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On the finite group with a complete partition
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A partitio;i of a group $G$ is a system $\{H_{i}\}$ of subgloups of $G$ such that
every element of ’ except the unit element is contained in one and only
one of the groups $H_{i}$ . .Zil, are called components of this paltition. A par-
tion of $G$ is called coneplete, when all of its components are cyclic. A
$tigl$ oup with a complete paltition is called completely decomposable $(c. d.)$ .

Of course not every group has a complete partition. In this paper we
shall deal with finite gloups with a complete partition, and detelmine the
structure ot‘ such groups, when they $ale$ non-simple. Our main theorem is
the following :

$L_{-}^{\rho}tG$ be a $no\prime l-sirnple,$ $ r\ell$on-solvable $c.d$. group. Tthen $G$ is isomorpliic
to lthe fall $lin$ear fractiou$al$ group of one variable $o^{i}z/er$ a finite field whose
$cf_{l}aracteristic$ is greater than 2.

The author has, however, not yet been able to determine the structure
of c.d. simple groups. Well-known simple gloups $LF(2p^{n})ale$ clearly c.d.,
and it is conjectured that no other c.d. simple group exists. Evely known
simple $gro\iota_{J}p$ contains one of $LP^{\prime^{\neg}}(2,p^{n})$ as its subgroup, so $LF(2, p^{n})$ may
be regarded as the “ least ) simple group. It is suggested by this fact, as
it seems to the author, that the problem to find the structure of c.d. simple
gloups would be an interesting and impoitant one.

Finite groups with complete partitions have been considered by Konto-
rovitch $[1]^{1)}$ and [2]. His results will be sharpened to theolems 1, 2 and
3 of this paper and will play fundamental role in our study. This paper is
written, so as to be read without reference to Kontorovitch, so that the
results of \S 1 of this paper are essencially the same with his. In \S 2 we
shall $dete\iota$ nline the $st_{1}$ ucture of c.d. solvable gloups, and give the complete
classification of such $gl\infty lps$ . In \S 3 we shall give some remarks on the‘
structure of c.d. gloups and shall prove in \S 4 the main theolem stated
above. Our proof of this theorem is based on a chalacte] ization of linear

(1) The numbers in brackets refer to th $e$ bibliography at the end of the paper.
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groups as permutation $c\backslash \sigma roups$ , due to Zassenhaus [3]. In fact we show that
non-solvable, non-simple c.d. gloups are representable as triply transitive
permutation gloups, and then $ap_{1}\supset 1y$ the theorem of Zassenhaus cited above.

Finally, the author $11^{r}$ ishes to express his hearty thanks to Mr. N. It\^e,
who gave him many useful remarks. Due to his suggestions and advices,
the proofs of theorems 1 and 5 were made considerably shorter than the
author’s original one, and the author owes to him the lemma 6 of this
paper. Moreover the author expresses here his sincere thanks to Prof. S.
Iyanaga and K. Iwasawa for their kind encouragement througllout this work.

\S 1. Preliminaries

Lemma 1. A group is $cd.,$ $\iota f$ and only if $t7vo$ arbilrary maxim il cyclic
subgroups are identica! or have no $el_{\vee}^{J}ment$ in commgn excep! the unit $el\prime^{J}m:nt$ .

Proof. Suppose a group $G$ to be c.d., and let $\{H_{i}\}$ be its $com_{1}\supset 1ete$

partition. Take two arbitrary maximal cyclic subgroups $Z_{1}$ and $Z_{2}$ of $G$

such that $Z_{1}nZ_{2}\neq e$ , and put $Z_{1}=\{a\}$ and $\swarrow_{2}^{\prime}=\{b\}$ . Because of the def-
inition of $\{H_{t}\}$ $a$ is contained in one of its components, say $H_{1}$ . Similarly
$b$ is in $H_{t}$ We have then $\{a\}=Z_{1}\subseteq H_{1}$ and $\{\delta\}=Z_{2}\subseteq H_{k}$ . Since
$Z_{1}nZ_{2}\neq e$ , we conclude that $Z_{1}=H_{1}=H_{k}=Z_{2}$ .

Conversely suppose that every pair of distinct maximal cyclic subgroups
of a group $G$ has no element in common except the unit element. Consider
a system $\{H_{l}\}$ of subgroups of $G$ , consisting of all its maximal cyclic sub-
groups. This system $\{H_{i}\}$ gives then clearly a complete partition of $G$ .
q.e.d.

The following lemma is an easy consequence of lemma 1 and is often
used in the course of this study.

Lemma 2. Any subgroup of a $c.d$ group is itself $c.d$.
Now we obtain
Lemma 3: $L\prime tG$ be a $ni_{d}^{\gamma}porentc.d$ gronp. $T/lenG$ is $eit/lcr$ cyclic or of

prime power order.
Proof. Le $t\{H_{i}\}$ be a comp.lete paltition of $G_{;}$ It is sufficient to $P^{love}$

that $G$ is cyclic when it is not of $prim_{\vee}^{\simeq}$ power order. Take an element $a$

of prime power order, say of order $p^{m}$ . Then $a$ is contained in one of the
components, say $H_{1}$ . Let $b$ be another element of order $q^{n}$ , where $q$ is
also a $prime,\neq p$ . The subgroup $\{a, b\}$ , generated by $a$ and $b$ , is cyclic
and hence by the definition of the system $\{H_{i}\},$ $\{a, b\}$ is contained in $H_{1}$ .
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Since $b$ is any element of order $q^{n}$ , this implies that $H_{1}$ contains the q-
Sylow subgroup of $G$ . Hence we must have $H_{1}=G$ and $G$ is cyclic.

Remar, $k$. The proof of lemma 3 shows the validity of the following
general proposition which includes our lemma 3 as a special case.

$1f$ a nilpotent group has a proper partition (that is, consisting of more
than one component in the reduced form), $t/te\prime l$ it is of prime power order.

Some of our results hold also good under weaker conditions than stated
in this paper, on which we shall not enter $here^{Q}-$)

In the following we shall call a $p$-group a p-group of type $p$ , when all
of its elements other than the identity are of order $p$ . Such a group is
clearly c.d. Now we have

Theorem 1. A $p$-group is $c.d.$ , if and only $i_{J}$ it is one ofthe following
lypes: (1) a cyclic group, (2) a p-groap of type $p$ , or (3) a $dihedral_{\ell^{\circ}}\supset roup$ .

Proof. Let $G$ be a c.d. $p$-group which contains an element $a$ of order
$p^{2}$ . By lemma 2 the subgroup $\{a\}$ generated by $a$ contains all elements
of order $p$ which commute with $a$ . Hence $\{a\}$ is only one cyclic subgloup
of $G$ whose order is $p^{2}$ and so it is clearly self-conjugate in $G$ . If $\{a\}$ is
contained in the center of $G,\grave{G}$ has only one $subg_{1}oup$ of order $p$ . Hence
$G$ is either cyclic or a generalized quaternion gloup3), and the latter is clearly
not c.d. Hence $G$ must be cyclic. If $\{a\}$ is not contained in the center
of $G$ , the centralizer $H$ of $\{a\}$ is a proper subgroup of $G$ and self-conjugate
in $G$ . Since $G/H$ is isomorphic to some subgroup of the group of all
automorphisms of $\{a\}$ , the index $(G:H)$ is $p$ . $H$ is c.d. by lemma 2 and
$\{a\}$ is contained in the center of $H$ Hence $H$ is a cyclic subgroup of
index $p$ . The structure of such a group as $G$ is known4) and it shows that
$G$ is a dihedral group.

The convers $e$ statement is almost obvious. q.e. $d$ .
We shall call a group $G$ to be of type $D$ , or strictly of $\phi peD_{p}$ , when

$G$ is directly decomposable and satisfies the following conditions: $G=$

(2) For instance, our main theorem, theorem 9 of this paper, holds good when $G$ is a non-
simple, non-solvable, aleliatz decomposable group, which has a partition consisting of abelian
components. We owe this generalization to N. It\^o. Cf. the forthcoming paper of N. $I(\hat{o}$ . In
addition we can determine the structure of groups, which are not $c$ . $d.$ , but whose proper
subgroups are all $c$ . $d$ . Such groups are proved to be solvable and have very simple structures.

(3) Zassenhaus [5], p. 112.
(4) See for instance Zassenhaus [5], p. 114.
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$G_{1}\times G_{2}$ , where $G_{1}$ is a cyclic group of order $p$ ( $p$ is a prime number), and
$G_{2}=\{a, b\},$ $a^{n}=b^{\rho}=1,$ $bab^{-1}=a^{r},$ $(n, f(r-1))=1$ and $r^{p}\equiv 1(mod r\iota)$ .

We can easily see that a group of type $D$ is solvable and c.d. Now
we shall prove

Theorem 2. $1f$ a $c.d$. group is directly $d_{\vee}^{\rho}composable,$ $t/len$ it is one of
the $follo_{\iota}^{\sim}(/ing$ types: (1) a cyclic group, (2) a p-group of type $p$ , or (3) $a$

$gro/lp$ of type $D$ .
$P)^{\prime}oof$. Let $G$ be a directly decomposable c.d. group: $G=G_{1}\times G_{2}$ If

$G$ is a $p$-group, then $G$ is of type $p$ by theoiem 1. We may, therefore,
assume that $G$ is not a $p$-group. If both $G_{1}$ and $G_{2}$ are cyclic, then by
lemma 3 $G$ is either cyclic or of prime power older. Then we may as-
sume moreover one of its direct components, say $G_{2}$ , is not cyclic. If $G_{2}$

were of prime power order, say of order $r^{n}$ ( $r$ is a prime), $G_{1}$ should not
be of order $\prime 7’\iota$ Take then a p-Sylow subgroup $T$ of $G_{1}$ , where $p$ is a prime,
$\neq r$ . $\tau\cup G_{2}$ should $oe$ c.d. and nilpotent so $G_{2}$ should be cyclic by lemma
3. This is not the case. Hence $G_{2}$ is not of prime power order.

Take any p-Sylow subgroup $T_{p}$ of $G_{1}$ and any q-Sylow $subg_{1}oupS_{q}$

of $G_{2}$ , where $p$ and $q$ are two distinct primes. Since $T_{p}\cup S_{q^{=}}^{\prime}I_{p}\times S_{q}$ , both $T_{p}$

and $S_{q}$ are cyclic by lemma 3. If $S_{q}$ were not self-conjugate in $G_{2},$ $S_{q}$ should
be conjugate to another q-Sylow subgloup $S_{q}^{\prime}$ of $G_{2}$ . Since again $T_{p}\cup S_{q}^{\prime}$

$=T_{p}\times S_{q}^{\prime},$ $T_{p}\cup S_{q}^{\prime}$ should be cyclic. Hence $T_{p}\cup.S_{q}$ and $T_{p}\cup S_{q}^{\prime}$ should be
two cyclic subgloups, containing $T_{p}$ in common. By lemma 1 there should
exist a maximal cyclic subgroup of $T_{p}\times G_{2}$ containing both $T_{p}\cup S_{q}$ and
$T_{p}\cup S_{q}^{\prime}$ But $S_{q}$ and $S^{\prime_{Q}}$ are two distinct q-Sylow subgloups of $T_{p}\times G_{2}$ ,
and theie is no cyclic subgloup of $G_{2}$ containing both $S_{q}$ and $S_{q}^{\prime}$ This
contradiction shows that $S_{q}$ is a cyclic normal subgroup of $G_{2}^{8)}$ Since $q$

is any $P^{1}ime$ other than $p$ , the q-Sylow subgroup of $G_{2}$ is self-conjugate
whenever $q\neq p$ . This implies that $G_{1}$ must coincide with $T_{p}$ , and the order
of $G_{2}$ is divisible by $p$ , as we assumed that $G_{2}$ is not cyclic. At the same
time $\iota ve$ see that the Sylow p-complement6) of $G_{2}$ , which we shall denote
by $N$, is a cyclic normal subgloup of $G_{2}$ .

Take any $p$-Sylow subgroup $S_{p}$ of $G_{2}$ , then $G_{1}\times S_{p}$ is a p-Sylow sub-

(5) This method, which shows us the normality of Sylow subgroups, is often used in the
course of this study.

$\lceil 6]$ A Sylow p-complement of a group of order $K^{=}l^{\alpha}c9^{\prime},$ ($p,$ $!_{s}^{r^{\prime})=1}$ , is a $s\iota:bgroup$ of $G$

of order $g^{\prime}$ . Such a subgroup does not always exist. Cf. papers of P. Hall; Proc. London
Math. Soc. 3 (1928), 12 (1937) etc.



On the finite group $\ovalbox{\tt\small REJECT} zv\iota$ th a complele partition. 169

group of $G$ and c.d. Hence $G$. $\times S_{p}$ is of type $p$ . This implies that $G_{1}$ is
a cyclic group of $0^{\cdot}derp$ . To conclude our proof of this theorem we
have only to prove that $S_{p}$ is also cyclic and that the centralizer of $S_{p}$ in
$G_{2}$ coincides with $S_{p}$ . Take any subgroup $\mathcal{F}f$ of $N$ with prime power order,
and consider a subgroup $I\zeta=G_{1}\times(S_{p}\cup H)$ . If the centralizer $H^{*}$ of $H$

in $S_{p}\cup H$ were not equal to $H,$ $H^{*}$ should be directly decomposable and
so nilpotent. So $G_{1}\times H^{*}$ should be also nilpotent, but its $p$-Sylow subgIoup
is not cyclic. This is a contradiction. Hence we have $H^{*}=H$ Therefore
$S_{p}\cong(S_{p}\cup H)/H$ is isomorphic to some subgroup of th $e$ group of all auto-
morphisms of $H$, and it shows that $S_{p}$ is cyclic. Hence $S_{p}$ is of order $p$ .
This completes our proof.

Theorem 3. A group $G$ is $c.d$. and its cenler contains at $l\ell ast$ two
elements, if and only if $G$ is one of $t/lefoflo_{\iota}^{\prime}ving$ types: (1) a cyclic group,
(2) a p-gronp of type $p$ , (3) a dihedral group rvhose ordcr is divisible $\emptyset^{\prime}4$ ,
or (4) a group of type $D$ .

Proof. Let $G$ be a c.d. group and $Z$ be its center. By our assump-
tion we have $Z\neq e$ . Denote by $Z_{p}$ the $p$-Sylow subgroup of $Z$ and by $S_{q}$

the q-Sylow subgroup of $G$ . If $p_{\grave{\tau}q},$ $\angle_{p}^{d,}\cup S_{q}=Z_{p}\times S_{q}$ , and so by lemma
3 $Z_{p}\cup S_{q}$ is cyclic. By the same method as in the proof of the theorem
2, $S_{q}$ is a normal subgl $onp$ of $G$ . Hence if $Z$ is not of prime power order,
$G$ is cyclic. We may, therefore, assume that $Z$ is of prime power older,
say of order $p^{n}$ . Let $S_{p}$ be one of $p$-Sylow subgroups of $G$ . Then $S_{p}$

contains $Z$. If $S_{p}=G$ , theorem 1 shows that $G$ is one of the types (1),
(2) and (3) of this theorem. We may, therefore, assume that $S_{p}\neq G$ . If
we take a prime factor $q$ of the order of $G$ other than $p,$ $S_{q}$ is a cyclic
normal subgroup of $G$ , so the Sylow $p$-complement 1V of $G$ exists and is
a cyclic normal subgroup of $G$ . If $S_{p}$ were self-conjugate, $G$ should be
nilpotent. This is not the case. Hence $S_{p}$ is not self-conjugate. Since
any conjugate subgroup of $S_{p}$ contai $\eta S$ $Z,$ $S_{p}$ is not cyclic. Then $S_{p}$ is
by theorem 1 either a $p$-group of type $p$ or a dihedral group.

a) Suppose that $S_{p}$ is a $p$-group of type $p$ . Take a subgroup $H=S_{p}$

$S_{q}$ of $G$ , generated by $S_{p}$ and the q-Sylow subgroup $S_{q}$ of $G(p\neq q)$ . Then
the centralizer $U$ of $S_{q}$ in $H$ is self-conjugate in $H$ and $H/U$ is cyclic, as
it is isomorphic to some subgroup of the group of all automorphisms of $S_{q}$ .
On the other hand, $U$ is a direct product of $S_{p}nU$ and $S_{q}$ . Hence $S_{p}nU$

is cyclic by $lemm33$ , so that $S_{p}$ is of order $p^{o}-$ . Hence $G$ is directly de-
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$com_{\perp^{\ovalbox{\tt\small REJECT}}}\supset osable$ and is of type $D$ by theorem 2.
b) Suppose $ne\backslash tS_{p}$ to be of dihedral type. As above we consider

again a subgroup $H=S_{p}S_{q}$ of $G$ . If we take the centralizer $U$ of $S_{q}$ in
$H$, both $T=UnS_{p}$ and $S_{p}/\tau_{\cong}s_{p}/UnS_{p}\cong H/U$ are cyclic. Hence $T$ is
a cyclic normal subgroup of $S_{p}$ with index 2. Since $T$ is self-conjugate in
$H=S_{p}S_{q}$ and $q$ is any prime factor of the order of $G$ other than $p,$ $T$ is
self-conjugate in $G$ If the nolmalizer $\Lambda^{r_{p}}$ of $S_{p}$ in $G$ were not equal to
$S_{p},$ $1V_{p}$ should be directly decomposable against theorem 2. So we have
$S_{p}=\angle V_{p}$ . The factor group $\overline{G}=G/I$

’ contains a normal subgroup $1\overline{V}=NT/T$

and $(\overline{G}:\overline{\Lambda}^{\gamma})=2$ . The element of $\overline{S}=S_{p}/T$ induces then an automorphism
$\sigma$ of older 2 in $\overline{\Lambda}^{\gamma}$ and $\sigma$ fixes only one element of $\overline{\Lambda}^{7}$. Hence $\overline{G}$ must
be of dihedral type.7) Since $T\cup N=T\times 1V$ and since $S_{p}$ is a dihedral group,
$G$ itself is a dihedral group. The converse statement is obvious.

Essentially the same theorems as the above three theorems $a1e$ also
obtained by Kontorovitch $\lfloor 1$] and [2].

\S 2 The structure of c.d. solvable groups
In this paragraph we determine the structure of c.d. solvable groups.

We shall call in general the maximal solvable normal subgroup of a group
its radical, and consider c.d. groups whose radicals are distinct from $e$ . C.d.
solvable groups are of course such groups, but it will turn out at the end
of this paragraph that, conversely, all these groups are solvable. We shall
first prove the following lemmas.

Lemma 4. $1f$ a $c.d$. group $G$ contains an elementary abelian $p- g\cdot ro\iota/p$

$\Lambda^{\gamma}$ as its normal subgroup, then for a prime $q,\neq p$ , the $q- Sylo_{\iota}^{r}vSl/b_{5}\circ_{l^{\prime}}oup$ of
$G$ is one of $ th\ell$ following types: (1) a cyclic group, (2) a $di/l6’ dral$ gronp or
(3) an abelian group of $typ_{d}(1, 1)$ . $1f$ moreover one of $q- S)^{\prime}lowsll/_{\delta}j\circ\cdot ronp$ of
$G$ is cither of type (2) or (3), $t/u^{\rho}n$ the order of 1V is $p$ .

Proof. Let $q$ be any prime factor ot the older of $G$ other than $p$ , and
$S_{q}$ be one of q-Sylow subgroups of $G$ . We shall show that if $S_{q}$ is not
cyclic but a q-group of type $q$ , then $S_{q}$ is of order $q^{\Omega}-$ Take a subgloup
$H=S_{q}F/$ By a lemma of Zassenhaus8) $H$ contains an element $a$ of older
$pq$ . Put then $\nabla=\{a^{q}\}$ . $V$ is $\dot{c}learly$ a subgroup of $N$, and is coiitained in
the center of $\{1V, a\}$ . Hence by theorem 3 $\{N, a\}$ must be cyclic. This

(7) Cf. Zassenhaus [ $ 3\rfloor$ , Satz 1.
(8) Zassenhaus [4], Satz 3.
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implies that $(1V;e)=p$ . Let $U$ be the centralizer of $\Lambda^{\gamma}$ in $H$ Then $U$ is
a direct product of $\angle V$ and $UnS_{q}$ which implies by lemma 3 that $UnS_{q}$

is cyclic. Clearly $U$ is also self-conjugate in $H$ and $H/U$ is cyclic. This
implies that $S_{q}$ is of order $q^{2}$ . The second assertion of this lemma is already
proved in this case when $S_{q}$ is of type $q$ .

No,$v$ assume $S_{q}$ to be a dihedral group. $S_{q}$ contains an abelian group
$T$ of order 4 and of type $(1,1)$ . Then the same consideration as above
(for a subgroup $K=NT$) shows that $(\Lambda^{\gamma} : e)=p$ . This completes the proof.

Lemma 5. $1f$ a $c.d$. group $G$ contains a normal $sub_{\Delta},roupN$ of order
$p$ ($p$ is a prime), then $G$ is a J-group.9)

Proof. Let $Z$ be the centralizer of $\wedge\Gamma$ in $G$ . If $Z=G$ , our lemma is
an easy consequence of theorem 3. We may assume that $Z\neq G$ . $Z$ is
clearly a nolmal subgioup of $G$ and $G/Z$ is cyclic, as it is isomolphic to
some subgroup of the $g_{1}oup$ of all automorphisms of $\Lambda^{\Gamma}$. Put’ $d=(G;Z)$ ,
then we have $d|p-1$ . The $structu3e$ of $Z$ is known by theorem 3. The
groups of the types (1), (3) and (4) in theorem 3 have a normal series,
consisting of $ch_{aracte1}i_{S}ti_{C}$ subgroups, all of whose factor gloups $ale$ of
prime order, then if $Z$ is of such types, $G$ has also a principal series, all
of whose factor groups are of $P^{1}ime$ order, that is, $G$ is a J-group. If $Z$

is a $p$-group of type $p$ , we consider a central series

$Z=Z_{r_{-}}\underline{\supset}Z_{r-1}\supseteq\ldots\ldots\supseteq Z_{e},=e$

of $Z$, where $Z_{i}/Z_{i-1}$ is the center of $\nearrow’\lrcorner/Z_{i-1}(i=1,2,\ldots\ldots,r)$ . When we $re$gard
each $Z_{i}/Z_{l-1}$ as a G/Z- module, $Z_{f}/Z_{\ell-l}$ is decomposable into simple $G/Z-$

modules, and since $d=(G:Z)$ divides $p-$ ], each simple $G/Z$-module is
one dimensional. This implies that $G$ has a principal series, all of whose
factor groups are of prime order, that is, $G$ is again a J-group.

Theorem 4. Let $G$ be a $ c.\ell$ [. group, containing $a$ nor$mal$ subgroup of
order $p$ ( $p$ is a prime). The$nG$ is one of $ tk\ell$ following types:

(1)...... (4) as in theo’ $em3$ , or
(t) $G=\{a, b\},$ $a^{n}=b^{m}=1,$ $bab^{-1}=a^{r},$ $(n, m(r-1))=1$ ,

$r‘‘‘\equiv 1$ (mod $7l$) and $lfr^{m/}\equiv 1(mod n^{\prime})$ $(m^{\prime}|m, n^{\prime}|n)$ llien

(9) A J-group is a group possesirg a principal seric $s$ , all of $w1_{1}ose$ factor groups are of
prime ordev. This grotlp is also characterized by the property that it is a group with a lattice
of subgroups which satisfies the Jordan-Dedekind chain condition. Cf. K. Iwasawa, Jour. .of Sci.
Univ. of Tokyo (1941).
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$’\iota ve$ have $m^{t}=m$ , or
(6) $G=.S_{p}H$, where $S_{p}$ is a normal subgronp of $G$ and a $p$-group of $ty\mathscr{J}$

$p,$ $H$ is a cyclic suhgroup of order a and $d|p-1$ .
Proof. We shall prove that if a $c.d$ . group $G$ contains a normal sub-

$gro_{\llcorner}\iota p$ of older $p$ and if its center coincides with $e,$ $G$ is either of type $(!^{\vee}))$

or (6) in this theorem. Let $G$ be a c.d. $gro^{1_{\llcorner}}\iota p$ whose center coincides
with $e$ , and $N$ be its normal subgroup of order $p$ . By lemma 5, $G$

is a J-group and hence we may assume that $p$ is the greatest prime
factor of the order of $G^{10)}$ . We shall denote by $Z$ the centralizer of
$1V$ in $G$ . By our assumption we have $Z^{\triangle}\tau G$ , and $Z$ is a normal sub-
group of $G$ . The factor group $G/Z$ is then cyclic and its order $d$ divides
$p-1$ . Since $Z$ is a c.d. group and its ceater $co^{\tau}ntainsN,$ $Z$ is a cyclic
group, a $p$ -group of type $p$ , a dihedral gro.up or a group of type $D$ as in
theorem.3. By our assumption $p$ is the greatest prime factor of the order
of $G$ , so that $Z$ is neither a dihedral group nor a group of type $D$ . Hence
$Z$ is either cyclic or a $p$-group of typ$ep$ .
a) Suppose first $Z$ to be cyclic. Then $Z$ is clearly a maximal cyclic sub-
group. Put $Z=\{a\}$ and take an element $b$ of $G$ which generates $G$ mod
$Z$. Since $G$ is c.d., it $ho!ds$ clearly $\{a\}n\{b\}=e$ . Let $7l$ and $m$ be the
orders of $a$ and $b$ respectively. We shall show that ’ and $m$ are
relatively prime. If $n$ and $m$ had a common prime factor $q$ , there
should exist two subgroups $U$ and $V$ of order $q$ such that $U\subseteq\{a\}$ and
$V\subseteq\{b\}$ . Then de,iote by $K$ the centralizer of $V$ in G. $K$ should
contain clearly $U$ and $H=\{b\}$ . Hence $K$ should be non-cyclic. If
$K$ were a group of type $D,$ $U$ should not be self-conjugate in $K$. This
is not the case. Hence $K$ should be either a q-group of type $q$ or a dihed-
ral group. But since $U$ is self-conjugate in $/\zeta Ksh_{0_{\iota}1}1d$ be a q-group of type
$q$ Hence we should have $ H=\nabla$ and this implies that $U$ should be contained
in the center of $G$ against our assumption. Hence we have $(n, m)=1$ ,
and every Sylow subgroup of $G$ is cyclic. $M_{01}$ eover since $G$ is c.d., every
conjugate subgroup of $H$ coincides with $H$ or has no element in common
except the unit element with $H$ Hence $G$ is a group of type (5) in this
theorem.
b) Suppose next that $Z$ is a $p$-group of type $p$ . Then $Z$ is a $p$-Sylow
subgroup of $G$ and we have a group of type (6).

(10) Cf. Iwasawa loc cit. (9)
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Remark. Groups of types (1)...... (5) in this theorem are clearly c.d.,
but groups of type (6) are not always c.d. The condition on a group of
type (6) to be c.d. will be given later (see theorem 6).

Lemma $6$ : Let $G$ be a $c.d$. group $/1a^{t}ning$ a normal subgroup N. $1f$

$N$ is an abelian group of $ordeJ^{\prime}p^{n}ar_{l}d$ of type $(1,1,\ldots\ldots,1)’\angle\iota ithn>2amt$

$p>2$ , then p-Sy/ow subgroup of $G$ is $self-C07\prime ju_{\delta^{0}}ate$ in $G$ .
Proof. Take a prime factor $q$ of the order of $G$ other than $p$ , then

lemma 4 shows that q-Sylow sv bgroups of $G$ are cyclic. First we shall
$P^{love}$ that $G$ has no element of older $pq$ . Assume to the contrary that
$G$ had an element $a$ of order $p_{q}$ . Let $H$ be the centralizer of the element
$a^{q}$ . Since $1V$ meets the center of $S_{p}$ , we should have $HnN\neq e$ . By our
assumptions $H$ should be a gloup of type $D$ (by $t1_{1}eorem$ 3), and $H\cap\Lambda^{\Gamma}$

should be self-conjugate in $H$, so $H\cap N$ should coincide with $\{a^{q}\}$ . On
the other hand, since Al should contain $\{a^{q}\},$ $H$ should contain $\Lambda^{7}$ too. This
is a contradiction. Hence $G$ has no element of order $pq$ .

We shall now $P^{love}$ this lemma by induction on the order of $G$ . Take
the least prime factor $q$ of the order of $G$ other than $p$ and one of q-Sylow
subgroups $S_{q}$ . If the order of the nolmalizer $N_{q}$ of $S_{p}$ in $G$ is not divisible
by $p,$ $S_{q}$ is ‘clearly contained in the center of $N_{q}$ . Hence by a theorem of
Burnside12) $G$ has a self-conjugate Sylow q-complement $H_{q}$ . By $hyF^{othesi_{S}}$

of induction $S_{p}$ is self-conjugate in $H_{q}$ and so in $G$ .
Assume that $p$ divided the order of $N_{q}$ . We shall take a $p$-Sylow

subgroup $P$ of $N_{q}$ , and a $subg_{1}oupQ$ of $S_{q}$ , whose older is $q$ Then $P$

should not be self-conjugate in $\Lambda^{\Gamma_{q}}$ . In the subgloup $K=\Lambda^{\Gamma}\cdot P\cdot Q,$ $NP$ should
be a $p$-Sylow subgroup and maximal. Because of $p>2,$ $NP$ should be a
$p$-group of type $p$ , and so a regular $p_{-g}1oup$ in the sence of P. Halli3).

Since $P$ should not be self-conjugate in $N_{q},$ $NP$ also should be non-normal
in $K$ Hence by a theorem of Wielandti4) $Q$ should be self-conjugate in
$K$ This leads us to the contradiction that $lv^{\gamma}Q=N\times Q$ and $G$ should have
an element of order $pq$ . Hence we have our lemma 6.

Theorem 5. Let $G$ be a $c.d$. $g\nu oup$ having a solvable $r_{\iota}ormal$ subgroup

(11) This lemma is due to N. It6, who simplified the proof of the next theorem using
this lemma

(12) Zassenhaus [5], p. 133.
(13) Cf. P. Hall, Proc. London Math. Soc. 2-36 (1932).
(14) Cf. H. Wielandt, Crelle 182 (1940).
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$ot^{\gamma_{l}}er$ than $e$ . The$nG$ is one of the follmving $t\gamma p_{\mathscr{J}}s$ :
(1)...... (6) as in theorem 4, $or$

\langle 6 $)^{*}$ sirnilar to (6) in tleorem 4 but wilhout the condition $d|p-1$ , or
(7) the symmetric group of $f(/ur$ letters.

Pro($f$ By assumption of this theorem $G$ has a solvable normal sub-
group other than $e$ , so we can take an elementary abelian normal subgroup
$N$ of order $p^{n}$ . We have only to prove that $G$ is either of the type (6)
or (7) when ’ is greater than one: $n>2$ .

If $p>2$ , the $p$-Sylow subgroup $S_{p}$ of $G$ is self-conjugate by lemr]a 6.
Then in virtue of a theorem of Schur16) there is a Sylow $p$-complement $H$

By lemma 4 every Sylow subgroup of $H$ is cyclic. This implies that $H$

is solvable16) and has a normal subgroup of prime order. Hence by theorem
4 $H$ is either cyclic or a group of type $(\cdot\overline{)})$ in theorem 4. On the other
hand, $G$ has no element of order $pq$ , so that every $snbgro\iota,p$ of $H$, whose
$o_{\dot{\iota}}der$ is the product of two primes, is cyclic by a lemma of Zassenhaus17).

Hence $H$ must be cyclic and we have a group of type (6) .
Suppose next that $p=2$ . Take $0\acute{n}e$ of 2-Sylow subgroups $S$ of $G$ con-

taining $N$. If $S$ is a 2goup of type 2, it is abelican and so is the cen-
tralizer of $1^{fV}$. Hence $S$ is sclf-conjugate in $G$ . We can show that $G$ is
a group of type (6) $in$ the similar way as above. If $S$ is a dihedral
group, $N$ is of order 4 and $S$ is of order 8. The centralizer of $N$ must
clearly coincide with $N$. Hence we have $(G : N)\leqq 6$ , as $G/1N$ is $isomor-$

phic to a subgroup of the group of all automorphisms of $\Lambda/^{\vee}$. On the other
hand, $(G : 1V)$ is divisible by 2 and also by at least one other prime num-
ber. Hence we have $(G:N)=6$ and so $(G^{\backslash } : e)=24$ . This implies that $G$

is isomorphic to the symmetric group of four lettels
Corollary. A $c.d$. group whose radical $d.i\mathcal{J}\dot{e}’ s$ from $e$ is solvable.
This theorem shows clearly the structure of c.d. solvable groups. The

groups of types (1)...... (5) and (7) are c.d., as easily shown, but the
groups of types (6) and (6) $ale$ not always c.d. We shall now give a
condition on groups of types (6) or (6) $to$ be c.d.

Let $G$ be a group of type (6) or (6) in theorem 5, i.e. $G=SH$,

(15) Zassenhaus [5], p. 125.
(16) Zassenhaus [4], Satz 4.
(17) Cf. (8).
(18) Zassenhaus [ $ 5\rfloor$ , p. 111.
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$\backslash vhereS$ is a $p$-Sylow subgroup of $G$ and. self-conjugate, and $H$ is a cyclic
subgroup. Then $H$ is regarded as an operator domain of $S$. We shall call
a subgroup $U$ of $S$ an $H- subg_{J^{\prime}}oup$ when it holds $hUh^{-1}\subseteq U$ for any ele-
ment $h$ of $H$, and a series of subgloups of $S$

$S=U_{0}\supset U_{1}\supset\ldots\ldots\supset U_{r}=d$

an H-composition series when U. is a maximal self-conjugate H-subgroup of
$U_{i-1}(i=1,2,\ldots\ldots,r)$ . Then each factor group $U_{i-1}/U_{i}$ is an abelian group
of order $p^{ni}$ and of the type $(1,1,\ldots\ldots,1)$ , and is a simple $ff$-module when
we regard $H$ as its operator domain.

Take now in general a simple H-module $\gamma\nearrow$. Then $V$ is a represen-
tation module of $H$ When t.his representation of $H$ is isomorphic, we shall
call $r\nearrow$ an irreducible H-moduie. Since $H$ is an operator domain of $V$, we
can construct the extension of $V$ by $H$ A simple H-module $V$ is irreducible
if and only if this extension of $V$ by $H$ has no element of order $pq(q>1)$ .
Now we shall prove

Theorem 6. Let $G$ be a group of type (6) $c/r$ (6) in $t/\iota eorem5$ . $G$

is $c.d$. $\iota f$ and only if each factor group $cf$ an $H$-composition $serie\cdot s$ of $S$ is an
$irred//cible$ H-module.

Proof. Suppose $G$ to be c.d. $G$ has then no element of order $pq(q>$

1) as in the proof of lemma 6. Hence each factor group of an H-composi-
tion series of $S$ is irreducible. Suppose conversely that each factor group
of an H-composition series of $S$ is irreducible. Then $G$ has no element
of order $pq(q>1)$ . Take two distinct conjugate subgroups $H_{1}$ and $H_{2}$ of
$H$. If $H_{1}\cap\dot{H}_{2}=K\frac{\rightarrow\angle}{/}e$ , the centralizer $Z$ of $K$ should contain both $H_{\iota}$ and
$H_{2}$ . Since $H_{J}\neq H_{2}$ , it should hold $ ZnS\supseteq(H_{1}\cup H_{2})nS=T\neq\ell$ . We
should have $T\cup I\zeta=T\times K$ and $G$ should have an element of older $pq(q>$

1). This is a contradiction. Hence two distinct conjugate subgroupF of $H$

have no element in common except the unit element. Let $\{P_{i}\}$ be a com-
plete partition of $S$. Then the system $\{P_{i},H,Hl’ H_{2},\ldots\ldots\}$ , consisting of $\{P_{i}\}$

and of all distinct conjugate subgroups $H,$ $ H_{1},\ldots\ldots$ of $H$ gives a complete
partition of $G$ .

\S 3. Two remarks on c.d. groups

Theorems 5 and 6 in the last paragraph shows that the factor group
of a c.d. solvable group is itself c.d. This proposition holds, however, good
for $gel\urcorner eral$ c.d. groups.
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Theorem 7. Any factor group $oJ$ a $c.d$. gronp is itself $c.d$.
Proof. We shall prove this theorem by induction on the length of a

principal series. Let $G$ be a c.d. group and $N$ be its normal subgroup.
Using induction we have only to prove $0\iota\iota r$ theorem in the case when $N$

is a minimal normal subgroup. If $1t^{r}$ is solvable, by theorem 5 $G$ is also
solvable and our theorem follows from theorems $r_{)}$ and 6. If $N$ is not
solvable, we take a $p$-Sylow subgroup $S_{p}o\dot{f}N$. Denote by $N_{p}$ the
normalizer of $S_{p}$ in $G$ , then we have $N_{p}N=G$ , and $N_{p}$ is solvable. Since
$G/1v\sim N_{p}=/AV_{p}n_{1}V,$ $G/N$ is c.d. too.

Remark. Theorem 7 does not hold for infinite groups. For example,
the free group with , generaters $(n>2)$ is c.d.,1q) but its factor groups
are not always c.d.

Theorem 8. Let $G$ be a $c.d$. $ non- solva/;[\ell$ non-simple group, and $N$ be
its minimal rormal $su/i^{\grave{\prime}}g/onp$ . Then $’\iota vehaz\prime e(G:N)=2$ .

Proof. We shall prove our theorem by induction on the $ 0\iota$ der cf $G$ .
By theorem 2 $N$ is a simple group. Take a Sylow subgroup $S$ of $N$ and
its normalizer EJ in $G$ . Then we have $1VH=G$ and $G/\Lambda^{\Gamma_{-}}\simeq_{-}H/Hn_{\angle}V$ is
solvable. Suppose that $G/^{\ovalbox{\tt\small REJECT}}N$ were not simple. Take a maximal subgroup
$M$ of $G$ containing $N$, then we should have $(M:N)=2$ by the hypothesis
of induction, so $(G:N)$ should be equal to 4. Since $N$ is simple, its 2-
Sylow subgroup $T$ is not cyclic if $T\neq c$ . Take a 2-Sylow subgroup $U$ of
$G$ containing $T$. If $U$ were a dihedral group, $T$ should be cyclic. Hence
$U$ should be a 2-group of type 2 and so abelian. Take now the normalizer
$V$ of $U$ in $G$ , then by a theorem of Burnside $V\neq U$. $V$ should be a
group of type (6) or (6) . We should, $ho\backslash vever$ , have $V/U\cap\Lambda^{\gamma}\sim=$

$(U/U\cap N)\times(VnN/U\cap N)$ against the theorem 6. Hence $(G:N)=q$
is a prime.

We shall now prove that $q=2$ . We shall denote by $S$ a q-Sylow
subgroup of $G$ . Assume $fi_{1}st$ that $q$ did not divide the order of $N$. Take
the centralizer $T$ of $S$ in $G$ , then we should have $T=S\times Z$, where $Z\subseteq N$.
$Z$ should, therefore, be cyclic, and $T$ should be a maximal cyclic subgroup
of $G$ . Hence the normalizer of $Z$ in $N$ should coincide with $/’\vee$ if $Z\neq e$ .
This is however a contradiction, as the normalizer of a $p$-Sylow subgroup
of $Z$, which is clearly a Sylow subgioup of $G$ , should be equal to $Z$ and
so $N$ should not be simple by a theorem of Burnside. Hence $Z$ should be
equal. to $e$ . Take any prime factor $p$ of the order of $N$, and one of its

(19) Cf. M. Takahasi, Osika Math. Jour. 1 (1948).
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$p$-Sylow subgtoups $S_{p}$ . Let $N_{p}$ be the normalizer of $S_{p}$ in $G$ . Then $\backslash \backslash e$

have $\Lambda\Gamma_{p}N=G$ , so that the order of $1V_{p}$ is divisible by $q$ . As $S\cap N=e,$ $G$

should have no element of order $qr(r>1)$ . Hence $\Lambda^{\Gamma_{p}}$ should not be of
types (1), (2),(3),(4) and (7) in theorem 5. If $N_{p}$ were of type (6) or
(6) , the normalizer of $S_{p}$ in $\Lambda^{\Gamma}$ should coincide with $S_{p}$ . Since $S_{p}$ is a

$p$-group of type $p$ and so $re$gular in the sence of P. Hall, $N$ should. be
non-simple by a theorem of Wielandt. $2\ovalbox{\tt\small REJECT}$) If $N_{p}$ were of type (5),

$-$

the
normalizer of $S_{p}$ in $N$ should be cyclic and $so/V$ should not be simple again
by a theorem of Burnside. Hence $q$ must divide the order of $N$.

Take then the normalizer $N_{q}$ of $S$ in G. $N_{q}$ is solvable by theorem 5.
$N_{q}$ is clearly neither of types (4) and (7) in theorem 5, nor of types (6)
and (6) $by$ theorem 6. If $\Lambda^{7_{q}}$ were of types (1) or (5) in theorem 5,
$S$ should be cyclic and be contained in the center of $N_{q}$ so that $\Lambda^{7}$ should
be non-simple by a theorem of Burnside. If $N_{q}$ were a q-group of type $q$,
the q-factor-commutator group of $G$ should be isomorphic to that of $S$ by
a theorem of Wielandt. This leads us to a contradiction. Hence $N_{q}$ is
a dihedral group which implies that $q=2$ . q.e.d.

\S 4. The structure of non-solvable, non-simple c.d. groups
In this paragraph we shall determine the structure of non-solvable, non-

simple c.d. groups. Let $G$ be such a group, and $\Lambda^{7}$ be its $minimal\cdot normal$

subgroup. These notations will be fixed throughout this paragraph.
By theorem 8 we have

(1) $(G : 1V)=2$ .
Let $S$ be one of the 2-Sylow subgloups of $G$ . Then the proof of

theorem 8 shows that $S$ is a dihedral group. By a theorem of Gr\"un21) we
have $\cdot$ $G/N\sim S=/(N(S)^{\prime}nS)J/t5Cr(SnS^{\prime_{t}})$ , where $N(S)$ is the normalizer
of $S$ in $G,$ $S^{t}$ is the conjugate subgroup $tSt^{-\rfloor}(t\in G)$ of $S$ and the accent
means the commutator subgroup. We shall heleafter use the notation such
as $S^{t}$ in the sence of $tSt^{-1}$ , and $N(S)$ and the accent are used in th $e$ sence
of the normalizer in $G$ and the commutator subgroup respectively. Now
since $N(S)$ is c.d., $\Lambda^{\gamma}(S)$ coincides with $S$ and therefore we have $G/N\sim=$

$S/S^{\prime}$ $\Pi_{lG}((SnS^{\prime t})$ . By the structure of $S,$ $S^{\prime}$ is a cyclic $s\iota\uparrow b_{o}0^{\cdot}1oup$

whose index $(S:S^{r})$ is 4, and hence $S^{\prime}$ is the intersection of all the maxi-
mal subgroups of $S$. So the index of $T_{=}\Pi_{t\epsilon G}(SnS^{;_{t}})$ in $S$ is 2, and

(20) Cf. (14).
(21) O. Grun, Crelle 174 (1935), or Zassenhaus [5], p. 134.
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$T$ is not cyclic. Hence the maximal intersections of two distinct 2-Sylow
subgroups are not equal to $e$ . Take one of these maximal intersections $D$ ,
and its normalizer $N(D)$ in $G$ . Then $N(D)$ contains a self-conjugate
group, but its 2-Sylow subgroups are not self-conjugate. By theorem 5
$N(D)$ is either a dihedral group or the symmetric group of four lettes $\mathfrak{S}_{4}$

$G$ is not 2-normal22) by a theorem of Griin, so there is at least one
intersection $D$ which is not cyclic by a theorem of Burnside93). For such
non-cyclic a intersection $JJ$ , we have $N(D)\cong \mathfrak{S}_{4}$ .

$S$ has one maximal dihedral subgroup $\tau*$ other than $T$. Every element
of order 2 in $T$ is conjugate to each other in $G$ . On the other hand, if
we take two elements $a,$

$b$ order 2 contained in $I^{*}$ but not in $T,$ $a$ is
conjugate to $b$ in $G$ but is not conjugate to any element of order 2 in $T$.
For otherwise we should have $S=T$. Let $\mathfrak{z}$ be the center of $S,$ $N_{1}$ the
centralizer of $\mathfrak{z}$ in $G$ , and $N_{2}$ the centralizer of $a$ in $G$ . Then both $N_{1}$

and $\Lambda^{\gamma_{2}}$ are dihedral groups, and they $ale$ not conjugate in G. $1V_{i}(i=1,2)$

has a cyclic subgroup $Z_{i}$ of index 2. Let now $Z$ be a maximal cyclic
subgroup of an even order, and $U$ the 2-Sylow subgroup of $Z$. Then $U$

is contained in some 2-Sylow subgroup $S^{*}$ and so $U$ is conjugate to some
subgroup of $S$ in $G$ . This implies that $Z$ is conjugate to $Z_{1}$ or $Z_{2}$ in $G$ .

Now we shall prove the following lemma.
Lemma 7. $\mathcal{I}\dot{w}odist/nct$ p-Sylo $’\iota v$ subgronp $S$ and $S^{*}$ have no element

in common excepl the unit element, $’\iota v/zenp>2$ .
Proof. We shall assume that $S\cap S^{*}\neq e$ and $S\neq S^{*}$ , and prove that

$p=\underline{9}$ . Put $S\cap S^{*}=D$ . We shall assume that $D$ is the maximal intersec-
tion of $p$ -Sylow subgroups. Theorem 5 shows that $1V(D)$ is solvable and
is a group of type (3), (4) or (7) in theorem 5. If $N(I\supset)$ is a dihedral
group or $\mathfrak{S}_{4}$ , then we have $p=2$ . We may, therefore, assume that $N(D)$

is a group of type (4) : $N(D)=G_{1}\times G_{2}$ , where $G_{1}$ is of order $p$ and $G_{2}=$

$PZ$ ($P$ is of order $p$ and $Z$ is a self-conjugate cyclic sub roup of $G_{2}$).
Then we have $D=G_{1}$ and $D\cup/_{\vee}=V$ is a maximal cyclic subgroup of $G$ .
Take any prime factor $q$ of the order of $Z$, and let $Z_{q}$ be th $e$ q-Sylow
subgroup cf $Z$. Since $V$ is a maximal cyclic subgroup of $G,$ $Z_{q}$ is a q-
Sylow subgroup of $G$ . Any element of $\Lambda^{\Gamma}(\swarrow_{q}^{\prime\gamma})$ fixes $\angle_{q}^{\wedge\gamma}$ (i.e. transforms $Z_{q}$

into itself), so also $V$. This implies that any elemet of $\Lambda^{7}(Z_{q})$ fixes $D$

too, and $\lrcorner V(Z_{q})\subseteq N(D)$ . Hence we have $N(Z_{q})=N(D)$ . On the other hand

(22) Cf. O. Grun loc. cit. (21), or ZassenRaus [51, p. 130
(23) Zassenhaus [5], p. 103.
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we have $N(Z_{q})N=G$ , as $Z_{q}$ is a q-Sylow subgroup of $G$ and a $f_{01}$ tiori of
$N$. Hence the index $(N(’\swarrow_{\sim q}):N(’/\prime q)^{\prime})$ is divisible by 2. Since $(^{f}AV(Z_{q})$

: $N(Z_{q})^{\prime})=p^{2}$ , we must have $p=2$ . This proves our lemma 7.
Now we shall return to our $N_{1},$ $N_{2},$ $Z_{1}$ or $Z_{2}$ , and put

$(G : N_{1})=m_{1}$ and $(N_{1} : e)=2n_{1}$ ,
$(G : \Lambda^{\Gamma_{2}})=m_{2}$ and $(N_{2} : e)=2n_{2}$ .

Then it holds

(2) $(G : e)=g=_{:}2n_{1}m_{1}=2n_{2}m_{2}$ .

As $G$ is c.d., the number of elements, other than $e$, which are conjugate to
some element of $1V_{i}$ in $G$ , is $m_{i}(n_{i}-1)$ .

Let $S_{p}$ be any $p$-Sylow subgroup of $G(p>2)$ . Suppose first that $S_{p}$

is not cyclic. Then we shall denote the normalizer of $S_{p}$ by $\Lambda^{r_{p}}$ , and put

$(G : N_{t^{J}})=m_{p}$ , $(N_{p} : S_{p})=l_{p}$ and $(S_{p} : e)=n_{p}$ ,

where $p$ runs through prime factors of $G$ such that $S_{p}$ are not cyclic. Then
we have

(3) $g=m_{p}l_{p}n_{p}$ ,

and by lemma 7 the number of elements other than $e$ , contained in some
$p$-Sylow subgroups of $G$ , is $m_{p}(n_{p}-1)$ . If $S_{p}$ is cyclic, we shall take the
maximal cyclic subgroup $Z$ containing $S_{p}$ . Consider now maximal cyclic
subgroups of odd orders of $G$ each of which contains some Sylow subgroup
of $G$ . Some of them may be conjugate in $G$ . We ta.ke now a representa-
tive $Z_{\alpha}$ from each conjugate class of these groups. Let $Z_{\alpha},$ a $\epsilon A$ , be all
these representatives. For any a $\epsilon$ $A$ we shall put

$(G : N_{\alpha})=m_{\alpha}$ , $(1V_{\alpha} : Z_{\alpha})=l_{\alpha}$ and $(Z_{\alpha} : e)=n_{\alpha}$ ,

where $N_{\alpha}=N(Z_{\alpha})$ . Then we have

(4) $g=\prime\prime l_{\alpha}l_{\alpha}7l_{\alpha}$ (a $\epsilon A$),

and the number of elements, other than $e$ , which are conjugate to some
element of $Z_{\alpha}$ , is clearly $m_{\alpha}(n_{\alpha}-1)$ .

We $sha^{1}1$ now decompose the set of all prime factors of the order of
$G$ into two classes $Jl_{1}$ and $\Pi_{2}$ , where $\Pi_{1}$ consists of all the odd prime
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factors $p$ such that $S_{p},$ $p$-Sylow subgroup of $G$ , is not cyclic and $\Pi_{2}$ con-
sists of all other prime factors. Then $G$ has no element of order $p_{1}d$,

where $p_{1}\in JT_{1}$ and $d>1$ . For, if $G$ had an element $a$ of order $p_{1}d,$ the
maximal intersection of $p_{1}$ -Sylow subgroups should net be $e$qual to $e$ , as
the normalizer of $\{a^{d}\}$ should be a group of type $D$ .
Take any maximal cyclic subgroup $Z$ of $G$ . If $Z$ is of an even order, $Z$

is conjugate to $Z_{1}$ or $Z_{2}$ in $G$ as proved above. We shall now assume
that $Z$ is an odd order. If $Z$ contains some Sylow subgroup of $G,$ $Z$ is
conjugate to some $Z_{\alpha}$ (a $\epsilon A$). Suppose now $Z$ contains no Sylow subgroup
of $G$ . If we take a prlme factor $p$ of the order of $Z$, p-Sylow subgroups
of. $G$ are not cyclic, so $p\in Jl_{1}$ . $Hence^{1}Z$ is of order $p$ and is contained in
some $p$-Sylow $subgrou\acute{p}$ of $G$ . Hence we have

(5) $g=1+m_{1}(n_{1}-1)+m_{2}(n_{2}-1)+\Sigma_{\gamma}m_{\gamma}(\prime l_{\gamma^{-1)}}$ ,

where $\gamma$ runs $th_{1}$ ough the domain $\Gamma=A+\Pi_{1}$ . By (2) of this paragraph,
(5) is written in the $f_{01}m$

(6) $rn_{1}+rn_{2}-1=^{\neg}-\backslash \gamma m_{\gamma}(n_{\gamma}-1)$ .
$G$ has clearly $m_{1}+m_{2}$ elements of order 2. We shall now count the

number of pairs of two elements of order 2. This number is clearly $\iota 2(m_{1}$

$+m_{2})(m_{1}+m_{2}-1)$ . On the other hand, such a pair of elements generates
a dihedral $snbg\iota oup$ of $G$ . Hence we shall be able to count this number
in another way, i.e. by the enumeration of dihedral subgroups of $G$ .

We shall first prove the following lemma.
Lemma 8. $1nt/\iota e$ same notations as above, any dihedral subgroup $D$ of

$G$ is containcd in some conjugate subgroup $H$ of $N_{1},$ $N_{2},$ $N_{p}^{\wedge}$ or $lV_{\alpha}$ . $1f$ the
order of $D$ is greater tlnrn 4, this conjugate subgroup $H$ is uniquely $deter\min^{p}d$

by $D$ .
Proof. Let $D$ be any dihedral subgroup of $G$ . Then $D$ has a cyclic

subgroup $Z$ of index 2. If $Z$ is contained in a maximal cyclic subgroup
of an even order, $Z$ is conjugate to some subgroup of $Z_{1}$ or $Z_{2}$ in $G$ . Hence
$D$ is contained in some conjugate subgroup of $1\backslash _{\theta}\gamma_{l}$ or $j\ovalbox{\tt\small REJECT}^{r_{2}}$ . If the $01$ der of
$Z$ is greater than 2, this conjugate subgroup of $\lambda_{i}^{\gamma}$ containing $D$ is nothing
but the normalizer $N(l)$ and is uniquely determined by $D$ . Let now $Z^{*}$

be the maximal cyclic subgroup of $G$ containing $Z$, and let its order be
odd. If $Z^{*}$ contains some Sylow subgroup of $G,$ $Z^{*}$ is conjugate to some
$Z_{\alpha}$ . Hence $D$ is coIltai.ned in some conjugate subgroup of $N_{\alpha},$ which $1S$
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again the nolmalizer of $Z$. If $Z^{*}$ contains no Sylow subgroup of $G_{1}Z^{*}$

is of order $p$ and is contained in some $p$-Sylow subgroup. As $p$ belongs
clearly to $\Pi_{1},$ $D$ is contained in some conjugate subgloup $H$ of $N_{p}$ . By
lemma 7 $H$ is again uniquely determined by $D$ . This completes the proof.

Now we shall enumerate the numbe $r$ of pairs of elements of order 2

of $G$ in the following manner.
a) Denote by $K_{\gamma}$ the number of pairs of elements, which generate dihedral
subgroups of some conjugate subgroup of $\Lambda^{\gamma_{\gamma}}(\gamma\in 1^{\urcorner})$ . Then since $\Lambda^{\Gamma_{\gamma}}(\gamma\epsilon$

$I)$ is the normalizer of some Sylow subgroup of $G$ , we have $ G=1V4V_{\gamma}(\gamma\epsilon$

$\Gamma)$ . Hence by (1) of this paragraph the older of $N_{\gamma}$ is even. As the
order of $S_{p}$ or $Z_{\alpha}$ is odd, we have then

(7) $l_{\gamma}\equiv 0$ $(mod 2)$ $(\gamma\epsilon l)$ .
Each $\Lambda^{\Gamma_{\gamma}}$ contains $n_{\gamma}$ elements of order 2, so the number of pairs, generat-
$i$ ng $di1^{\neg}edla1s\iota bglc\iota$ ps of $\Lambda^{\gamma_{\gamma}}$ is $\iota_{r_{\gamma}(n_{\gamma}-1}2$ ). $\Lambda_{\gamma}^{\vee}/$ has $m_{\gamma}$ conjugate sub-
groups in $G$ and no pair of these $m_{\gamma}$ conjugate subgroups of $N_{\gamma}$ has a
dihedral subgroup in common by lemma 8. Hence we see that

$K_{\gamma}=\frac{1}{2}m_{\gamma}n_{\gamma}(n_{\gamma}-1)$ $(\gamma\epsilon\Gamma)$ .

b) Next denote by $K_{1}$ the number of pairs, generating dihedral subgroups
of $\Lambda^{\gamma_{1}}$ and whose orders are greater than 4. $N_{1}$ has $1+\prime l_{1}$ elements of order
2, one of which, say $a$, is contained in the center of $\Lambda^{\Gamma_{1}}$ . For any $b$ in $\Lambda^{7_{1}}$ ,
the pair $(a, b)$ generates a group of order 4 if $a\neq b$ . Hence the number
of pairs, generating dihedral subgroups of $N_{1}$ whose orders are greate $r$ than
4, is $\not\in n_{1}(n_{1}-2)$ . Since $N_{1}$ has $m_{1}$ conjugate subgroups, we conclude that

$K_{1}=\frac{1}{2}m_{1};l_{1}(\prime l_{1}-2)$ .

c) Similarly the number $K_{2}$ of pairs, generating dihedral subgroups which
are conjugate to some subgroup of $\Lambda^{\Gamma_{2}}$ and whose orders are greater than
4, is $\iota_{m_{2}n_{2}(n_{2}-2)}2$

d) Finally we consider the number $I\zeta_{0}$ of pairs which generate abelian
$g_{1}$ oups of order 4 and of type $(1,1)$ . Let $S$ be again one of 2-Sylow sub-
groups of $G$ , and put $T=fI_{t\hat{\in}G}(SnS^{\prime_{\ell}})$ . Then $T$ is a dihedral sub-
group of index 2. $S$ has another maximal dihedral subgroup, which we
shall denote by $T^{*}$ . Take abelian subgloups $U$ and $U^{*}$ of order 4 and
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of type $(1, 1)$ in $T$ and $T^{*}$ respectively. Then any non-cyclic abelian
subgroup of order 4 of $S$ is conjugate to $U$ or $U^{*}$ in $S$, but $U$ and $U^{*}$

are not conjugate even in $G$ . For if $U$ were conjugate to $U^{*}$ in $G,$ $T$

should be equal to $S$ against (1) of $tt_{1}is$ paragraph24). Since any non-
cyclic abelian subgroup of order 4 is conjugate to some subgroup of $S$ , all
such subgroups of $G$ are distributed into two conjugate classes $C$ and $C^{*}$ .
We may assume that $U\in C$ and $U^{*}\epsilon C^{*}$ . We shall now count the number
of subgroups contained in $C$ and $c*$ . Since two arbitrary subgroups $\cdot$ of
order 2 in $U$ are conjugate in $G,$ $U$ is contained in at least two distinct
2-Sylow subgroups of $G$ , and so its normalizer is isomorphic to $\mathfrak{S}_{4}$ : the
symmetric group of four letters. Hence the number of conjugate subgroups
of $U$ is $g/24$ . On the other hand, $U^{*}$ is contained in one 2-Sylow subgroup
of $G$ . So the normalizer of $U^{*}$ is a dihedral group of order 8 and the
number of subgroups in $C^{*}$ is $g/8$ . Hence $G$ contains $(g/24+g/^{\prime}8)=g/6$

abelian, non-cyclic subgroups of order 4. Therefore, the number $K_{0}$ is clearly
equal to $3\times.\mathscr{S}/6=g/2$ .

By lemma 8 $Jt_{0}^{\prime}+K_{1}+K_{2}+\sum_{\gamma}K_{\gamma}$ is clearly the total. number of pairs
of elements of order 2; that is

(8) (1/2) $(rn_{1}+m_{2})(rn_{1}+rn_{2}-1)=(g/2)+(1/2)_{7n_{1^{ll}1}}(’\iota_{1}-2)$

$+(1/2)m_{2};l_{2}(\prime l_{2^{-2)+\Sigma_{\gamma\epsilon 1},(1}}/2)m_{\gamma}n_{\gamma}(ll_{\gamma}-1)$ .

By (2), $m_{1}n_{1}=’ n_{2}n_{2}=\mathscr{S}/2$ , then (8) gives

$(m_{1}+rn_{2})(7/\iota_{1}+rn_{2}-1)=(g/2)(/l_{1}+Jl_{2})-g+\Sigma_{\gamma}m_{\gamma}/l_{\gamma}(;/\gamma-1)$ .
Dividing both side by $g$ and using (3) and (4), we have

(9) $(m_{1}+7ll_{2})(\frac{m_{1}+m_{2}-1}{g})=\frac{;l_{1}+ll_{2}}{2}1+\Sigma_{\tau}\frac{ll_{\gamma^{-1}}}{l_{\gamma}}$ .

On the other hand, $\iota v_{\backslash }e$ obtain by (6) the following folmula.

$\frac{\prime\prime l_{1^{+m_{2}-1}}}{g}=\Sigma_{\gamma\epsilon\Gamma}\frac{n_{\gamma}-1}{Jl_{\gamma}l_{\gamma}}$

Hence we have

(24) Cf. a theorem of Grun, loc. cit. (21).
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$(m_{1}+\%)(\Sigma_{\gamma}\frac{n_{\gamma}-1}{n_{\gamma}l_{\gamma}})=\frac{n_{1}+\prime i_{2}}{2}-1+\Sigma_{\gamma}\frac{n_{\gamma}-1}{l_{\gamma}}$ ,

$\sum_{\gamma}\underline{m_{1}+_{\gamma}m_{2}}\prime l\frac{n_{\gamma}-1}{l_{\gamma}}=\frac{7l_{1}+;l_{2}}{2}-1+\sum_{\gamma}\frac{\prime l_{\gamma^{-1}}}{l_{\gamma}}$ ,

or

(10) $\sum_{\gamma}(\underline{m_{l},+_{\gamma}m_{2}}-1)\cdot\frac{n_{\gamma}-1}{l_{\gamma}}=\frac{n_{1}+n_{2}}{2}-1$ .

By the definition of $\Gamma$, it holds clearly $g=n_{1}n_{2}\Pi_{\gamma\Gamma}(n_{\gamma}$ . Put now $g=$

$n_{1}7l_{2}n_{\gamma}k_{\gamma}$ , then

$m_{1}=\frac{1}{2}n_{2}n_{\gamma}k_{\gamma}$ and $m_{?}=\frac{1}{2}n_{1}\mathcal{F}l_{\gamma}p_{\gamma}$ .

So we see

(11) $\frac{\prime\prime l_{1}+m_{2}}{n_{\gamma}}=\frac{Jl_{1}+;l_{2}}{2}k_{\gamma}$ , $(\gamma\epsilon\Gamma)$ .

By the $struct_{U1}e$ of $N_{\gamma}$ we have

(12) $n_{\gamma}\equiv 1$ $(mod l_{\gamma})$ $(\gamma\epsilon\Gamma)$ .
Now (10) and (11) give

(13) $\Sigma_{\gamma}(\frac{n_{1}+n_{2}}{2}\prime i_{\gamma}^{2}-1)\frac{n_{\gamma}-1}{l_{\gamma}}=\frac{n_{1}+;l_{2}}{2}-1$ .

Taking (12) into consideration, (13) implies that $\Gamma$ consists of only one
suffix $\gamma$ and $k_{\gamma}=1,$ $n_{\gamma}-1=l_{\gamma}$ . We shall now write 1V, $n$ or $l$ instead of
$N_{\gamma},$

$\prime l_{\gamma}$ or $l_{\gamma}$ . Then we have

(14) $n=l+1$

and

(15) $g=7l_{1}Il_{2}n$ .

Moreover (6) is written in the form

$\frac{1}{2}7_{2}7l+\frac{1}{2}n_{1}n-1=\div n_{1}r1_{2}(rl-1)$ ,
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or

(16) $\prime l_{1}n+ll_{2}n=2+2n_{1}n_{2}$ .
Now $G$ contains an element of order $l$. Since $l-R(mod 2)$ by (7),

$l$ must divide either $n_{1}$ or $n_{2}$ . In the following we may assume, in choosing
suitable notations, that $l$ divides $7l_{1}$ , i.e. rve shall put

(17) $n_{1}=ls$ , ($s$ : integer, $>0$).

(16) gives then $n_{2}\equiv 2(mod l)$ , or

(18) $n_{2}=lt+2$ , $(t$ : integer, $>0)^{\underline{o}_{b)}}$

$F_{1}om$ (14), (16), (17) and (18) we obtain

$ls(l+1)+(lt+2)(l+1)=2+21s(lt+2)$ ,

or
$ls+lt+2+t=2lst+3s$ .

Hence

$\div+\div\dashv-\frac{2}{lst}+\frac{1}{ls}=2+\frac{3}{tl}$ ,

$\div+\div+\frac{1}{ls}=2+\frac{2}{lt}(1-\div)+\frac{1}{lt}$ .

Since $ s\geqq$], it holds

(19) $\div+\div+\frac{1}{ls}>2$ .

On the other hand, we have $l\geqq 2$ by (7). Hence (19) implies

(20) $s=t=1$ .

Thus we conclude that $n_{1}=l=n-1$ and $\prime 1_{2}=l+2=n+1$ .
$G$ is now representable as a transitive permutation $g_{1}oup$ on the cosets

$mod A^{7}$. Since $N$ is of. indek $n+1$ , the degree of this permutation group
$G_{N}$ is $’+1$ . $N$ contains a subgroup $H$ of order $n$ . ($H$ was written as $S_{p}$

(25) If $t=0$ , an easy computation shows that the ord$ er\zeta$ of $G$ is 24, so that $G$ is
solvable.
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or $Z_{a}$ in our old notations). Clearly any conjugate subgroup of $N$ except
$N$ has no element, other than $e$ , in common with $H$. So $G_{N}$ is doubly
transitive. Since $(l, n)=1,4V$ contains a cyclic subgroup $Z$ of order $l$ such
that $N=HZ$. $Z$ is conjugate to $Z_{1}$ or $Z_{2}$ in the old notations, and so is
contained in two distinct conjugate subgroups of $\angle\prime_{V}$. Hence $Z$ consists of
elements of $G_{N}$ which fix two letters of the permutation. Since the older
1 of $Z$ is $ r\ell$ –1 and any pair of conjugate $subgro_{\iota 1}ps$ of $Z$ has no element
in common other than $e,$ $G_{N}$ must be triply transitive and all elements of
$G_{N}$ except $e$ fix at most two letters. Hence by the method of Zassenhaus26)

we can construct the “ almost field ” (Fastk\"orper) $F$ corresponding to $\Lambda^{\gamma}$.
In our case $Z$ is of order $n-1$ , so every element of $F$ other than $0$ has
its inverse, i.e. $F$ is complete (vollst\"andig), and is surely a fited, since $Z$

is cyclic. Henc$eF$ is a finite field with $n$ elements, and $G_{N}$ is isomorphic
to the full linear fractional group of one variable over $F$. Since $ n-1\underline{=}\circ$

$(mod 2)$ by (7), the characteristic of $F$ is greater than 2. Thus we have
proved the following theorem.

Theorem 9. Let $G$ be a non-solvable, non-simple $c.d$. groztp. . Tlten $G$ is
isomorphic to $th1^{\prime}fn^{\gamma}l$ linear fractional group of one variable over a finite field
$’\ell vhose$ characteristic is grea.er than 2.

Conversely we can easily prove that the full linear fractional group of
one $vali\vee*ble$ over a finite field $F$ is always c.d., and it is non-solvable when
$F$ has at least four elements. Moreover it is non-simple if the characteristic
of $F$ is greater than 2.
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