On Invariant Differential Forms on Group Varieties

Shigeo Nakano.

(Received Apr. 17, 1950)
In this note we shall discuss the invariant differential forms on group varieties ${ }^{1)}$ and prove that for any group variety, there corresponds to it a Lie ring composed of invariant dervations of the (abstract) field of functions defined on that group variety. We shall also discuss some of its properties, which are the analogues of the case of usual Lie groups.

§ 1. Differential Forms on an Algebraic Variety.

Let V^{n} be a variety in $S^{N}, \mathfrak{D}_{1}(V)$ the totality of functions defined on $V \times V$ which induce on Δ_{V} the constant $0 . \mathfrak{D}_{1}(V)$ is a module over the field of constants $\Omega^{9)}$. Let $\theta \varepsilon \mathfrak{D}_{1}(V)$ and let k be a field of definition for θ, P a generic point of V over k and $H_{1}(X), \ldots \ldots, H_{n}(X)$ a uniformizing set of linear forms of V at P. We shall denote by $\Lambda_{j}^{2 N-n+1}$ the linear variety in $S^{N} \times S^{N}$ defined by $H_{i}\left(X-X^{\prime}\right)=0 \quad(i=1, \ldots \ldots, \hat{j}, \ldots \ldots, n)$ (here \hat{j} means to omit j). Then by $F-V I_{1}$ th. $1^{3}, V \times V \cap \Lambda_{j}$ has a unique proper component W_{j}^{n+1} containing Δ_{V}, W_{j} has the multiplicity 1 in this intersection and Δ_{v} is simple on W_{j}. If, therefore, the function $\theta_{W_{j}}$ induced by θ on W_{j} is not the conatant $0,(\theta) \cdot W_{j}$ is defined and we have

$$
v_{\Delta_{v}}\left(\theta_{w_{j}}\right)=\text { coeff. of } \Delta_{v} \text { in }(\theta) \cdot W_{j} \geqq 1
$$

Proposition 1. Let $H_{i}^{\prime}(X)(i=1, \ldots \ldots, n)$ be another uniformizing set of linear forms of V at P and W_{j}^{\prime} be defined from $H_{i}{ }^{\prime}(X)$ as W_{j} were from $H_{i}(X)$. If for some $j(1 \leqq j \leqq n)$, $\theta_{w_{j}}$ is not the constant 0 and $v_{\Delta_{V}}\left(\theta_{w_{j}}\right)$ $=1$, then the same is true for some $\theta_{w_{l}^{\prime}}^{\prime}(1 \leqq l \leqq n)$.

Proof. Let $P=(x)$, and $Q=\left(x^{\prime}\right)$ be a generic point of V over $k(x)$, then $P \times Q$ is a generic point of $V \times V$ over k. As θ is in the specialization ring of Δ_{V} in $k\left(x, x^{\prime}\right)$,

$$
\theta\left(x, x^{\prime}\right)=\frac{f\left(x, x^{\prime}\right)}{g\left(x, x^{\prime}\right)}
$$

where $f\left(X, X^{\prime}\right), g\left(X, X^{\prime}\right) \in k\left[X, X^{\prime}\right]$ and $g(x, x) \neq 0$.
Since we are concerned with the components containing Δ_{V}, it does not matter whether we consider the function θ or f. If we consider the function F on $S^{N} \times S^{N}$ defined by $F\left(\bar{x}, \bar{x}^{\prime}\right)=f\left(\bar{x}, \bar{x}^{\prime}\right)$ where $(\bar{x}),\left(\bar{x}^{\prime}\right)$ are in-
dependent generic points of S^{N} over k, F induces f on $V \times V$ and $F_{w_{j}}=f_{W_{j}}$ on W_{j}. Therefore $(F) \cdot W_{j}$ is defined and by $\mathrm{F}-\mathrm{VIII}_{2}$ th. 4 we have

$$
\text { coeff. of } \Delta_{V} \text { in }(F) \cdot W_{j}=v_{\Delta V}\left(F_{W j}\right)=v_{\Delta V}\left(f_{W j}\right)=1
$$

This means that $(F)_{0}$ has a unique component containing Δ_{V}, and this component contains Δ_{V} as a simple subvariety and is transversal to W_{j} along Δ_{V}. Therefore if $\Delta_{x} F_{k}(X)=\sum_{\mu} \frac{\partial f}{\partial X_{\mu}}\left(X_{\mu}-x_{\mu}\right)=0 \quad(k=1, \ldots \ldots, N-n)\left(F_{k}(x)\right.$ being in the ideal defining V in S^{N}) are the set of equations of the tangent linear variety of V at P, the linear forms

$$
\begin{aligned}
& \Delta_{x, x} f\left(X, X^{\prime}\right)=\sum_{\mu} \frac{\partial f}{\partial X_{\mu}}\left(X_{\mu}-x_{\mu}\right)+\sum \frac{\partial f}{\partial X_{\mu}^{\prime}}\left(X_{\nu}^{\prime}-x_{\nu}\right), \Delta_{x} F_{k}(X), . \\
& \Delta_{x} F_{k}\left(X^{\prime}\right) \quad(k=1, \ldots \ldots, N-n) \text { and } F_{i}\left(X-X^{\prime}\right) \quad(i=1, \ldots, \hat{j}, \ldots, n)
\end{aligned}
$$

are linearly independent. (Here $\frac{\partial f}{\partial X}, \frac{\partial f}{\partial X^{\prime}}$ are taken at $X=x, X^{\prime}=x$.) But as $H_{i}\left(X-X^{\prime}\right)$ are linear combinations of $\Delta_{x} F_{k}(X), \Delta_{x} F_{k}\left(X^{\prime}\right)$ and $H_{i}^{\prime}(X-$ $\left.X^{\prime}\right)(i=1, \ldots, n)$, for a suitable $l, \Delta_{x, x} f\left(X, X^{\prime}\right), \Delta_{x} F_{k}\left(X^{\prime}\right), \Delta_{x} F_{k}\left(X^{\prime}\right), H_{i}^{\prime}(x-$ $\left.X^{\prime}\right)(i \neq l)$ are linearly independent. From this we can arrive at the assertion of the proposition by reasoning in the inverse direction.

From Prop. 1 we see that
$\mathfrak{D}_{2}(V)=\left\{\theta \mid \in \mathfrak{D}_{1}(V), v_{\Delta V}\left(\theta_{W j}\right) \geqq 2\right.$ whenever $\theta_{W j}$ is not the constant 0.$\}$ is a submodule of $\mathfrak{D}_{1}(V)$ defined independently of the choice of $H_{i}(x)$.

Next we prove that $\mathfrak{D}_{1}, \mathfrak{D}_{2}$ are birationally invariant. Let V^{n} and U^{n} be two varieties respectively in S^{N} and S^{M}, T^{n} be a birational correspendence between V and U. Then the transform T^{\prime} of $T \times T$ by the transformation of the product $S^{N} \times S^{M} \times S^{N} \times S^{M}$ which interchanges the second and the third factors is a birational correspondence between $V \times V$ and $U \times U$, and it is biregular along Δ_{V}.

Proposition 2. Let θ be a function on $V \times V$ and l a field of definition for V, U, T and θ. Let $P \times Q$ and $R \times S$ be corresponding generic points of $V \times V$ and $U \times U$ by T^{\prime} over k. Then the formula $\theta^{\prime}(R \times S)=\theta(P \times Q)$ difines a function on $U \times U$ and if $\theta \varepsilon \mathfrak{D}_{1}(V)$ or $\theta \in \mathfrak{D}_{2}\left(V^{\prime}\right)$, we have respectiqely θ^{\prime} $\epsilon \mathfrak{D}_{1}(U)$ or $\theta^{\prime} \in \mathfrak{D}_{2}(U)$.

Proof. Only the assertion abot \mathfrak{I}_{2} is not evident. To prove this we assume $\theta^{\prime} \nsubseteq \mathfrak{D}_{2}(U)$. Then for some j, we have $z^{\prime} \Delta_{V}\left(\theta_{r_{j}}^{\prime}\right)=1$ where V_{j} are constructed for U as W_{j} were for V before. As T^{\prime} is biregular along
Δ_{i}, there is a subvariety Y of $V \times V$ corresponding to Y_{g}, and we have

$$
1=v_{\Delta_{V}}\left(\theta^{\prime}{ }_{Y_{j}}\right)=\text { coeff. of } \Delta_{v} \text { in }\left(\theta^{\prime}\right) \cdot Y_{j}=\text { coeff. of } \Delta_{V} \text { in }(\theta) \cdot Y
$$

This means that that there is a unique component of (θ) containing Δ_{V} and it is transversal to Y along Δ_{V}.

Now we put $P=(x), Q=\left(x^{\prime}\right), \theta\left(x, x^{\prime}\right)=\frac{f\left(x, x^{\prime}\right)}{g\left(x, x^{\prime}\right)}$ as in the proof of Prop. 1, and find that the linear forms

$$
\begin{gathered}
\Delta_{x, x} f\left(X, X^{\prime}\right), \Delta_{x} F_{k}(X), \Delta_{x} F_{k}\left(X^{\prime}\right) \text { and } \Delta_{x, x} \Phi_{i}\left(X, X^{\prime}\right) \\
(i=1, \ldots, n-1 ; \quad k=1, \ldots, N-n)
\end{gathered}
$$

are linearly independent, where $\Phi_{i}\left(X, X^{\prime}\right)$ belong to the ideal defining Y in $S^{N} \times S^{N}$ and $\Delta_{x, x} \Phi_{i}\left(X, X^{\prime}\right)$ form, together with $\Delta_{x} F_{k}(X)$ and $\Delta_{x} F_{k}\left(X^{\prime}\right)$, the equations of tangent linear variety of Y at $P \times P$. But Y contains Δ_{v} so we have $\Phi_{i}(x, x)=0$ and therefore $\Phi_{i}(X, X)=\sum h_{l}(X) G_{l}(X)\left(h_{l}(X) \epsilon\right.$ $k[X]$ and $G_{l}(X)$ belong to the ideal defining $\left.V\right)$, and hence

$$
\frac{\partial \Phi}{\partial x_{\mu}}(x, x)+\frac{\partial \Phi}{\partial x_{\mu}^{\prime}}(x, x)=\sum h_{l}(x) \frac{\partial G_{l}}{\partial x_{\mu}}(x) .
$$

This shows that we can choose Φ_{i} so that $\Delta_{x, x} \Phi_{i}\left(X, X^{\prime}\right)$ have the form $H_{i}\left(X-X^{\prime}\right)$. If we take these $H_{i}(X)(i=1, \ldots, n-1)$ and a suitable $H_{n}(X)$ for a set of linear forms to define W_{j}, we have $v_{\Delta V}\left(\theta_{W j}\right)=1$, that is a contradiction.

In the above proof, we saw that the tangent linear variety of Y^{n+1} at $P \times P$ can be defined by the system of equations
$\Delta_{x} F_{k}(X)=0, \Delta_{2} F_{k}\left(X^{\prime}\right)=0, H_{i}\left(X-X^{\prime \prime}\right)=0 \quad(i=1, \ldots, n-1 ; k=1, \ldots, N-n)$.
Evidently this remark holds true for any subvariety Z^{n+r} of $V \times V$ containing $\Delta_{V},(1 \leqq r \leqq n-1)$, that is to say, the tangent linear variety of Z at $P \times P$ can be defined by the system of equations of the form
$\Delta_{x} F_{k}(X)=0, \quad \Delta_{x} F_{k}\left(X^{\prime}\right)=0, H_{i}\left(X-X^{\prime}\right)=0 . \quad(i=1, \ldots n-r, k=1, \ldots, N-n)$.
Applying this to the case of $r=n-1$, we have the following
Proposition 3. If $Z_{1}^{2 n-1}, \ldots \ldots, Z_{n}^{2 n-1}$, are n subvarieties of $V^{n} \times V^{n}$ and Δ_{V} is a proper component of $Z_{1} \cap \ldots \ldots \cap Z_{n}$ with multiplicity 1 , then we can find a uniformising set of linear forms $H_{1}(X), \ldots \ldots, H_{n}(X)$ of V at a generic point P of V over a field of definition k of $V_{1}, Z_{1}, \ldots \ldots, Z_{n}$, such that the tangent linear varicty of Z_{j} at $P \times P$ are defined by the system of equations

$$
\Delta_{x} F_{k}(X)=0, \quad \Delta_{x} F_{k}\left(X^{\prime}\right)=0 \quad \text { and } \quad F_{j}\left(X^{\prime}-X^{\prime}\right)=0 \quad(k=1, \ldots \ldots, N-n),
$$

where $F_{k}(X)$ are in the ideal defining V in S^{N}.
If an abstract variety V is given, we can define $\mathfrak{D}_{1}(V), \mathfrak{D}_{2}(V)$ independently of its representative, by Prop. 2. \mathfrak{D}_{1} and \mathfrak{D}_{2} are Ω-modules and \mathfrak{D}_{2} is a submodule of \mathfrak{D}_{1}, so we can construct the factor module $\mathfrak{D}(V)$ $=\mathfrak{D}_{1}(V) / \mathfrak{D}_{2}(V)$. We can, as in Weil's book ${ }^{4}$, define in $\mathfrak{D}(V)$ multiplication by the element of $\Omega(V)$, and make $\mathfrak{D}(V)$ a $\Omega(V)$-module. This module is called the module of differential forms of the first degree on V, and its element ω is called the differential form of the first degree on V. If θ is in the class ω, we say that θ defines ω and write $\omega=\{\theta\}$, if one of the functions of class ω is defined over K, we say ω is defined over K.

Let φ be a function defined on V over k, then we define a differential form $d \varphi$ on V defined over k, by the formula

$$
d \varphi=\left\{\varphi_{\partial}\right\}, \quad \varphi_{\partial}(P \times Q)=\varphi(Q)-\varphi(P),
$$

where P and Q are independent generic points of V over k. This differential form is called the differential of the function φ.

Proposition 4. Let V be a variety in S^{N}, k a field of definition for V, and $P=(x)$ a generic point of V over k. Let $H_{i}(X)(i=1, \ldots, n)$ be a uniformizing set of liner forms weith coefficients in k at P. Consider the functions u_{i} defined by $u_{i}(x)=H_{i}(x)$. Then
(1) $d u_{i}(i=1, \ldots, n)$ are linearly independent over $\Omega(V)$,
(2) any $\omega \in \mathfrak{D}$ is a linear combination of du with coefficients in $\Omega(V)$, and especially with coefficients in $\Omega_{k}(V)$ if ω is defined over k.

Proof. (1) Notations being as above, assume that

$$
\theta\left(x, x^{\prime}\right)=\varphi_{1}(x) H_{1}\left(x-x^{\prime}\right)+\cdots+\varphi_{n}(x) H_{n}\left(x-x^{\prime}\right) \in \mathfrak{D}_{2}
$$

with φ_{i} not all 0 . We can here assume $\varphi_{i}(x)$ to be polynomials. If φ_{1} $(x) \neq 0$, we have $\theta_{W 1}=\varphi_{1}(x) \cdot H_{1}\left(x-x^{\prime}\right) \neq 0$, and considering the function F defined in $S^{N} \times S^{N}$ by $F\left(\bar{x}, \bar{x}^{\prime}\right)=\varphi_{1}(\bar{x}) H_{1}\left(\bar{x}-\bar{x}^{\prime}\right)$, we have $v_{\Delta V}\left(\theta_{W 1}\right)=$ coeff. of Δ_{V} in $(F) \cdot W_{1}=1$, which is a contradiction.
(2) Let $\omega=\{\theta\}$, we can here also assume that $\theta\left(X, X^{\prime}\right)$ is a polynomial in X, X^{\prime}. As $\theta(x, x)=0$ we have as in the above proof of Prop. 1 and Prop. 2,

$$
\begin{gathered}
\Delta_{x, x} \theta\left(X, X^{\prime}\right)=\sum a_{i} H_{i}\left(X-X^{\prime}\right)+\sum b_{k} \Delta_{x} F_{k_{k}}(X)+\sum c_{k} \Delta_{x} F_{k}\left(X^{\prime}\right) \\
\left(a_{i}, b_{k}, c_{k} \in \Omega(V)\right),
\end{gathered}
$$

and therefore if we put $\psi\left(X, X^{\prime}\right)=\theta\left(X, X^{\prime}\right)-\sum a_{i} H_{i}\left(X-X^{\prime}\right), \Delta_{x, x^{\prime}} \psi\left(X, X^{\prime}\right)$
is linearly dependent on $J_{x} F_{k}(X), J_{x} F_{k}\left(X^{\prime}\right)$. This implies that W_{j} and the component of $(\xi)_{0}$ containing J_{v} are not transversal. Therefore $\psi \in \mathcal{D}_{2}$, and we have $\omega=\sum a_{i} d u_{i}$.

The last assertion is now immediate.
Proposition 5. Notations being as above, the fuction induced on Δ_{V} by $\left[\frac{\theta\left(x, x^{\prime}\right)}{H_{j}\left(x-x^{\prime}\right)}\right]_{W_{j}}$ shall be denoted by $\chi_{j}(x, x)$ (this is not 0 when $v_{\Delta v}\left(\theta_{W_{j}}\right)=$ 1 , and 0 otherwise). Thin the functions a_{j} such that $\omega=\sum_{j} a_{j} d u_{j}$ are given by $a_{j}(x)=\chi_{j}(x, x)$.

Proof. Put $\psi\left(x, x^{\prime}\right)=\theta\left(x, x^{\prime}\right)-\sum \chi_{j}(x, x) H_{j}\left(x-x^{\prime}\right)$, then it can easily be seen that $\psi_{W^{j}}=0$ or $v_{\Delta V}\left(\psi_{W_{j}}\right)>1$, and therefore $\psi \in \mathfrak{D}_{2}$. This implies $\omega=\sum_{j} \chi_{j}(x, x) d u_{j}$.

By definition, $d(\varphi+\psi)=d \varphi+d \psi$, and $d\left(\varphi \psi^{\prime}\right)=\psi d \varphi+\varphi d \psi$, for two functions φ, ψ on V. So, if we put $d \varphi=\sum z_{i} d u_{i}$ we can define n derivations of $\Omega(V)$ over Ω by $D_{i} \varphi=z_{i}^{5)}$. As $D_{i} u_{j}=\delta_{i j}, D_{i}$ are linearly independent over $\Omega(V)$, and therefore form a $\Omega(V)$-base of the module $\Delta(V)$ of derivations of $\Omega(V)$ over Ω. Therefore we can consider a differential form of the first degree ω as a linear mapping of $\Delta\left(V^{\prime}\right)$ into $\Omega(V)$, by the relation : $\omega * D=\sum \varphi_{i} D u_{i}$ if $\omega=\sum \varphi_{i} d u_{i}$. And it is easy to see that $\operatorname{D}(V)$ and $\Delta(V)$ are dual modules with respect to this product. By the last assertion of Prop. 3, this duality holds when we restrict the field of definition of differentials, derivations and functions to any field K which is at the same time a field of definition for $V^{5(6)}$. Thus our definition of differential forms of the first degree agree with that given by Weil in F-IX ${ }_{2}$. We can therefore, speak of whether a differential form is finite or not at a point of V, and also speak of differential forms of higher degrees. Cf. also Koizumi's paper.

Concerning the Prop. 6 in Koizumi's paper, we have the following
Proposition 6. Let V^{n} be a variety and Z^{r} be its simple subvariety. If a differential form of the first degree ω on V is finite along Z, there is a function θ in $\mathfrak{D}_{1}(V)$ such that $\{\theta\}=\omega$ and $\theta_{Z \times Z}$ defines the differential form zehich is induced on Z by ω (in Koizumi's sense). Moreover if $\{\varphi\}=0$ on V and if φ is defined along Δ_{Z}, then we have $\varphi_{Z \times Z} \in \mathfrak{D}_{2}(Z)$.

Proof. We can assume that V is in an affine space S^{N}, Let k be a field of definition for V, Z and ω, and $P=(x)$ and $P^{\prime}=\left(x^{\prime}\right)$ be two independent generic points of V over k, Q a generic point of Z over k. If $\omega=\sum_{i} z_{i} d u_{i}$, where u_{i} are uniformizing parameters of V at Q, then our first assertion is satisfied by

$$
\theta\left(x, x^{\prime}\right)=-\sum z_{i}(x)\left\{u_{i}(x)-u_{i}\left(x^{\prime}\right)\right\} .
$$

Next we suppose $\{\varphi\}=0$, we choose a uniformizing set of linear forms $H_{i}(x),(i=1, \ldots \ldots, r)$ of Z at Q. As Q is simple on V, we can choose a uniformizing set of linear forms $H_{1}(x), \ldots \ldots, H_{r}(x), H_{r+1}(x), \ldots \ldots, H_{n}(x)$ of V at Q, in such a way that $H_{1}(x), \ldots \ldots, H_{r}(x)$ appear among them, and $H_{r+1}(x), \ldots \ldots H_{n}(x)$ appear among the equations for tangent linear variety of Z at Q. As above we define the varieties $W_{j}(j=1, \ldots \ldots, n)$ for $V \times V$ and $W_{j}^{\prime}(j=1, \ldots \ldots, r)$ for $Z \times Z$.

We write φ^{\prime} instead of $\varphi_{Z \times Z}$. We have for some $j(1 \leqq j \leqq r)$

$$
1=\text { coeff. of } \Delta_{z} \text { in }\left\{\left(\varphi^{\prime}\right) \cdot W_{j}^{\prime}\right\}_{Z \times Z} .
$$

But the right hand side is equal to the coefficient of Δ_{Z} in $\left\{(\bar{\varphi}) \cdot W_{j}\right\}_{Z \times V}$ where $\bar{\varphi}$ is the function on $Z \times V$ induced by φ. Consider W_{j} and $Z \times V$. These are transversal to each other at Q on $V \times V$, and therefore $W_{j} \cap(Z$ $\times V)$ has a unique component $W_{j}^{\prime \prime}$ containing Δ_{Z}, and $W_{j}^{\prime \prime}$ has Δ_{Z} as a simple subvariety. Moreover $W_{j}^{\prime \prime}$ and W_{j}^{\prime} have the same tangent linear variety at Q in $S^{N} \times S^{N}$. If, therefore, we denote by A the component of $(\bar{\varphi})_{0}$ containing Δ_{z}, we have $i\left[A \cdot W_{j}^{\prime \prime}, \Delta_{z} ; Z \times V\right]=1$, and by $\mathrm{F}_{-}-\mathrm{VI}_{3}$ th. $9, i\left[A \cdot W_{j}, \Delta_{z} ; V \times V\right]=1$. From this we deduce by $\mathrm{F}_{-}-\mathrm{VI}_{2}$ th. $5 v_{\Delta V}\left(\varphi_{W j}\right)$ $=1$, which is a contradiction.

If ω and θ are differential forms on V, we can define the product $\omega \cdot \theta$ and $d \omega$ in the usual way ${ }^{88}$. These induce $\omega^{\prime} \cdot \theta^{\prime}$ and $d \omega^{\prime}$ respectively on a simple subvariety Z of V, where $\omega^{\prime}, \theta^{\prime}$ are forms induced on Z by ω, θ respectively.

Let Λ be a function defined on V with values in $U^{9)}$ such that its values exhaust U. If k is a field of definition for V, U and Λ, and if x is a generic point of V over k and $y=\Lambda \cdot x$, we have $k(y) \subset k(x)$. Therefore a differential form $\omega^{\prime}=\sum z_{i_{1} \ldots \ldots i_{p}} d u_{i 1} \ldots \ldots d u_{i p}$ on U can be considered as one on V, by thinking $z_{i_{1} \ldots \ldots i_{p}}$ as functions on V and $d u_{i}$ as differentials of functions on V. We denote, following Chevalley ${ }^{8}$, the differential form thus obtained by $\omega=\delta \Lambda \cdot \omega^{\prime}$.

§ 2. Invariant Differential Forms on a Group Variety.

Let G^{n} be a group variety and a a point of G. The left translation T_{a} is an everywhere biregular birational correspondence between G and G itself, defined over a field of definition K for G over which a is rational. ${ }^{102}$

If ω is a differential form on G, we write ω^{a} instead of $\delta T_{a} \cdot \omega$.
If $\omega^{a}=\omega$ for any $a \in G$, we say that ω is (left) invariant. It is clear that invariant differential forms of given degree form a Ω-module.

In the case of a form $\omega=\{\theta\}$ of the first degree, ω^{a} is given by $\omega^{a}=$ $\left\{\theta^{a}\right\}$ where θ^{a} is defined by $\theta^{a}\left(x, x^{\prime}\right)=\theta\left(a x, a x^{\prime}\right)^{11)}$.

If therefore, $\theta^{a}=\theta$ for any $a \in G, \omega=\{\theta\}$ is invariant.
Theorem 1. If G^{n} is a group variety, then there are n invariant differential forms of the first degree on G, linearly independent over Ω. Moreover thuy form a $\Omega(G)$-basc of $\mathfrak{D}(G)$.

Proof. Let k be a field of definition for G, and x, y be independent generic points of G over k and $z=x^{-1} y$. Let G_{0} be a representative of G in S^{N} in which the neutral element e has a representative with coordinates (0) and is a simple point, and let $z_{\nu}(\nu=1, \ldots \ldots, N)$ be the coordinates of the representative of z in G_{0}. Then the functions φ_{ν} on $G \times G$ defined by $\varphi_{\nu}(x, y)=z_{\nu}$ give invariant differential forms on G. As z is generic on G over k, we can find among z_{ν} a set of uniformizing parameters at e. We can assume that $z_{1}, \ldots \ldots, z_{n}$ are such. Then $z_{\nu} \rightarrow 0(\nu=1, \ldots \ldots, N)$ is a proper specialization of (z_{ν}) over $z_{1}, \ldots \ldots, z_{n} \rightarrow 0$. On the other hand if we denote by Λ the locus of $x \times y \times z$ over k in $G \times G \times G$, we have $\Lambda \cdot(G \times G \times$ $e)=\Delta_{G} \times e$. These imply that Δ_{G} is a proper component of $\left(\varphi_{1}\right)_{0} \cap \ldots \ldots \cap$ $\left(\varphi_{n}\right)_{0}$. We shall prove that Δ_{G} is contained in this intersection with multiplicity 1.

To do this, let $U=G \times G \times G$, and $V=G \times G \times D^{n}$, where D^{n} is a product of n projective lines. We consider the loci $\Lambda^{\prime}, \Delta^{\prime}$ of $x \times y \times x^{-1} y \times x$ $\times y \times(z)$ and $x \times x \times e \times x \times x \times(0)$ respectively in $U \times V$ over k, and the locus $\Lambda^{\prime \prime}$ of $x \times y \times\left(z_{1}, \ldots \ldots, z_{n}\right)$ in V over k. We can apply $\mathrm{F}_{-} \mathrm{VII}_{5}$ th. 8 to calculate $i\left[\Lambda^{\prime \prime} \cdot\left(G \times G \times(0), \Delta_{G} \times(0) ; \Lambda\right]\right.$. The formula in that theorem - becomes

$$
\begin{aligned}
& {\left[\Lambda^{\prime}: \Lambda^{\prime \prime}\right] \cdot i\left[\Lambda^{\prime \prime} \cdot(G \times G \times(0)), \Delta_{G} \times(0) ; V\right]} \\
& \quad=\left[\Delta^{\prime}: \Delta_{G} \times(0)\right] \cdot i\left[\Lambda^{\prime} \cdot\left(G \times G \times G \times G \times G \times(0), \Delta^{\prime} ; U \times U\right] .\right.
\end{aligned}
$$

On the right hand side of this equality, the first factor is clearly 1 , the second is calculated by $\mathrm{F}-\mathrm{VII}_{3}$ theor. 9 and gives the value 1 . Therefore $i\left[\Lambda^{\prime \prime} \cdot(G \times G \times(0)), \Delta_{G} \times(0) ; V\right]=1$. From this we deduce, by successive use of $\mathrm{F}-\mathrm{VII}_{6}$ theor. 16 , that Δ_{G} is contained in $\left(\varphi_{1}\right)_{0} \cap \ldots \ldots \cap\left(\varphi_{n}\right)_{0}$ with multiplicity 1.

Now we consider the representative $G_{0} \times G_{0}$ of $G \times G$ and its point x $\times x$. (For simplicity's sake we use the same symbol for a point on G and its representative in G_{0}, which will cause no confusion.) We take a uniformizing set of linear forms $H_{1}(x), \ldots \ldots, H_{n}(x)$ of G_{0} at x as in Prop. 3, and put $u_{i}(x)=H_{i}(x)$ and define W_{j} as in Prop. 1. It is easy to see that $v_{\Delta G}\left(\left[\varphi_{i}\right]_{W_{j}}\right)=1$ only for $i=j$. It follows from Prop. 5. that $\left\{\varphi_{i}\right\}=a_{i} d u_{i}$, which shows that $\left\{\varphi_{i}\right\}$ form a $\Omega(G)$-base of $\mathfrak{D}(G)$.

Corollary.' n invariant differential form in Th. 1 can be found among. $\left\{\varphi_{\nu}\right\}$. where $\varphi_{\nu}(x, y)$ is the ν-th coordinate of $x^{-1} y$ in the representative G_{0}.

Let K be an (eventually abstract) field containing a field k, and let a derivation D of K over k and an automorphism σ of K over k be given. We put $D z=z^{\prime}$ for $z \in K$, then the operation D^{σ} defined by $D^{\sigma} z^{\sigma}=z^{\sigma}$ is a derivation of K over k.

Let G be a group variety and a a point of G, and let D be a derivation of $\Omega(G)$ over Ω. As $\varphi \rightarrow \varphi^{a}$ is an automorphism of $\Omega(G)$ over Ω, we have as above a derivation $D^{a} . \quad D^{a}$ is defined by

$$
D^{a} \psi=\left(D{\psi^{a^{-1}}}^{a} \text { for } \psi \in \Omega(G)\right.
$$

If $D^{a}=D$ for any $a \in G$, we say that D is an invariant derivation. The totality of invariant derivations of G forms a Ω-module \mathcal{L}.

$$
\begin{gathered}
\text { If } \omega=\sum \varphi_{i} d u_{i} \text {, we have } \omega^{a}=\sum \varphi_{i}^{a}\left(d u_{i}\right)^{a}=\sum \varphi_{i}^{a} d\left(u_{i}^{a}\right) \text { and } \\
\omega^{a} * D^{a}=\sum \varphi_{i}^{a} D^{a} u_{i}^{a}=\left(\Sigma \varphi_{i} D u_{i}\right)^{a}=(\omega * D)^{a} .
\end{gathered}
$$

Therefore if ω and D are both invariant, we have

$$
\omega * D=\text { constant. }
$$

Theorem 2. The Ω-module \mathfrak{M} of invariant differential forms of the first degree on a group variety G and the Ω-module \mathfrak{B} of invariant derivations of $\Omega(G)$ are dual with each other with respect to the product $\omega * D$. Their common rank over Ω is equal to the dimension n of G.

Proof. That $\omega * D$ is bilinear is evident.
By Th. 1 there are n forms $\omega_{1}, \ldots \ldots, \omega_{n}$ in \mathfrak{M} which form a $\Omega(G)$-base of $\mathfrak{D}(G)$. Therefore $\omega * D=0$ for all $\omega \in \mathfrak{M}$ implies $D=0$. If we consider the derivations D_{j} such that $\omega_{i} * D_{j}=\delta_{i j}$, we have $\omega_{i} * D_{j}^{a}=\omega_{i}^{a} * D_{j}^{a}=\left(\omega_{i} * D_{j}\right)^{a}$ $=\delta_{i j}$, so that $D_{j}^{a}=D_{j} ; D_{j}$ are invariant. An arbitrary $\omega \in \mathfrak{M}$ is expressed in the form $\omega=\sum \varphi_{i} \omega_{i}$ where $\varphi_{i} \in \Omega(G)$, then $\omega * D_{j}=\varphi_{j}$ and φ_{j} must be
a constant. This shows that \mathfrak{M} has rank n over Ω, and that $\omega * D=0$ for all $D \in \mathbb{Z}$ implies $\omega=0$.

Let X^{n-1} be a subvariety of G^{n}, and let $\omega=\sum z_{i 1} \ldots \cdots_{i p} d u_{i 1} \ldots \ldots d u_{i p}$ be an expression of a differential form ω by the uniformizing parameters along X, van der Waerden defined the order $v_{X}(\omega)$ of ω on X as $v_{X}(\omega)=$ $\min v_{X}\left(z_{\imath 1} \ldots \ldots f_{p}\right)$. This is independent of the choice of the uniformizing parameters.

If ω is an invariant differential form on G and $v_{X}(\omega) \neq 0$ for a X^{n-1}, then $v_{X a}(\omega) \neq 0$ for any $a \in G\left(X_{a}\right.$ is the transform of X by $\left.T_{a}\right)$, which is impossible. This shows on one hand:

Proposition 7. Invariant differential forms are everywhere finite.
On the other hand, let D_{i} be a base of \mathfrak{Z} defined over k, and ω_{i} a base of \mathfrak{M} dual to D_{i}, and let a be a point of G. Then ω_{i} are expressed by uniformizing parameters u_{i} at a as $\omega_{i}=\sum z_{i j} d u_{j}$, and therefore

$$
\delta_{i j}=\omega_{i} * D_{j}=\sum_{k} z_{i k} D_{j} u_{k} .
$$

As $\omega_{1} \ldots \ldots \omega_{n}=\operatorname{det}\left|z_{i j}\right| \cdot d u_{1} \ldots \ldots d u_{n}$ is an invariant differential form on G, we have det $\left|z_{i j}\right| \neq 0$ at a, therefore $D_{k} u_{j}$ are defined and finite at a. Tnus we have

Paoposition 8. An invariant derivation D is, so to speak, everywhere finite; that is to say, by D, a function on G defined and finite at a point of G goes over to a function of the same kind ${ }^{12)}$.

§ 3. Lie Ring of a Group Variety.

In the following the characteristic of the universal domain is assumed not to be equal to 2 .

In \mathbb{Z} we can define a commutator product which makes \mathbb{Z} a Lie ring. In fact, if $D_{1}, D_{2} \in \mathbb{R},\left[D_{1} D_{2}\right]=D_{1} D_{2}-D_{2} D_{1}$ is evidently a derivation of Ω (G) over Ω and it is also invariant, so that $\left[D_{1}, D_{2}\right] \in \mathcal{Z}$. Let $c_{i j k}$ be the structure constants of Lie ring $\mathfrak{Z}:\left[D_{i} D_{i}\right]=\sum c_{i j k} D_{k}$, then it is shown as usual ${ }^{13)}$ that

$$
d \omega_{k}=-\frac{1}{2} \sum_{i, j} c_{i j k} \omega_{i} \cdot \omega_{j}
$$

Now let \dot{G}^{n} be a group variety and H^{r} its group subvatriety, both defined over k. As H is simple on G and $\omega \in \mathfrak{M}_{G}$ is everywhere finite, ω induces a differential form ω^{\prime} on H, which is evidently invariant.

Let x, x^{\prime} be two independent generic points of G over k and y, y^{\prime} such
of H, and let $\varphi_{\nu}\left(x, x^{\prime}\right)$ be, as in Th. 1ν-th coordinate of $x^{-1} x^{\prime}$ in some representative G_{0} of G in which H has a representative H_{0}. Then $\varphi_{\nu}\left(y, y^{\prime}\right)$ are defined and are coordinates of $y^{-1} y^{\prime}$. Therefore, by Th. 1 Coroll. r of φ 's define r differential forms which form a Ω-base of \mathfrak{M}_{H}. This means that whole $\mathfrak{M}_{\boldsymbol{H}}$ is induced by \mathfrak{M}_{G} on H, and therefore we can choose a base $\omega_{1}, \ldots \ldots, \omega_{r}, \omega_{r+1}, \ldots \ldots, \omega_{n}$ of \mathfrak{M}_{G} so that $\omega_{1}^{\prime}, \ldots \ldots, \omega_{r}{ }^{\prime}$ form a base of $\mathfrak{M}_{\boldsymbol{H}}$. and $\omega^{\prime}{ }_{r+1}=\ldots \ldots=\omega_{n}{ }^{\prime}=0$. Then the formula

$$
d \omega_{k}=-\frac{1}{2} \sum_{i, j} c_{t j k} \omega_{i} \cdot \omega_{j}
$$

implies

$$
d \omega_{k}^{\prime}=-\frac{1}{2} \sum_{i, j} c_{i j k} \omega_{i}^{\prime} \cdot \omega_{j}^{\prime} .
$$

and therefore $c_{t j k}=0$ for $i, j \leqq r, k>r$.
If we consider the base D_{1}, \ldots, D_{n} of \mathcal{L}_{G} dual to $\omega_{1}, \ldots, \dot{\omega}_{n}$ we see$D_{1}, \ldots \ldots, D_{r}$ form a base of a Lie subring of \mathbb{R}_{G} which is isomorphic to \mathfrak{R}_{H}.

The relation between \mathfrak{Q}_{G} and \mathcal{R}_{H} can further be explained as follows: We can suppose that D_{i} and ω_{i} are defined over k. Let us denote by Σ the specialization ring of y in $k(x)$, and by \mathfrak{p} the ideal of Σ composed of elements which have specialization 0 over $x \rightarrow y$. Let $v \in \mathfrak{p}$, we have $d v=$ $\sum_{i=1}^{n}\left(D_{i} v\right) \cdot \omega_{i}$ and by Prop. $8^{12)} D_{i} v \in \Sigma$. But $d v$ induces 0 on H, so that $D_{i} v(i=1, \ldots \ldots, r)$ have specialization 0 over $x \rightarrow y$, therefore $D_{i} v \in \mathfrak{p}$ for $i=1, \ldots \ldots, r$.

Since $D_{i} \Sigma \subset \Sigma$ and $D_{i} \mathfrak{p} \subset \mathfrak{p}$ for $1 \leqq i \leqq r, D_{\text {, define }} r$ derivations of $\sum / \mathfrak{p} \cong k(y)$ over k, which form precisely the dual base of \mathbb{R}_{H} to $\omega_{1}^{\prime}, \ldots \ldots$ ω_{r}.

We resume the result in the following
Theorem 3. If H is a group subvariety of a group variety G, then $\mathfrak{R}_{\boldsymbol{H}}$ is isomorphic with a Lie subring of \mathfrak{R}_{G}, and this isomorphism is given by that. the elements of the subring in question can be considered, in a natural way, as derivations of $\Omega(H)$ over Ω.

Next we consider homomorphisms of group varieties.
Let Λ be a homomorphism of a group variety G^{n} onto a group variety H^{r}. Let a be a point of G, and k a field of definition for G, H and Λ, over which a is rational. Let x be a generic point of G over k, then $y=$
$\Lambda \cdot x$ is a generic point of H over k and $b=\Lambda \cdot a$ is rational over k. It is easily seen that if ω^{\prime} is a differential form on H and $\omega=\delta \Lambda \cdot \omega^{\prime}$, then $\omega^{a}=$ $\delta \Lambda \cdot \omega^{\prime b}$, so invariant ω^{\prime} goes to an invariant ω by $\delta \boldsymbol{\delta}$.

We have $k(x) \supset k(y)$, and if the order of inseparability $[k(x): k(y)]_{c}$ is equal to $1, k(x)$ is separably generated over $k(y)$, and if ω^{\prime} is not 0 on $H, \omega=\partial \Lambda \cdot \omega^{\prime} \neq 0$ on G. Such a homorphism shall, provisionally, be called a separable homomorphism. If Λ is such, and if $\omega^{\prime}, \ldots \ldots, \omega_{r}^{\prime}$ is a base of \mathfrak{M}_{H}, then $\omega_{1}=\boldsymbol{\delta} \Lambda \cdot \omega^{\prime}{ }_{1} \ldots \ldots, \omega_{r}=\boldsymbol{\delta} \Lambda \cdot \omega_{r}^{\prime}$ are independent on G, and we can find a bese $\omega_{1}, \ldots \ldots \omega_{r}, \omega_{r+1}, \ldots \ldots, \omega_{n}$ of \mathfrak{M}_{G} such that $\omega_{i}=\delta \Lambda \cdot \omega_{i}^{\prime}(i=1, \ldots, r)$.

Now consider the dual base $D_{1}, \ldots \ldots, D_{n}$ of $\omega_{1}, \ldots \ldots \omega_{n}$. If $v \in k(y), d v$ (considered as a differential form on H) is a linear combination of $\omega_{1}^{\prime}, \ldots$ $\ldots, \omega_{r}^{\prime}$ with coefficients in $k(y)$, so that when considered as a differential form on G, it is a linear combination of $\omega_{1}, \ldots \ldots, \omega_{r}$ with coefficients in $k(y)$. Therefore $D_{i} k(y) \subset k(y) 1 \leqq i \leqq r, D_{i} k(y)=0 r<i$, and $D_{1}, \ldots \ldots, D_{r}$ define r derivations $D_{1}^{\prime}, \ldots \ldots, D_{r}^{\prime}$ of $k(y)$ over $k . D_{1}^{\prime}, \ldots \ldots, D_{r}^{\prime}$ are invariant and form a base of \mathfrak{R}_{H}. We have thus defined a linear mapping $\lambda: \lambda\left(D_{i}\right)$ $=D_{i}^{\prime}(i \leqq r), \lambda\left(D_{i}\right)=0(r<i)$ of \mathfrak{Z}_{G} onto $\mathfrak{Z}_{H^{*}}$. λ is a homomorphism of \mathfrak{R}_{G} onto $\mathfrak{R}_{\boldsymbol{H}}$, because $\lambda\left(D_{i}\right)$ is the contraction of D_{i} to $k(y)$.

Now let C be the component containing e of the kernel of $\dot{\Lambda}$, we can see by Prop. 6 that $\omega_{1}, \ldots \ldots, \omega_{r}$ induce 0 on C. But C is a group subvariety of G of dimension $n-r^{14}$. Therefore the Lie subring of \mathfrak{Z}_{G} generated by $D_{r+1}, \ldots \ldots, D_{n}$ (which is nothing but the kernel of λ) is the Lie subring corresponding to C.

Theorem 4. If Λ is a separable liomomorphism of a group variety G onto a group variety H, then there exists a homomorphism λ of \mathfrak{Z}_{G} onto \mathfrak{Z}_{H}, and the kernel of λ is the Lie ring of the component of e of the kerucl of Λ.

In conclusion I express my heartful thanks to Prof. Akizuki for his kind interest taken in this work.

Yoshida College, Kyoto University.

Notes

1) Cf. A. Weil: Variétés Abeliennes et Courbes Algébriques, in the following this shall be cited as A.
2) We denote by $\Omega(V)$ the abstract field of all functions defined on V, (each function having a field of definition in the sense of F-I \mathbf{I}^{3}.) The subfield of $\Omega(V)$ composed of functions equal to constants is denoted by Ω, this is isomorphic to the universal domain. We denote by
$\Omega_{K}(V)$ the field of functions on V defined over K, this is isomorphic to $K(P)$, where P is a generic point of V over K, and at times they are identified.
3) F-II. th. 1 means A. Weil : Foundaions of Algebraic Geometry, Chap. VI § 1. th. 1. This abbreviation is used throughout this note.
4) A. Weil: Courbes algébriques et Variétés qui s'en déduisent, Jre partie II.
5) As $\Omega(V)$ is the compositum of $\Omega_{K}(V)$ and Ω, a derivation of $\Omega_{K}(V)$ over K is extended to that of $\Omega(V)$ over Ω. Conversely, as $\Omega(V)$ is finitely generated over Ω, a derivation D of $\Omega(V)$ over Ω can be considered as an extension of some derivation of $\Omega_{K}(V)$ over K. Here K is a field suitably chosen, in the sense of F-I \mathbf{I}_{1}. In this case we say, D is defined over K.
6) Of course in this case both are considered as $\Omega_{h}(V)$-modules.
7) S. Koizumi : Journ. Math. Soc. of Japan, vol. 1.
8) Cf. A. no 1 .
9) As in A. K is said to be a field of definition for a group variety G if K is a field of definition both for variety G, and for the law of composition in G.
10) Here x and x^{\prime} are independent generic points of G over K.
11) If we identify $\Omega_{K}(G)$ and $K(x)$ as is stated in note (2), we can state this Prop. as follows: If D is an invariant derivation on G defined over K, D leaves the specialization ring. of a in $K(x)$ invariant.
12) Cf. C. Chevalley : Loc. cit.
13) This can be seen by a slight modification of A. th. 11, in the case of onto homomorphism.
