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On Invariant Differential Forms on Group Varieties
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(Received Apr. 17, 1950)

In this note we shall discuss the invariant differential $f_{01}ms$ on group
varieti $es^{1)}$ and prove that for any group variety, there corresponds to it a
Lie ring composed of invariant dervations of the (abstract) field of func-
tions defined on that group variety. We shall also discuss some of its pro-
pelties, which are the analogues of the case of usual Lie groups.

\S 1. Differential Forms on an Algebraic Variety.
Let $V^{n}$ be a variety in $S$“, $\mathfrak{D}_{1}(V)$ the totality of functions defined on

$V\times V$ which induce on $\Delta_{V}$ the constant $0$ . $\mathfrak{D}_{1}(V)$ is a module over the
field of constants $\Omega^{2)}$ . Let $\theta\in \mathfrak{D}_{J}(V)$ and let $k$ be a field of definition for
$\theta,$ $P$ a generic point of $V$ over $k$ and $H_{1}(X),\ldots\ldots,H_{n}(X)$ a uniformizing
set of linear forms of $V$ at $P$. We shall denote by $\Lambda_{J^{N-n+1}}^{2}$ the linear
variety in $S^{N}\times S^{N}$ defined by $H_{i}(X-X^{\prime})=0$ $(i=1,\ldots\ldots,\hat{j,}\ldots\ldots,n)$ (here $\hat{j}$

means to omit $j$). Then by $F-l^{\nearrow}1_{1}$ th. $1^{\theta)},$ $V\times V\cap\Lambda_{j}$ has a unique proper
component $lV_{j}^{n+1}$ containing $\Delta_{V},$ $W_{j}$ has the multiplicity 1 in this intersec-
tion and $\Delta_{r^{r}}$ is simple on $W_{j}$ . If, therefore, the function $\theta_{W_{j}}$ induced by $\theta$

on $W_{j}$ is not the conatant $0,$ $(\theta)\cdot W_{j}$ is defined and we have

$v_{\Delta_{\psi}}(\theta_{W_{j}})=coeff$. of $\Delta_{r}$ in $(\theta)\cdot W_{j}\geqq 1$ .

Proposition 1. $1_{\rightarrow}etH_{i}^{\prime}(X)(i=1,\ldots\ldots,n)$ be another uniformi2ing set of
linear forms of $V$ at $\mathcal{F}^{\prime}$ and $W_{j}^{\prime}$ be defined $J^{rom}H_{i}^{\prime}(X)$ as $W_{j}$ were from
$H_{i}(X)$ . $1f$ for some $j(1\leqq f\leqq n),$ $\theta_{W_{j}}$ is not $t/le$ constant $0an\ell f’\iota\prime_{\Delta_{V}}(\theta_{W_{j}})$

$=1$ , llwn the same is true for some $\theta_{W_{l^{\prime}}}(1\leqq l\leqq n)$ .
Proof. Let $P=(x)$ , and $Q=(x$ ‘

$)$ be a generic point of $V$ over $k(x)$ ,

then $P\times Q$ is a generic point of $V\times V$ over $k$ . As $\theta$ is in the specializa-
tion ring of $\Delta_{r}$ in $k(x, x^{\prime})$ ,

$\theta(x, x^{t})=\frac{f(x,x^{\prime})}{g(x,x’)}$

where $f(X, X^{\prime}),$ $g(X, X^{\prime})\in k[X, X]$ and $g(x, x)\neq 0$ .
Since we are concerned with the components containing $\Delta_{1^{\prime}}$ , it does not
matter whether we consider the function $\theta$ or $f$ If we consider the func-
tion $F$ on $S‘‘‘\times S^{N}$ defined by $F(\overline{x},\overline{x}^{\prime})=f(\overline{x},\overline{x}^{\prime})$ where $(\overline{x}),$ $(\overline{x}^{\prime})$ are in-
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dependent generic points of $S^{N}$ over $k,$ $F$ induces $f$ on $V\times V$ and $F_{Wj}=f_{Wj}$

on $W_{j}$ . Therefore $(F)\cdot W_{j}$ is defined and by $F- VIlI_{2}$ th.4 we have

coeff. of $\Delta_{V}$ in $(F)\cdot W_{j}=v_{\Delta V}(F_{Wj})=v_{\Delta V}(f_{f7j})=1$ .
This means that $(F)_{0}$ has a unique component containing $\Delta_{V}$ , and this com-
ponent contains $\Delta_{V}$ as a simple subvariety and is transversal to $W_{j}$ along
$\Delta_{V}$ . Therefore if $\Delta_{x}F_{k}(X)=\sum_{\mu}\frac{\partial f}{\partial X_{\mu}}(X_{\mu}-x_{\mu})=0(k=1,\ldots\ldots,lV-n)(F_{k}(x)$

being in the ideal $defi|uingV$ in $S^{N}$) are the set of equations of the tangent
linear variety of $V$ at $P$, the linear forms

$\Delta_{x,x}f(X, X^{\prime})=\sum_{\mu}\frac{\partial f}{\partial X_{\mu}}(X_{\mu}-x_{\mu})+\Sigma\frac{\partial f}{\partial X_{\mu}^{\prime}}(X_{\nu}-x_{v})$ , $\Delta_{x}F_{k}(X),$ .

$\Delta_{x}F_{k}(X^{\prime})(k=1,\ldots\ldots,lV-n)$ and Al, $(X-X^{\prime})$ $(i=1, \hat{j,}\ldots,n)$

are linearly independent. (Here $\frac{\partial f}{\partial X}$ , $\frac{\partial f}{\partial X}$ are taken at $X=x,$ $X^{\prime}=x.$ ) But

as $H_{i}(X-X^{\prime})$ are linear combinations of $\Delta_{x}F_{k}(X),$ $\Delta_{x}F_{k}(X^{\prime})$ and $H_{t}^{\prime}(X-$

$X^{\prime})(i=1,\ldots,n)$ , for a suitable $l,$ $\Delta_{x,r}f(X, X^{\prime}),$ $\Delta_{x}F_{k}(X^{\prime}),$ $\Delta_{x}F_{k}(X^{\prime}),$ $H_{i}^{\prime}(x-$

$X^{\prime})(i\neq l)ale$ linearly independent. From this we can arrive at the asser-
tion of the proposition by reasoning in the inverse direction.

From Prop. 1 we see that
$\mathfrak{D}_{2}(V)=$ { $\theta|\epsilon \mathfrak{D}_{1}(V),$ $v_{\Delta V}(\theta_{Wj})\geqq 2$ whenever $\theta_{Wj}$ is not the constant $0.$ }

is a submodule of $\mathfrak{D}_{1}(V)$ defined independently of the choice of $H_{i}(x)$ .
Next we prove that $\mathfrak{D}_{1},$ $\mathfrak{D}_{2}$ are birationally invariant. Let $V^{n}$ and $U^{n}$

be two varieties respectively in $S^{N}$ and $S^{M},$ $T^{n}$ be a birational correspen-
dence between $V$ and $U$ . Then the transform $T^{\prime}$ of $\tau\times T$ by the trans-
formation of the product $s^{N}\times S‘‘\times S^{N}\times S$“ which interchanges the second
and the $thi_{1}d$ factors is a birational correspondence between $V\times V$ and -

$U\times U$, and it is biregular along $\Delta_{V}$ .
Proposition 2. Let $\theta$ be a functiorz on $V\times V$ and $k$ a Jield of defimtion

for $V,$ $U,$ $T$ and $\theta$ . Let $P\times Q$ and $R\times S$ be corresponding $gene\prime nc$ points of
$V\times V$ and $U\times U$ by $T^{\prime}$ over $k$ . $Tf_{l}en$ the formula $\theta$‘ $(R\times S)=\theta(P\times Q)$ defines
a function on $U\times U$ and $ lf\theta\epsilon \mathfrak{D}_{1}(V)oJ^{-}\theta\in \mathfrak{D}_{2}(\eta$ , we have respectiqely $\theta$ ‘

$\epsilon \mathfrak{D}_{1}(U)$ or $\theta^{\prime}\epsilon \mathfrak{D}_{2}(U)$ .
Proof Only the assertion abo $t\mathfrak{D}_{2}$ is not evident. To prove this we

assume $\theta^{\prime}\not\in \mathfrak{D}_{2}(U)$ . Then for some $J$ , we have $7/\Delta_{V}(\theta_{Y_{j}}^{\prime})=1$ where $V_{j}$

are constructed for $U$ as $W_{j}$ were for $V$ before. As $T^{\prime}$ is biregular along
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$\Delta_{\iota^{f}}$, there is a subvariety $Y$ of $V\times V$ corresponding to $Y_{j}$ , and we have

$1=v_{\Delta_{V}}(\theta_{Y_{j}}^{\prime})=coeff$. of $\Delta_{U}$ in $(\theta^{\prime})\cdot Y_{j}=coeff$. of $\Delta_{V}$ in $(\theta)$ . Y.

This means that that there is a unique component of $(\theta)$ containing $\Delta_{V}$ and
it is transversal to $Y$ along $\Delta_{V}$ .

Now we put $P=(x),$ $Q=(x$‘
$)$ , $\theta(x, x^{\prime})=\frac{f(x,x^{\prime})}{g(x,x^{\prime})}$ as in the proof of

Prop. 1, and find that the linear forms

$\Delta_{x,x}f(X, X^{\prime}),$ $\Delta_{x}F_{k}^{\backslash }(X),$ $\Delta_{t}F_{k}(X^{\prime})$ and $\Delta_{x.x}\Phi_{i}$ (X, $X^{\prime}$ )

$(i=1,\ldots, n-1 ; k=1,\ldots, \Lambda^{\gamma}-n)$

are linearly independent, where $\Phi_{i}(X, X^{\prime})$ belong to the ideal defining $Y$

in $S‘‘\times S^{N}$ and $\Delta_{x.x}\Phi_{i}(X, X^{\prime})$ form, together with $\Delta_{x}F_{k}(X)$ and $\Delta_{x}F_{k}(X^{\prime})$ ,
the equations of tangent linear variety of $Y$ at $P\times P$. But $Y$ cont\‘ains $\Delta_{V}$

so we have $\Phi_{i}(x, x)=0$ and therefore $\Phi_{i}(X, X)=\sum h_{l}(X)G_{t}(X)(h_{l}(X)\epsilon$

$k[X]$ and $G_{l}(X)$ belong to the ideal defining $V$), and hence

$\frac{\partial\Phi}{\partial x_{l^{l}}}(x, x)+\frac{\partial\Phi}{\partial x_{\mu}^{t}}(x, x)=\sum h_{l}(x)\frac{\partial G_{l}}{\partial x_{\mu}}(x)$ .

This shows that we can choose $\Phi_{i}$ so that $\Delta_{x,x}\Phi_{\ell}(X, X^{\prime})$ have the form
$H_{i}(X-X^{\prime})$ . If we take these $H_{i}(X)(i=1,\ldots, \prime\prime-1)$ and a suitable $H_{n}(X)$

for a set of linear forms to define $\ddagger V_{j}$ , we have $v_{\Delta V}(\theta_{Wj})=1$ , that is a
contradiction.

In the above proof, we saw that the tangent linear variety of $Y^{n+1}$ at
$P\times P$ can be defined by the system of equations

$\Delta_{x}F_{k}(X)=0,$ $\Delta_{l}F_{k}(X^{\prime})=0,$ $H_{i}(X-X^{\prime})=0(i=1,\ldots,n-1 ; k=1,\ldots, \Lambda^{\gamma}-n)$ .
Evidently this remark holds true for any subvari $e$ty $Z^{n+r}$ of $V\times V$ contain-
ing $\Delta_{V},$ $(1\leqq,.\leqq n-1)$ , that is to say, the tangent linear vari $e$ty of $Z$ at
$P\times P$ can be defined by the system of equations of the form

$\Delta_{x}F_{k}(X)=0$ , $\Delta_{x}F_{k}(X^{\prime})=0,$ $H_{i}(X-X^{\prime})=0$ . $(i.=1,\ldots n-r, k=1,\ldots,N-n)$ .
Applying this to the case of $r=n-1$ , we have the following

Proposition 3. $1fZ_{1}^{2n-1},\ldots\ldots,$ $Z_{n^{n-1}}$ , are $n$ subvarieties of $V^{n}\times V^{n}$ and
$\Delta_{r}$ is a proper component of $Z_{1}n\ldots\ldots nZ_{n}$ with multiplicity 1, then we can

find a umformizing set of linear forms $H_{1}(X),\ldots\ldots,H_{n}(X)$ of $V$ at $a_{5}^{\circ}eneric$

point $P$ of $V$ over a field of definition $k$ of $V_{1},$ $Z_{1},\ldots\ldots,Z_{n}$ , suck that $ th\ell$ tangent
linear varicty of $Z_{j}$ at $P\times Pareptefin_{-}’ d$ by $t/le$ system of equations
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$\Delta_{g}F_{k}(X)=0,$ $\Delta_{J}F_{k}(X^{\prime})=0$ and $H_{j}(X-X)=0$ $(k=1,\ldots\ldots,4V-n)$ ,

where $F_{k}(X)$ are in the ideal defining $V$ in $S^{N}$.
If an abstract variety $V$ is given, we can define $\mathfrak{D}_{1}(V),$ $\mathfrak{D}_{2}(V)$ inde-

pendently of its representative, by Prop. 2. $\mathfrak{D}_{1}$ and $\mathfrak{D}_{2}$ are $\Omega$-modules
and $\mathfrak{D}_{2}$ is a submodule of $\mathfrak{D}_{1}$ , so we can construct the factor module $\mathfrak{D}(V)$

$=\mathfrak{D}_{1}(V)/\mathfrak{D}_{2}(V)$ . We can, as in Weil’s book4), define in $\mathfrak{D}(V)$ multiplica-
tion by the element of $\Omega(V)$ , and make $\mathfrak{D}(V)$ a $\Omega(V)$ -module. This
module is called the module of differential forms of the first degree on $V$,
and its element $\omega$ is called the. differential form of the first degree on $V$.
If $\theta$ is in the class $\omega$ , we say that $\theta$ defines $\omega$ and write $\omega=\{\theta\}$ , if one of the
functions of class $\omega$ is defined over $K$, we say $\omega$ is defined over $K$

Let $\varphi$ be a function defined on $V$ over $k$ , then we define a differential
form $ d\varphi$ on $V$ defined over $hk$ , by the $f_{01}$ mula

$d\varphi=\{\varphi_{\delta}\}$ , $\varphi_{\partial}(P\times Q)=\varphi(Q)-\varphi(P)$ ,

where $P$ and $Q$ are independent generic points of $V$ over $k$ . This differ-
ential $f_{01}m$ is called the differential of the function $\varphi$ .

Proposifion 4. Let $V$ be a variety in $S^{A^{\vee}},$ $k$ a field of definition for $V$,

and $P=(x)$ a generic point of $V$ over $k$ . Let $H_{i}(X)$ $(i=1,\ldots,n)$ be a $uni-$

formizing se $t$ of liner forms $’\iota vith$ coefficients in $k$ at P. Consider $ th\ell$ fimctions
$u_{i}$ defined by $u_{i}(x)=H_{i}(x)$ . Then

(1) $du_{i}(i=1,\ldots,n)$ are $ linearl\gamma$ independent over $\Omega(V)$ ,

(2) any $\omega\in \mathfrak{D}$ is a linear combination of $du_{i}$ with cofcients in $\Omega(V)$ ,

and especially with coeflicients in $\Omega_{k}(V)\iota f\omega$ is defned over $k$ .
Proof. (1) Notations being as above, assume that

$\theta(x, t)=\varphi_{1}(x)H_{1}(x-x^{\prime})+\cdots+\varphi_{n}(x)H_{n}(x-x^{\prime})\epsilon \mathfrak{D}_{2}$

with $\varphi_{i}$ not all $0$ . We can here assume $\varphi_{i}(x)$ to be polynomials. If $\varphi_{1}$

$(x)\neq 0$ , we have $\theta_{WI}=\varphi_{1}(x)\cdot H_{1}(x-x^{\prime})\neq 0$ , and considering the function $F$

defined in $S^{N}\times S^{N}$ by $F(\overline{x},\overline{x}^{\prime})=\varphi_{1}(\overline{x})H_{1}(\overline{x}-\overline{x}^{\prime})$ , we have $v_{\Lambda V}(\theta_{WI})=coeff$.
of $\Delta_{V}$ in $(F)\cdot W_{1}=1$ , which is a contradiction.

(2) Let $\omega=\{\theta\}$ , we can here also assume that $\theta(X, X^{\prime})$ is a polyno-
mial in $X,X^{\prime}$ As $\theta(x, x)=0$ we have as in the above proof of Prop. 1
and Prop. 2,

$\Delta_{x,x}\theta(X, X^{\prime})=\Sigma a_{i}H_{i}(X-X^{\prime})+\Sigma\delta_{k}\Delta_{x}I_{k}^{*}(X)+\sum c_{k}\Delta_{J}F_{k}(X^{\prime})$

$(a_{i}, b_{k}, c_{k}\epsilon\Omega(V))$ ,

and therefore if we put $\psi(X, X^{\prime})=\theta(X, X)-\Sigma a_{i}H_{i}(X-X^{\prime}),$ $\Delta_{x.x^{\prime}}\psi(X, X^{\prime})$



220 S. $N_{AKA^{\backslash NO}}$ .

is linearly dependent on $\Delta_{J}F_{k}(X),$ $\Delta J_{k}(X^{\prime})$ . This implies that $\ddagger/V_{j}$ and the
component of $(f^{J}/)_{0}$ containing $\Delta_{V}$ are not transversal. Therefore $\psi\in \mathfrak{D}_{2}$ ,

and we have $u=\sum a_{i}dn_{i}$ .
The last assertion is now immediate.
Proposition 5. $\Lambda^{\gamma}otationsb_{\vee}^{\rho}ing$ as above, $t/le$ fuction induced on $\Delta_{V}$ by

$[\frac{\theta(x,\prime x^{\prime t})}{H_{j}(x-x^{l})}]_{W_{J}}$ shall be denoted by $\chi_{j}(x, x)$ (this is not $0_{l}^{r}vhenv_{\Delta V}(\theta_{Wj})=$

$1$ , and $0oth_{\vee}^{\rho}rwise$). $Th_{-},ntfze.funct\iota onsa_{j}$ such that $\omega=\sum_{j}a_{j}du_{j}$ are given

by $a_{j}(x)=\chi_{j}(x, x)$ .
Proof. Put $\psi(x, x^{\prime})=\theta(x, x^{\prime})-\Sigma\chi_{j}$ ($x$, x) $H_{j}(x-x^{\prime})$ , then it can

easily be seen that $\psi_{Itj}=0$ or $v_{\Delta V}(\psi_{\dagger tj})>1$ , and therefore $\psi\in \mathfrak{D}_{2}$ . This
implies $cu=\sum_{j}\chi_{j}(x, x)du_{j}$ .

/

By definition, $ d(\varphi+\psi)=d\varphi+d\psi$ , and $ d(\varphi\psi)=\psi d\varphi+\varphi d\psi$ , for two func-
tions $\varphi,$

$\psi$ on $V$. So, if we put $d\varphi=\sum 2_{i}du_{i}$ we can define $n$ derivations
of $\Omega(V)$ over $\Omega$ by $D_{i}\varphi=z_{i}^{5)}$ . As $D_{i}u_{j}=\delta_{j},$ $D_{i}$ are linearly independent
over $\Omega(V)$ , and therefore form a $\Omega(V)$ -base of the module $\Delta(V)$ of deriva-
tions of $\Omega(V)$ over $\Omega$ . Therefore we can consider a differential form of
the first degree $cu$ as a linear mapping of $\Delta(V)$ into $\Omega(V)$ , by the relation:
$\omega*D=\sum\varphi_{i}Du_{i}$ if $\omega=\sum\varphi_{i}du_{i}$ . And it is easy to see that $\mathfrak{D}(V)$ and $\Delta(V)$

are dual modules with respect to this product. By the last assertion of
Prop. 3, this duality holds when we restrict the field of definition of differen-
tials, derivations and functioiis to any field $K$ which is at the same time a
field of definition for $V^{5)(I)}$ . Thus our definition of differential forms of the
first degree agree with that given by Weil in $F- IX_{2}$ . We can therefore,

speak of whether a differential form is finite or not at a point of $V$, and
also speak of differential forms of higher degrees. Cf. also Koizumi‘s paper7).

Concerning the Prop. 6 in Koizumi’s paper, we have the following
Propositton 6. Let $V^{n}$ be a variety and $Z^{r}$ be its simple subvariety. $1f$

a $di\mathcal{J}erential$ form of $t/le$ first degree $\omega$ on $V$ is finite along $Z$, there is a
function $\theta$ in $\mathfrak{D}_{1}(V)$ such that $\{\theta\}=\omega$ and $\theta_{ZxZ}$ defines the diferential form
wlich is induced on $Z$ by $\omega$ (in $Koi_{2}nmi’ s$ sense). Moreover $lf\{\varphi\}=0$ on $V$

and if $\varphi$ is defined along $\Delta_{Z},$ $t/len\prime cve/lave\varphi_{Z\times Z}\in \mathfrak{D}_{2}(Z)$ .
Proof. We can assume‘ that $V$ is in an affine space $S^{\lambda^{\gamma}},$ Let $k$ be a

field of definition for $V,$ $Z$ and $\omega$ , and $P=(x)$ and $P=(x^{\prime})$ be two inde-
pendent generic points of $V$ over $k,$ $Q$ a generic point of $Z$ over $k$ . If
$\omega=\sum_{i}2_{i}d?l_{i}$ , where $n_{i}$ are uniformizing parameters of $V$ at $Q$ , then our
first assertion is satisfied by
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$\theta(x,x^{\prime})=-\sum z_{i}(x)\{u_{i}(x)-u_{i}(x^{\prime})\}$ .
Next we suppose $\{\varphi\}=0$ , we choose a uniformizing set of linear forms

$H_{i}(x),$ $(i=1,\ldots\ldots,r)$ of $Z$ at $Q$ . As $Q$ is simple on $V$, we can choose
a uniformizing set of linear forms $H_{1}(x),\ldots\ldots,H_{r}(x),$ $H_{r+1}(x),\ldots\ldots,H_{n}(x)$

of $V$ at $Q$ , in such a way that $H_{1}(.x),\ldots\ldots,H_{r}(x)$ appear among them, and
$H_{r+1}(x),\ldots\ldots H_{n}(x)$ appear among the equations for tangent linear variety
of 2 at $Q$ . As above we define the varieties $W_{j}(j=1,\ldots\ldots,n)$ for $V\times V$

and $W_{j}^{\prime}(j=1, \ldots..,r)$ for $Z\times Z$.
We write $\varphi^{\prime}$ instead of $\varphi_{ZxZ}$ . We have for some $j(1\leqq j\leqq r)$

$1=coeff$. of $\Delta_{z}$ in $\{(\varphi^{\prime})\cdot tt\nearrow_{j^{\prime}}\}_{ZxZ}$ .

But the right hand side is equal to the coeflicient of $\Delta_{Z}$ in $\{(\overline{\varphi})\cdot W_{j}^{\vee}\}_{ZxV}$

where $\overline{\varphi}$ is the function on $Z\times V$ induced by $\varphi$ . Consider $W_{j}$ and $Z\times V$.
These are transversal to each other at $Q$ on $V\times V$, and therefore $W_{j}\cap(Z$

$\times V)$ has a unique component $W_{j}^{\prime\prime}$ containing $\Delta_{z}$ , and $W_{j}^{\prime\prime}$ has $\Delta_{z}$ as a
simple subvariety. Moreover $W_{j}^{\prime\prime}$ and $W_{j}^{\prime}$ have the same tangent linear
variety at $Q$ in $s^{N}\times S^{N}$. If, therefore, we denote by $A$ the component of
$(\overline{\varphi})_{0}$ containing $\Delta_{z}$ , we have $i[A\cdot W_{j}^{\prime\prime},$ $\Delta_{z}$ ; $Z\times VJ=1$ , and by $F-VI_{3}$ th.
9, $i[A\cdot W_{j}, \Delta_{Z} ; V\times V]=1$ . From this we deduce by $F- VI_{2}$ th. 5 $v_{\Delta V}(\varphi_{Wj})$

$=1$ , which is a contradiction.
If $\omega$ and $\theta$ are differential forms on $V$, we can define the product $\omega\cdot\theta$

and $ d\omega$ in the usual way8). These induce $\omega^{/}\cdot\theta^{\prime}$ and $d\omega^{\prime}$ respectively on a
simple subvariety $Z$ of $V$, where $\omega^{\prime},$

$\theta^{\prime}$ are forms induced on $Z$ by $\omega,$

$\theta$

respectively.
Let $\Lambda$ be a function defined on $V$ with values in $U^{9)}$ such that its values

exhaust $U$. If $k$ is a field of definition for $V,$ $U$ and $\Lambda$ , and if $x$ is a ge-
neric point of $V$ over $k$ and $y=\Lambda\cdot x$ , we have $k(y)\subset k(x)$ . Therefore a
differential form $\omega^{\prime}=\sum_{1}2\cdot\ldots\ldots du_{i1}\ldots\ldots du_{:}i_{p}p$ on $U$ can be considered as
one on $V$, by thinking $z_{z_{1}\cdots\cdots i_{p}}$ as functions on $V$ and $du_{i}$ as differentials
of functions on $V$. We denote, following Chevalley8), the differential form
thus obtained by $\omega=\delta\Lambda\cdot\omega^{\prime}$ .

\S 2. Invariant Differential Forms on a Group Variety.
Let $G^{n}$ be a group variety and $a$ a point of $G$ . The left translation

$T_{a}$ is an everywhere biregular birational correspondence between $G$ and $G$

itself, defined over a field of definition $K$ for $G$ over which $a$ is rational
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If $\omega$ is a differential form on $G$ , we write $\ell u^{a}$ instead of $\delta T_{a}\cdot\omega$ .
If $ u^{a}=\omega$ for any a $\epsilon G$ , we say that $\omega$ is (left) invariant. It is clear

that invariant differential forms of given degree form a $\Omega$-module.
In the case of a form $\omega=\{\theta\}$ of the first degree, $\omega^{a}$ is given by $\omega^{a}=$

$\{\theta^{a}\}$ where $\theta^{a}$ is defined by $\theta^{a}(x,x^{\prime})=\theta(ax, ax^{\prime})^{I1)}$ .
If therefore, $\theta^{a}=\theta$ for any $a$ $\epsilon G,$ $\omega=\{\theta\}$ is invariant.
Theorem 1. $1fG^{n}$ is a $\delta^{0}roup$ variety, $t/\iota en$ tlere are $n$ invariant $di-$

$\mathcal{J}e/\cdot ential$ forms of $t_{J\ell}^{r}e$ first $deg\prime^{\prime}ee$ on $G$ , linearly independent over $\Omega$ . Moreover
$ t/l\ell_{-}\gamma$ form a 9 $(G)-[\prime as\angle$ of $\mathfrak{D}(G)$ .

Proof. Let $k$ be a field of definition for $G$ , and $x,$ $y$ be independent
generic points of $G$ over $k$ and $\sim=x^{-1}y$ . Let $G_{0}$ be a representative of
$G$ in $S^{N}$ in which the neutral element $\ell$ has a representative with coordi-
nates (0) and is a simple point, and let 2, $(\nu=1,\ldots\ldots, \Lambda^{\gamma})$ be th $e$ coordinates
of the representative of $z$ in $G_{0}$ . Then the functions $\varphi_{\nu}$ on $G\times G$ defined
by $\varphi_{\nu}(x, y)=z_{\nu}$ give invariant differential forms on $G$ As $\alpha$ is $ge$neric
on $G$ over $l^{y}$ , we can find among $z_{\nu}$ a set of uniformizing parameters at $e$ .
We caii assume that $\approx_{1n}$

$\sim$ are such. Then $z_{\nu}\rightarrow 0(\nu=1,\ldots\ldots,N)$ is a
proper specialization of $(z_{\nu})$ over $2_{1},\ldots\ldots,2_{n}\rightarrow 0$ . On the other hand if we
denote by $\Lambda$ the locus of $x\times y\times 2$ over $k$ in $G\times G\times G$, we have $\Lambda\cdot(G\times G\times$

$e)=\Delta_{G}\times e$ . These imply that $\Delta_{G}$ is a proper component of $(\varphi_{1})_{0}n\ldots\ldots n$

$(\varphi_{n})_{0}$ . We shall prove that $\Delta_{G}$ is contained in this intersection with multipl-
icity 1.

To do this, let $U=G\times G\times G$ , and $V=G\times G\times D^{n}$ , where $D^{n}$ is a pro-
duct of $n$ projective lines. We consider the loci $\Lambda^{\prime},$

$\Delta^{\prime}$ of $x\times y\times x^{-1}y\times x$

$\times y\times(\sim r)$ and $x\times x\times e\times x\times x\times(O)$ respectively in $U\times V$ over $k$ , and the
locus $\Lambda^{\prime\prime}$ of $x\times y\times(2_{1},\ldots\ldots, z_{n})$ in $V$ over $k$ . We can apply $F- VlI_{5}$ th. 8
to calculate $i[\Lambda^{\prime\prime}\cdot(G\times G\times(O), \Delta_{G}\times(0) ; \Lambda]$ . The formula in that theorem
becomes

$[\Lambda^{\prime} : \Lambda^{\prime\prime}]\cdot i[\Lambda^{\prime\prime}\cdot(G\times G\times(O)), \Delta_{G}\times(0) ; i^{\nearrow}]$

$=[\Delta^{\prime} : \Delta_{G}\times(0)]\cdot i[\Lambda^{\prime}\cdot(G\times G\times G\times G\times G\times(O), \Delta^{\prime} ; U\times U]$ .

On the right hand side of this equality, the first factor is clearly 1, the
second is calculated by $F- VlI_{3}$ theor. 9 and gives the value 1. Therefore
$i[\Lambda^{\prime\prime}\cdot(G\times G\times(O)), \Delta_{G}\times(0);V]=1$ . From this we deduce, by successive
use of $F- V11_{6}$ theor. 16, that $\Delta_{G}$ is contained in $(\varphi_{1})_{0}n\ldots\ldots n(\varphi_{n})_{0}$ with
multiplicity 1.
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Now we consider the representative $G_{0}\times G_{0}$ of $G\times G$ and its point $\chi$

$\times x$ . (For simplicity’s sake we use the same symbol for a point on $G$ and
its representative in $G_{0}$ , which will cause no confusion.) We take a uni-
formizing set of linear forms $H_{1}(x),\ldots\ldots ff_{n}(x)$ of $G_{0}$ at $x$ as in Prop. 3,
and put $u_{i}(x)=H_{i}(x)$ and define $W_{j}$ as in Prop. 1. It is easy to see that
$v_{\Delta G}([\varphi_{t}]_{W_{j}})=1$ only for $i=j$. It follows from Prop. 5. that $\{\varphi_{i}\}=a_{t}du_{i}$ ,
which shows that $\{\varphi_{:}\}$ form a $\Omega(G)$ -base of $\mathfrak{D}(G)$ .

Corollary. $n$ invariant differential form in Th. 1 can be found among
$\{\varphi_{v}\}$ . wkere $\varphi_{\nu}(x,y)$ is $ t/\iota e\nu- t/\ell$ coordinate of $x^{-1}y$ in the representative $G_{0}$ .

Let $K$ be an (eventually abstract) field containing a field $k$ , and let
a derivation $D$ of $K$ over $k$ and an automorphism $\sigma$ of $K$ over $k$ be given.
We put $D_{2}=z^{\prime}$ for 2 $\epsilon K$, then the operation $D^{\sigma}$ defined by $D^{\sigma}z^{\sigma}=z^{;\sigma}$ is
a derivation of $K$ over $k$ .

Let $G$ be a group variety and $a$ a point of $G$ , and let $D$ be a deriva-
tion of $\Omega(G)$ over $\Omega$ . As $\varphi\rightarrow\varphi^{a}$ is an automorphism of $\Omega(G)$ over $\Omega$ , we
have as above a derivation $D^{a}$ . $D^{a}$ is defined by

$D^{a}\psi=(D\psi^{a^{-1}})^{a}$ for $\psi\in\Omega(G)$ .

If $D^{a}=D$ for any a $\epsilon G$ , we say that $D$ is an invariant derivation. The
totality of invariant derivations of $G$ forms a $\Omega$-module $\mathfrak{L}$

If $u=\sum\varphi_{i}du_{i}$ , we have $cu^{a}=\Sigma\varphi_{i}^{a}(du,)^{a}=\Sigma\varphi_{i}^{a}d(u_{i}^{a})$ and
$\omega^{a}*D^{a}=\Sigma\varphi_{i}^{a}D_{lt_{i}^{a}=}^{a}(\Sigma\varphi_{i}Du_{i})^{a}=(\omega*D)^{a}$ .

Therefore if $\omega$ and $D$ are both invariant, we have

\mbox{\boldmath $\omega$}*D=constant.

Theorem 2. The $\Omega$-module $\mathfrak{M}$ of invariant differential forms of $t/le$

first degree on a group variety $G$ and the $\Omega$-module $\mathfrak{L}$ of invariant derivations
of $\Omega(G)$ are dual ’Lvith eacli other with respect to the product $\omega*D$ . Their
common rank over $\Omega$ is equal to the dimension $n$ of $G$ .

Proof. That $\omega^{5}\ell D$ is bilinear is evident.
By Th. 1 there are $n$ forms $\omega_{I},\ldots\ldots,cu_{n}$ in $\mathfrak{M}$ which form a $\Omega(G)$ -base

of $\mathfrak{D}(G)$ . Therefore $\omega*D=0$ for all $\omega\in \mathfrak{M}$ implies $D=0$ . If we consider
the derivations $D_{j}$ such that $\omega_{i}*D_{j}=\delta_{ij}$ , we have $\omega_{i}*D_{j}^{a}=\omega_{i}^{a}*D_{j}^{a}=(\omega_{i}*D_{i})^{a}$

$=\delta_{ij}$ , so that $D_{j}^{a}=D_{j}$ ; $D_{j}$ are invariant. An arbitrary $\omega\in \mathfrak{M}$ is $e$xpressed
in the form $\omega=\sum\varphi_{i}\omega_{i}$ where $\varphi_{i}\in\Omega(G)$ , then $\omega*D_{j}=\varphi_{j}$ and $\varphi_{j}$ must be
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a constant. This shows that $\mathfrak{M}$ has rank , over $\Omega$ , and that $\omega*D=0$ for
all $D\in \mathfrak{L}$ implies $\omega=0$ .

Let $X^{n-1}$ be a subvarIety of $G^{n}$ , and let $\omega=\sum z_{i1}du_{i1}\ldots\ldots cfu_{ip}$

be an expression of a differential form $\omega$ by the uniformizing parameters
along $X$, van der Waerden defined the order $v_{X}(\omega)$ of $\omega$ on $X$ as $v_{X}(\omega)=$

$\min v_{X}(z_{1})$ . This is independent of the choIce of the uniformizing
parameters.

If $\omega$ is an invariant differential form on $G$ and $v_{X}(\omega)\neq 0$ for a $X^{n-1}$ ,

then $v_{Xa}(\omega)\neq 0$ for any a $\epsilon G$ ($X_{a}$ is the transform of $X$ by $T_{a}$), which
is impossible. This shows on one hand:

Proposition 7. lnvariant differential forms are everywlere finite.
On the other hand, let $D_{i}$ be a base of $\mathfrak{L}$ defined over $k$ , and $\omega_{i}$ a

base of $\mathfrak{M}$ dual to $D_{i}$ , and let $a$ be a point of $G$ . Then $\omega_{i}$ are expressed
by uniformizing parameters $u_{i}$ at $a$ as $\omega_{i}=\sum\sim r_{ij}dn_{j}$ , and therefore

$\delta_{ij}=\omega_{i}*D_{j}=\sum_{k}z_{ik}D_{j^{ll_{k}}}$ .

As $\omega_{1}\ldots\ldots\omega_{n}=det|2p_{j}|\cdot du_{1}\ldots\ldots du_{n}$ is an invariant differential form on $G$ , we
hav$edet|2_{ij}|\neq 0$ at $a$ , therefore $D\ovalbox{\tt\small REJECT}_{j}$ are defined and finite at $a$ . Tnus we
have

Paoposition 8; An invariant derivation $D$ is, so to speak, everywltere
finite; that is to say, by $D$ , a function on $G$ defi.ned and finite at a point of
$G$ goes over to a filnction of the same kind $1^{\underline{o}}$)

\S 3. Lie Ring of a Group Variety.

In the following the characteristic of the universal domain is assumed
not to be equal to 2.

In $\mathfrak{L}$ we can define a commutator product which makes $\mathfrak{L}$ a Lie ring.
In fact, if $D_{1},$ $D_{2}\in \mathfrak{L},$ $[D_{1}D_{2}]=D_{1}D_{2}-D_{2}D_{1}$ is evidently a derivation of $\Omega$

$(G)$ ov$ er\Omega$ and it is also invariant, so that $[D_{1}, D_{2}]\in \mathfrak{L}$ Let $c_{ijk}$ be the
structure constants of Lie ring $\mathfrak{L}$ : $[D_{i}D_{i}]=\Sigma c_{ijk}D_{k}$ , then it is shown as
$usua1^{1S)}$ that

$d\omega_{k}=-\frac{1}{2}\sum_{i,j}c_{ijk}\omega_{i}\cdot\omega_{j}$

Now let $\dot{G}^{n}$ be a gloup variety and $H^{r}$ its group subvatriety, both
defined over $k$ . As $H$ is simple on $G$ and $\omega\in \mathfrak{M}_{G}$ is everywhere finite,
$\omega$ induces a differential form $\omega^{\prime}$ on $H$, which is evident]y invariant.

Let $x,x^{\prime}$ be two independent generic points of $G$ over $k$ and $y,$
$y^{\prime}$ such
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of $H$, and let $\varphi_{\nu}(x, x^{\prime})$ be, as in Th. 1 $\nu$-th coordinate of $x^{-1}x^{\prime}$ in some
representative $G_{0}$ of $G$ in which $H$ has a representative $H_{0}$ . Then $\varphi_{\nu}(y\parallel)$

are defined and are coordinates of $y^{-1}y^{\prime}$ . Therefore, by Th. 1 Coroll. r-
of $\varphi’ s$ define $r$ differential forms which form a $\Omega$ -base of $\mathfrak{M}_{H}$. This means
that whole $\mathfrak{M}_{H}$ is induced by $\mathfrak{M}_{G}$ on $H$, and therefore we can choose a
base $\omega_{1},\ldots\ldots,\omega_{r},$ $\omega_{r+I},\ldots\ldots,\omega_{n}$ of $\mathfrak{M}_{G}$ so that $\omega_{1}^{\prime},\ldots\ldots,\omega_{r}^{\prime}$ form a base of $\mathfrak{M}_{H}$.

and $\omega_{r+1}^{\prime}=\ldots\ldots=\omega_{n}^{\prime}=0$ . Then the formula

$d\omega_{k}=-\Sigma c_{ljk}\underline{1}\omega_{i}\cdot u_{j}$

2 $i,j$

implies

$d\omega_{k^{\prime}}=-\frac{1}{2}\sum_{i,j}c_{ijk}\omega_{i}{}^{t}cu_{j}^{\prime}$ .

and therefore $c_{tjk}=0$ for $i,$ $j\leqq r,$ $k>r$ .
If we consider the base $D_{1},\ldots\ldots,$ $D_{n}$ of $\mathfrak{L}_{G}$ dual to $\omega_{1},\ldots\ldots,\dot{\omega}_{n}$ we see $\cdot$

$D_{1},\ldots\ldots,D_{r}$ form a base of a Lie subring of $\mathfrak{L}_{G}$ which is isomoIphic to $\mathfrak{L}_{H}$

The relation between $\mathfrak{L}_{G}$ and $\mathfrak{L}_{H}$ can further be explained as follows $\sim$

We can suppose that $D_{i}$ and $\omega_{i}$ are defined over $k$ . Let us denote by $\sum$

the $speci\dot{a}lization$ ring of $y$ in $k(x)$ , and by $\mathfrak{p}$ the ideal of $\Sigma$ composed of
elements which have specialization $0$ over $ x\rightarrow,\nu$ . Let $v\in \mathfrak{p}$ , we have $dv=$

$\sum_{;=1}^{n}(D_{i}v)\cdot\omega_{\ell}$ and by Prop. $ 8^{1^{\underline{o}})}D_{i}v\epsilon\sum$ . But $dv$ induces $0$ on $H$, so that

$D_{i}v(i=1,\ldots\ldots,r)$ have specialization $0$ over $x\rightarrow y$ , therefore $D_{i}v\in \mathfrak{p}$ for
$i=1,\ldots\ldots,$ $r$.

Since $D_{i}\sum\subset\sum andD_{i}\mathfrak{p}\subset \mathfrak{p}$ for $1\leqq i\leqq r,$ $D_{i}$ define $r$ derivations of

$\sum_{\omega_{r}^{\prime}}/\mathfrak{p}\cong k(y)$

over $k$ , which form precisely the dual base of $\mathfrak{L}_{H}$ to $\omega_{1}^{\prime},\ldots\ldots$

We resume the result in the following
Theorem 3. If $H$ is a group subvariety of a group variety $G,$ $t1\iota en\mathfrak{L}_{1f}$

is isomorphic with a Lie subring of $\mathfrak{L}_{G}$ , and this isomorphism is given $\emptyset^{\prime}$ that.
the elements of $tf_{l}e$ subring in question can be considered, in a natural $\ovalbox{\tt\small REJECT} z\ell!ay$ , as
derivations of $\Omega(H)$ over $\Omega$ .

Next we consider homomorphisms of $g_{i^{-}}oup$ varieties.
Let $\Lambda b^{a}$ a homomorphism of a group variety $G^{n}$ onto a $g_{1}oupvariet_{Y}$

$H^{r}$ . Let $a$ be a point of $G$ , and $k$ a field of definition for $G,$ $H$ and $\Lambda_{t}$

over which $a$ is rational. Let $x$ be a generic point of $G$ over $k$ , then $y=$
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$\Lambda\cdot x$ is a generic point of $H$ over $k$ and $b=\Lambda\cdot a$ is rational ove$rk$ It is
easily seen that if $\omega^{\prime}$ is a differential form on $H$ and $cu=\delta\Lambda\cdot pu^{\prime}$ , then $\omega^{a}=$

$\delta\Lambda\cdot\omega^{\prime b}$ , so invariant $\omega^{t}$ goes to an invariant $\omega$ by $\delta\Lambda$ .
We have $k(x)\supset k(y)$ , and if the order of inseparability $[k(x) : k(y)]_{\iota}$

is equal to 1, $k(x)$ is separably $ge$nerated over $k(y)$ , and if $cu$
‘ is not $0$ on

$H,$ $\omega=0^{\backslash }\Lambda\cdot\omega^{\prime}\neq 0$ on $G$ . Such a homorphism shall, $p\iota\cdot ovisionally$ , be called
a separable homomorphism. If $\Lambda$ is such, and if $\omega^{\prime},\ldots\ldots,cu_{r}^{\prime}$ is a base of
$\mathfrak{M}_{H}$, then $\omega_{1}=\delta\Lambda\cdot u^{/_{1}}\ldots\ldots,\omega_{r}=\delta\Lambda\cdot\omega_{r}^{\prime}$ are independent on $G$ , and we can
find a bese $\omega_{1},\ldots\ldots\omega_{r},$ $\omega_{r+1},\ldots\ldots,\omega_{n}$ of $\mathfrak{M}_{G}$ such that $\omega_{\ell}=\delta\Lambda\cdot\omega_{i^{\prime}}(i=1,\ldots,r)$ .

Now consider the dual base $D_{1},\ldots\ldots,D_{n}$ of $\omega_{1},\ldots\ldots u_{n}$ . If $v\in k(y),$ $dv$

\langle considered as a differential $f_{01}m$ on $H$) is a linear combination of $\omega_{1}^{\prime},\ldots$

$cu_{r}^{\prime}$ with coefficients in $k(y)$ , so that when considered as a differential
form on $G$ , it is a linear combination of $u_{1},\ldots\ldots,\omega_{r}$ with coefficients in $k(y)$ .
Therefore $D_{i}k(y)\subset l(y)1\leqq i\leqq r,$ $D_{i}\mathcal{L}^{y}(y)=0r<i$, and $D_{1},\ldots\ldots,D_{r}$ de-
$\not\in ner$ derivations $D_{1}^{\prime},\ldots\ldots,D_{r^{\prime}}$ of $k(y)$ over $k$ . $D_{1^{\prime}},\ldots\ldots,$ $D_{r^{\prime}}$ are invariant
and form a base of $\mathfrak{L}_{H}$ We have thus defined a linear mapping $\lambda:\lambda(D_{i})$

$=D_{i^{\prime}}(i\leqq r),$ $\lambda(D_{i})=0(r<i)$ of $\mathfrak{L}_{G}$ onto $\mathfrak{L}_{H}$
$\lambda$ is a homomorphism of

$\mathfrak{B}_{G}$ onto $\mathfrak{L}_{H}$, because $\lambda(D,)$ is the contraction of $D_{i}$ to $k(y)$ .
Now let $C$ be the component containing $e$ of the kernel of $\Lambda$ , we can

see by Prop. 6 that $\omega_{1},\ldots\ldots,$ $c\nu_{r}$ induce $0$ on $C$. But $C$ is a group sub-
$\sim variety$ . of $G$ of dimension $n-r^{14)}$ Therefore the Lie subring of $\mathfrak{L}_{G}$ ge-
nerated by $D_{r+1},\ldots\ldots,$ $D_{n}$ (which is nothing but the kernel of $\lambda$ ) is the Lie
subring corresponding to $C$

Theorem 4. $ 1f\Lambda$ is a separable homomorphism ofa group variety $G$

.onto a group variety $H$, the’ there cxists $a$ $/\iota omomorphism\lambda$ of $\mathfrak{L}_{G}$ onto $\mathfrak{L}_{H}$,
and $t/\iota c$ kernel of $\lambda$ is $t/u$’ Lie ring of $t/n’$ compom $nt$ of $e$ of $t/le$ kerncl $\phi\Lambda$ .

In conclusion I express my healtf $n1$ thanks to Prof. Akizuki for his kind
interest taken in this wolk.

Yoshida College,
Kyoto $Univelsit_{3^{r}}$ .

Notes

1) Cf. A. Weil: Vari\’et\’es Abeliennes et Courbes Alg\’ebriques, in the following this shall
be cited as A.

2) We denote by $\Omega(V)$ the abstract field of all functions defined on $V$, (each function
having a field of definition in the sense of $F- I_{1}.$ 3) The subfield of $\Omega(V)$ composed of functions
equal to constants is denoted by $\Omega$, this is isomorphic to the universal domain. We denote by
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$\Omega_{K}(V)$ the field of functions on $V$ defined over $K$, this is isomorphic to $K(P)$ , where $P$ is a
generic point of $V$ over $K$, and at times they are identified.

3) $F- II_{1}$ . th. 1 means A. Weil: Foundaions of Algebraic Geometry, Chap. VI \S 1. th. 1.
This abbreviation is used throughout this note.

4) A. Weil: Courbes alg\’ebriques et Vari\’et\’es qui s’en d\‘eduisent, Ire partie II.
5) As $\Omega(V)$ is the compositum of $\Omega_{K}(V)$ and $\Omega$ , a derivation of $\Omega_{K}(V)$ over $K$ is ex-

fended to that of $\Omega(V)$ over $\Omega$ . Conversely, as $\Omega(V)$ is finitely generated over $\Omega$, a derivation
$D$ of $\Omega(V)$ over $\Omega$ can be considered as an extension of some derivation of $\Omega_{K}(V)$ over $K$

Here $K$ is a field suitably chosen, in the sense of $F- I_{1}$ . In this case we say, $D$ is defined over $K$.
6) Of course in this case both are considered as $\Omega_{K}(V)$ -modules.
7) S. Koizumi : Journ. Math. Soc. of Japan, vol. 1.
8) Cf. A. n\circ 1.

10) As in A. $K$ is said to be a field of definition for a group variety $G$ if $K$ is a field of
definition both for variety $G$, and for the law of composition in $G$ .

11) Here $x$ and $x^{\prime}$ are independent generic points of $G$ over $K$.
12) If we identify $\Omega_{K}(G)$ and $K(x)$ as is stated in note (2), we can state this Prop. as

follows: If $D$ is an invariant derivation on $G$ defined over $K$ , $D$ leaves the specialization{?}ring
of $a$ in $K(x)$ invariant.

13) Cf. C. Chevalley: Loc. cit.
14) This can be seen by a slight modification of A. th. 11, in the case of onto homomor-

phism.
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