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Bieberbach1) proved first, that any $sch1_{1}cht$ domain $D$ bounded by $p$

continua can be conformally mapped on a $p$-sheeted unit disc, $i$ . $e$ . on a
Riemann surface, which covers each point inside the unit circle exactly
$p$-times. Afterwards $Grunsky^{\underline{o}}$

) gave another proof of this theorem and
added that this mapping is uniquely determinate under the condition
mentioned later in Theorem 1.

In this paper we shall treat more generally the conformal mapping
of $D$ on a k-sheeted unit disc, where $k$ is any integer $\geqq p$, and prove
some results concerning this mapping. But since the general case $k\geqq p$ can
be discussed quite the same, we will, for simplicity, confine ourselves to
$te$ case $k=p$ for a while.

Without loss of generality we can assume that $D$ lies in the finite part
of the x-plane, and is bounded by $p$ closed analytic Jordan curves $\Gamma_{1}\ldots\ldots$ ,
$\Gamma_{\rho}$ . We denote by $g(x, x^{\prime})$ the Green’s function of $D$ with $x^{\prime}$ as its
pole, and by $h(x, x^{\prime})$ the conjugate function of $g(x, x^{\prime})$ . For $\lambda=1,\ldots\ldots$ ,
$p$ , let $u_{\lambda}(x)$ be the harmonic measure of the boundary curve $\Gamma_{\lambda}$ with res-
pect to $D$ , and $w_{\lambda}(x)=u_{\lambda}(x)+iv_{\lambda}(x)$ be the regular function with the
real part $u_{\lambda}(x)$ . $zn_{\lambda}(x)$ is regular on the closure $\overline{D}$ of $D$ , and, if $p>1$ ,

infinitely many-valued.
We use the following two lemmas several times in the sequel.
Lemma 1. Let $x_{1},\ldots\ldots,x_{p}$ le $p$ points in $D_{t}$ $1f$ these points satisfy $t/le$

$p$ equations:

$\sum_{\mu\Rightarrow 1}^{p}u_{\lambda}(x_{\mu})=1$ $(\lambda=1,\ldots\ldots,p)$ , (1)

and only in such a case, tlere exisls a function $y=y(x),$ $’\iota vhich$ maps $D$

conJormally on a p-sheeted unit disc $\Delta$ on y-plane, so tltat $tJ_{l}e$ images of $ x_{1}\ldots$

$x_{p}$ on $\Delta$ have one and the same projection $y=0.1nths$ case, $tf_{t}e$ mapping
function is given by
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$y=y(x)=e\cdot exp$ . $\{-\sum_{\mu=1}^{\rho}((g(x, x_{\mu})+ih(x, x_{\mu}))\},$ $|\epsilon|=1$ . (2)

If some of the points $x_{\mu}$ coincide, $e$ . $g$ . if $x_{1}=x_{2}=\ldots\ldots=x_{r+1}$ , the
statement of the lemma means that the image of $x_{1}=\ldots\ldots=x_{r+1}$ on $\Delta$ is
a branch-point of order $r$ lying on $y=0$ .

Proof. $Su_{\vee}fficiency$ . It suffices to show that

$-\sum_{\mu\Leftrightarrow 1}^{\rho}h(x, x_{\mu})$ (3)

has the modulus of peliodicity $ 2\pi$ around $e$ach $\Gamma_{\lambda}$ , and this follows im-
mediately from the well-known formulae

$-\int_{r_{\lambda}^{dh(x}’}x_{\mu})=2\pi u_{\lambda}(x_{\mu})(\lambda, \mu=1,\ldots\ldots,p)$ (4)

and (1), by summing up for $\mu=1,\ldots\ldots,p$ . Necessity. Since

$iog|y(x)|+\sum_{\mu=1}^{p}g(x, x_{\mu})$

is harmonic in $D$ and vanishes on the boundary of $D$ , it must be identi-
cally zero, so that $y=y(x)$ is expressed in the form (2). Then (3) must
have modulus of periodicity $ 2\pi$ around each $\Gamma_{\lambda}$ , so that, by (4), (1)
holds, $q$ . $e$ . $d$ .

Remark. By means of a linear transformation of y-plane, we see
easily from Lemma 1 that, if $D$ is conformally mapped on a $p$-sheeted
unit disc, and if the images of $x_{1}\ldots\ldots,$ $x_{\rho}$ have one and the same projection
on the plane, then necessarily (1) holds.

Lemma 2. Suppose that $D$ is conformally mapped on a p-skeeled unit
disc by a function $y=y(x)$ , and let $x_{1}(y),\ldots\ldots,$ $x_{p}(y)$ denote $t/\iota ep$ branches
of the inverse function of $y=y(x)$ . Then $\tau ve$ have, for any two points $y_{0},$ $y$

$in$ l.r $|\leqq 1$ ,

$W_{\lambda}(\parallel, y_{0})=\sum_{\mu=1}^{p}\int_{x^{\mu}(y_{0})}^{x_{\mu}(y)}dw_{\lambda}=0(\lambda=1,\ldots\ldots,p)$ ,

$w/lere$ the $pat/lS$ of integration are $p$ curves in $\overline{D}$ , which are described by
$x_{1}(y),\ldots\ldots,$ $x_{p}(y)$ wlten $y$ moves along a curve in $|y|\leqq 1$ from $y_{0}$ to $y$ .
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Proof. By the above remark, we have

$\mathfrak{R}W_{\lambda}(\gamma,y_{0})\equiv_{\dot{\mu}=1}\geq u_{\lambda}(x_{\mu}(y))-\sum_{\mu=1}^{p}u_{\lambda}(x_{\mu}(y_{0}))\equiv 1-1\equiv 0p_{\urcorner}(\lambda=1,\ldots\ldots,p)$ .

Since $W_{\lambda}(y, y_{0})$ are analytic functions of $y$ in $|y|\leqq 1$ , and vanish at $y=y_{0}$ ,

they must vanish identically, $q$ . $e$ . $d$ .
We will prove
Theorem 1. (Bieberbach-Gruns4y). Let $\xi_{\mu}$ be a point on $\Gamma_{\mu}$ respecti-

vely for $\mu=1,\ldots\ldots,p$ . $T/lent/\iota ere$ exists a frnction $y=y(x)$ , which maps $D$

$co\prime lformally$ on a p-sheeted unit disc $\Delta$ on y-plane, so that $t/\iota e$ images $ of\backslash \sim_{1}\wedge$

..., $\xi_{p}$ on $\Delta$ have one and $t/te$ same projection on $|y|=1$ . This mapping
function is uniquely determinate, save for a linear $tra’\iota formation$ of y-plane,
$w\prime_{l}ich$ makes 1V $|<1$ invariant.

Proof. First we will prove the existence of a system of $p$ points in
$D$ satisfying (1). Since $\xi_{1}\ldots\ldots,$ $\xi_{p}$ obviously satisfy (1), (1) is equivalent
with

$\sum_{\mu=1}^{p}\{u_{\lambda}(x_{\mu})-u_{\lambda}(\xi_{\mu})\}=0(\lambda=1,\ldots\ldots, p)$ .

Instead of these equations, we consider, together with their imaginary
parts,

$W_{\lambda}=\sum_{\mu=1}^{\rho}\int_{\xi^{\mu}}^{x_{\mu}}d\tau v_{\lambda}=0(\lambda=1,\ldots\ldots,p)$ . (5)

Since we have $\sum_{1}^{p}u_{\lambda}\equiv 1$ , any one of (5), $e$ . $g$ . the one for $\lambda=1$ , neces-
sarily holds, if the other $p-1$ equations hold. Hence, in order to prove
that (5) $h^{q}s$ solutions for a value of $x_{1}$ lying in a neighbourhood of $\xi_{1}$ ,

we have only to show that $t/le$ Jacobian of $W_{2},\ldots\ldots,$ $i\rho_{p}\nearrow$ zvith respect to
$p-1$ variables $x_{2},\ldots\ldots,$ $x_{p}$ does not vanish at $x_{1}=\xi_{1}x_{2}=\xi_{2},\ldots\ldots,$ $x_{\rho}=\xi_{p}i$ . $e$ .

$J=\left|\begin{array}{lll}\frac{\partial W_{2}}{\partial x_{2}} & \cdots & \frac{\partial W_{2}}{\partial x_{p}}\\\cdots & \cdots & \cdots\\\frac{\partial W_{p}}{\partial x_{2}} & \cdots & \frac{\partial W_{p}}{\partial x_{\rho}}\end{array}\right|x_{1}=\xi_{1’\cdots\cdots,pp}x=\frac{\wedge}{\backslash }\neq 0$ .
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Let $\theta_{\mu}$ be the angle between the positive real axis and the positive tan-
gent of $1_{\mu}^{\prime}$ at $\xi_{\mu}$ . Then, denoting by $n,$ $s$ the inner normal and the
length of $\Gamma_{\mu}$ , we have

$\{\frac{\partial W_{\lambda}}{\partial x_{\mu}}\}_{x_{1}=\xi_{1},\ldots,x_{\rho}=\xi_{p}}=\{\frac{d}{dx}w_{\lambda}\}_{\xi_{\mu}}=$

$=e^{i\theta\mu}\{\frac{\partial}{\partial s}u_{\lambda}+i\frac{\partial}{\partial s}v_{\lambda}\}_{\xi_{\mu}}=e^{\iota\theta\mu}\{i\frac{\partial}{\partial s}v_{\lambda}\}_{\xi_{\mu}}=-ie^{i\theta_{\mu}}\{\frac{\partial}{\partial n}u_{\lambda}\}_{\xi_{\mu}}$

so that

$J=(-i)^{p-1}e^{i(\theta_{2}+\ldots+\theta_{p})}\cdot\ovalbox{\tt\small REJECT}\{\frac{\partial}{\partial n}u\}_{\xi_{2}^{2}}\{\frac{\partial}{\partial n}u\}_{\xi_{p}^{p}}^{\xi}l_{\backslash }\frac{\partial}{\partial n}u_{p^{2}}.\}_{\xi}.\{.\frac{\partial}{\partial n}u_{p^{2}}.\}:.....\cdot..\cdot.\cdot.\cdot..\cdot.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot..\cdot\ldots\ldots\ldots|$

Suppose that $J=0$ , then we .can find $p-1$ real numbers $c_{2},\cdots\cdots,$ $c_{p}$ , at
least one of which is $>0$ , such that

$\sum_{\lambda=2}^{p}c_{\lambda}\{\frac{\partial}{\partial n}u_{\lambda}\}_{\xi_{\mu}}=\{\frac{\partial}{\partial n}\sum_{\lambda=2}^{p}c_{\lambda}u_{\lambda}\}_{\xi_{\mu}}=0(\mu=2,\cdots,p)$ .

hold. Let $c_{m}$ be the greatest of $c_{2},\cdots\cdots,$ $c_{p}$ , then since

$\{\frac{\partial}{\partial s}\sum_{\lambda=2}^{\rho}c_{\lambda}u_{\lambda}\}_{\xi_{m}}=0$ ,

we have

$\{\frac{d}{dx}\sum_{\lambda=2}^{p}c_{\lambda}w_{\lambda}\}_{\xi_{m}}=0$ ,

so that the niveau curve $\mathfrak{R}\Sigma_{2\lambda\lambda-2}^{p}czv=^{-\rho}\backslash c_{\lambda}u_{\lambda}=c_{m}$ has a multiple point
at $\xi_{m}$ . Then the harmonic function $\Sigma_{\sim}^{p_{\backslash }}c_{\lambda}u_{\lambda}$ attains its maximum $c_{m}$ at an
interior point of $D$ . Hence, by the maximum principle, we have

$\sum_{\lambda=2}^{p}c_{\lambda}u_{\lambda}(x)\equiv c_{m}>0$ ,

which contradicts th\’e fact that the left-hand side vanishes on $\Gamma_{I}$ , hence $J\neq 0$ .
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Since $J\neq 0$ , we can solve the simultaneous equations (5) for any
$x_{\iota}$ lying in a certain neighbourhood $U_{1}$ of $\xi_{1}$ , and obtain $p-1$ regular
analytic functions of $x_{1}\epsilon U_{1}$ :

$x_{2}=\varphi_{2}(x_{1}),\cdots\cdots,$ $x_{p}=\varphi_{\rho}(x_{1})$ ,

whose values lie respectively in certain neighbourhoods $U_{2},\ldots\ldots,$ $U_{p}$ of
$\xi_{2},\ldots\ldots,$ $\xi_{p}$ . And $t/le$ system

$x_{1},$
$\varphi_{\underline{o}}(x_{1}),\ldots\ldots,$ $\varphi_{p}(x_{1})$

exhausts all the solutions of (5), which lie respectively in $U_{1},\ldots\ldots,$ $ U_{\rho}toget/l\mathcal{E}\gamma$

$wit/lpat/lS$ of integration from $\xi_{1}\ldots\ldots,$ $\xi_{p}$ . Especially for $x_{1}=\xi_{\lrcorner}$ , we have

$\varphi_{2}(\xi_{1})=\xi_{2},$
$\ldots\ldots,$

$\varphi_{p}(\xi_{1})=\xi_{p}$ .

Further, since $\frac{d}{dx}w_{\lambda}$ does not vanish on the boundary of $D$ , and the

neighbourhoods $U_{1},$
$\ldots\ldots,$

$U_{p}$ can be taken as small as we please, we can
assume that

$u_{\lambda}(x)<=0$ for $x$ lying in $U_{\mu}(\mu\neq\lambda)$ but outside D. (6)

We fix a point $\xi_{1}^{*}$ in the common part of $U_{1}$ and $D$ arbitrarily, and
put

$\varphi_{2}(\xi_{1}*^{\prime})=\xi_{\underline{o}^{\prime}}^{x},\ldots\ldots,$ $\varphi_{p}(\xi_{\sim}^{\prime})=\xi_{\rho}^{*}$ ,

so that we have

$\sum_{\mu\leftarrow 1}^{p}\int_{\xi^{\mu^{*}}}^{\xi_{\mu}}d_{L}^{\prime}v_{\lambda}=0$ $(\lambda=1,\cdots\cdots,p)$ (7)

with paths of integration contained $re$spectively in $U_{1},\cdots\cdots,$ $U_{\rho}$ , and con-
sequently

$\sum_{\mu=1}^{p}u_{\lambda}(\xi_{\mu}^{\gamma}\cdot)=\sum_{\mu=1}^{\nu}u_{\lambda}(\xi_{\mu})=1$ $(\lambda=1,\cdots\cdots,p)$ . (8)

We will prove that $\xi_{\mu}^{*}(1\leqq\mu\leqq p)$ lies in $D$ . Suppose that $\xi_{1’\cdots\cdots,\backslash ^{\wedge}\dot{h}^{<}}^{*}’\epsilon D$

and $\xi_{h^{\prime}+1}^{\backslash \prime},\ldots\ldots\xi_{\rho}^{*}\xi D(1\leqq h<p)$ by suitable change. of indices. Then,
since
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$\sum_{\lambda=1}^{h}u_{\lambda}(x)<1$ in $D$ ,

we have, by summing up for $x=\xi_{i^{*},\ldots\ldots,\hat{\zeta}_{h}^{*}}$

$\sum_{\mu=1}^{h}(\sum_{\lambda=1}^{h}u_{\lambda}(\xi_{\mu^{\prime}}^{d}))<h$ .

On the other hand, we have, by summing up (8) for $\lambda=1,\ldots\ldots,$ $h$ ,

$\sum_{\mu=1}^{p}(\sum_{\lambda=1}^{h}u_{\lambda}(\xi_{\mu}^{*}))=\sum_{\lambda=1}^{h}(\sum_{\mu=1}^{\rho}z\ell_{\lambda}(\xi_{\mu}^{\star}))=h$ .

Hence there exists at least one index $\mu=m$ greater than $h$ , such that

$\sum_{\lambda=1}^{h}u_{\lambda}(\xi_{m}^{*})>0$ .

Then, since $\xi_{m}^{*}$ lies in $U_{m}(m>h)$ , it follows from (6) that $\xi_{m}*$ lies in $D$ .
This contradicts the hypothesis and proves our assertion.

Hence, if we put

$y=y(x)=\exp\{-\sum_{\mu=1}^{\rho}(g(x, \xi_{\mu}^{*})+ih(\chi\xi_{\mu}*,))\}$ ,

then, by Lemma 1, $y=y(x)$ maps $D$ conformally on a p-sheeted unit disc $\Delta$

on y-plane.
Next we will prove that $\xi_{1},\ldots\ldots,$ $\xi_{\rho}$ are mapped on one and $t/le$ same

point on $|y|=1$ by $y=y(x)$ . Let

$x_{\rfloor}(y),$ $x_{2}(y),\ldots\ldots,$ $x_{p}(y)$ (9)

be the $pb_{1}$ anches of the inverse function of $y=y(x)$ determined by

$x_{1}(0)=\xi_{1}^{*}\in U_{1},$ $x_{2}(0)=\xi_{2}^{*}\epsilon U_{2},\cdots\cdots,$ $x_{p}(0)=\xi_{\nu^{*}}\epsilon U_{p}$ .

Then, if $y$ lies in a sufficiently small neighbourhood $V$ of $y=0$ , the values
of (9) fall respectively in $U_{1},$ $U_{2},\cdots\cdots,$ $U_{\rho}$ , so that, by Lemma 2, we have
for $y$ lying in $V$ together with a path from $y=0$

$\mu^{p}\Leftarrow 1\nabla\int_{\xi_{\mu^{\mu_{*}}}}^{x(y)}dw_{\lambda}=0$ $(\lambda=1,\cdots\cdots,p)$
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with paths of integration contained respectively in $U_{1},\cdots\cdots,$ $U_{\rho}$ . Hence,
by (7) , we obtain

$\sum_{\mu=1}^{\rho}\int_{\xi_{\mu}}^{x_{\mu}(y)}dw_{\lambda}=0$ $(\lambda=1,\cdots\cdots,p)$

$i$ . $e$ . (9) provides a system of solutions of the equations (5), which lie
respectively in $U_{1},\cdots\cdots U_{p}$ together with paths of integration, if $y\epsilon V$. Then,
by the uniqueness of solutions of (5) in $U_{1},\ldots\ldots,$ $U_{\rho}$ , if we put

$x_{1}(y)=x_{1}$ $i$ . $e$ . $y=y(x_{1})$ , (10)

we have

$x_{2}(y)=\varphi_{2}(x_{1}),\cdots\cdots,$ $x_{p}(y)=\varphi_{\rho}(x_{1})$ (11)

for $x_{1}$ lying in a sufficiently small neighbourhood of $\xi_{1}^{*}$ , such that
$y=y(x_{1})$ falls in $V$. But since the both sides of (11) are analytic functions
of $x_{I}\epsilon U_{1}$ in $vi_{1}tue$ of (10), (11) holds throughout $U_{1}$ . Hence, especially
for $x_{1}=\xi_{1}$ , we have, putting $\eta=y(\xi_{1})$ ,

$x_{2}(\eta)=\varphi_{2}(\xi_{1})=\xi_{2},\cdots\cdots,$ $x_{p}(\eta)=\varphi_{p}(\xi_{1})=\xi_{p}$ ,

so that

$\eta=y(\xi_{l})=y(\xi_{\underline{7}})=\cdots\cdots=y(\xi_{\rho})$ .

Finally we will prove $t1_{l}e$ uniqueness of the mapping. funclion. Let
$y^{\prime}=y^{/}(x)$ be another mapping function satisfying the condition of the
theorem. By means of a linear transformation of y’-plane, we can assume
that $y^{\prime}(\hat{\sigma}_{1}^{*})=0$ , and then, by the expression for the mapping function given
in Lemma 1, it suffices to prove that the $p$ zero points of $y^{t}=y^{\prime}(x)$

coincide with those of $y=y(x)$ constructed above, $i$ . $e$ .

$y^{\prime}(\xi_{1}^{*})=y^{\prime}(\xi_{\sim}^{*})=\ldots\ldots=y^{/}(\xi_{\rho}^{*})=0$ . (12)

Let $\eta^{\prime}$ be th $e$ value of $y^{\prime}(x)$ at $\xi_{1},\cdots\ldots,$ $\xi_{\rho}$ , and let

$x_{1}^{\prime}(f),$ $\chi_{2}^{\prime}(y^{\prime}),\ldots\ldots,$ $x_{\rho}^{\prime}(y^{\prime})$ (13)

be the $p$ branches of the inverse function of $y^{\prime}=y^{\prime}(x)$ determined by
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$x_{1}^{\prime}(\eta^{\prime})=\xi_{3},$ $x_{2}^{\prime}(\eta^{\prime})=\tilde{\sigma}_{2},\ldots\ldots,$$ x_{p}^{\prime}(\eta^{\prime})=_{p}-\sim$ .

Then, as before by Lemma 2, (13) provides a system of colutions of $(^{\sim_{)}})$

lying respectively in $U_{1},\ldots\ldots,$ $U_{p}$ together with paths of integration, if $y^{\prime}$

lies in a sufficiently small neighbourhood of $y^{\prime}=\eta^{\prime}$ . Then, by the unique-
ness of solutions of (5) in $U_{1},\ldots\ldots,$ $U_{t)}$ , if we put $x_{J}^{\prime}(y^{\prime})=x_{1}i$ . $e$ . $y^{\prime}=y^{/}(r_{1})$ ,
we have

$x_{2}^{\prime}(y^{\prime})=\varphi_{2}(x_{1}),\ldots\ldots,$ $x_{p}^{\prime}(y^{/})=\varphi_{\rho}(x_{1})$ ,

which hold throughout $U_{1}$ as before. Especially for $x_{1}=\xi_{i}^{*}$ , we obtai $\iota 1$ by
$y^{\prime}=y^{\prime}(\frac{\wedge}{\backslash }1*)=0$ ,

$x_{2}^{\prime}(0)=\varphi_{2}(\xi_{1^{*}})=,\ldots\ldots,$ $ x_{\rho}^{\prime}(0)=\varphi_{p}(\xi_{1})=\xi_{p^{\psi}}\cdot$ ,

from which (12) follows. Thus the theorem is completely proved.
Next, we will prove
Theorem 2. Let $x_{1},\ldots\ldots,$ $x_{p}$ be $p$ points in D. Then, in order that $\cdot$

the images of these points by the conformal mapping of Theorcm 1 have one
and the same $pro_{J}ectio\prime c$ on y-plane, it is necessary and sufficient $t_{1^{\gamma}l}at$ the $p$

equations:

$\sum_{\mu=1}^{p}\int_{\xi_{\mu}}^{x_{\mu}}dw_{\lambda}=0$ $(\lambda=1,\cdots\cdots,p)$ (14)

simultaneously hold, wilh certain paths of integration in $\overline{D}$ independent of $\lambda$ .
Proof. $\Lambda^{7}ecessity$ . In the first place, we connect the common pro-

jection of the images of $x_{1},\cdots\cdots,$ $x_{p}$ with that of $\xi_{\rceil},\cdots\ldots,$ $\xi_{p}$ by a curve in
$|y|\leqq 1$ . Then correspoding to this curve we obtain, by Lemma 2, $p$

paths of integration in $\overline{D,}$ such that

$\sum_{\mu=1}^{p}\int_{\xi_{\mu}}^{x_{\mu^{\prime}}}dw_{\lambda}=0$ $(\lambda=1,\cdots\cdots,p)$ (15)

hold, where $(x_{1}^{\prime},\cdots\cdots, x_{\rho}^{\prime})$ is a permutation of $(x_{1},\cdots\cdots, x_{p})$ . Next, we
can apply any transposition to $(x_{1}^{\prime}\ldots\ldots, x_{\rho}^{t})$ , while we add to (15) two
integrals taken in positive and negative directions over a culve in $\overline{D}$,
which connects any two of $x_{1^{\prime}}\cdots\cdots x_{\rho}^{\prime}$ . Since any permutation can be
expressed as product of several number of transpositions, we obtain the
result.

$Su_{\vee}fficiency$ . Since we have from (14)
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$\sum_{\mu=t}^{\rho}u_{\lambda}(x_{\mu})=\sum_{\mu\Leftrightarrow 1}^{p}u_{\lambda}(\xi_{\mu})=1$ $(\lambda=1,\cdots\cdots,p)$ (16)

and since $x_{1},\ldots\ldots,$ $x_{p}$ lie in $\overline{D}$, it is easily seen that only two cases are
possible, viz. (i) $x_{1},\ldots\ldots,x_{\nu}$ lie on the boundary of $D$ respectively one on
eaclt boundary $cnrv_{c^{\prime}’}$ , or (ii) any $0/l$ of $x_{1},\ldots\ldots,$ $x_{\rho}$ lies in $D$ . We will
first prove the theorem for the case (i).

Let $C_{1},\ldots\ldots,$ $C_{p}$ be the $p$ paths of integration in $D$ , which connect
respectively $x_{\mu}$ with $\xi_{\mu}$ , and $x_{\acute{\mu}}$ be the one of $x_{1},\ldots\ldots x_{p}$ , which lies on $\Gamma_{\mu}$ .
If we denote by $\gamma_{\mu}$ the positive arc of $\Gamma_{\mu}$ from $\xi_{\mu}$ to $x_{\acute{\mu}}$ , then the curves
$C_{1},\ldots\ldots C_{\rho}$ , together with $\gamma_{1},\ldots\ldots,$ $\gamma_{p}$ taken in negative direction, make up
a several number of closed curves $C$ in $D$ . Hence, we can find $p$ integers
$r_{1},\ldots\ldots,$ $r_{\rho}$ , such that $C$ is homologous to $r_{1}\Gamma_{1}+\ldots\ldots+r_{\rho}\Gamma_{p},$ $i$ . $e$ .

$C=C_{1}+\ldots\ldots+C_{p}-\gamma_{1}-\ldots\ldots-\gamma_{p}\sim r_{1}\Gamma_{i}+\ldots\ldots+r_{p}\Gamma_{p}^{\prime}$ ,

so that the paths of integration $C_{1}+\ldots\ldots+C_{p}$ can be replaced by $(\gamma_{1}+r_{1}\Gamma_{I})+$

...... $+(\gamma_{\rho}+r_{t!}\Gamma_{p}^{\prime})$ , and we obtain

$\sum_{\mu=1}^{\rho}\int_{\gamma_{\mu}+r_{\mu}\Gamma_{\mu}}dw_{\lambda}=0$ $(\lambda=1,\ldots\ldots p)$ . (17)

Since $\Gamma_{1}+\ldots\ldots+l_{\rho}^{\prime}\sim 0$ , we can assume $t^{hat}r_{\mu}\geqq 0(1\leqq\mu\leqq p)$ .
By the conformal mapping of Theorem 1, each $\gamma_{\mu}+r_{\mu}\Gamma_{\mu}$ corresponds

to a positive arc $a_{\mu}$ of $|y|=1$ starting from $\eta=y(\xi_{1})=\cdots\cdots=y(\xi_{p})$ . Let
$a_{m}$ be the shortest of $a_{1},\cdots\cdots,$ $a_{\rho}$ , and $\gamma_{\mu^{\prime}}$ be the part of $\gamma_{\mu}+r_{\mu}\Gamma_{\mu}$ , which
corresponds to $a_{\tau n}$ on $|y|=1$ , so that $1ve$ have, by Lemma 2,

$\sum_{\mu=1}^{\rho}\int_{\gamma_{\mu^{\prime^{C}}}}lw_{\lambda}=0$
$(\lambda=1, \ldots\cdots,p)$ . (18)

And let $\gamma_{\mu}^{\prime\prime}$ be the remaining part of $\gamma_{\mu}+r_{\mu}\Gamma_{\mu}$ , so that

$\gamma_{\mu}^{\prime}+\gamma_{\mu}^{\prime\prime}=\gamma_{\mu}+r_{\mu}\Gamma_{\mu}$ (19)

and especially for $\mu=m$

$\gamma_{\acute{m}}=\gamma_{m}+r_{m}\Gamma_{m}$ , $\gamma_{m}^{\prime\prime}=0$ .
Then, from (17), (18) and (19), we have

$\sum_{\mu*\prime\iota}\int_{\gamma_{\mu^{\prime\prime}}}dw_{\lambda}=0$ $(\lambda=1,\cdots\cdots p)$ .

If we put especially $\lambda=m$ and. take the imaginary part, we obtain
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$\sum_{\mu*m}\int_{\gamma_{\mu^{\prime/}}}\frac{\partial u_{m}}{\partial zl}ds=0$ . (20)

Since
$\frac{\partial u_{m}}{\prime\prime\partial n}>0$

on $\Gamma_{1},\cdots\cdots,$ $\Gamma_{m-1},$ $\Gamma_{m+1},\cdots\cdots,$ $\Gamma_{\rho}$ , and since
$\gamma_{1}^{\prime\prime},\cdots\cdots,\gamma_{m-1}^{\prime\prime}\prime\prime$

’

$\gamma^{/;_{m+1}},\cdots\cdots,$
$\gamma_{\rho}$ are arcs of positive direction, it follows from (20) that $\gamma_{\mu}=0$

for $\mu=1,\cdots\cdots,p$ . Hence the arcs $p/1’$ , $a_{p}$ coincide, so that their
ending points $i$ . $e$ . the projections of the images of $x_{1},\ldots\ldots,$ $x_{p}$ coincide
with each others. Thus the theorem is proved for the case (i).

Next, if (ii) is the case, we can map $D$ , by (16) and Lemma 1,
conformally on a $p$-sheeted unit disc $\Delta^{\prime}$ by a function $y^{\prime}=y^{\prime}(x)$ , so that the
imag\‘es of $x_{1},\cdots\cdots,$ $x_{p}$ on $\Delta^{f}$ have one and the same projection $y^{\prime}=0$ .
Then, while connecting $y^{\prime}=0$ with a point on $|y^{\prime}|=1.by$ a curve in $U!^{\prime}|\leqq 1$ ,

we obtain, by Lemma 2, $p$ points $x_{J}^{\prime},\ldots\ldots,$ $x_{p}^{\prime}$ on the boundaly of $D$ and
$p$ paths of integration, $s\iota\iota ch$ that

$\sum_{\mu=1}^{p}\int_{X^{\sim}\mu^{\prime}}^{\lambda\mu}dw_{\lambda}=0$ $(\lambda=1,\cdots\cdots,p)$

hold, so that, by (14), we have

$\mu^{\frac{\rho}{=\backslash }}=^{1_{1}}\int_{\xi_{\mu^{\mu^{\prime}}}}x_{d^{r}v_{\lambda}=0}\iota$ $(\lambda=1,\cdots\cdots,p)$

with certain paths of integration. Then, . by th $e$ case (i) already proved,
the images of $x_{1}^{\prime},\ldots\ldots,$ $x_{p}^{\prime}$ on $\Delta$ have one and the same projection on
$|y|=1$ . Hence, by the last palt of Theorem 1, $y=y(x)$ is a linear
function of $y^{\prime}=y^{\prime}(x)$ , so that the images of $x_{1},\cdots\cdots,$ $x_{p}$ on $\Delta$ have also one
and the same $P^{lO}jection$ on y-plane, $q$ . $e$ . $d$ .

Remark. From Theorem 1 and Theorem 2, it follows that, for any
point $x_{1}$ in $D$ , the simultaneous equations (14) have unique solutions $ x_{2},\cdots$

..., $x_{p}$ , if we neglect the paths of integration–which are independent
of $\lambda$–and the order of arrangement. $x_{2},\ldots\ldots,$ $x_{\rho}$ are the $p-1$ points in
$\overline{D}$, whose images on $\Delta$ have the same projection as that of $\chi_{1}$ . Hence,

in order that the image of $x_{1}$ on $\Delta$ be a branch-point of order $r$ , it is neces-
sary and $su\ovalbox{\tt\small REJECT} icient$ that $r$ points, among the solutions $x_{2}\ldots\ldots,$ $x_{p}$ of (14) for
$x_{1}$ , coincide $wit/lx_{I}$ .

The following theorem is an immediate consequence of Lemma 1.
Theorem 3. Let $D_{\lambda}$ be the part of $D$, such that
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$ll_{\lambda}(x)>\frac{1}{2}\iota nD_{\lambda}$ .

$Tf_{l\ell’ l},$ $’\angle vhenw_{\vee}^{\ovalbox{\tt\small REJECT} 2}$ map $Dco/\iota formally$ on a p-sheeted unite disc $\Delta$ , the image of
$D_{\lambda}$ is alzvays schlicht. $Thc$’number $\frac{1}{2}$ can not $oereplac\ell d$ by any smaller.

Proof. Let $x_{1},$ $X_{\sim^{)}}$ be two points in $D_{\lambda}$ . Then, since

$u_{\lambda}(x_{1})+u_{\lambda}(x_{\underline{o}})>1$ ,

the images of $x_{1}$ and $x_{2}$ on $\Delta$ can not have one and the same projection
on the plane, by the remark to Lemma 1. Next, 1et $D$ be the $p$-ply
connected domain bounded by $\Gamma_{1}$ : $|x|=q<1$ , $\Gamma_{2}$ : $|x|=1$ and $p-2$

closed curves $\Gamma_{3}\backslash ’\ldots\ldots\Gamma_{\rho}$ in $q<|x|<1$ . For any $\epsilon>0$ , let $D_{\lambda}^{\prime}$ be the

part of $D$ , snch that $u_{\lambda}(x)>\frac{1}{2}-e$ in $D_{\lambda}^{\prime}$ . Then, if $\Gamma_{3},\cdots\cdots,$ $\Gamma_{p}$ are suf-

ficiently small and have no points in common with the circle $|x|=\sqrt{q}$ ,

each of $D_{1}^{\prime}$ and $D_{2}^{\prime}$ contains the circle $|x|=\sqrt{q}$ wholly in it, so that
the images of $D_{1}^{\prime}$ and $D_{2}^{\prime}$ on $\Delta$ can not be both schlicht, which proves
the last part of the theorem.

Finallly, we consider $t/le$ general case $k=>p$ . Let the boundary of $D$

be divided into $k$ arcs $\Gamma_{1},\cdots\cdots,$ $\Gamma_{k}^{\prime}$ . Then, if we take these arcs, excep-
ting both extremities, intead of $\Gamma_{1},\ldots\ldots,$ $\Gamma_{p}$ , it is easily seen that all the
above arguments subsist also in this case, though a slight modification is
necessary for the proof of Theorem 2 on account of the sIngularities at
the extremities of $\Gamma_{\lambda}^{\prime}$ . E. $g$ . to Theorem 1 corresponds

Theorem 1’. Let $\xi_{\mu}$ be an internal point of $\Gamma_{\mu}^{\prime}$ respectively for $\mu=1$ ,
......, $k$ . TJcen $t/\iota ere$ exists a function $y=y(x),$ $r\backslash \iota t/hich$ maps $D$ conformally
on a k-sheeted unit disc on y-plane, so that each $I_{\mu}^{\prime}$ corresponds to one round
of th unit circle, and $t/\ell e$ images of $\xi_{1},\cdots\cdots,$ $\xi_{k}/lave$ one and the same
profection on $|y|=1$ . Under these conditions, the mapping function is uniquely
determinate, save for a linear transformation ofy-plane, zvhich makes $|y|<1$

invariant.
Remark. As regards the number of. branch-points of the k-sheeted

image disc, it follows easily from the well-known Hurwitz’s formula that
the sum of orders of branch-points is equal to $k+p-2$ .
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