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On the Differentability of the Unitary Representation
of the Lie Group.
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(Received. Oct. 30, 1950)

J. von Neumann ([2]) has introduced the notion of the differentiablity
of the matric group, and given a method of forming Lie algebras of matric
Lie groups. This notion was extended further by K. Yosida ([4]) to the
group embedded in tne normed ring.

In this paper, we shall utilize this idea to form the Lie algebra for
the Lie group $G$ embdeded in the unitary group with the weak topology
in the Hilbert space $\mathfrak{H}$ . Namely we shall show that the set of all opera-
tors

$\tilde{A}_{\sigma(\ell)}=\lim_{t\rightarrow 0}\frac{U_{\sigma(t)}-E}{t}$

for each one-parameter subgroup $\sigma(t)$ of $G$ , forms the Lie algebra of $G$

in a sense to be specified in Theorem 2, 3 below. There is diffculty on
the domains of these operators. We shall show that they have a meet
everywhere dense in $\mathfrak{H}$ . By the way we obtain a new proof of M. H.
Stone’s theorem on the one-parameter group of unitary operators.

In \S 1 we give a r\’esum\’e of the theory of simple unitary structures,

which we shall need in the proof of the fact that the domains of $\tilde{A}_{\sigma(t)}$

have an everywhere dense meet. \S 2 contains a lemma $tMt$ every element
of $L^{1}(G)$ is approximable by $C^{2}$ functions. Our main results are Theorem
2, 3 in \S 3.

\S 1.

Let $G$ be a Lie group. We denote elements of $G$ with $\sigma,$ $\tau,\cdots$ . On
the other hand let $\mathfrak{H}$ be a Hilbert space, $x,$ $ y\ldots$ elements of $\mathfrak{H}$ . A conti-
nuous unitary representation of $G$ is. a continuous homomorphic mapping
$\sigma\rightarrow U_{\sigma}$ into the grovp of all unitary operators defined on $\mathfrak{H}$ and provided
with the weak topology. The pair $\{U_{\circ,\mathfrak{H}}\}$ is then called a unitary structure
of $G$ . If $\{U_{\circ’ \mathfrak{H}}\}$ is a unitary structure of $G$ and if, moreover, there is
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such an element $x$ of $\mathfrak{H}$ that closed linear manifold $\{U_{\sigma}x;\sigma\epsilon G\}^{c1}$ coinci-
des with $\mathfrak{H}$ , then the triple { $U_{\circ’ \mathfrak{H},x\}}$ is said to be a simple unitary
structure of $G$ . Two such structure $\{U_{\sigma}, \mathfrak{H}, x\},$ $\{U_{\sigma}, \mathfrak{H}^{\prime}, x^{\prime}\}$ are said to
be unitary-equivalent, if there is a unitary mapping $T$ of $\mathfrak{H}$ on $\mathfrak{H}^{t}$ such
that $T^{-1}U_{\sigma^{\prime}}T=U_{\sigma}$ and $Tx=x^{\prime 1)}$

Let { $U_{\circ’ \mathfrak{H},x\}}$ be a simple unitary structure of $G$ . The function $\varphi(\sigma)=$

$(U_{\sigma}x, x)$ , (where the round brackets mean the inner product on $\mathfrak{H}$), is
called the $character\dot{a}stic$ function of $\{U_{\sigma}, \mathfrak{H}, x\}$ It is a positive definite
function on $G,$ $i$ . $e$ . for any finite number of elements $\sigma_{i}(i=1,2,\cdots, n)$ of
$G$ and arbitrary complex numbers $ai(i=1,2,\cdots, n)$ , the inequality

$\sum_{i,j=1}^{n}\varphi(\sigma_{i}\sigma_{j}^{-1})a_{i}\overline{a}_{j}\underline{>}0$

always holds. Conversely if any positive definite function $\varphi(\sigma)$ on $G$ is
given, there is a simple unitary structure, determined up to the unitary-
equivalence, whose characteristic function is $\varphi(\sigma)$ . According to [7], this
simple unitary structure may be obtained as follows.

Let $\mu$ be a left-invariant Haar measure of $G,$ $L^{1}(G)$ the Banach space
consisting of all $\mu$-integrable complex-valued functions $x(\sigma),$ $ y(\sigma),\cdots$ on
$G$ , where the norm of $x(\sigma)$ is defined by $\Vert x\Vert_{1}=\int_{G}|x(\sigma)|d\mu(\sigma)$ . $L^{1}(G)$

becomes a group algebras of $G$ , if we define the convolution $x\times y(\sigma)=$

$\int_{G}x(\tau)y(\tau^{-1}\sigma)d\mu(\tau)$ for any $x(\sigma),$ $p’(\sigma)\epsilon 1_{z}^{1}(G)$ . Next we define a $*$ -ope-
ration for any element $x(\sigma)\epsilon L^{1}(G)$ with $x^{*}(\sigma)=\overline{x(\sigma}^{-1})\Delta(\sigma)$ , where $\overline{x(\sigma}$)
is the conjugate complex of $x(\sigma)$ and $\Delta(\sigma)$ is the density of the right-
invariant Haar measure of $G$ . Then we have clearly $||x^{*}||_{1}=||x||_{1},$ $(X^{*})^{*}$

$=x$ and $(x\times y)^{*}=y^{*}\times x^{*}$ .
Now put

$1_{\varphi}=\{x;x\epsilon L^{1}(G),\int_{G}\varphi(\sigma)x^{*}\times x(\sigma)d\mu(\sigma)=0\}$ . $(1\cdot 1)$

$1_{\varphi}$ is a closed left-ideal of $L^{1}(G)$ and 1eft-G-invariant, so that we can
consider the factor space $L^{1}(G)/I_{\varphi}$ of $L^{1}(G)$ by $1_{\varphi}$ . We denote the point
of this factor space containing $x(\sigma)$ with $[x]$ , and introduce the inner
product in this factor space by

$([x], [y])_{\varphi}=\int_{G}\varphi(\sigma)y^{*}\times x(\sigma)d\mu(\sigma)$

for any $[x],$ $[y]\epsilon L^{1}(G)/1_{\varphi}$ .

We obtain the Hilbert space $\mathfrak{H}_{\varphi}$ by completing $L^{1}(G)/1_{\varphi}$ with respect to
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the norm defined from this inner product. For each element $\tau$ of $G$ we
defin $e$ the mapping

$U_{\tau}[x(\sigma)]=[x(\tau^{-1}\cdot\sigma)]$ for any $[x]\epsilon L^{1}(G)/I_{\varphi}$ .

As $I_{\varphi}$ is left-G-invariant, this mapping is determined independently of the
choice of a representative of the class $[x]$ . On the other hand, $L^{1}(G)/1_{l}$

is everywhere dense in $\mathfrak{H}_{\varphi}$ , so this mapping can be uniquely extended
to a unitary operator on $\mathfrak{H}_{\varphi}$ , which we denote again with $U_{\tau}$ . Thus we
obtain a unitary structure $\{U_{\tau}, \mathfrak{H}_{\varphi}\}$ of $G$ .

Let $f_{(}V_{\alpha}$ } be a complete system of the neighbourhoods of the identity
of $G$ , and $C_{V\alpha}(\sigma)$ the characteristic function of the set $V_{\alpha}$ . Put $d_{\alpha}(\sigma)=$

$C_{r_{\alpha}}(\sigma)/\mu(V_{\alpha}),$ $e_{\alpha}=d_{\alpha}^{\star}\times d_{\alpha}$ , then $\{[e_{\alpha}(\sigma)]\}$ is strongly convergent to an
element $x_{\varphi}$ in $\mathfrak{H}_{\varphi}$ . It is proved that $\{U_{\tau}, \mathfrak{H}_{\mathcal{P}}, x_{\varphi}\}$ is then a simple unitary
structure whose characteristic function is $\varphi(\sigma)$ .

\S 2.

Let $G$ be a Lie group of the dimension $n,$ $L$ the Lie algebra of $G$ ,
and $\{A_{1}, A_{2},\cdots A_{n}\}$ a basis of $L$ . Using this basis we can introduce a cubic
neighbourhood $V_{\alpha}=\{\tau;\tau=\exp(\Sigma_{i}^{n_{\Leftarrow 1}}x_{i}A_{i}), |x^{i}|<a, i=1,2,\cdots, n\}$ of the

identity $e$ of $G$ , and a canonical system of coordinates $C_{e}$ on $\nabla_{\alpha}$ such that
$\tau=\exp(\Sigma_{i1}^{n_{=}}x_{i}A_{i})$ has $x_{i}$ as its i-th coordinate by $C_{e}$ , where $\exp(\Sigma_{i}^{n_{=1}}x_{i}A_{i})$

is the element $\sigma(1)$ of the one-parameter subgroup $\sigma(t)$ having $\Sigma_{i}^{n_{=1}}x_{i}A$:
as its tangent vector. By translation we introduce th $e$ system of coordi-
nates $C_{\sigma}$ for the neighbourhood $ V_{\alpha}\cdot\sigma$ of each point $\sigma$ of $G,$ $i$ . $e$ . the i-th
coordinate of $\tau=\exp(\Sigma_{l1}^{n_{=}}x_{i}A_{i})\cdot\sigma$ in $ V_{\alpha}\cdot\sigma$ is $x_{i}(i=1,2,\cdots, n)$ .

Definition 1. A complex-valued continuons function $x(\sigma)$ defined on an
open set $W$ contained in some cubic set $V_{\alpha}\cdot\sigma_{0}$ is said $C^{r}$ function on $W$, if
the expression $x(\sigma)=X(x_{1}, x_{2},\cdots, x_{n})$ by $t/le$ system of cordinates $C_{\sigma_{0}}$ is $C^{r}$

function ou $W$.
Defrnition 2. A curve $\sigma(t)$ in $G$ , dejined continuously with respect to

real parameter $tsuc/l$ that $\sigma(0)=e$ , is colled a $C^{1}$ curve, when each coordin-
ates of the elements of $\sigma(t)$ by $C_{e}$ is conlinuously $differentiab[e$ for $t$ at $t=0$ .

Following properties of $C^{1}$ functions are earily verified from these
definitions.

(1) Let $x(\sigma)$ be a $C^{1}$ function on $W$. For any $C^{1}$ curve $\sigma(t)$
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$\lim(x(\sigma^{-1}(t)\cdot\sigma)-x(\sigma))\underline{1}=x_{\sigma(t)}(\sigma)$

$t\rightarrow 0t$

exists and is a continuous function of $\sigma$ on $W$ Let the i-th coordinates
of $\sigma$ and $\sigma(t)$ by $C_{\sigma_{0}}$ be $x_{i}$ and $y_{i}(\sigma(t))$ respectively, then the i-th coordinate
of $\sigma^{-1}(t)\cdot\sigma$ is $\varphi,(x_{1}, x_{2},\cdots, x_{n} ; y_{1}(\sigma(t)), y_{2}(\sigma(t)),\cdots,y_{n}(\sigma(t)))$ , where $\varphi_{i}$

$(x_{1},x_{2},\cdots, x_{n} ; \gamma_{1},y_{2},\cdots,y_{n})$ is analytic for $x_{1},$ $x_{2},\cdots,$ $x_{n}$ and $y_{1},y_{2},\cdots,y_{n}$ . Then
$x_{\sigma(\alpha)}(\sigma)$ is given by

$x_{\sigma(\alpha)}(\sigma)=\Sigma_{i}^{n_{j=1}},[\frac{\partial x}{\partial x_{i}}]_{xk=xk}\cdot[\frac{\partial\varphi_{i}}{\partial y}]_{xk=xk,ye=0}[\frac{dy_{j}}{dt}]_{t=0}$

,
$(2 \cdot 1)$

(2) Let $\sigma_{k}(t)$ be the one-parameter subgroup of $G$ befined by $\sigma_{k}(t)$

$=\exp(tA_{k})$ . If $x_{\sigma_{k}}(\sigma)$ exists and is contiunous when $\sigma$ is in $W$ for each
$\sigma_{k}(t)(k=1,2, .., n),$ $x(\sigma)$ is a $C^{1}$ function. And for any $C^{1}$ curve $\sigma(t)$ ,
$x_{\sigma(t)}(\sigma)$ is given by a linear combination of $x_{\sigma k(t)}(\sigma)(k=1,2,\cdots, n)$ with
constant coefficients.

(3) To each $C^{1}$ curve $\sigma(t)$ corresponds one and only one one-para-
meter subgroup $\sigma^{t}(t)$ such that $x_{\sigma(t)}(\sigma)=x_{\sigma’(t)}(\sigma)$ for every $C^{1}$ function
$x(\sigma)$ on $W$.

(4) Let $\sigma(t)$ be a $C^{1}$ curve and $x(\sigma)$ a $C^{1}$ function on $W$ with the

expression $X(x_{1}, x_{2},\cdots, x_{n})$ by $C_{\sigma_{0}}$ , and let $\frac{\partial X}{\partial x_{i}}$ be $\mathfrak{t}^{bounded}f$ on $W$ for

each $i$ . Then there are a positive unmber $t_{0}$ and a neighbourhood of the

identity $V_{1}$ both independent of $\sigma_{0}$ , such that $\frac{d}{dt}x(\sigma^{-1}(t)\cdot\sigma)$ is continuous

and bounded with respect to $\sigma$ and $t$ when $\sigma\epsilon V_{1}\sigma_{0}$ , and $|t|<t_{0}$ .
Lemma 1. Any function contained in $L^{1}(G)$ can be approximated as

closely as we wislt $ wit/\iota$ respect to the topology in $L^{1}(G)$ by $a$ C’ function on
$G^{v}$ contained in $L^{1}(G)$ .

Proof. Following Chevalley, we shall say a function $x(\sigma)$ defined on
$G$ to have the property $P$ on $ W\cdot\sigma$ , when it is continuous and zero out of
some cubic set $ W\cdot\sigma$ of some point $\sigma$. A function in $L^{1}(G)$ can be suf-
ficiently closely approximated by functions $e$ach of which is continuous
and and zero out of some compact set. Such a function can be expressed
as a finite sum of functions with the property $P$. Moreover, from Dieu-
donn\’e’s lemma ([1] p. 163) the cubic set $W$ can be taken sufficiently
small. Let $V_{\beta}$ be a cubic neighbourhood of $e$ , of breadth $\beta,$

$i$ . $e$ . th $e$

absolute value of the i-th coordinate $x_{i}(\sigma)$ by $C_{e}$ of an element $\sigma$ contained
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in $V_{\beta}$ is smaller than $\beta$ for $i=1,2,\cdots,$ $n$ , and take $\beta$ such as $V^{\underline{o}}CV_{\alpha}$

Then we have only to prove that for a function $x(\sigma)$ with the property
$P$ on $V_{q}\cdot\sigma_{0}$ of some point $\sigma_{0}$ , there is a series of C’ functions converging
to $x(\sigma)$ .

Let $X(x_{1}, x_{2},\cdots, x_{n})$ be the expression of $x(\sigma)$ by the system of co-
ordinates $C_{\sigma_{0}}$ , and put

$x_{m}(\sigma)=X_{m}(x_{1}, x_{2},\cdots x_{n})$

$=(\frac{m}{2})^{n}\int_{x_{1}^{1}-\frac{1}{m}}^{x+\frac{1}{\iota}}\int_{x^{2}-\frac{1}{n}}^{x_{2}+\frac{1}{m}}\cdots\cdots\int_{x^{n+\frac{1}{m}}}^{x_{n-\frac{1}{m}}}X(x_{1},x_{2},\cdots,x_{n})dx_{1}\cdot dx_{2}\cdots dx_{n}$

if $\sigma\epsilon V_{\alpha-\frac{1}{m}}.\cdot\sigma_{0}$

$x_{m}(\sigma)=0$ if $\sigma fV_{\alpha-\frac{1}{m}}\cdot\sigma_{0}$

for $m\geq m_{0}={\rm Min}\{m;a-\beta>\frac{4}{m}\}$ , where $V_{\alpha-\frac{1}{m}}$ is a cubic set of $e$ , of brea-

dth $a-\frac{1}{m}$ . Then $x_{m}(\sigma)$ has clearly th $e$ property $P$ on $V_{\theta+\frac{1}{m}}\cdot\sigma_{0}=\{\sigma\cdot\sigma_{0}$ ;

$\sigma\epsilon G,$ $|x_{i}(\sigma)|<\beta+\frac{1}{m}$ by $C_{e}i=1,2,\cdots,$ $n\}$ . Moreover, $\frac{\partial X_{7’\prime}}{\partial x_{i}}$ exists in $V_{\alpha-\frac{1}{m}}$

$\sigma_{0}$ and has the property $P$ on $V_{3+\frac{1}{m}}\cdot\sigma_{0}$ for each $i$. If $\sigma\not\in V_{\alpha-\frac{1}{m}}\cdot\sigma$ , we hav $e$

$x_{n\sigma(\ell)}(\sigma)=0$ for any $C^{1}$ curve $\sigma(t)$ . Thus $x_{m}(\sigma)$ is a $C^{1}$ function on $G$ and
has the property $P$ on $V_{+\frac{1}{m}}\cdot\sigma_{0}$ . As $X(x_{1}, x_{2},\cdots, x_{n})$ is uniformly conti-

nuous on the closure $V_{s+^{\underline{1}}}\cdot\sigma_{0},$ there. is a positive number $\delta(\epsilon)$ for any
$m$

given positive unmber $\epsilon$ such that from $|x_{i}-x_{i}^{\prime}|<\delta(\epsilon),$ $i=1,2,\cdots,$ $n$ , follows

$|X(x_{1}, x_{2},\cdots x_{n},)-X(x_{1}^{\prime}, x_{2} {}^{t}x_{n}^{\prime})|<e$ .

Take $m$ larger than $m_{1}={\rm Max}\{m_{0},\frac{1}{\delta(\vee e)}\}$ , then there is for each $\sigma$ in $\overline{V_{\iota}},+\frac{1}{m}$

$\sigma_{0}$ a point with the i-th coordinate $\hat{\sigma}_{i}(i=1,2,\cdots, n)$ such that $|x_{i}(\sigma)-\xi_{i}|$

$<\frac{1}{m}<\delta(\epsilon)$ and $X_{m}(x_{1}, x_{2},\cdots, x_{n})=X(\xi_{1}, \xi_{2},\cdots, \xi_{n})$ from the mean-value

theorem of the integral. Therefore

$|X_{m}(x_{1}, x_{2},\cdots, x_{n})-X(x_{1}, x_{2},\cdots,x_{n})|=|X(\xi_{1}\xi_{2},\cdots,\xi_{n})-X(x_{1}, x_{2},\cdots, x_{n})|<\epsilon$

if $\sigma\epsilon V_{\beta+\frac{1}{m}}\cdot\sigma_{0}$
,
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and if $\sigma\not\in\overline{V}_{\beta+\frac{1}{m}}\cdot\sigma_{0}$ , we have $x_{m}(\sigma)=x(\sigma)=0$ . So the series $\{x_{m}(\sigma)\}$

converges uniformly to $x(\sigma)$ and

$\int_{G}|x(\sigma)-x_{m}(\sigma)|d\mu(\sigma)=\int_{\overline{\gamma}_{\hslash+\frac{1}{m}\cdot\sigma_{0}}}|x(\sigma)-x_{m}(\sigma)|d\mu(\sigma)\leq\in\mu(V_{\alpha})$

Thus the sequence $\{x(\sigma), m\geq m_{1}\}$ converges to $z^{j}(\sigma)$ with respect to the
topology in $L^{1}(G)$ . As it is already known that $x_{m}(\sigma)$ has the property
$P$ on $V_{\alpha+^{\underline{1}}}\sigma_{0}$ , we can apply this method to each $x_{rn}(\sigma)$ and obtain a

$ m\iota$

series $\{x_{m,m},(\sigma)\}$ of $C^{2}$ functions converging to $x.(\sigma)$ . $x_{m,m},(\sigma)$ is indeed
a $C^{2}$ function as it is easily seen from (2 $\cdot$ 1) above. In taking a suitable
partial sequence $\{x_{m,m’(m)}(\sigma)\}$ of $\{x_{m.m}(\sigma)\}$ we obtain finally a series
converging to $x(\sigma),$ $q$ . $e$ . $d$ .

Defnition 3. Le $tV_{\theta}$ be a cubic set defned as above, $x(\sigma),$ $ y(\sigma),\cdots$

functions in $L^{1}(G)$ witlz tiie property $P$ on $V_{\theta}\cdot\sigma_{0},$ $ V_{(},.\tau_{0},\cdot$ . for some $\sigma_{0},$ $\tau_{0},\cdots in$

$G,$ $\{x_{m,m’(m)}(\sigma)\},$ $\{y_{n,n^{\prime}(n)}(\sigma)\},\cdots the$ series of $C^{2}$ funchons inL $(G)$ converging
to $x(\sigma),y(a),\cdots respectively$ We form linear combinalions witlz complex coef-
ficients of a finite number of such functions $x_{m,m(m)}(\sigma),$ $ y_{n,n’(n)}(\sigma),\cdots$ . $T/\iota e$

set of all these linear combinations forms a G-invariant linear mamfold in
$L^{1}(G)$ wkich is everywhere dense in $L^{1}(G)$ . We dmote this linear mamfold
with $D(G)$ .

$\S_{J}3$ .
The following lemma is important to deduce our main results.
Lemma 2. Let $\{U_{\sigma},\mathfrak{H}, x_{0}\}$ be a simple unitary structure of a Lie group

G. The set of all elements $x$ of $\mathfrak{H}$ for $ whicf\iota$

$\lim\underline{1}(U_{\sigma(t)}-E)x$
$(3 \cdot 1)$

$t\rightarrow 0t$

exists for any $C^{1}$ curve, is a linear mamfold $everyw1\iota ere$ dense in $L^{1}(G)$ .
Proof. As it was lemarked in \S 1, the given simple unitary structure

$\{U_{\sigma},\mathfrak{H}, x_{0}\}$ may be considered as $\{U_{\sigma},\mathfrak{H}_{\mathcal{P}}^{\chi_{\varphi}}\},$
$\varphi$ being a positive definite

function on $G$ . This remark will be often used in the sequel.
We use the same notation as in \S 1 and \S 2. Thas $I_{\varphi}$ is the left-

ideal defined by $(1 \cdot 1),$ $\mathfrak{H}_{\varphi}$ the Hilbelt space obtained by completion of
$L^{1}(G)/I,\wedge,$ . Let $\mathfrak{D}_{\varphi}$ be the image of $D(G)$ by the natural mapping of
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$L^{2}(G)$ onto $L^{1}(G)/1_{\varphi}$ . As $D(G)$ is dense in $L^{1}(G),$ $\mathfrak{D}_{\varphi}$ is everywhere
dense in $\mathfrak{H}_{p}$ . An element $[x]$ of $\mathfrak{D}_{\varphi}$ has the form $\sum_{i\Leftrightarrow 1^{(/}i}^{k}[x_{i}(\sigma)]$ , where
$x_{i}(\sigma)$ is a $C^{2}$ function with the property $P$ on some cubic set $V_{9^{\prime}}\cdot\sigma_{0}\backslash $

’ of
a breadth $\beta$

‘ such as $\beta<\beta^{\prime}<a$, constructed as in Definition 3. So our
lemma will be proved, if we show the existence of (3 $\cdot$ 1) for such $[x_{i}(\sigma)]$

and an arbitrary $C^{1}$ curve $\sigma(t)$ . Now we have

$\lim_{t\rightarrow 0}\div\{(U_{\sigma(\ell)}[x_{i_{J}}^{\neg}, [y])_{\varphi}-([x_{i}], [y])_{\varphi}\}$

$=\lim_{t\rightarrow 0}\int_{G}\int_{G}\varphi(\sigma^{-1}\cdot\tau)\overline{y}(\sigma)\frac{x_{i}(\sigma^{-1}(t)\cdot\tau)-x_{i}(\tau)}{t}d\mu(\sigma)d\mu(\tau)$

for any $[y]\epsilon L^{1}(G)/1_{\varphi}$ . $(3 \cdot 2)$

Take $t_{1}$ so small that if $|t|<t_{1}$ and $\tau\xi\overline{V}_{\alpha}\cdot\sigma_{0}$ , we have $\sigma^{-1}(t)\cdot’\xi V_{\beta}\cdot\sigma_{0}$ and
$x_{:}(\sigma^{-1}(t)\cdot\tau)-x(\tau)=0$ . Accordingly, the domain $G$ of the integral with
respect to $\tau$ in the right hand side of $(3\cdot 2)$ can be replaced by $\overline{V}_{\alpha}\cdot\sigma$.
Next, from the property (4) in $\S 2,\frac{d}{dt}x_{i}(\sigma^{-J}(t)\cdot\tau)$ is continuous for $\tau$ and

$t$ and is bounded when $\tau$ is in some cubic set $t^{V_{1}}\cdot\tau_{0}$ and $t$ in an interval
$|t|<t_{0}$ , where $\tau_{0}$ is an arbitrary element of $G$ and $t_{0}$ and $V_{1}$ may be both
taken independently of $\tau_{0}$ . As $\overline{V}_{\alpha}\cdot\sigma_{0}$ is compact, it can be covered by a

finite number of cubic sets $V_{1\overline{i}}(i=1.’ 2,\cdots,k)$ . Therefore $\frac{d}{dt}x_{i}(\sigma^{-1}(t)\cdot\sigma)$

is bounded when $\tau$ is in $\overline{V}_{\alpha}\cdot\sigma_{0}$ and $t$ in the interval $|t|<t_{0}$ . On the
other hand, if $|t|<{\rm Min}\{t_{0}, t_{1}\}$ we have

$\frac{x_{l}(\sigma^{-1}(t)\cdot\tau)-x_{i}(\tau)}{t}=[\frac{d}{dt}x_{i}(\sigma^{-1}(t)\cdot\tau)]_{\ell=\mathfrak{k}}$ $(3 \cdot 3)$

where $0\leq\xi\leq t$ or $t\leq\xi\underline{<}0$ . Then the left hand side of $(3 \cdot 3)$ is bound $ed$

when $\tau$ is in $\overline{V_{\alpha}}\cdot\sigma_{0}$ and $t$ in the interval $|t|>{\rm Min}\{t_{0}, t_{1}\}$ and converges
to $x_{lq(t)}(\tau)$ when $t$ tends to zero. Consequently we can apply Lebegue’s
theorem, and we have

$\lim\{(U_{\sigma(t)}[x_{i}],y)_{\varphi}-([x], [y]_{\varphi}\}\underline{1}$

$t\rightarrow 0t$
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$=\int_{\overline{V}\alpha\cdot\sigma_{0}}\int_{G}\varphi(\sigma^{-1}*\tau)\overline{\gamma}(\sigma)\cdot x_{i\sigma(t’}(\tau)d\mu(\sigma)\cdot d\mu(\tau)$

$=\int_{G}\int_{G}\varphi(\sigma^{-1}\cdot\tau)\overline{y}(\sigma)\cdot x_{i\sigma(t)}(\tau)d\mu(\sigma)d\mu(\tau)$

$=([x_{i\sigma(t)}], [y])_{\varphi}$ for any $[\gamma]\epsilon L^{1}(G)/1_{\varphi}$

Then the strong convergence of $(3 \cdot 1)$ is concluded from

$]i_{t\rightarrow 0}m\Vert\frac{U_{\sigma(l)}[x_{i}]-\lceil x_{i}]}{t}\Vert^{2_{\varphi}}=\int_{G}\int_{G}\varphi(\sigma^{-1}\cdot\tau)\overline{x}_{i\sigma(t)}(\sigma)\cdot x_{i\circ(t)}(\tau)d\mu(\sigma)d\mu(\tau)$

$=\Vert[x_{i\sigma(t)}]||_{\varphi}^{2}$

which is proved in the same way as sbove. On the other hand, it is
almost evident that the set of all elements of $\mathfrak{H}_{\varphi}$ , for which $(3 \cdot)$ exist
for any $C^{1}$ curve $\sigma(t)$ , forms a linear manifold, $q$ . $e$ . $d$ .

Definition 4. Let $\{U_{\sigma}, \mathfrak{H}x\}$ be a simple unitary structure of a Lie
group $G$ , and $\sigma(t)$ a C’ curve on G. We define the operator $A_{\sigma(t)}wit/lt/le$

domain $\mathfrak{D}_{\varphi}in\mathfrak{H}$ , by

$\lim(U_{\sigma(t)}[x]-[x])\underline{1}=A_{\sigma(l)}[x]$ for any $[x]\epsilon \mathfrak{D}_{\varphi}$ (3.4)
$t\rightarrow 0t$

Clearly $\sqrt{}\overline{-1}A_{\sigma(t)}$ is a Hermitian operator, and from the properties
(2) and (3) in \S 2 follows that $A_{\sigma(t)}$ is a linear combination of $A_{\sigma i(t)}$

$(i=1,2,\cdots, n)$ with real constant coefficients where $\sigma_{i}(t)(i=1,2,\cdots, n)$ are
linearly independet $n$ one-parameter subgroups of $G$ defined in \S 2, and
that there is one and only one one-parameter subgroup $\sigma(t)$ with $A_{\sigma(t)}=$

$A_{\sigma r(t)}$ .
Lemma 3. Let { $U_{\sigma},$ $\mathfrak{H}x!$ be a simple unitary structure of $G$ , and

$\sigma(t)$ $a$ one-parameter subgroup of G. If $\lim_{t\rightarrow 0}\frac{1}{t}(U_{\sigma(\ell)}x-x)$ exists we put

$\lim_{t\rightarrow 0}\frac{1}{t}(U_{\sigma(t)}x-x)=\tilde{A}_{\sigma(t)}x$ .

Tlzen $V\overline{-1}A_{\sigma(\ell)}$ is a self-adjoint operator, with a domain containing $\cdot$

$\mathfrak{D}_{\varphi}$ in
$\mathfrak{H}_{\varphi}$ , and is the one and only one self-adfoint extension of $\sqrt{}\overline{-1}A_{\sigma(t)}$ defined
in Definilion 4. Moreover, let $E_{\lambda}(-\infty\leq\lambda\leq\infty)$ be the resolulion of the

identity of $\sqrt{}\overline{-1}\tilde{A}_{\sigma(t)}$ , the $n$ the one-parameter group $U_{\sigma(t)}$ can be expresscd
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$by$

$U_{\sigma(t)}=\int_{-\infty}^{\infty}e^{\sqrt{-1}}dE_{\lambda}\lambda t$

Proof. (1) When the weak limit w- $\lim_{t\rightarrow 0}(U_{\sigma(t)}x-x)$ exists, we denote
it temporarily with $\tilde{A}_{a(t)}x$ . As $\sigma(t)$ is a one-parameter subgroup of $G$ , we
have

$w-\lim_{t\rightarrow t}\frac{1}{t-t}(U_{\sigma(\ell;_{)}}-U_{\sigma(t)})x=\tilde{A}_{\sigma(t)}U_{\sigma(t)}x=U_{\sigma(\ell)}\tilde{A}_{\sigma(\ell)}x$

and

$(U_{\sigma(t)}x-x,y)_{\varphi}=\int_{0}^{t}(U_{\sigma(t)}\tilde{A}_{\sigma(\ell)}x, y)_{\varphi}dt$

$=(\int_{0}^{t}U_{\sigma(\ell)}\tilde{A}xdt,y)_{\varphi}$

for any $ y\epsilon \mathfrak{H}\varphi$

’

so

$U_{\sigma(t)}x-x=\int_{0}^{t}U_{\sigma(t)}\tilde{A}_{\sigma(t)}xdt$.

Therefore from the weak convergence of $\div(U_{\sigma(t)}x-x)$ follows the st-

rong convergence. and the both definitions of $\tilde{A}_{\sigma(t)}$ coincide.
(2) $\sqrt{}\overline{-1}A_{\sigma\iota\ell)}$ and $\sqrt{}\overline{-1}\tilde{A}_{\sigma(t)}$ are both Hermitian operators, and

th $e$ latter is an extension of the former. Let $V$ and $\tilde{V}$ be the Cayley
transforms of $\sqrt{}\overline{-1}A_{\sigma(t)}$ and $\sqrt{}\overline{-1}A^{\sim_{\circ(t)}}$ ‘respectively. These are both
partially isometric operators and the latter is an extension of the former.
We shall show that $V$ has an everywhere dense linear manifold as the
domain. For the purpose we have only to show that the set $\{(\sqrt{-1}$

$(A_{\sigma(t)}+E)x;x\epsilon \mathfrak{D}_{\varphi}\}$ is dense in $\mathfrak{H}_{\mathcal{P}}$ , because the graph of $V$ is $\{\{\sqrt{-1}$

$(A_{\sigma(t)}+E)x,$ $\sqrt{-1}(A_{\sigma(t)}-E)x$ } $;x\epsilon \mathfrak{D}_{\varphi}$ }. Assume it were not true, then
there would be a non-zero element $y$ of $\mathfrak{H}_{\mathcal{P}}$ such that

$(\sqrt{-1}(A_{\sigma(t)}+E)x,y)_{\varphi}=0$ for any $x\epsilon \mathfrak{D}_{\varphi}$ .

Then from $U_{\sigma(\ell)}A_{\sigma(\ell)}x=A_{\sigma(t)}U_{\sigma(t)}x$, we obtain the differential equation
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$\frac{d}{dt}(U_{\sigma t)}x,y)_{\varphi}=-(U_{\sigma(t)}x,y)_{\varphi}$ .

The solution of this differential equation under the initial condition $(U_{\sigma(0)}$

$x,y)_{\varphi}=(x,y)_{\varphi}$ is given by

$(U_{\sigma(t)}x,y)_{\varphi}=e^{-t}(x,y)_{\varphi}$

Now, the absolute value of $(U_{\sigma(t)}x,y)_{\varphi}$ is bounded by $||x||_{\varphi}\cdot||y||_{\varphi}$ , and on
the other hand th $e$ absolute value $e^{\rightarrow t}(x,y)_{\varphi}$ is not bounded, which is a
contradiction. Thus $V$ has an everywhere dense domain, and has the

unique unitary extension $V^{\approx}$

, which is also the unique unitary extension of
V.

(3) Let $A^{\approx}$ be the self-adjoint operator having $ V\approx$ as its Cayley trans-
form, then $\sqrt{-1}A_{\sigma(t)}$ and $\sqrt{-1}\tilde{A}_{\sigma(t)}$ both have the unique self-adjoint
extension $A^{\approx}$. Let $E_{\lambda}(-\infty\leq\lambda\leq\infty)$ be the resolution of the identity of $ A^{\wedge}\sim$

and consider the one-parameter group of unitary operators defined by

$V_{t}=\int_{-\infty}^{\infty}e^{\sqrt{-1}}dE_{\lambda}\lambda t$

Then $U_{\sigma(t)}V_{s}x=V_{s}U_{\sigma(t)}x$ for any $t$ and $s$ , when $x$ is contained in the do-
main of $\tilde{A}_{\sigma(t)}$ , and for such $x$ we have

$\Vert U_{\sigma(\ell)}x-V_{t}x||_{\varphi}=||\Sigma_{i}^{n_{=1}}(U_{\sigma(\frac{n+1-l}{n})\frac{i-1}{n}t^{-U_{\sigma(\frac{n-\prime}{n}t)\frac{i}{n}t}}}VV)x||_{\varphi}$

$=||\Sigma_{i1}^{n_{=}}U_{\sigma(\frac{n-i}{n}t)\frac{i-1}{n}t}V(U_{\sigma(\frac{t}{n})}-V_{\frac{t}{n}})x||_{\varphi}$

$\leq\Sigma_{u1}^{n_{=}}||(U_{\sigma(\frac{t}{n})}-V_{\frac{t}{n}})x||_{\varphi}$

$=t||(\frac{U_{\sigma(\frac{t}{n})}-V_{\frac{t}{n}}}{\frac{t}{n}})X||_{\varphi}$ . $(3\cdot 5)$

On the other hand, we have

$\lim_{t\rightarrow 0}\div(V_{t}-E)x=\lim_{t\rightarrow 0}\int_{-\infty}^{\infty}\frac{e^{V_{-1\lambda t}^{-}}-1}{t}dE_{\lambda}x=A^{\approx}x$,

and
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$\lim(U_{\sigma(t)}-E)x=\tilde{A}_{\sigma(t)}x=A^{\approx}x\underline{1}$

$t\rightarrow 0t$

whence we can conclude $U_{\sigma(t)}x=V_{t}x$ for $x$ in the domain of $A_{\sigma(t)}x$ , as the
right hand side of (3.5) tends to zero as $n$ $te$nds to $\infty^{4)}$ Finally, since
the domain of $\tilde{A}_{\sigma(t)}$ is dense in $\mathfrak{H},$ $U_{\sigma(t)}$ coincides with $V_{t}$ , and $\sqrt{-1}\tilde{A}_{\sigma(t)}$

with $A^{\approx}$. $q$. $e$ . $d$ .
From this lemma, we obtain a new proof of a theorem of M. H.

Stone.
Theorem 1. (M. H. Stone) For a unitary structure $\{U_{t}, \mathfrak{H}\}$ of the

additive group $R^{1}$ of all real numbers provi&d with $t/le$ usual topology, lhere
is a resolution of the $identit_{i}\nu E_{\lambda}(-\infty\underline{<}\lambda\leq\infty)$ so that $U_{\ell}$ is expressed by

$U_{t}=\int_{-\infty}^{\infty}e^{\sqrt{-1}}dE_{\lambda}\lambda t$

Proof. We define a closed linear manifold $\mathfrak{H}^{(\eta)}$ of $\mathfrak{H}$ for any trans-
finite number $\eta$ by the method of transfinite induction as follows. For
$\eta=1$ , we take an arbitrary non-zero element $x^{(1)}$ of $\mathfrak{H}$ , and define $\mathfrak{H}^{(1)}=$

$\{U_{t}x^{(1)} ;-\infty<+<\infty\}^{cl}$ Let a closed linear manifold $\mathfrak{H}^{(\eta^{\prime})}$ be defined for
every $\eta^{\prime}<\eta$ . If the orthogonal complement of $\Sigma_{\eta<\eta}\oplus \mathfrak{H}(\eta^{\prime})$ is not zero, we
take and arbitrary non-zero element $x^{(\eta)}$ of this complement and define $\mathfrak{H}^{(\eta)}$

$=\{U_{t}x^{(\eta)} ; -\infty<t<\infty\}^{cl}$ . Otherwise we put $\mathfrak{H}^{(\eta)}=0$ . Then we have
$\sum_{\eta}\oplus \mathfrak{H}^{(\eta)}=\mathfrak{H}$ , and if $\eta\neq\eta^{\prime}\mathfrak{H}^{(\eta)}$ and $\mathfrak{H}^{(\eta^{\prime})}$ are always mutually orthogonal.

Let $E^{t\eta}$ ‘ be the projection defined by the closed linear manifold $\mathfrak{H}^{(\eta)}$ .
The contraction of $U_{t}$ on $\mathfrak{H}^{(\eta)}$ is then $U_{t}E^{(\eta)}$ and $\$ U_{t}E^{t\eta)},$ $\mathfrak{H},$ $x$ } is a
simple unitary structure of $R^{1}$ for each $\eta$ Therefore by Lemma 3 there
is a resolution of the identity $E_{\lambda}^{(\eta)}$ in the Hilbert space $\mathfrak{H}^{(\eta)}$ so that $U_{t}E^{(\eta)}$

is expressed by

$U_{t}E^{(\eta)}=\int_{-\infty}^{\infty}e^{t^{/_{-1\lambda t}}}dE_{\lambda}^{t\eta)}-$ , for each $\eta$ ,

Clearly $\sum_{\eta}E_{\lambda}^{(\eta)}=E_{\lambda}(-\infty<\lambda<\infty)$ is a resolution of the identity in $\mathfrak{H}$ and

$U_{t}=\Sigma_{\eta}U_{t}E=\int_{-\infty}^{\infty}e^{\bigwedge_{-1\lambda t}}dE_{\lambda}$ ,

thus th $e$ theorem is proved.
Now, let $L$ be the Lie algebra of $G$ . We take the same basis $\{A_{1}$ ,

$A_{2},\cdots,$ $A_{n}$ } as used in \S 2. Then an element $A$ of $L$ is $e$xpressed uniquely
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as the linear combination $a_{1}A_{1}+a_{2}A_{2}+\cdots+a_{n}A_{n}$ , and there are $C^{1}$ curves $\sigma(t)$

satisfying

$[\frac{d}{dt}x_{i}(\sigma(t))]_{t=0}=a_{i}$ , $i=1,2,\cdots n$ , $(3\cdot 6)$

among which there is the unique one-parameter subgroup, $i$ . $e$ . the one-
parameter subgroup defined by $\sigma(t)=\exp(t\Sigma_{t}^{n_{=1}}a_{i}A_{i})$ .

Let $\{U_{\circ’ \mathfrak{H}X}\varphi’\varphi\}$ be a simple unitary structure of $G,$ $L_{\varphi}$ the set. of all
operators $A_{\sigma(t)}$ defined in Definition 3. To every element $A$ of $L$ take a
$C^{1}$ curve $\sigma(t)$ satisfying $(3 \cdot 6)$ and let $A_{\sigma(\ell)}$ be the operator defined by
$(3 \cdot 4)$ . Then according to $A_{\sigma(t)}[x]=[x_{\sigma(t)}]$ and the property (3) in \S 2,
the operator $A_{\sigma(t)}$ is determined uniquely by $A$ alone. We shall write
$\Phi(A)=A_{\sigma(t)}$ . $\Phi$ is a mapping of $L$ into $L_{\varphi}$ . This mapping $\Phi$ is clearly
linear, $i$ . $e.$ , if $A,$ $B\epsilon L$ and $a$ is a real number, we have $\Phi(aA)=a\Phi(A)$

and $\Phi(A+B)=\Phi(A)+\Phi(B)$ . We shall now prove that $\Phi([A, B])=$

$[\mathcal{O}(A), \Phi(B)]$ . Let $\sigma(t)$ and $\tau(t)$ be one-parameter subgroups defined by
$\Phi(A)=A_{\sigma(t)}$ and $\Phi(B)=A_{\tau(t)}$ respectively. Put $\rho(t)=\sigma^{-1}(\sqrt{t})\cdot\tau^{-1}$

$(\sqrt{t})\cdot\sigma(\sqrt{t})\cdot\tau(\sqrt{t})$ when $t\underline{>}O$ and $’\rho(t)=\sigma(\sqrt{-t})\cdot\tau(\sqrt{-t})\cdot\sigma^{-1}$

$\sqrt{-t})\cdot\tau^{-1}(\sqrt{-t})$ when $t<0$ , then $\rho(t)$ is a $C^{1}$ curve and $[A, B]=\sum_{i\Rightarrow 1}^{n}$

$[\frac{d}{dt}x_{i}(\rho(t))]_{t=0}A_{i}$ . On the other hand we have

$A_{\rho(t)}[x]=tI\rightarrow i+m0\div U_{\sigma(\bigwedge_{t})}^{-1}U_{\tau(\bigwedge_{t})}^{-I}\{(U_{\sigma(\bigwedge_{t})}-E)(U_{\tau^{(\sqrt{t})}}-E)$

$-(U_{\tau(\sqrt{t})}-E)(U_{\sigma(t^{\prime-}/t)}-E)\}[x]$ for any $[x]\epsilon \mathfrak{D}_{\varphi}$

and, as $x(\sigma)\epsilon D(G)$ is a $C^{2}$ function, we have

$\div(U_{\sigma(V_{t}^{\prime-})}-E)(U_{\tau(\bigwedge_{t})}-E)[x]=\frac{1}{\sqrt{t}}(U_{\sigma(\iota_{t})}/--E)U_{\tau(\zeta_{2})}A_{\tau(t)}[x]$

$=U_{\sigma(\xi_{1})}A_{\sigma(t)}U_{\tau(g_{2)}}A_{\sigma(t)}[x]=[x_{\tau(t)\sigma(l)}(\sigma^{-1}(\backslash \prime 1)\cdot\tau^{-1}(\xi_{2})\cdot\sigma)]$ ,

where $\sqrt{t}\geq\xi_{1}\geq 0$ and $\sqrt{t}\geq\xi_{2}\underline{>}0$ , and $\xi_{2}$ is dependent of $[x]$ , and $\xi_{1}$

of $[x]$ and $\xi_{2}$. As $x_{\tau(t)\sigma(t)}(\sigma)$ is continuous and zero out of some compact
set $K$, for $|t|<t_{0}$ with sufficiently small $t_{0},$ $x_{\tau(t)\sigma(t)}(\sigma^{-1}(\xi_{1})\cdot\tau^{-i}(\xi_{2})\cdot\sigma)$ is
always zero out of some compact set cotaining $K$ Therefore, it is boun-
$ded$ for $|t|<t_{0}$ and, when $t$ tends to zero, converges to $x_{\tau(t)\sigma(t)}(\sigma)$ . Hence
we obtain
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$\lim\underline{1}(U_{\sigma(\ell)}-E)(U_{\tau(t)}-E)[x]=A_{\sigma(t)}A_{\tau(t)}[x]$ ,
$t\rightarrow+0t$

in the same way as in the proof of Lemma 2. Thus we have

$A_{\rho(t)}[x]=A_{\sigma(t)}A_{\tau(t)}[x]-A_{\tau(\ell)}A_{\sigma(t)}[x]$ for any $[x]\epsilon \mathfrak{D}_{\varphi}$ ,

and

$\Phi([A, B])=[\Phi(A), \Phi(B)]$ .

Let $N$ be the kernel of the representation given by the simple uni-
tary structure $\{U_{\sigma}, \mathfrak{H}x\}$ of $G$ . It is now easily seen that $L_{\varphi}$ is isomor-
phic to the Lie algebra of the factor group $G/N$.

Definitio$n5$ . Let $A$ be an operator of a Hilbert space $\mathfrak{H}$ such that
$\sqrt{-1}A$ is a Hermilian operator with $t/le$ unique self-adjoint extension. $T/\iota en$

we denofe with $\tilde{A}tf_{l}e$ extension of $A$ such that $\sqrt{-1}\tilde{A}$ is the self-adjoint
extension of $\sqrt{-1}A$ .

We have already used this notation in defining $A_{\sigma(t)}^{\sim}$ in Lemma 3.
In the sequel, the operation $\sim$ for operators has always this meaning.

The following Theorem 2 is a direct consequence from what we hav $e$

$e$ xplained above.
$T/\iota eorem2$ . Let $\{U_{\sigma}, \mathfrak{H}_{\mathcal{P}}, x_{\varphi}\}$ be a simple unitary structure of a Lie

group G. $T/lent/\iota e$ set $\tilde{L}_{\varphi}$ of all operators defined by

$\lim_{t\rightarrow 0}\div(U_{\sigma(\ell)}-E)=A_{\sigma(\ell)}^{\sim}$

for each one-parameter subgroup $\sigma(t)$ of $G$ forms a Lie algebra, a homo-
morpkic image of $t/le$ Lie algebra $L$ of $G$ over $ th\ell$ field of real numbers, the
addition and tthe formation of lke commutator being defined as follows.

$A_{\sigma(t)}^{\sim}+A_{T(\ell)}^{\sim}=(A_{\sigma(t)}+A_{\tau C)})^{\sim}$ ,

$[\tilde{A_{\sigma(t)}},\tilde{A}_{\tau(t)}]=[A_{\sigma(\ell)}, A_{\tau(\ell)}]^{\sim}$

$Th_{\vee}^{\rho}orem3$ . Let $\{U_{\sigma}, \mathfrak{H}\}$ be any (possibly not simple) unitary structure

of G. By the same definition as for $\tilde{L}_{\varphi}$ in $Theore\prime\prime l2$ , we obtain a homo-
$morp/lic$ image $\tilde{L}$ of $L$ and if the representation given by $\{U_{\sigma},\mathfrak{H}\}$ is faithfiil,
$\tilde{L}$ is isomorpltic to $L$ .

Proof. Just as in the proo $f$ of Theorem 1, we express $\mathfrak{H}$ as a direct
sum $\mathfrak{H}=\sum_{\eta}\oplus \mathfrak{H}^{r\eta)},$ $\mathfrak{H}^{(\backslash )}=\{U_{\sigma}x^{(\eta)},\sigma\epsilon G\}^{cl}$ and we denote with $E^{(T^{)}}$ the pro-
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jection defined by $\mathfrak{H}^{(\eta)}$ . $\{U_{\sigma}E^{(\eta)}, \mathfrak{H}^{(\eta)}, x^{(\eta)}\}$ is then a simple unitary structute
for each $\eta$ We have

$\lim_{t\rightarrow 0}\div(U_{\sigma(t)}-E)x=\lim_{t\rightarrow 0}\Sigma_{\eta}(U_{\sigma(t)}E^{(\eta)}-E^{(\eta)})x$

$=\Sigma_{\eta}A_{\sigma(t)}^{\sim}E^{(\eta)}x$,

and, if $\eta$ is fixed, the set all $\tilde{A}_{\sigma_{\backslash }t)}E^{(\eta)}$ for each one-parameter subgroup $\sigma(t)$

of $G$ is a homomorphic image of the Lie algebra $L$ of $G$ . So the set $\tilde{L}$

of all operators $A_{\sigma(t)}=\Sigma_{\eta}A_{\sigma(t)}L^{(\eta)}\backslash $ for each one-parameter subgroup $\sigma(t)$ in
$G$ is also a homomorphic image of $L$ . If the representation $\sigma U_{\sigma}$ is faithful,

$\tilde{A}_{\sigma)t)}$ and $A_{\tau(t)}^{\sim}$ are clearly different for different one-parameter subgroups
$\sigma(t)$ and $\tau(t)$ , so $\tilde{L}$ is isomorphic to $L,$ $q$ . $e$ . $d$ .

Mathematical Institute,
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Notes

1) These definitions are due to \lceil 2\rfloor .
2) A $C^{2}$ function onG means a $C^{2}$ function on any cubic set in G.
3) This method is due to [6\rceil .

4) This method is due to [4j.


	On the Differentability ...
	\S 1.
	\S 2.
	References
	Notes


