On the Differentability of the Unitary Representation of the Lie Group.

Jyun-ichi Hano.

(Received. Oct. 30, 1950)

J. von Neumann ([2]) has introduced the notion of the differentiablity of the matric group, and given a method of forming Lie algebras of matric Lie groups. This notion was extended further by K. Yosida ([4]) to the group embedded in the normed ring.

In this paper, we shall utilize this idea to form the Lie algebra for the Lie group G embdeded in the unitary group with the weak topology in the Hilbert space \mathfrak{S} . Namely we shall show that the set of all operators

$$\tilde{A}_{\sigma(t)} = \lim_{t \to 0} \frac{U_{\sigma(t)} - E}{t}$$

for each one-parameter subgroup $\sigma(t)$ of G, forms the Lie algebra of G in a sense to be specified in Theorem 2, 3 below. There is difficulty on the domains of these operators. We shall show that they have a meet everywhere dense in \mathfrak{S} . By the way we obtain a new proof of M. H. Stone's theorem on the one-parameter group of unitary operators.

In § 1 we give a résumé of the theory of simple unitary structures, which we shall need in the proof of the fact that the domains of $\tilde{A}_{\sigma(t)}$ have an everywhere dense meet. § 2 contains a lemma that every element of $L^1(G)$ is approximable by C^2 functions. Our main results are Theorem 2, 3 in § 3.

§ 1.

Let G be a Lie group. We denote elements of G with σ , τ ,.... On the other hand let \mathfrak{F} be a Hilbert space, x, y... elements of \mathfrak{F} . A continuous unitary representation of G is a continuous homomorphic mapping $\sigma \rightarrow U_{\sigma}$ into the group of all unitary operators defined on \mathfrak{F} and provided with the weak topology. The pair $\{U_{\sigma},\mathfrak{F}\}$ is then called a *unitary structure* of G. If $\{U_{\sigma},\mathfrak{F}\}$ is a unitary structure of G and if, moreover, there is

such an element x of \mathfrak{F} that closed linear manifold $\{U_{\sigma}x; \sigma \in G\}^{\operatorname{cl}}$ coincides with \mathfrak{F} , then the triple $\{U_{\sigma}, \mathfrak{F}, x\}$ is said to be a *simple unitary structure* of G. Two such structure $\{U_{\sigma}, \mathfrak{F}, x\}, \{U_{\sigma}', \mathfrak{F}', x'\}$ are said to be *unitary-equivalent*, if there is a unitary mapping T of \mathfrak{F} on \mathfrak{F}' such that $T^{-1}U_{\sigma}'T=U_{\sigma}$ and Tx=x'.

Let $\{U_{\sigma}, \mathfrak{F}, x\}$ be a simple unitary structure of G. The function $\varphi(\sigma) = (U_{\sigma}x, x)$, (where the round brackets mean the inner product on \mathfrak{F}), is called the *characteristic function* of $\{U_{\sigma}, \mathfrak{F}, x\}$ It is a positive definite function on G, i. e. for any finite number of elements $\sigma_i(i=1, 2, \dots, n)$ of G and arbitrary complex numbers $u_i(i=1, 2, \dots, n)$, the inequality

$$\sum_{i,j=1}^{n} \varphi(\sigma_i \sigma_j^{-1}) u_i \overline{u}_j \ge 0$$

always holds. Conversely if any positive definite function $\varphi(\sigma)$ on G is given, there is a simple unitary structure, determined up to the unitary-equivalence, whose characteristic function is $\varphi(\sigma)$. According to [7], this simple unitary structure may be obtained as follows.

Let μ be a left-invariant Haar measure of G, $L^1(G)$ the Banach space consisting of all μ -integrable complex-valued functions $x(\sigma)$, $y(\sigma)$,... on G, where the norm of $x(\sigma)$ is defined by $||x||_1 = \int_G |x(\sigma)| d\mu(\sigma)$. $L^1(G)$ becomes a group algebras of G, if we define the convolution $x \times y(\sigma) = \int_G x(\tau)y(\tau^{-1}\sigma)d\mu(\tau)$ for any $x(\sigma)$, $y(\sigma) \in L^1(G)$. Next we define a *-operation for any element $x(\sigma) \in L^1(G)$ with $x^*(\sigma) = \overline{x(\sigma^{-1})} \Delta(\sigma)$, where $\overline{x(\sigma)}$ is the conjugate complex of $x(\sigma)$ and $x(\sigma)$ is the density of the right-invariant Haar measure of $x(\sigma)$. Then we have clearly $||x^*||_1 = ||x||_1$, $|x^*| = x$ and $|x \times y| = y^* \times x^*$.

Now put

$$I_{\varphi} = \{ x \; ; \; x \in L^{1}(G), \int_{G} \varphi(\sigma) x^{*} \times x(\sigma) d\mu(\sigma) = 0 \}.$$
 (1·1)

 I_{φ} is a closed left-ideal of $L^{1}(G)$ and left-G-invariant, so that we can consider the factor space $L^{1}(G)/I_{\varphi}$ of $L^{1}(G)$ by I_{φ} . We denote the point of this factor space containing $x(\sigma)$ with [x], and introduce the inner product in this factor space by

$$([x], [y])_{\varphi} = \int_{G} \varphi(\sigma) y^{*} \times x(\sigma) d\mu(\sigma)$$
for any $[x], [y] \in L^{1}(G) / I_{\varphi}$.

We obtain the Hilbert space \mathfrak{F}_{φ} by completing $L^{1}(G)/I_{\varphi}$ with respect to

the norm defined from this inner product. For each element τ of G we define the mapping

$$U_{\tau}[x(\sigma)] = [x(\tau^{-1} \cdot \sigma)]$$
 for any $[x] \in L^{1}(G)/I_{\varphi}$.

As I_{φ} is left-G-invariant, this mapping is determined independently of the choice of a representative of the class [x]. On the other hand, $L^{1}(G)/I_{\varphi}$ is everywhere dense in \mathfrak{F}_{φ} , so this mapping can be uniquely extended to a unitary operator on \mathfrak{F}_{φ} , which we denote again with U_{τ} . Thus we obtain a unitary structure $\{U_{\tau}, \mathfrak{F}_{\varphi}\}$ of G.

Let $\{V_{\alpha}\}$ be a complete system of the neighbourhoods of the identity of G, and $C_{V\alpha}(\sigma)$ the characteristic function of the set V_{α} . Put $d_{\alpha}(\sigma) = C_{V_{\alpha}}(\sigma)/\mu(V_{\alpha})$, $e_{\alpha} = d_{\alpha}^* \times d_{\alpha}$, then $\{[e_{\alpha}(\sigma)]\}$ is strongly convergent to an element x_{φ} in \mathfrak{F}_{φ} . It is proved that $\{U_{\tau}, \mathfrak{F}_{\varphi}, x_{\varphi}\}$ is then a simple unitary structure whose characteristic function is $\varphi(\sigma)$.

§ 2.

Let G be a Lie group of the dimension n, L the Lie algebra of G, and $\{A_1, A_2, \cdots A_n\}$ a basis of L. Using this basis we can introduce a cubic neighbourhood $V_{\alpha} = \{\tau; \tau = \exp(\sum_{i=1}^n x_i A_i), |x^i| < a, i=1, 2, \cdots, n\}$ of the identity e of G, and a canonical system of coordinates C_e on V_{α} such that $\tau = \exp(\sum_{i=1}^n x_i A_i)$ has x_i as its i-th coordinate by C_e , where $\exp(\sum_{i=1}^n x_i A_i)$ is the element $\sigma(1)$ of the one-parameter subgroup $\sigma(t)$ having $\sum_{i=1}^n x_i A_i$ as its tangent vector. By translation we introduce the system of coordinates C_{σ} for the neighbourhood $V_{\alpha} \cdot \sigma$ of each point σ of G, i. e. the i-th coordinate of $\tau = \exp(\sum_{i=1}^n x_i A_i) \cdot \sigma$ in $V_{\alpha} \cdot \sigma$ is $x_i (i=1, 2, \cdots, n)$.

Definition 1. A complex-valued continuous function $x(\sigma)$ defined on an open set W contained in some cubic set $V_{\alpha} \cdot \sigma_0$ is said C^r function on W, if the expression $x(\sigma) = X(x_1, x_2, \dots, x_n)$ by the system of coordinates C_{σ_0} is C^r function on W.

Definition 2. A curve $\sigma(t)$ in G, defined continuously with respect to real parameter t such that $\sigma(0) = e$, is colled a C^1 curve, when each coordinates of the elements of $\sigma(t)$ by C_e is continuously differentiable for t at t=0.

Following properties of C^1 functions are early verified from these definitions.

(1) Let $x(\sigma)$ be a C^1 function on W. For any C^1 curve $\sigma(t)$

$$\lim_{t\to 0} \frac{1}{t} (x(\sigma^{-1}(t)\cdot\sigma) - x(\sigma)) = x_{\sigma(t)}(\sigma)$$

exists and is a continuous function of σ on W. Let the *i*-th coordinates of σ and $\sigma(t)$ by C_{σ_0} be x_i and $y_i(\sigma(t))$ respectively, then the *i*-th coordinate of $\sigma^{-1}(t) \cdot \sigma$ is $\varphi_i(x_1, x_2, \dots, x_n; y_1(\sigma(t)), y_2(\sigma(t)), \dots, y_n(\sigma(t)))$, where $\varphi_i(x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n)$ is analytic for x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n . Then $x_{\sigma(\alpha)}(\sigma)$ is given by

$$x_{\sigma(\alpha)}(\sigma) = \sum_{i,j=1}^{n} \left[\frac{\partial x}{\partial x_i} \right]_{xk=xk} \cdot \left[\frac{\partial \varphi_i}{\partial \gamma_i} \right]_{xk=xk, ye=0} \cdot \left[\frac{d\gamma_j}{dt} \right]_{t=0,}$$
 (2·1)

- (2) Let $\sigma_k(t)$ be the one-parameter subgroup of G befined by $\sigma_k(t)$ = $\exp(tA_k)$. If $x_{\sigma_k}(\sigma)$ exists and is continuous when σ is in W for each $\sigma_k(t)$ $(k=1,2,\ldots,n)$, $x(\sigma)$ is a C^1 function. And for any C^1 curve $\sigma(t)$, $x_{\sigma(t)}(\sigma)$ is given by a linear combination of $x_{\sigma_k(t)}(\sigma)$ $(k=1,2,\ldots,n)$ with constant coefficients.
- (3) To each C^1 curve $\sigma(t)$ corresponds one and only one one-parameter subgroup $\sigma'(t)$ such that $x_{\sigma(t)}(\sigma) = x_{\sigma'(t)}(\sigma)$ for every C^1 function $x(\sigma)$ on W.
- (4) Let $\sigma(t)$ be a C^1 curve and $x(\sigma)$ a C^1 function on W with the expression $X(x_1, x_2, \dots, x_n)$ by C_{σ_0} , and let $\frac{\partial X}{\partial x_i}$ be bounded on W for each i. Then there are a positive unmber t_0 and a neighbourhood of the identity V_1 both independent of σ_0 , such that $\frac{d}{dt}x(\sigma^{-1}(t)\cdot\sigma)$ is continuous and bounded with respect to σ and t when $\sigma \in V_1\sigma_0$, and $|t| < t_0$.

Lemma 1. Any function contained in $L^1(G)$ can be approximated as closely as we wish with respect to the topology in $L^1(G)$ by a C^2 function on G^2 contained in $L^1(G)$.

Proof. Following Chevalley, we shall say a function $x(\sigma)$ defined on G to have the property P on $W \cdot \sigma$, when it is continuous and zero out of some cubic set $W \cdot \sigma$ of some point σ . A function in $L^1(G)$ can be sufficiently closely approximated by functions each of which is continuous and and zero out of some compact set. Such a function can be expressed as a finite sum of functions with the property P. Moreover, from Dieudonné's lemma ([1] p. 163) the cubic set W can be taken sufficiently small. Let V_3 be a cubic neighbourhood of e, of breadth β , i. e. the absolute value of the i-th coordinate $x_i(\sigma)$ by C_e of an element σ contained

274 J. Hano.

in V_{β} is smaller than β for $i=1,2,\dots,n$, and take β such as $V_{\beta}^{2}CV_{\alpha}$. Then we have only to prove that for a function $x(\sigma)$ with the property P on $V_{\beta} \cdot \sigma_{0}$ of some point σ_{0} , there is a series of C^{2} functions converging to $x(\sigma)$.

Let $X(x_1, x_2, \dots, x_n)$ be the expression of $x(\sigma)$ by the system of coordinates C_{σ_0} , and put

$$\begin{split} x_m(\sigma) &= X_m(x_1, x_2, \cdots x_n) \\ &= \left(\frac{m}{2}\right)^n \int_{x_1 - \frac{1}{m}}^{x_1 + \frac{1}{m}} \int_{x_2 - \frac{1}{m}}^{x_2 + \frac{1}{m}} \dots \int_{x_n - \frac{1}{m}}^{x_n + \frac{1}{m}} X(x_1, x_2, \cdots, x_n) dx_1 \cdot dx_2 \cdots dx_n \\ & \qquad \qquad if \quad \sigma \in V_{\alpha - \frac{1}{m}} \cdot \sigma_0 \\ x_m(\sigma) &= 0 \qquad \qquad if \quad \sigma \notin V_{\alpha - \frac{1}{m}} \cdot \sigma_0 \end{split}$$

for $m \ge m_0 = \operatorname{Min}\left\{m ; \alpha - \beta > \frac{4}{m}\right\}$, where $V_{\alpha - \frac{1}{m}}$ is a cubic set of e, of breadth $\alpha - \frac{1}{m}$. Then $x_m(\sigma)$ has clearly the property P on $V_{\beta + \frac{1}{m}} \cdot \sigma_0 = \{\sigma \cdot \sigma_0; \sigma \in G, |x_i(\sigma)| < \beta + \frac{1}{m} \text{ by } C_e \ i = 1, 2, \cdots, n\}$. Moreover, $\frac{\partial X_m}{\partial x_i}$ exists in $V_{\alpha - \frac{1}{m}} \cdot \sigma_0$ and has the property P on $V_{\beta + \frac{1}{m}} \cdot \sigma_0$ for each i. If $\sigma \notin V_{\alpha - \frac{1}{m}} \cdot \sigma$, we have $x_{m\sigma(i)}(\sigma) = 0$ for any C^1 curve $\sigma(t)$. Thus $x_m(\sigma)$ is a C^1 function on G and has the property P on $V_{\beta + \frac{1}{m}} \cdot \sigma_0$. As $X(x_1, x_2, \cdots, x_n)$ is uniformly continuous on the closure $V_{\beta + \frac{1}{m}} \cdot \sigma_0$, there is a positive number $\delta(\varepsilon)$ for any given positive unmber ε such that from $|x_i - x_i'| < \delta(\varepsilon)$, $i = 1, 2, \cdots, n$, follows

$$|X(x_1, x_2, \cdots x_n) - X(x_1', x_2' \cdots, x_n')| < \varepsilon.$$

Take m larger than $m_1 = \operatorname{Max}\left\{m_0, \frac{1}{\delta(\varepsilon)}\right\}$, then there is for each σ in $\overline{V}_{\beta+\frac{1}{m}} \cdot \sigma_0$ a point with the i-th coordinate $\xi_i(i=1,2,\dots,n)$ such that $|x_i(\sigma)-\xi_i| < \frac{1}{m} < \delta(\varepsilon)$ and $X_m(x_1,x_2,\dots,x_n) = X(\xi_1,\xi_2,\dots,\xi_n)$ from the mean-value theorem of the integral. Therefore

$$|X_{m}(x_{1}, x_{2}, \dots, x_{n}) - X(x_{1}, x_{2}, \dots, x_{n})| = |X(\xi_{1}, \xi_{2}, \dots, \xi_{n}) - X(x_{1}, x_{2}, \dots, x_{n})| < \varepsilon$$
if $\sigma \in V_{\beta + \frac{1}{m}} \cdot \sigma_{0}$,

and if $\sigma \notin \overline{V}_{\beta+\frac{1}{m}} \cdot \sigma_0$, we have $x_m(\sigma) = x(\sigma) = 0$. So the series $\{x_m(\sigma)\}$ converges uniformly to $x(\sigma)$ and

$$\int_{G} |x(\sigma) - x_{m}(\sigma)| d\mu(\sigma) = \int_{\tilde{V}^{3} + \frac{1}{m} \cdot \sigma_{0}} |x(\sigma) - x_{m}(\sigma)| d\mu(\sigma) \leq \varepsilon \mu(V_{\alpha})$$

Thus the sequence $\{x(\sigma), m \ge m_1\}$ converges to $x(\sigma)$ with respect to the topology in $L^1(G)$. As it is already known that $x_m(\sigma)$ has the property P on $V_{\alpha+\frac{1}{m_1}} \cdot \sigma_0$, we can apply this method to each $x_m(\sigma)$ and obtain a series $\{x_{m,m'}(\sigma)\}$ of C^2 functions converging to $x_m(\sigma)$. $x_{m,m'}(\sigma)$ is indeed a C^2 function as it is easily seen from $(2\cdot 1)$ above. In taking a suitable partial sequence $\{x_{m,m'(m)}(\sigma)\}$ of $\{x_{m,m'}(\sigma)\}$ we obtain finally a series converging to $x(\sigma)$, q. e. d.

Definition 3. Let $V_{\mathfrak{g}}$ be a cubic set defined as above, $x(\sigma)$, $y(\sigma)$,... functions in $L^1(G)$ with the property P on $V_{\mathfrak{g}} \cdot \sigma_0$, $V_{\mathfrak{g}} \cdot \tau_0$,... for some σ_0 , τ_0 ,... in G, $\{x_{m,m'(m)}(\sigma)\}$, $\{y_{n,n'(n)}(\sigma)\}$,... the series of C^2 functions in $L^1(G)$ converging to $x(\sigma)$, $y(\sigma)$,... respectively. We form linear combinations with complex coefficients of a finite number of such functions $x_{m,m'(m)}(\sigma)$, $y_{n,n'(n)}(\sigma)$,... The set of all these linear combinations forms a G-invariant linear manifold in $L^1(G)$ which is everywhere dense in $L^1(G)$. We denote this linear manifold with D(G).

§ 3.

The following lemma is important to deduce our main results.

Lemma 2. Let $\{U_0, \mathfrak{F}, x_0\}$ be a simple unitary structure of a Lie group G. The set of all elements x of \mathfrak{F} for which

$$\lim_{t\to 0} \frac{1}{t} (U_{\sigma(t)} - E) x \tag{3.1}$$

exists for any C^1 curve, is a linear manifold everywhere dense in $L^1(G)$.

Proof. As it was remarked in § 1, the given simple unitary structure $\{U_{\sigma}, \mathfrak{F}, x_{0}\}$ may be considered as $\{U_{\sigma}, \mathfrak{F}_{\tau}, x_{\tau}\}$, φ being a positive definite function on G. This remark will be often used in the sequel.

We use the same notation as in § 1 and § 2. Thus I_{φ} is the left-ideal defined by $(1\cdot 1)$, \mathfrak{H}_{φ} the Hilbert space obtained by completion of $L^{1}(G)/I_{z}$. Let \mathfrak{D}_{φ} be the image of D(G) by the natural mapping of

276 J. Hano.

 $L^2(G)$ onto $L^1(G)/I_{\varphi}$. As D(G) is dense in $L^1(G)$, \mathfrak{D}_{φ} is everywhere dense in \mathfrak{F}_{φ} . An element [x] of \mathfrak{D}_{φ} has the form $\sum_{i=1}^k a_i [x_i(\sigma)]$, where $x_i(\sigma)$ is a C^2 function with the property P on some cubic set $V_{\mathfrak{F}'} \cdot \sigma_0$, of a breadth β' such as $\beta < \beta' < a$, constructed as in Definition 3. So our lemma will be proved, if we show the existence of $(3\cdot 1)$ for such $[x_i(\sigma)]$ and an arbitrary C^1 curve $\sigma(t)$. Now we have

$$\lim_{t \to 0} \frac{1}{t} \{ (U_{\sigma(t)}[x_i], [y])_{\varphi} - ([x_i], [y])_{\varphi} \}$$

$$= \lim_{t \to 0} \int_{G} \int_{G} \varphi(\sigma^{-1} \cdot \tau) \, \bar{y}(\sigma) \frac{x_i(\sigma^{-1}(t) \cdot \tau) - x_i(\tau)}{t} d\mu(\sigma) d\mu(\tau)$$
for any $[y] \in L^1(G) / I_{\varphi}$. (3.2)

Take t_1 so small that if $|t| < t_1$ and $\tau \notin \overline{V}_{\alpha} \cdot \sigma_0$, we have $\sigma^{-1}(t) \cdot \iota \notin V_{\beta} \cdot \sigma_0$ and $x_i(\sigma^{-1}(t) \cdot \tau) - x_i(\tau) = 0$. Accordingly, the domain G of the integral with respect to τ in the right hand side of $(3 \cdot 2)$ can be replaced by $\overline{V}_{\alpha} \cdot \sigma$. Next, from the property (4) in $\S 2$, $\frac{d}{dt}x_i(\sigma^{-1}(t) \cdot \tau)$ is continuous for τ and t and is bounded when τ is in some cubic set $V_1 \cdot \tau_0$ and t in an interval $|t| < t_0$, where τ_0 is an arbitrary element of G and t_0 and t_0 may be both taken independently of t_0 . As $\overline{V}_{\alpha} \cdot \sigma_0$ is compact, it can be covered by a finite number of cubic sets $V_1 \cdot \tau_i(i=1,2,\cdots,k)$. Therefore $\frac{d}{dt}x_i(\sigma^{-1}(t) \cdot \sigma)$ is bounded when τ is in $\overline{V}_{\alpha} \cdot \sigma_0$ and t in the interval $|t| < t_0$. On the other hand, if $|t| < \min\{t_0, t_1\}$ we have

$$\frac{x_i(\sigma^{-1}(t)\cdot\tau) - x_i(\tau)}{t} = \left[\frac{d}{dt}x_i(\sigma^{-1}(t)\cdot\tau)\right]_{t=t}$$
(3·3)

where $0 \le \xi \le t$ or $t \le \xi \le 0$. Then the left hand side of $(3 \cdot 3)$ is bounded when τ is in $V_a \cdot \sigma_0$ and t in the interval $|t| > \min\{t_0, t_1\}$ and converges to $x_{taw}(\tau)$ when t tends to zero. Consequently we can apply Lebegue's theorem, and we have

$$\lim_{t\to 0} \frac{1}{t} \{ (U_{\sigma(t)}[x_i], y)_{\varphi} - ([x_i], [y]_{\varphi} \}$$

$$\begin{split} &= \int_{\overline{v} \boldsymbol{\alpha} \cdot \boldsymbol{\sigma}_{0}} \int_{G} \varphi(\sigma^{-1} \cdot \tau) \overline{y}(\boldsymbol{\sigma}) \cdot \boldsymbol{x}_{i \boldsymbol{\sigma} (t)}(\tau) d\mu(\boldsymbol{\sigma}) \cdot d\mu(\tau) \\ &= \int_{G} \int_{G} \varphi(\sigma^{-1} \cdot \tau) \overline{y}(\boldsymbol{\sigma}) \cdot \boldsymbol{x}_{i \boldsymbol{\sigma} (t)}(\tau) d\mu(\boldsymbol{\sigma}) d\mu(\tau) \\ &= ([\boldsymbol{x}_{i \boldsymbol{\sigma} (t)}], [\boldsymbol{y}])_{\varphi} \quad \text{for any } [\boldsymbol{y}] \in L^{1}(G) / I_{\varphi} \end{split}$$

Then the strong convergence of $(3 \cdot 1)$ is concluded from

$$\lim_{t\to 0} \left\| \frac{U_{\sigma(t)}[x_i] - [x_i]}{t} \right\|_{\varphi}^2 = \int_G \int_G \varphi(\sigma^{-1} \cdot \tau) \bar{x}_{i\sigma(t)}(\sigma) \cdot x_{i\sigma(t)}(\tau) d\mu(\sigma) d\mu(\tau)$$

$$= \left\| \left[x_{i\sigma(t)} \right] \right\|_{\varphi}^2$$

which is proved in the same way as shove. On the other hand, it is almost evident that the set of all elements of \mathfrak{F}_{φ} , for which $(3 \cdot)$ exist for any C^1 curve $\sigma(t)$, forms a linear manifold, q. e. d.

Definition 4. Let $\{U_{\sigma}, \mathfrak{H}_{\varphi}, x_{\varphi}\}$ be a simple unitary structure of a Lie group G, and $\sigma(t)$ a C^1 curve on G. We define the operator $A_{\sigma(t)}$ with the domain \mathfrak{D}_{φ} in \mathfrak{H}_{φ} by

$$\lim_{t\to 0} \frac{1}{t} (U_{\sigma(t)}[x] - [x]) = A_{\sigma(t)}[x] \quad \text{for any } [x] \in \mathfrak{D}_{\varphi}. \tag{3.4}$$

Clearly $\sqrt{-1}$ $A_{\sigma(t)}$ is a Hermitian operator, and from the properties (2) and (3) in §2 follows that $A_{\sigma(t)}$ is a linear combination of $A_{\sigma(t)}$ ($i=1,2,\dots,n$) with real constant coefficients where $\sigma_i(t)$ ($i=1,2,\dots,n$) are linearly independet n one-parameter subgroups of G defined in §2, and that there is one and only one one-parameter subgroup $\sigma(t)$ with $A_{\sigma(t)} = A_{\sigma'(t)}$.

Lemma 3. Let $\{U_{\sigma}, \mathfrak{H}_{\varphi}, x_{\varphi}\}$ be a simple unitary structure of G, and $\sigma(t)$ a one-parameter subgroup of G. If $\lim_{t\to 0} \frac{1}{t} (U_{\sigma(t)}x - x)$ exists we put

$$\lim_{t\to 0} \frac{1}{t} (U_{\sigma(t)}x - x) = \tilde{A}_{\sigma(t)}x.$$

Then $\sqrt{-1}A_{\sigma(u)}$ is a self-adjoint operator, with a domain containing \mathfrak{D}_{φ} in \mathfrak{F}_{φ} , and is the one and only one self-adjoint extension of $\sqrt{-1}$ $A_{\sigma(u)}$ defined in Definition 4. Moreover, let $E_{\lambda}(-\infty \leq \lambda \leq \infty)$ be the resolution of the identity of $\sqrt{-1}$ $\tilde{A}_{\sigma(u)}$, then the one-parameter group $U_{\sigma(u)}$ can be expressed

by

$$U_{\sigma(t)} = \int_{-\infty}^{\infty} e^{\sqrt{-1} \lambda t} dE_{\lambda}.$$

Proof. (1) When the weak limit $w-\lim_{t\to 0} (U_{\sigma(t)}x-x)$ exists, we denote it temporarily with $\tilde{A}_{\sigma(t)}x$. As $\sigma(t)$ is a one-parameter subgroup of G, we have

$$w - \lim_{t' \to t} \frac{1}{t' - t} (U_{\sigma(t')} - U_{\sigma(t)}) x = \tilde{A}_{\sigma(t)} U_{\sigma(t)} x = U_{\sigma(t)} \tilde{A}_{\sigma(t)} x$$

and

$$\begin{aligned} (U_{\sigma(t)}x - x, y)_{\varphi} &= \int_{0}^{t} (U_{\sigma(t)}\tilde{A}_{\sigma(t)}x, y)_{\varphi} dt \\ &= (\int_{0}^{t} U_{\sigma(t)}\tilde{A}x \, dt, y)_{\varphi} \\ &\qquad \qquad \text{for any } y \in \mathfrak{F}_{\varphi}, \end{aligned}$$

so

$$U_{\sigma(t)}x-x=\int_0^t U_{\sigma(t)}\tilde{A}_{\sigma(t)}x\ dt.$$

Therefore from the weak convergence of $\frac{1}{t}(U_{\sigma(t)}x-x)$ follows the strong convergence. and the both definitions of $\tilde{A}_{\sigma(t)}$ coincide.

(2) $\sqrt{-1} A_{\sigma(t)}$ and $\sqrt{-1} \tilde{A}_{\sigma(t)}$ are both Hermitian operators, and the latter is an extension of the former. Let V and \tilde{V} be the Cayley transforms of $\sqrt{-1} A_{\sigma(t)}$ and $\sqrt{-1} \tilde{A}_{\sigma(t)}$ respectively. These are both partially isometric operators and the latter is an extension of the former. We shall show that V has an everywhere dense linear manifold as the domain. For the purpose we have only to show that the set $\{(\sqrt{-1} (A_{\sigma(t)} + E)x; x \in \mathfrak{D}_{\varphi}\}$ is dense in \mathfrak{F}_{φ} , because the graph of V is $\{\{\sqrt{-1} (A_{\sigma(t)} + E)x, \sqrt{-1} (A_{\sigma(t)} - E)x\}; x \in \mathfrak{D}_{\varphi}\}$. Assume it were not true, then there would be a non-zero element y of \mathfrak{F}_{φ} such that

$$(\sqrt{-1}(A_{\sigma(t)}+E)x,y)_{\varphi}=0$$
 for any $x \in \mathfrak{D}_{\varphi}$.

Then from $U_{\sigma(t)}A_{\sigma(t)}x = A_{\sigma(t)}U_{\sigma(t)}x$, we obtain the differential equation

$$\frac{d}{dt}(U_{\sigma t},x,y)_{\varphi} = -(U_{\sigma(t)}x,y)_{\varphi}.$$

The solution of this differential equation under the initial condition $(U_{\sigma(0)}, y)_{\varphi} = (x, y)_{\varphi}$ is given by

$$(U_{\sigma(t)}x,y)_{\varphi}=e^{-t}(x,y)_{\varphi}$$

Now, the absolute value of $(U_{\sigma(t)}x,y)_{\varphi}$ is bounded by $\|x\|_{\varphi}\cdot\|y\|_{\varphi}$, and on the other hand the absolute value $e^{-t}(x,y)_{\varphi}$ is not bounded, which is a contradiction. Thus V has an everywhere dense domain, and has the unique unitary extension $\tilde{\tilde{V}}$, which is also the unique unitary extension of \tilde{V} .

(3) Let $\tilde{\tilde{A}}$ be the self-adjoint operator having $\tilde{\tilde{V}}$ as its Cayley transform, then $\sqrt{-1}A_{\sigma(t)}$ and $\sqrt{-1}\tilde{A}_{\sigma(t)}$ both have the unique self-adjoint extension $\tilde{\tilde{A}}$. Let $E_{\lambda}(-\infty \leq \lambda \leq \infty)$ be the resolution of the identity of $\tilde{\tilde{A}}$ and consider the one-parameter group of unitary operators defined by

$$V_t = \int_{-\infty}^{\infty} e^{\sqrt{-1}\lambda t} dE_{\lambda}.$$

Then $U_{\sigma(t)}V_sx=V_sU_{\sigma(t)}x$ for any t and s, when x is contained in the domain of $\tilde{A}_{\sigma(t)}$, and for such x we have

$$||U_{\sigma(t)}x - V_{t}x||_{\varphi} = ||\sum_{i=1}^{n} \left(U_{\sigma(\frac{n+1-i}{n})} V_{\frac{i-1}{n}t} - U_{\sigma(\frac{n-i}{n}t)} V_{\frac{i}{n}t}\right) x ||_{\varphi}$$

$$= ||\sum_{i=1}^{n} U_{\sigma(\frac{n-i}{n}t)} V_{\frac{i-1}{n}t} \left(U_{\sigma(\frac{t}{n})} - V_{\frac{t}{n}}\right) x ||_{\varphi}$$

$$\leq \sum_{n=1}^{n} ||\left(U_{\sigma(\frac{t}{n})} - V_{\frac{t}{n}}\right) x ||_{\varphi}$$

$$= t ||\left(\frac{U_{\sigma(\frac{t}{n})} - V_{\frac{t}{n}}}{\frac{t}{n}}\right) x ||_{\varphi}.$$

$$(3.5)$$

On the other hand, we have

$$\lim_{t\to 0} \frac{1}{t} (V_t - E) x = \lim_{t\to 0} \int_{-\infty}^{\infty} \frac{e^{\sqrt{-1}\lambda t} - 1}{t} dE_{\lambda} x = \tilde{\tilde{A}} x,$$

and

$$\lim_{t\to 0} \frac{1}{t} (U_{\sigma(t)} - E) x = \tilde{\tilde{A}}_{\sigma(t)} x = \tilde{\tilde{A}}_{x},$$

whence we can conclude $U_{\sigma(t)}x = V_t x$ for x in the domain of $A_{\sigma(t)}x$, as the right hand side of (3.5) tends to zero as n tends to ∞ .⁴⁾ Finally, since the domain of $\tilde{A}_{\sigma(t)}$ is dense in \mathfrak{F} , $U_{\sigma(t)}$ coincides with V_t , and $\sqrt{-1}\tilde{A}_{\sigma(t)}$ with $\tilde{\tilde{A}}$. q. e. d.

From this lemma, we obtain a new proof of a theorem of M. H. Stone.

Theorem 1. (M. H. Stone) For a unitary structure $\{U_i, \mathfrak{H}\}$ of the additive group R^1 of all real numbers provided with the usual topology, there is a resolution of the identity $E_{\lambda}(-\infty \leq \lambda \leq \infty)$ so that U_i is expressed by

$$U_{t} = \int_{-\infty}^{\infty} e^{\sqrt{-1}\lambda t} dE_{\lambda}$$
.

Proof. We define a closed linear manifold $\mathfrak{F}^{(\eta)}$ of \mathfrak{F} for any transfinite number η by the method of transfinite induction as follows. For $\eta=1$, we take an arbitrary non-zero element $x^{(1)}$ of \mathfrak{F} , and define $\mathfrak{F}^{(1)}=\{U_tx^{(1)};-\infty<+<\infty\}^{\mathfrak{C}}$. Let a closed linear manifold $\mathfrak{F}^{(\eta')}$ be defined for every $\eta'<\eta$. If the orthogonal complement of $\sum_{\eta'<\eta}\mathfrak{F}^{(\eta')}$ is not zero, we take and arbitrary non-zero element $x^{(\eta)}$ of this complement and define $\mathfrak{F}^{(\eta)}=\{U_tx^{(\eta)}; -\infty< t<\infty\}^{\mathfrak{C}}$. Otherwise we put $\mathfrak{F}^{(\eta)}=0$. Then we have $\sum_{\eta}\mathfrak{F}^{(\eta)}=\mathfrak{F}$, and if $\eta=\eta'$ $\mathfrak{F}^{(\eta)}$ and $\mathfrak{F}^{(\eta')}$ are always mutually orthogonal.

Let $E^{(\eta)}$ be the projection defined by the closed linear manifold $\mathfrak{F}^{(\eta)}$. The contraction of U_t on $\mathfrak{F}^{(\eta)}$ is then $U_t E^{(\eta)}$ and $\{U_t E^{(\eta)}, \mathfrak{F}^{(\eta)}, x^{(\eta)}\}$ is a simple unitary structure of R^1 for each η . Therefore by Lemma 3 there is a resolution of the identity $E_{\lambda}^{(\eta)}$ in the Hilbert space $\mathfrak{F}^{(\eta)}$ so that $U_t E^{(\eta)}$ is expressed by

$$U_{i}E^{(\eta)} = \int_{-\infty}^{\infty} e^{\sqrt{-1}\lambda t} dE_{\lambda}^{(\eta)}$$
, for each η ,

Clearly $\sum_{\eta} E_{\lambda}^{(\eta)} = E_{\lambda}(-\infty < \lambda < \infty)$ is a resolution of the identity in \mathfrak{F} and

$$U_t = \sum_{\eta} U_t E = \int_{-\infty}^{\infty} e^{\sqrt{-1}\lambda t} dE_{\lambda},$$

thus the theorem is proved.

Now, let L be the Lie algebra of G. We take the same basis $\{A_1, A_2, \dots, A_n\}$ as used in § 2. Then an element A of L is expressed uniquely

as the linear combination $a_1A_1 + a_2A_2 + \cdots + a_nA_n$, and there are C^1 curves $\sigma(t)$ satisfying

$$\left[\frac{d}{dt}x_i(\sigma(t))\right]_{t=0} = a_i, \quad i=1, 2, \dots n, \tag{3.6}$$

among which there is the unique one-parameter subgroup, i. e. the one-parameter subgroup defined by $\sigma(t) = \exp(t \sum_{i=1}^{n} a_i A_i)$.

Let $\{U_{\sigma}, \mathfrak{F}_{\sigma}, x_{\varphi}\}$ be a simple unitary structure of G, L_{φ} the set of all operators $A_{\sigma(t)}$ defined in Definition 3. To every element A of L take a C^1 curve $\sigma(t)$ satisfying $(3 \cdot 6)$ and let $A_{\sigma(t)}$ be the operator defined by $(3 \cdot 4)$. Then according to $A_{\sigma(t)}[x] = [x_{\sigma(t)}]$ and the property (3) in § 2, the operator $A_{\sigma(t)}$ is determined uniquely by A alone. We shall write $\emptyset(A) = A_{\sigma(t)}$. \emptyset is a mapping of L into L_{φ} . This mapping \emptyset is clearly linear, i. e., if $A, B \in L$ and α is a real number, we have $\emptyset(aA) = a\emptyset(A)$ and $\emptyset(A+B) = \emptyset(A) + \emptyset(B)$. We shall now prove that $\emptyset([A,B]) = [\emptyset(A), \emptyset(B)]$. Let $\sigma(t)$ and $\tau(t)$ be one-parameter subgroups defined by $\emptyset(A) = A_{\sigma(t)}$ and $\emptyset(B) = A_{\tau(t)}$ respectively. Put $\rho(t) = \sigma^{-1}(\sqrt{t}) \cdot \tau^{-1}(\sqrt{t}) \cdot \tau^{-1}(\sqrt{t}) \cdot \tau^{-1}(\sqrt{-t}) \cdot \tau^{-1}(\sqrt{-t})$ when $t \ge 0$ and $f(t) = \sigma(\sqrt{-t}) \cdot \tau(\sqrt{-t}) \cdot \sigma^{-1}(\sqrt{-t}) \cdot \tau^{-1}(\sqrt{-t})$ when t < 0, then $\rho(t)$ is a C^1 curve and $A_{\varphi(t)} = \sum_{t=1}^{n} \frac{d}{dt} x_i(\rho(t)) \Big|_{t=0}^{n} A_t$. On the other hand we have

$$A_{\rho(t)}[x] = \lim_{t \to +0} \frac{1}{t} U_{\sigma(\sqrt{t})}^{-1} U_{\tau(\sqrt{t})}^{-1} \left\{ \left(U_{\sigma(\sqrt{t})} - E \right) \left(U_{\tau(\sqrt{t})} - E \right) - \left(U_{\tau(\sqrt{t})} - E \right) \left(U_{\sigma(\sqrt{t})} - E \right) \right\} [x] \quad \text{for any } [x] \in \mathfrak{D}_{\varphi}.$$

and, as $x(\sigma) \in D(G)$ is a C^2 function, we have

$$\frac{1}{t} (U_{\sigma(\sqrt{t})} - E) (U_{\tau(\sqrt{t})} - E) [x] = \frac{1}{\sqrt{t}} (U_{\sigma(\sqrt{t})} - E) U_{\tau(\xi_2)} A_{\tau(t)} [x]
= U_{\sigma(\xi_1)} A_{\sigma(t)} U_{\tau(\xi_2)} A_{\sigma(t)} [x] = [x_{\tau(t)\sigma(t)} (\sigma^{-1}(\xi_1) \cdot \tau^{-1}(\xi_2) \cdot \sigma)],$$

where $\sqrt{t} \ge \xi_1 \ge 0$ and $\sqrt{t} \ge \xi_2 \ge 0$, and ξ_2 is dependent of [x], and ξ_1 of [x] and ξ_2 . As $x_{\tau(t)\sigma(t)}(\sigma)$ is continuous and zero out of some compact set K, for $|t| < t_0$ with sufficiently small t_0 , $x_{\tau(t)\sigma(t)}(\sigma^{-1}(\xi_1) \cdot \tau^{-1}(\xi_2) \cdot \sigma)$ is always zero out of some compact set cotaining K. Therefore, it is bounded for $|t| < t_0$ and, when t tends to zero, converges to $x_{\tau(t)\sigma(t)}(\sigma)$. Hence we obtain

$$\lim_{t\to+0} \frac{1}{t} (U_{\sigma(t)} - E) (U_{\tau(t)} - E)[x] = A_{\sigma(t)} A_{\tau(t)}[x],$$

in the same way as in the proof of Lemma 2. Thus we have

$$A_{\rho(t)}[x] = A_{\sigma(t)}A_{\tau(t)}[x] - A_{\tau(t)}A_{\sigma(t)}[x] \quad \text{for any } [x] \in \mathfrak{D}_{\varphi},$$

and

$$\Phi([A,B]) = [\Phi(A), \Phi(B)].$$

Let N be the kernel of the representation given by the simple unitary structure $\{U_{\sigma}, \mathfrak{F}_{\varphi}, x_{\varphi}\}$ of G. It is now easily seen that L_{φ} is isomorphic to the Lie algebra of the factor group G/N.

Definition 5. Let A be an operator of a Hilbert space \mathfrak{F} such that $\sqrt{-1}A$ is a Hermitian operator with the unique self-adjoint extension. Then we denote with \tilde{A} the extension of A such that $\sqrt{-1}\tilde{A}$ is the self-adjoint extension of $\sqrt{-1}A$.

We have already used this notation in defining $\tilde{A}_{\sigma(t)}$ in Lemma 3. In the sequel, the operation \sim for operators has always this meaning.

The following Theorem 2 is a direct consequence from what we have explained above.

Theorem 2. Let $\{U_{\mathfrak{o}}, \mathfrak{H}_{\mathfrak{p}}, x_{\mathfrak{p}}\}$ be a simple unitary structure of a Lie group G. Then the set $\widetilde{L}_{\mathfrak{p}}$ of all operators defined by

$$\lim_{t\to 0} \frac{1}{t} (U_{\sigma(t)} - E) = \tilde{A}_{\sigma(t)}$$

for each one-parameter subgroup $\sigma(t)$ of G forms a Lie algebra, a homomorphic image of the Lie algebra L of G over the field of real numbers, the addition and the formation of the commutator being defined as follows.

$$\tilde{A}_{\sigma(t)} + \tilde{A}_{\tau(t)} = (A_{\sigma(t)} + A_{\tau(t)})^{\sim},$$
$$[\tilde{A}_{\sigma(t)}, \tilde{A}_{\tau(t)}] = [A_{\sigma(t)}, A_{\tau(t)}]^{\sim}.$$

Theorem 3. Let $\{U_{\sigma}, \mathfrak{F}\}$ be any (possibly not simple) unitary structure of G. By the same definition as for \tilde{L}_{σ} in Theorem 2, we obtain a homomorphic image \tilde{L} of L and if the representation given by $\{U_{\sigma}, \mathfrak{F}\}$ is faithful, \tilde{L} is isomorphic to L.

Proof. Just as in the proof of Theorem 1, we express \mathfrak{H} as a direct sum $\mathfrak{H} = \sum_{\eta} \mathfrak{H} \mathfrak{H}^{(\eta)}$, $\mathfrak{H}^{(\eta)} = \{U_{\sigma} x^{(\eta)}, \sigma \in G\}^{cl}$ and we denote with $E^{(\eta)}$ the pro-

jection defined by $\mathfrak{F}^{(\eta)}$. $\{U_o E^{(\eta)}, \mathfrak{F}^{(\eta)}, x^{(\eta)}\}$ is then a simple unitary structure for each η . We have

$$\lim_{t\to 0} \frac{1}{t} (U_{\sigma(t)} - E) x = \lim_{t\to 0} \sum_{\eta} (U_{\sigma(t)} E^{(\eta)} - E^{(\eta)}) x$$
$$= \sum_{\eta} \tilde{A}_{\sigma(t)} E^{(\eta)} x,$$

and, if η is fixed, the set all $\tilde{A}_{\sigma(t)}E^{(\eta)}$ for each one-parameter subgroup $\sigma(t)$ of G is a homomorphic image of the Lie algebra L of G. So the set \tilde{L} of all operators $A_{\sigma(t)} = \sum_{\eta} A_{\sigma(t)} E^{(\eta)}$ for each one-parameter subgroup $\sigma(t)$ in G is also a homomorphic image of L. If the representation $\sigma \to U_{\sigma}$ is faithful, $\tilde{A}_{\sigma(t)}$ and $\tilde{A}_{\tau(t)}$ are clearly different for different one-parameter subgroups $\sigma(t)$ and $\tau(t)$, so \tilde{L} is isomorphic to L, q. e. d.

Mathematical Institute,

Tokyo University.

References

- [1] C. Chevalley, Theory of Lie groups, Princeton 1946.
- [2] R. Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc., 63 (1948).
- [3] J. von Neumann, Über die analytischen Eigenschaften von Gruppen lineare Transformationen und ihrer Darstellungen, Math. Zeit., 30 (1926).
 - [4] J. von Neumann, Über einen Satz von Herrn M. H. Stone, Ann. of Math., 33 (1932).
- [5] K. Yosida, On the group embedded in the metrical complete ring I, II, Jap. J. Math., 13 (1936)
- [6] K. Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. of Japan, 1 (1948).
- [7] H. Yosizawa, Unitary representations of locally compact groups—Reproduction of Gelfa d-Raikov's theorem—, Osaka Math. J., 1 (1949).

Notes

- 1) These definitions are due to [2].
- 2) A C^2 function on G means a C^2 function on any cubic set in G.
- 3) This method is due to [6].
- 4) This method is due to [4].