{n}$ be a complete Variety without multiple Point in the algebraic
geometry with the universal domain of all complex $n\dot{\iota}!mbers$ . Let le be
the smallest field of definition for $V$, then to every V-divisor $Y$ is attached
the smallest extension $k(P)$ of $k$ ove $r$ which $Y$ is rational. In view of
Zariski’s results it would not be too restrictive to assume that $P$ is a
generic Point of a suitable complete Variety $U^{m}$ without multiple Point,

which is defined over the algebraic $clo_{J^{\ovalbox{\tt\small REJECT}}}^{-.\iota re}K$ of $k$ in $k(P)$ . Thele
exists then a $(U\times V)$ -divisor $X$ , which is rational over $K$ such that

$X\cdot(P\times V)=P\times Y$

We call such a $X$ a $corresl$)$ondence$ between $U$ and $V$, since it is a correspond-
ence in the classical sense if both $U$ and $V$ are curves. In the above
connection a problem concerning V-divisors can be translated into a problem
on corresponde.nces and vice versa. The $V- divi^{Q}orY$ varies in a linearly
equivalent syste $m$ for the variable Point $P$ when and only when $X$ is of
the form

$X=Y_{1}\times V+U\times Y_{2}+(\varphi)$ ,

where $Y_{1}$ is a V-divisor, $Y_{2}$ a V-divisor and $\varphi$ a function on $U\times V$. We
call such a $X$ a correspondence znith valence xero in agreement with the case
of $c\iota 1lves$ . Since such correspondences $f_{01}\acute{m}$ a submodule in the module
of all correspondences, we can consider their residue-class module. We
call this module the module of $correspo/\iota dences$ and we denote it by $C(U, V)_{\backslash }$ .

In this paper we qhall assume that both $U$ and $V$ have non-singular
$P^{lojective}$ models, which, we hope, may not be a restriction. Let then

$\Phi_{\alpha i}(1\leqq i\leqq q_{\alpha})$

be a base of the Picard differentials of the first kind, and let

$\gamma_{\alpha i}$ (I $\leqq i\leqq 2q_{\alpha}$)

We shall use freely $t1_{1}e$ results and terminologies in Weil’s book: Foundations of algebraic
geometry, Am. Math. Soc. Colloq., Vol. 29 (1946). About the present paper the author has
received kind remarks from Prof. $W^{ei1}$ to whom he express his best thanks:
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be a base of the topo’.ogical l-cycles over rationals on $U$ and on $V$ res-
pectively for $a=l,$ $2$ . Then the peliod matrices

$\Omega_{\alpha}=(\int_{\tau_{\alpha j}}\Phi_{\alpha i})$ $(a=1,2)$

$ale$ Riemann matrices and therefore are attached to Abelian Varieties $A$

and $B$ . If we denote by $H(A, B)$ the module of homomorphisms from $A$

into B. our main result is
$C(U, V)\cong H(A, B)^{1)}$

which is wellknown in the case of CUlVeS. We note that the module
$H(A, B)$ depends $0$ nly o.i the $categories^{\underline{o})}$ of $A$ and $B$ ; hence is the same
if we take for $A$ the Albanese Variety of V and for $B$ the Picard Variety
of $V$. If we consider the “ true content “ oi our theorem, this $f_{01}mu1_{c}^{r}$tion
seems to be nataral; and the theorem itself could be proved in this form
fi om another aspect.

As far as the author is aware, “ correspondences “ between algebraic
VaIieties $ale$ studied only in the case when two $v_{a1}$ ieties.and correspond-
ences are of the same dimension. Such correspondences3) coincide with
ours if and $0_{1}l[y$ if the Varieties are culves. We were led to our corres-
pondences in our previous paper on Picard Varieties4) in a $natJral$ way
and our theorem threw a light on the theory of Picard Varieties in some
point.

Now we shall prove our theorem directly in the case when $U$ and $V$

are $no.1- c.i_{tl}gularp^{lojective}$ models; we denote them as $\rightarrow VT_{1}^{n_{1}}$ and $\rightarrow 7I_{2}^{n}\underline,$

respectively. In this case by prop. 1 in $(P)$ the generic linear section
$W_{\alpha^{1}}$ of $\rightarrow V\Gamma_{\alpha}$ is a non-singular curve on $\wedge^{\prime\nu I_{\alpha}}$ for $a=1,2$ . Since $\rightarrow W_{\alpha}$ is an
orieiitable manifold we can find by prop. 3 in $(P)$ a base

$I_{\alpha t}^{7}$ $(1\leqq i\leqq 2q_{\alpha})$

of $(2n.-1)$ -cycles over $ir_{1}tegers$ such that

1) In this paper we sltall consider these modules abstractly; they are isomorphic if they
have the same rank.

2) See A. Weil, Vari\’eI\’es Abeliennes et courbes $alg61$ )$riques$ , Act. Sc. et $Ind$ . (1948).

3) See O. Zariski, Algebraic surfaces, Erg. $d$ . Math. (1935). See also W. V. D. IIodge,
Algebraic correspondences between surfaces, Proc. London Math. Soc., Vol. 44 (1938).

4) On the $I^{\supset}icard$ varieties attached to algebraic varieties, Appendix II, to appear in the
Amer. J. of Math, We cite this paper as $(P)$ .
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$\Gamma_{\alpha i}\cdot W_{\alpha i}\sim\gamma_{\alpha i}$ $(1\leqq i\leqq 2q_{\alpha})$

over rationals for $a=1,2$ . It is wellknown that every 2 $(n_{1} +n_{2}-1)$ -di-
mensional integral cycle $X$ on $\rightarrow 1/f_{1}\times\rightarrow W_{2}$ can be written uniquely in the form

$x\sim I^{\tau_{1}}\times\rightarrow M_{2^{+r}}^{-j}tf_{1}\times I_{2}^{\prime}+\Sigma_{i,j}s_{ij}(\Gamma_{1i}\times\Gamma_{2j}^{\prime})$

over integers, where $\Gamma_{a}$ is a 2 $(n_{\alpha}-1)$ -dimensional integral cycle on $\wedge\Psi_{\alpha}$

for $a=1,2$ and where
$S=(s_{ij})$

is an integral matrix of type $(2q_{1},2q_{2})$ . We shall find the conditions under
which $X$ is “ algebraic ‘’, or $X$ is homologous to some $(\rightarrow F_{1}\times\rightarrow F_{2})$ -divisor
over integers. Here the theoly of “ harmonic integrals “ enter in. We
know that there exists an elementary transformation of the doubly $P^{lO-}$

jective space into an ordinary projective space, which is everywhere bi-
regulaI5). On the other hand the projective space can be considered in
a natural way as a K\"ahler manifold6). In this way the Varieties $\rightarrow Bf_{\alpha}$ and
$\rightarrow M_{1}\times\wedge\psi_{2}$ are K\"ahler manifolds with the K\"ahler metrics $\omega_{\alpha}$ and $\omega$ respectively.
$F_{01}$ tunately it holds thereby

$\omega=\omega_{1}+(u_{2}$ .

We shall use the same letter when we consider them as $differe\mathfrak{l}\iota tial$ forms
of degree two. It is $probab_{\perp}^{\prime}y$ wellknown and can be proved easily either
analytically or algebraically that the differential forms $\Psi$ of degree two
of the first kind on $\wedge M_{1}\times\wedge M_{2}^{\sim}$ can be written uniquely in the form

$\Psi=\Psi_{1}+\Psi_{2}+\Sigma_{i,j}a_{ij}\Phi_{\rfloor i}\wedge \mathcal{O}_{2j}$ ,

where $\Psi_{\alpha}$ is a similar form on $\rightarrow 7T_{\alpha}$ for $a=1,2$ and where $a_{ij}$ are $constat^{-}\ovalbox{\tt\small REJECT} ts$ .
Now a deep result of Lefschetz and Hodge in $(H)$ , \S .51. 2 tells us that
$X$ is algebraic if and only if we have

$\int_{X}\Psi\wedge=0\frac{\omega\wedge\cdots\wedge\omega}{n_{1}+n_{2}-2}$

for every $\Psi$ . This equation splits into the following two types of equations

5) See $v$. $d$. Waerden, Einfuhrung in die algel)raische Geometrie, Springer (1939), \S 4.
6) For this see W. V. D. Hodge, The theory and applications of harmonic integrals,

$CamI)ridge$ Univ. Press (1941). We cite this book as $(H)$ .
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$\int_{\Gamma_{\alpha}}\Psi_{\alpha}\wedge\frac{\omega_{\alpha}\wedge\cdots\frac{\wedge cv_{\alpha}}{2}}{7l_{\alpha^{-}}}=0$

$((/.=1,2)$ ,

$\Sigma_{i,j}s_{ij}\int_{1_{1i}^{\tau}}\Phi_{1tl}\wedge\frac{ClJ_{1}\wedge\cdots\wedge cu_{1}}{n_{1}-1}$

.
$\int_{1_{j}^{\tau}}\sim \mathcal{O}_{\sim^{b}},\wedge\omega,$ $\wedge\ldots$ A $\omega_{-}$) $=0$

$’\overline{n_{\sim^{\supset}}}\overline{-1}^{-}$

$(1\leqq a\leqq q_{1},1\leqq b\leqq q_{-},)$ .

The first type of cquations is precisely the
$\ovalbox{\tt\small REJECT}$

conclition $t1^{-der}$ which $I_{\alpha}^{7}$ is
algebraic for $a=1,2$ . Moreover thc secor $d$ type of $eqnatiot^{1}S$ is $tra1^{\urcorner}S^{-}$

formed into

$\Sigma_{,j},s_{j}j\int_{\gamma}\Phi_{1a}\uparrow i\int_{\gamma_{\underline{\mathfrak{n}}j}}\phi_{-b}=0$ ,

or in matrix notation

$Q_{1}S^{\ell(}l_{\sim},$ $=0$ .

We have thus $fo^{1_{-}}\iota nd$ that $X$ is algebraic if and only if $\Gamma_{\alpha}$ are algebraic
and if $S$ satisfies the above equatioll which is familiar in the classical
theory7). On the other hand if a $correspot^{\gamma_{1}}dellceX$ is homologous to zeio

over integers, $X$ can be considered as a character of the l-dimensional
integral BettI group of $\wedge^{/1T_{1}}\times_{\wedge^{\prime}}7I_{\underline{o}}$ . We can find by th. 5 in $(P)$ a $\wedge 71_{\alpha}^{-}$ -divisor
$Y_{\alpha}$ , which induces the same character on thc l-dimensional integral Betti

$gro\iota^{\ovalbox{\tt\small REJECT}_{t}}p$ of $\rightarrow 71_{\alpha}$ as $X$ for $a=1,2$ . Since the Betti group under consideration
of $\wedge^{\prime lT_{1}}\times\rightarrow j\dagger I_{-}$, is a direct sum of that of $\rightarrow W_{\alpha}$ , we see that $X$ is linearly equiva-
lent to $Y_{1}\times\rightarrow\gamma/T_{-},+\rightarrow lI_{1}\times Y_{2}$ ; or wh $t$ is thes ame thir $gX$ is of valence $zelO$ .
We have $th\iota|s$ proved that the mapping

$X\rightarrow S$

induces an isomorphism of $C(\rightarrow 7f_{1}, \rightarrow 7\Gamma_{\supset,\sim})$ onto thc modulc of the integral
matrix $S$ satisfying thc previous equation. Howcver it is wcllknown that

6) This reas $()n$ ing is due cssentially to Lefschetz. Sce $1_{1}$ is $1$ )$\tau enl()rable$ paper; $C()rrespond-$

ences between algebraic curves, Ann. of Math., Vol. 28 (1927).
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the module of such $S$ is isomorphic with the module of “ multiplications “

$(\Lambda, L)$ of $\Omega_{1}$ to $\Omega_{2}$ , where $\Lambda$ is a complex matrix of type $(q_{2}q_{1})$ and $L$

an integral matrix of type $(2q_{2},2q_{1})$ satisfying the equation

$\Lambda\Omega_{1}=\Omega_{2}L$ .
Finally the module of such multiplications is isomorphic with the module
$H(A, B)$ . Therefore we have an isomorphism between $C(-Mi, \rightarrow M_{2})$ and
$H(A, B)$ .

In the general case if $U$ and $V$ are birationally. $equivalen\grave{t}$ with $\wedge\Psi_{1}$

and $\rightarrow M_{2}$ respectively, we see readily th-.t

$C(U, V)\cong C(\rightarrow M_{1}, \wedge M_{2})$ .
On the other hand since $H(A, B)$ is itself birationally invariant, we have
our theorem. It would be interesting to obtain a generalizatioq of this
result for arbitary characteristic and for complete Varieties, which contaill
no $m^{1}\iota 1tiple$ Subvarieties of lower dimension by one.

Ky\^oto University.
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