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On the Differentability of the Unitary Representation
' of the Lie Group.

Jyun-ichi Hano.

(Received. Oct. 30, 1950)

J. von Neumann () has introduced the notion of the differentiablity
of the matric group, and given a method of forming Lie algebras of matric
Lie groups. This notion was extended further by K. Yosida ([4]) to the
group embedded in tne normed ring.

In this paper, we shall utilize this idea to form the Lie algebra for
the Lie group G embdeded in the unitary group with the weak topology
in the Hilbert space $. Namely we shall show that the set of all opera-
tors

Ay = limYeo—£
t>0 z

for each one-parameter subgroup ¢(#) of G, forms the Lie algebra of G
in a sense to be specified in Theorem 2, 3 below. There is diffculty on
the domains of these operators. We shall show that they have a meet
everywhere dense in . By the way we obtain a new proof of M. H.
Stone’s theorem on the one-parameter group of unitary operators.

In §1 we give a résumé of the theory of simple unitary structures,
which we shall need in the proof of the fact that the domains of Ay,
have an everywhere dense meet. §2 contains a lemma that every element

of /'(G) is approximable by C? functions. Our main results are Theorem
2, 3 in §3.

§1.

Iet G be a Lie group. We denote elements of G with o, 7,---. On
the other hand let § be a Hilbert space, #, y... elements of §. A conti-
nuous unitary representation of G is a continuous homomorphic mapping
o—U, into the group of all unitary operators defined on  and provided
with the weak topology. The pair {Us, D} is then called a unitary structure
of G. If {U,, H} is a unitary structure of G and if, moreover, there is
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such an element x of § that closed linear manifold {U,x;seG} coinci-
des with &, then the triple {U,, , x} is said to be a simple unitary
structure of G. Two such structure {U,, §, x}, {U,, H', #'} are said to
be unitary-cquivalent, if there is a unitary mapping 7" of H on ' such
that 770U,/ T=U, and Tx=2x'"

Let {U,, §, #} be a simple unitary structure of G. The function 50(0')-—
(Uex, ), (where the round brackets mean the inner product on 9),
called the characteristic function of {U,, H,x} It is a positive deﬁnite
function on G, i. e. for any finite number of elements a,(z=1,2,---,72) of
G and arbitrary complex numbers wi(7=1,2,---,7), the inequality

3351 (0007") ety =0
always holds. © Conversely if any positive definite function ¢(s) on G is
given, there is a simple unitary structure, determined up to the unitary-
equivalence, whose characteristic function is ¢(g). According to [7], this
simple unitary structure may be obtained as follows.

Let g be a left-invariant Haar measure of G, Z'(G) the Banach space
consisting of all p-integrable complex-valued functions x(s¢), y(g),- on
G, where the norm of x(¢) is defined by ||z |,={¢ | ()| du(e). L'(G)
becomes a group algebras of G, if we define the convolution xXxy(s)=
fex (D) y(z7'6)dp(z) for any x(a), p(6)el'(G). Next we define a *-ope-
ration for any element z(¢)€Z'(G) with x*(¢) =z(s"")4(a), where z(o)
is the conjugate complex of x(s) and 4(s) is the density of the right-
invariant Haar measure of . Then we have clearly [| z* Hl-—me, (x*)*
=z and (¥ xp)*=p*xz*.

Now put

I,={x; 2L (G).| p(@)x*x1(s)du(a)=0}. (1-1)

I, is a closed left-ideal of Z'(G) and left-G-invariant, so that we can
consider the factor space Z'(G)//, of I'(G) by 7,. We denote the point
of this factor space containing x(s) with [#], and introduce the inner
product in this factor space by

[ [9D= | _p@y*x 2(0) (o)
for any [x], [7]eL'(G)/1,.

We obtain the Hilbert space §, by completing Z'(G)//, with respect to
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the norm defined from this inner product. For each element t of G we
define the mapping ‘

Ul2(0)]=[2(z""-0)] for any [x]eL'(G)/7,.

As 7, is left-G-invariant, this mapping is determined independently of the
choice of a representative of the class [#]. On the other hand, Z'(G) /7,
is everywhere dense in §,, so this mapping can be uniquely extended
to a unitary operator on §,, which we denote again with .. Thus we
obtain a unitary structure {U., H,} of G.

Let {V,} be a complete system of the neighbourhoods of the identity
of G, and Cy.(6) the characteristic function of the set V. Put &,(s)=
Cv, (0)/n(Va), ea=dExd,, then {[e.(d)]} is strongly convergent to an

element x, in ,. It is proved that {U., $,, x,} is then a simple unitary
structure whose characteristic function is ¢(a).

§ 2.

Let G be a Lie group of the dimension 7, L the Lie algebra of G,
and {4,, As---A,} a basis of L. Using this basis we can introduce a cubic
neighbourhood V,={tr; r=exp(2i%:4,), | 2| <a, i=1,2,---, n} of the
identity ¢ of G, and a canonical system of coordinates C, on V, such that
r=exp(3.x:A4;) has x; as its -th coordinate by C,, where exp (37 1x:4,)
is the element ¢(1) of the one-parameter subgroup ¢(#) having 37 x4,
as its tangent vector. By translation we introduce the system of coordi-
nates (, for the neighbourhood I/, of each point ¢ of G, i. e. the i-th
coordinate of r=exp(Xlx:d;) 0 in Vy-0 is x;(G=1,2,---,2).

Definition 1. A complex-valued continuouns function x (o) defined on an
open set W contained in some cubic set Vy-0, is said CT function on W, if

the expression x(6) =X (X, %o, o+, %,) by the system of cordinates Coy ts CT
Junction on W.

Definition 2. A curve o(t) in G, defined continuously with respect to
real pavameter t suck that o(0)=c¢, is colled a C* curve, when eackh coordin-
ates of the elements of o(2) by C, ts continuously diffeventiable for t at t=0.

Following properties of C* functions are earily verified from these
definitions.

(1) Let x(s) be a C* function on W. TFor any C* curve a(?)



On the differentiability of the unitary wepresentation. 273

ll;rg%(x (071() -0) —2(0)) = %01y ()

exists and is a continuous function of ¢ on W. Let the Z-th coordinates
of ¢ and o(¥) by C,ybe x; and y;(a(#)) respectively, then the -th coordinate
of 67'(f) -0 is @ (x5, %0, 25 :(0(2)), 72:(0(2)), -, 7a(a(?))), where ¢
(ZpuZoy ey Zny VisVos e+ Va) is analytic for xy, %,,+, 2, and p,,Vs-++, Yo Then
Zow (0) is given by

—swm | 0% . _Q&] . [_@_/L 2.1
xaw) (0)"‘2'&,.7&1[ axi :Llc=a=/c [ aj/; ok ye=0) dl‘ =0, . ( )

(2) Let g,(Y) be the one-parameter subgroup of G befined by a,(#)
=exp(¢4,). If x4, (0) exists and is contiunous when ¢ is in W for each
a.(H)(#=1,2,...,n), (o) is a C' function. And for any C* curve o(?),
Z%oy(0) is given by a linear combination of x4, (o) (£=1,2,---,2) with

constant coefficients.

(3) To each C* curve o(¢) corresponds one and only one one-para-
meter subgroup o¢/(#) such that x,, () =% () for every C' function
z(e) on W.

(4) Let o(¢) be a C* curve and z(s) a C* function on W with the

OX e ibounded on W for

each i. Then there are a positive unmber 4, and a neighbourhood of the

expression X(xy, %o+, ¥n) by Cs, and let

identity 7, both independent of g, such that -%—x(a"l(z‘) .6) is continuous

and bounded with respect to ¢ and # when g€Vig,, and | 2| <%,

Lemma 1. Any function contained in ['(G) can be approximated as
closely as we wish with respect to the topology in LN(G) by a C* function on
G? contained in I['(G).

Proof. Following Chevalley, we shall say a function x(s) defined on
G to have the property P on I#-6, when it is continuous and zero out of
some cubic set IW-¢ of some point ¢. A function in Z'(G) can be suf-
ficiently closely approximated by functions each of which is continuous
and and zero out of some compact set. Such a function can be expressed
as a finite sum of functions with the property P. Moreover, from Dieu-
donné’s lemma ([1] p. 163) the cubic set W can be taken sufficiently
small. Let V; be a cubic neighbourhood of ¢, of breadth 3, i. e. the
absolute value of the 7-th coordinate x:(a) by C, of -an element ¢ contained
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in V, is smaller than g for i=1,2,---,», and take B such as I’CV,.
Then we have only to prove that for a function x(s) with the property
P on V,-a, of some point g, there is a series of C* functions converging
to x(a).

Let X (x4, 25+, #2) be the expression of x(s) by the system of co-
ordinates C,, and put

xm(a) =Xm (:tf], x?""xﬂ)

1 1 ‘ 1
Xy +5,; xXet+5, In+
772 \"
=(¥) J , L j S X (g Hn) Ay drpy - dxy
2 . X1 ="V Xoe =70 Xn— -

Zf"'EV,_L'%

m

x,(0)=0 if a¢V¢_i‘-ao

m

for mZmo=Min{m;a—,3> i}, where V,_1 is a cubic set of ¢, of brea-
m .

dth a— 1. Then x,(s) has clearly the property P on 4.1 -0,={0-0,;
V4 m
1 . T ) o0.X,, . .
0¢G, | x;(0)] <,8+7 by C,7i=1,2,--, 7’1}. Moreover, T exists in V,_1

-0, and has the property P on V.1 -0, for each 7. If oV, 1 -0,we have
Zmow (6) =0 for any C? curve o(¢). Thus x,(s) is a C" function on G and
has the property P on V,,1-0,. As X(xy, %y, 2,) is uniformly conti-

m
nuous on the closure V;, 1 .4, there is a positive number d(e) for any

m

given positive unmber e such that from |#;—2',| <d(e), i=1,2,---, 7, follows
| X2y Zopr oo y) — X (2, 25+, 20") | <e.

75%‘_—)}, then there is for each ¢ in V—‘,’”L

-0, a point with the 7-th coordinate &;(=1,2,---,7%) such that | x,(c) —&

Take ¢ larger than m1=Max{mo,

<_;}Z_ <d8(e) and X, (% Xoors xn) =X (€1 €+, §,) from the mean-value
theorem of the integral. Therefore

]/Ym(xjs Koy "y xn) _X(xn x2""»xn) | = IX(EI’ 52""’51;) ——A’(xl, Xgyer, Xn) | <6

if o€l 1 .a,,
m



On the differentiability of the unitary representation. 275

and if o¢Vy, 1.0, we have x,(c)=x(s)=0. So the series {z,(o)}

converges uniformly to x(¢) and
| 1r@—2n@lan@ =| | | #(0) (@) ldp(@) <)

Thus the sequence {x(0), m_?_mj} converges to (o) with respect to the
topology in L'(G). As it is already known that x,(¢) has the property
Pon V,.1 .6,, we can apply this method to each z,(¢) and obtain a

series {x,, ()} of C? functions converging to x,(¢). %, (o) is indeed
a C? function as it is easily seen from (2-1) above. In taking a suitable
partial sequence {Zpmmm (@)} of {%,. .(0)}. we obtain finally a series
converging to x(9), q. e. d.

Definition 3. Let Vy be a cubic set defined as above, x(a), y(a), -
Sunctions in L'(G) with the property P on Vi 6, Vi+Tyfor some o, Ty --in
Gy {Zmmramy () }s {Vnmriny(0) Voo 2he sevies of C? functions inl'(G) converging
to x(0),y(0), -rvespectively. We form linear combinations with complex coef-
Sficients of a finite number Of such functions Zmom(0)s Inmrm (6)yr.  The
set of all these linear combinations forms a G-invariant linear manifold in
ING) whick is everywhere dense in L'(G). We denote this linear manifold
with D(G).

§ 3.

The following lemma is important to deduce our main results.
Lemma 2. Let {Ug,$, 2y} b¢ a simple unitary structure of a Lie group
G. The set of all elements x of O for whick

hmm—(Uam—E)x (3-1)
t>0
exists for any C' curve, is a linear manifold everywhere dense in L'(G).
Proof. As it was remarked in §1, the given simple unitary structure
{Us,D, x,} may be considered as {U,,9.,%,}, ¢ being a positive definite
function on” G. This remark will be often used in the sequel.
We use the same notation as in §1 and §2. Thus 7, is the left-
ideal defined by (1-1), §, the Hilbeit space obtained by completion of
IYG)/I,. Let D, be the image of D(G) by the natural mapping of
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I*(G) onto IY(G)/I,. As D(G) is dense in L' (G), D, is everywhere
dense in $,. An element [x] of D, has the form 3¢_,u[x;(s)], where
#2,(6) is a C? function with the property 7 on some cubic set V-0, of
a breadth B’ such as @ <pf <a, constructed as in [Definition 3. So our
lemma will be proved, if we show the existence of (3:1) for such [#;(s)]
and an arbitrary C* curve o(¢). Now we have

lim 2 { (Upulzd [7D) = 2, [7]) 5}

t>0 f

=tim[ [ p(o7:0) (@) 2D =50 gu(oyauce)

t>0

for any [y ]eZ'(G) /7,. (3:2)

Take #, so small that if | #]| <z and t4V,-0, we have o~'(¢)-:§V; -0, and
2;(67(¢) -t)—x,(r) =0. Accordingly, the domain G of the integral with
respect to 7 in the right hand side of (3-2) can be replaced by V,-s.

Next, from the property (4) in §2,—§;x,;(a“ (#) -7) is continuous for r and

¢ and is bounded when 7 is in some cubic set I;-7, and # in an interval
| ¢]| <#, where 7, is an arbitrary element of G and #, and 7/; may be both
taken independently of r,, As V,-g, is compact, it can be covered by a

d
is bounded when t is in V,-.g, and # in the interval |z]| <#. On the
other hand, if | 2| <Min{%,#} we have

finite number of cubic sets V;-7;(;=1,2,---,£). Therefore %xi(a"(t) . g)

1(0'-1(5)'7) —x,(7) — 4 -1 - .
x : _[ 4 2o (D)) LE (3-3)

where 0<6<¢ or #<6<0. Then the left hand side of (3-3) is bounded

when 7 is in l'/;,-ao and # in the interval | #|> Min{4,#} and converges
to Zuw (r) when ¢ tends to zero. Consequently we can apply Lebegue’s

theorem, and we have

lltg(l)—}*{ (Uo(t)[xi]’y)v— ([xi:]’ [y]?}
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=J,7 L (67 -2)¥(0) X i00 (v)dp(a) +dpe(z)

=[ [ ¢ 97©@) 310 @ (@) ae(2)
= ([Fiwl De for any [y]eL'(G)/1,

Then the strong convergence of (3-1) is concluded from

Us @ [xi] — rxi]
z

lim
t->0

{2 =j.'gj‘g¢ (0—1 . T):Em(t) (0') X 20 () (7) d/" (0) dlu (f)

el

which is proved in the same way as sbove. On the other hand, it is
almost evident that the set of all elements of §,, for which (3:) exist
for any C' curve o(#), forms a linear manifold, g. e. d.

Definition 4. Let {Uq, D,y %,} be a simple unitary structure of a Lie
group G, and o(¢) a C' curve on G. VVe define the operator Ag,, with the
domain Djin O, by

133%(0,,(,)[:;]_[;;])—_—A,,(,,[x]_ for any [+]€D,.  (3-4)

Clearly ~—1 A, is a Hermitian operator, and from the properties
(2) and (3) in §2 follows that s, is a linear combination of Ay,
(¢=1,2,---,#) with real constant coefficients where o,(#) (=1, 2,---, %) are
linearly independet 7 one-parameter subgroups of G defined in §2, and
that there is one and only one one-parameter subgroup ¢(f) with A, ==
Aor .

Lemma 3. Let {Uegy Doy %04 be a simple unitary structure of G, and.

a(?) a one-parameter subgroup of G. If lim%(Uw,x——x) exists we put
t>0

llm—(Uo(t)x""x) Ao(“x

t->0
Then ~—1Aqq, is a sélif-adjoint operator, with a domain containing D, in
., and is the one and only one self-adjoint extension of ~—1 A, defined
in Definition 4. Moreover, let E,(— <A< o) ge the resolution of the

identity of ~/—1 ffo“,, then the one-parameter group Uy, can be e¢xpresscd -
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by
©° V3
Ua(” =j‘ e ! At({ﬁ‘l-
Proof. (1) When the weak limit w-lim(Usux—x) exists, we denote
t->0

it temporarily with 4,,z. As ¢(¢) is a one-parameter subgroup of G, we
have

. 1 ~ =
w—h,m p (Uo(u;— ou))x=Aom Ua(t)x'__Uo(t)Aa(t)x

>t f —

and
't ~
(Uamx—x,y) ¢=j0(Uoonr¢)x’ J/) ot
= (JZ Uomix dt, 3/)¢
for any y€9,,

SO

¢ ~
Uc(,)x—x=on(,,Ao(,J,t [lt.
0

Therefore from the weak convergence of —i—(Uw)x——x) follows the st-

rong convergence. and -the both definitions of A, coincide.

(2) ~—=1 A4,, and v —1 A,, are both Hermitian operators, and
the latter is an extension of the former. ILet I and I be the Cayley
transforms of ~—1 A,, and ~—1 A:(,) “respectively. These are both
partially isometric operators and the latter is an extension of the former.
We shall show that J” has an everywhere dense linear manifold as the
domain. For the purpose we have only to show that the set {(+v/—1
(Ao +E)x; 2€D,} is dense in ,, because the graph of V is {{~—1
(Aoy+E)x, v =1 (Aoy—E)x}; 2€D,}. Assume it were not true, then
there would be a non-zero element y of $, such that

(V=1 (Ao + E) #, ) ,=0 for any xe,.

- Then from UypyAepy¥ = AswyUsuyr, We obtain the differential equation
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74
‘;L;;(Ua 0¥ V)= — (Ua(t)x’y) R

The solution of this differential equation under the initial condition (U,
%,7)e=1(%,7), is given by

oy ¥) o= (2,2)

Now, the absolute value of (Ugy#,7), is bounded by || x|l,:ll7|l, and on
the other hand the absolute value ¢~*(x,7), is not bounded, which is a
contradiction. Thus J” has an everywhere dense domain, and has the

unique unitary extension J, which is also the unique unitary extension of

~

V.
(3) Let A4 be the self-adjoint operator having U as its Cayley trans-
form, then ~'—1A,, and ~"—1A., both have the unique self-adjoint

extension 4. Let £,(— 0 <1< o) be the resolution of the identity of A
and consider the one-parameter group of unitary operators defined by

© Vv
V,=j RGN

Then U, Vix=V,Ugpx for any ¢ and s, when z is contained in the do-

main of A,q,, and for such x we have

”Ua(:)x Vx”qo—H 2 (U

a(n+1 f)

V ]/—Ua(ﬁ;—if)V%t )x”¢
= 337U o(nt it) V_f_—1_t (Ua(i) —Vig)x,lv

— Zu l”(Ud(L) —V_L)x ”9’

=f!l( ) ‘)xllqa (3-5)

On the other hand, we have
\/:Az_l . ~
llm‘*(V, E)x—llmj Wdﬁ,\szx,

t>0 >0 z

and
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.1 T =
llm—-(Uou)—E)x=A,,(,)x=Ax,
t>0 ¢

whence we can conclude U,y ¥=V,x for x in the domain of A,ux, as the
right hand side of (3:5) tends to zero as » tends to <.? Finally, since

the domain of AT,(,) is dense in O, Uqyy coincides with 1, and v+ —1 go(,) '

with A. q. e. d.

From this lemma, we obtain a new proof of a theorem of M. H.
Stone.

Theorem 1. (M. H. Stone) For a wnitary structure {U,, D} of the
additive group R' of all real numbers provided with the usual topology, therve
is a resolution of the identity E,(— o0 <A< o0) so that U, is expressed by

C/’t_-:jm e‘/_lu dE, .

Progf. We define a closed linear manifold $® of § for any trans-
finite number 7 by the method of transfinite induction as follows. For
n=1, we take an arbitrary non-zero element x® of $, and define H® =
{Ux®;— o0 <4 <o }.% Let a closed linear manifold " be defined for
every 7' <7. If the orthogonal complement of 3, O™’ is not zero, we
take and arbitrary non-zero element " of this complement and define $?
={UxW; — o0 <t<oo}® Otherwise we put H7=0. Then we have
S DOP=9, and if y= H® and H$” are always mutually erthogonal.

Let £™ be the projection defined by the closed linear manifold $™.
The contraction of U, on ™ is then U,E™ and {U,E™, ™, +™} is a
simple unitary structure of R for each . Therefore by Lemma 3 there
is a resolution of the identity £{" in the Hilbert space ™ so that U,E™
is expressed by

© Vi
U,E(’l)=j e M dE®™, for each 7,
Clearly 3,EW=F,(— o <A< ) is a resolution of the identity in § and
LI Ve
U,=2,|U,E=j & ™™ 4B,

thus the theorem is proved.
Now, let L be the Lie algebra of G. We take the same basis {4,,
Ay-++y A} as used in §2. Then an element 4 of L is expressed uniquely
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as the linear combination a,4;+a,A,+ -+ + a,A,, and there are C* curves o (¢)

satisfying

[dxi(o(t))J —ay i=1,2,7, (3-6)
at =0

among which there is the unique one-parameter subgroup, i. e. the one-
parameter subgroup defined by @ () =exp (¢ 12.4;).

Let {U,, O,y #,} be a simple unitary structure of G, L, the set of all
operators A, defined in Definition 3. To every element 4 of L take a
C' curve o(¢) satisfying (3-6) and let A,, be the operator defined by
(3:4). Then according to A.u[+]=[#s] and the property (3) in §2,
the operator A4, is determined uniquely by A alone. We shall write
P(A)=Asy. @ is a mapping of L into Z, This mapping @ is clearly
linear, i. e., if 4, BeL and « is a real number, we have @(ud)=u®(A)
and @(A+B)=0(A)+P(B). We shall now prove that @ ([4, B])=
[¢(4), ?(B)]. Let o(¢) and 7(¢¥) be one-parameter subgroups defined by
P(A)=Asp and @ (B)=A,, respectively. Put p(f)=e"'(~ ¢ )1
(V£ ) e(vV ¢t ) o(~ ¢t ) when 120 and "p(¥)=a(~V =t ) -c(~V =t ) -0™"
v —t )t (4=t ) when #<0, then p(¢) is a C* curve and [4, B]=X1"7,

[Tz’l—x,; (p(t))] A,. On the other hand we have
t=0

| 1, 3 .
Apolx]=im—U - Ul iy (U sy =B U vy —E)

>+0 7

— (U.;(\/T) —E) (UO(‘/T) —E) }=] for any [#]€D,.

and, as x(¢)eD(G) is a C® function, we have

1 1
e (UO(\/T) —£) (UT(\/T) —£) ["]"::77—(0,,(\/7) —E) U A-w[#]
:Uo(n)Ao(t)Ut(Ez)Aom[x]:[xv(»o(n (‘7—1(51) -77(€y) “")]v

where vt 26,20 and v ¢ =£,>0, and &, is dependent of [x], and &,
of [#] and §,, As Z:¢ew (6) is continuous and zero out of some compact
set K, for | ¢| <{, with sufficiently small 2, Z:pewy (67§ z7(5,) -0) s
always zero out of some compact set cotaining XK. Therefore, it is boun-
ded for || <# and, when ¢ tends to zero, converges to X uoe(o). Hence
we obtain |
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.1 i
lim— (Upy—£) (Uey— E) [x]::AO(t)At(t)[x]r

t>+0 7
in the same way as in the proof of Lemma 2. Thus we have

AP(,)[x]::Aw,At(,)[x]—-At(,)A,,(,)[x] for any [x]eiS),,,

and
04, B) =[0(4), 2(B)].

Let V be the kernel of the representation given by the simple uni-
tary structure {Us, O, x,} of G. It is now easily seen that L, is isomor-
phic to the Lie algebra of the factor group G/N.

Definition 5. Let A be an operator of a Hilbert space © suckh that
v —1A is a Hermitian operator with the unique self-adjoint extension. Then
we denote with A the extension of A such that ~=1A is the self-adjoint
extension of v —1A. ,

We have already used this notation in defining A:(,) in Lemma 3.
In the sequel, the operation ~ for operators has always this meaning.

The following Theorem 2 is a direct consejuence from what we have
explained above.

Theorem 2. Let {U,y D,y x,} b¢ a simple unitary structure of a Lie
group G. Then the set Z,,, of all operators defined &y

.1 ~
im—(Usy—E) = Ao
>0 [ |

for eack one-parameter subgroup o(t) of G forms a Lie algebra, a homo-
morphic image of the Lie algebra L of G over the field of veal numbers, the
addition and the formation of the commutator being defined as jfollows,

A:(z) +14~1(t) = (Aoa) + ATU)) T
[Ao(:)’ AT(!)]‘_‘[AO(t)v Aw):r-

Theorem 3. Let {U,, D} be any (possibly not simple) wunitary structure
of G. By the same definition as for l:, in Theoremn 2, we obtain a homo-
movphic image L of L and if the representation given by {UoQ} is faithful,
L is isomorphic to L.

Proof. Just as in the proof of Theorem 1, we express § as a direct
sum H=237,PHH™, PN ={U,xM,0e¢G}¥ and we denote with E® the pro-
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jection defined by §M. (U E™, ™, 2™} is then a simple unitary structure
for each . We have

t>0 [

limi(Ua(t)—E)x_—:limzn(yomE(n)__E(-q)>x
t->0

— 7 )
- ZnAo(t)E(n 2

and, if 7 is fixed, the set all 20(,)[5"4) for each one-parameter subgroup o (?)
of G is a homomorphic image of the Lie algebra L of G. So the set L
of all operators Ao =2, A0, for each one-parameter subgroup ¢(#) in
G is also a homomorphic image of L. If the representation 6—U, is faithful,
2,,),) and A:(,) are clearly different for different one-parameter subgroups
a(?) and 7(¢), so L is isomorphic to Z, q. e. d.

Mathematical Institute,

Tokyo University.
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Notes

1) These definitions are due to [2]. .
2) A C? function onG means a C? function on any cubic set in G.
8) This method is due to [6].

4) This method is due to [4].
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