Journal of the Mathematical Society of Japan Vol. 2, Nos. 3-4, March, 1951.

## A Deformation Theorem on Conformal Mapping.

Masatsugu Tsujr.

(Received Jan. 24, 1950)
We will prove the following deformation theorem on conformal mapping.
Theorem 1. Let $D$ be a simply connected domain on the z-plane, which contains $z=0$ and is contained in $|z|<M$. Let $E$ be a continuum, which contains $z=0$ and is contained in $D$, such that a disc of radius $\rho$ about any point of $E$ is contained in $D$. If we map $D$ conformally on $|w|<1$ by $w=w(z)$, $z=z(w) \quad(w(o)=0))$, then the image of $E$ is contained in $|w|<1-k<1$, where $k=h\left(\frac{\rho}{M}\right)$ depends on $\frac{\rho}{M}$ only.
We can take

$$
k=\frac{\rho}{4 M} e^{-\alpha \frac{M^{2}}{\rho^{2}}\left(u=\frac{64 \pi}{\sqrt{3}} \log \frac{32}{9}<100\right) . . . . .}
$$

Proof. We cover the $z$-plane by a net of regular triangles $\Delta_{i}$ of sides $\frac{\rho}{4}$, whose vertices are $z_{m, n}=m \frac{\rho}{4} e^{\frac{\pi i}{3}}+n \frac{\rho}{4}(m, n=0, \pm 1, \pm 2, \cdots \cdots)$. It is easily seen that if $\Delta_{i}$ contains a point of $E$, then a disc of radius $\frac{3 \rho}{4}$ about a vertex $\zeta_{i}$ of $\Delta_{i}$ is contained in $D$, so that $\Delta_{i}$ is contained in $D$ and $w(z)$ is regular and schlicht in $\left|z-\zeta_{i}\right|<\frac{3 \rho}{4}$. Let $\Delta_{1}, \Delta_{2}, \cdots \cdots, \Delta_{N}$. be the triangles which contain points of $E$, where $z=0$ is a vertex of $\Delta_{1}$, then since the area of $\Delta_{i}$ is $\frac{\sqrt{3} \rho^{2}}{64}$ and is contained in $|z|<M$,

$$
\begin{equation*}
N<\mu=\frac{64 \pi M^{2}}{\sqrt{3} \rho^{2}} \tag{1}
\end{equation*}
$$

Let $z_{0}$ be any point of $E$ and let $z_{0}$ be contained in $\Delta_{n_{0}}\left(n_{0} \leqq N\right)$, then since $E$ is a continuum, there exists a chain of triangles :

$$
\Delta_{1}, \Delta_{2}, \cdots \cdots, \Delta_{n_{0}} \quad\left(n_{0} \leqq N\right)
$$

where $\Delta_{i}, \Delta_{i+1}$ have a common side, so that $\left|\zeta_{i}-\zeta_{i+1}\right|=\frac{\rho}{4}$ and each $\Delta_{i}$ con-
tains a point of $E$.
Since $z(w) \quad(z(o)=0)$ is regular and $|z(w)|<M$ in $|w|<1$, we have by Schwarz's lemma

$$
\begin{equation*}
\left|\left(\frac{d z}{d z}\right)_{0}\right| \leqq M, \text { or }\left|\left(\frac{d z v}{d z}\right)_{0}\right| \geqq \frac{1}{M} . \tag{3}
\end{equation*}
$$

Now

$$
\begin{equation*}
w(z)=\lambda z+\cdots \cdots \quad\left(|\lambda| \geqq \frac{1}{M}\right) \tag{4}
\end{equation*}
$$

is regular and schlicht in $|z|<\frac{3 \rho}{4}$, hence by putting $z=\frac{3 \rho}{4} t$

$$
F(t)=\frac{w\left(\frac{3 \rho}{4} t\right)}{\frac{3 \lambda \rho}{4}}=t+\cdots \cdots
$$

is regular and schlicht in $|t|<1$, so that by Koebe's theorem,

$$
\left|F^{\prime}(t)\right| \geqq \frac{1-|t|}{(1+|t|)^{3}} \quad(|t|<1)
$$

or

$$
\left|w^{\prime}(z)\right| \geqq|\lambda| \frac{1-\frac{4|z|}{3 \rho}}{\left(1+\frac{4|z|}{3 \rho}\right)^{3}} \quad\left(|z|<\frac{3 \rho}{4}\right)
$$

Hence for a vertex $\zeta_{2}\left(\left|\zeta_{2}\right| \frac{\rho}{4}\right)$ of $\Delta_{2}$,

$$
\left|w^{\prime}\left(\zeta_{2}\right)\right| \geqq|\lambda| \frac{9}{32} .
$$

Repeating the same process at $\zeta_{3}, \cdots \cdots \zeta_{n 0}$, we have

$$
\left|w^{\prime}\left(\zeta_{n o}\right)\right| \geqq|\lambda|\left(\frac{9}{32}\right)^{n_{0}-1}
$$

Since $z_{0}$ lies in $\Delta_{n_{0}}$ and $\left|z_{0}-\zeta_{n_{0}}\right| \leqq \frac{\rho}{4}$, if we apply again Koebe's theorem in $\left|z-\zeta_{o n}\right|<\frac{3}{4} \mathrm{e}$, we have

$$
\begin{equation*}
\left|w^{\prime}\left(z_{0}\right)\right| \geqq|\lambda|\left(\frac{9}{32}\right)^{n o} \geqq\left(\frac{9}{32}\right)^{N} \frac{1}{M} . \tag{5}
\end{equation*}
$$

Since

$$
\begin{equation*}
w-w_{0}=\alpha\left(z-z_{0}\right)+\cdots \cdots \quad\left(w_{0}=w\left(z_{0}\right),|\alpha| \geqq\left(\frac{9}{32}\right)^{N} \frac{1}{M}\right) \tag{6}
\end{equation*}
$$

is regular and schlicht in $\left|z-z_{0}\right|<\rho$, if we put $z-z_{0}=\rho \zeta$,

$$
F(\zeta)=\frac{w-w_{0}}{\alpha \rho}=\zeta+\cdots \cdots
$$

is regular and schlicht in $|\zeta|<1$, so that by Koebe's theorem, the image of $|\zeta|<1$ contains a disc of radius $\frac{1}{4}$, so that the disc $\left|w-w_{0}\right|<\frac{\alpha \rho}{4}$ and hence the disc $\left|w-w_{0}\right|<\frac{\rho}{4 M}\left(\frac{9}{32}\right)^{N}$ is contained in $|w|<1$, or $\left|w_{0}\right|<$

$$
1-\frac{\rho}{4 M}\left(\frac{9}{32}\right)^{N} \leqq 1-\frac{\rho}{4 M}\left(\frac{9}{32}\right)^{u} \quad\left(\mu=\frac{64 \pi M^{2}}{\sqrt{3} \rho^{2}}\right) .
$$

Since $z_{0}$ is arbitrary, the image of $E$ is contained in $|w|<1-k<1$, where

$$
k=\frac{\rho}{4 M}\left(\frac{9}{32}\right)^{\mu}=\frac{\rho}{4 M} e^{-\alpha \frac{M^{2}}{\rho^{2}}} \quad\left(\alpha=\frac{64 \pi}{\sqrt{3}} \log \frac{32}{9}<100\right) . \text { q.e.d. }
$$

Similarly we can prove:
Theorem 2. Let $D$ be a simply connected Riemann surface, whose projection on the z-plane lies in $|z|<M$, such that $D$ has no branch points and $z=0$ belongs to $D$, and $|D|$ be its area. Let $E$ be a continuum contained in $D$, such that $E$ contains $z=0$, and a disc of radius $\rho$ about any point of $E$ is contained in $D$. If we map $D$ conformally on $|z|<1$ by $w=w(z)(w(o)$ $=0$ ), then the image of $E$ is contained in $|w|<1-k<1$, where

$$
k=\frac{\rho}{4 M} e^{-\alpha \frac{|D|}{\rho^{2}}}\left(\alpha=\frac{64}{\sqrt{3}} \log \frac{23}{9}\right) .
$$

Mathematical Institute, Tokyo University.

