On a conformal mapping with certain boundary correspondences.

Akira Mori.
(Received, Oct. 1, 1949)

Given any set of points E on the unit circle C of z-plane, we shall treat in this paper the problem to map the interior of C conformally on a schlicht domain D so that the set E corresponds to a set of accessibleboundary points of D all lying on one and the same point of the plane.

In order to simplify the wording, we call a half straight-line on wplane : arg $w=$ const., $\infty \geqq|w| \geqq$ const. >0, an infinite radial slit.

First, we consider the case where the set E is finite.
Theorem 1. Let z_{1}, \ldots, z_{n} be n points on C associated with n positivemumbers $\alpha_{1}, \ldots, \omega_{n}$, zehose sum is equal to 1. Then, there exists a function $w=$ $w(z)$, which maps the interior of C conformally on a domain D, so that: 1 . D is the zohole ze-plane cut along n infinite radial slits, 2. z_{k} corresponds tothe accessible boundary point of D lying on $z=\infty$, which is determined by an angular domain between two of these slits including an angle $2 \pi \mu_{k}$ at w $=\infty$, and 3. $v(0)=0, z v^{\prime}(0)=1$. Under these conditions the mapping. function is uniquely determined and is given by

$$
\begin{equation*}
\tau v=\tau v(z)=z /_{k=1}^{n}\left(1-\frac{z}{z_{k}}\right)^{2 a_{k}} . \tag{1}
\end{equation*}
$$

Proof. We construct a potential function $u(z)$ on z-plane, whose singularities are

$$
\begin{aligned}
& \log |z| \quad \text { at } \quad z=0 \\
& \log \frac{1}{|z|} \quad \text { at } \quad z=\infty
\end{aligned}
$$

and

$$
2 \alpha_{k} \log \frac{1}{\left|z-z_{k}\right|} \text { at } z=z_{k} .
$$

Denoting the conjugate potential of $u(z)$ by $v(z)$, we put

$$
z v(z)=\text { const. exp. }\{u(z)+i v(z)\}
$$

$w(z)$ is regular in $|z| \leqq 1$ except the n points z_{k}, and vanishes only at $z=0$.

On account of symmetry of singularities, $u(z)$ takes one and the same value at z and its reflection $1 / \bar{z}$ in C. Hence, we have, putting $z=r e^{i \theta}$, at any point on C except $z_{1}, \ldots \ldots, z_{n}$,

$$
\frac{\partial u}{\partial r}=0 \quad \text { consequently } \frac{\partial v}{\partial \theta}=0
$$

which means that $v(z)$ is equal to a constant on each of n arcs of C separated by the n points z_{k}. On the other hand, $u(z)$ is bounded below and unbounded above on each of these arcs. Hence the image of each of these arcs by $\tau=\omega(z)$ is an infinite radial slit.

The angle at $\tau=\infty$ between the images of two arcs forming an angle π at z_{k} is equal to $2 \pi \mu_{k}$, since $z(z)$ has an expansion of the form

$$
\begin{equation*}
\left(z-z_{k}\right)^{-2 a_{k}}\left\{C_{0}+C_{1}\left(z-z_{k}\right)+\ldots \ldots\right\}\left(C_{0} \geqslant 0\right) \tag{2}
\end{equation*}
$$

in a neighbourhood of $z=z_{k}$.
Further, $v(z)$ takes each value $z v_{0}$, which does not belong to the n slits, once and only once in $|z|<1$. This follows easily from the facts that $1 / \tau(z)$ has only one pole in $|z|<1$ and that

$$
\arg \left\{\frac{1}{v(z)}-\frac{1}{\tau v_{0}}\right\}
$$

remaias unchanged, when z moves on C once around and returns to the original value. Hence, by suitable determination of constant factor, $w(z)$ constructed above provides the required mapping.

Since the potential function $u(z)$ with required singularities is explicitly given by

$$
u(z)=\sum_{k=1}^{n} 2 u_{k} \log \frac{1}{\left|z-z_{k}\right|}+\log |z|+\text { const., }
$$

we have the mentioned expression (1) for $w(z)$.
The uniqueness of the mapping function is proved as follows. Let $\varepsilon v_{1}(z)$ be another mapping function with the properties $1,2,3$. Since $\left|w_{1}\right|$ remains unchanged by reflection in a radial slit, we obtain a one-valued harmonic
function $\log \left|w_{1}(z)\right|$ with isolated singularities at $z=0, \infty$ and $z_{1}, \ldots \ldots, z_{n}$, while continuing $z v_{1}(z)$ analytically across the unit circle by the principle of reflection. Then, by the expansion (2), $\log \left|w_{1}(z)\right|$ must be identical with $\log |w(z)|$, save for an additive constant.

We know, if $w(z)$ is schlicht and star-shaped in $|z|<1$ with respect to $w(0)=0$ being normalised by $w^{\prime}(0)=1$, it is expressed in the form

$$
\begin{equation*}
w(z)=z \cdot \exp \cdot 2 \int_{c} \log \frac{\zeta}{\zeta-z} d \mu(\zeta) \tag{3}
\end{equation*}
$$

and vice versa, where μ is a positive distribution of total mass 1 on C determined by the non-decreasing function of θ

$$
\frac{1}{2 \pi} \lim _{r \rightarrow 1} \arg \tau v\left(r e^{i \theta}\right) .
$$

This can easily be proved by applying Herglotz' formula to $z z w^{\prime} / \tau v$ and integrating it.

The mapping function (1) of Theorem 1 is in fact merely a special case of this formula, where μ vanishes ontside the n points $z_{1}, \ldots \ldots, z_{n}$.

Next, we consider the case where the given set E is infinite. In case E consists of an enumerable infinity of points, we can construct a mapping function analogous to that of Theorem 1 by taking the limes of functions of the form (1), or, simply by (3), while we give a positive μ-mass to each point of E. But then, the boundary of the resulting image domain is in general vary much complicated.

No matter whether E be enumerable or not, we have in the following case an image domain whose boundary is fairly simple.

Theorem 2. If the closure \bar{E} of E is of logarithmic capacity zero, and only in such a case, there exists a function w(z), which maps the interior of C conformally on a domain D, so that: 1. D is the whole w-plane cut along an enumerable infinity of infinite radial slits, zuhich cluster to $w=\infty$ only, 2. every point of E corresponds to an accessible boundary point of D lying on $w=\infty$, ánd 3. $w(0)=0$.

Proof. If \bar{E} is of logarithmic capacity zero, there exists, by Evans ${ }^{\prime}$ theorem, ${ }^{1)}$ a positive distribution μ of total mass 1 on \bar{E}, such that the logarithmic potential

$$
\int_{\bar{z}} \log \frac{1}{|\zeta-z|} d \mu(\zeta)
$$

tends to. $+\infty$, when z tends to any point of \bar{E}. Then the star-shaped function (3) constructed with this μ tends to ∞, whenever z tends to \bar{E}, and provides the required mapping.

On the contrary, if \bar{E} is of positive capacity, there exists, for any positive mass distribution μ on C, at least one point ζ_{0} on \bar{E}, such that

$$
\lim _{z \rightarrow \xi_{0}} \int_{c} \log \frac{1}{|\zeta-z|} d \mu(\zeta)<+\infty,
$$

and we have

$$
\lim _{z \rightarrow \zeta_{0}}|z(z)|<+\infty .
$$

On the other hand, if $\tilde{v}(z)$ satisfies the condition 2 , we have

$$
\varlimsup_{z \rightarrow \zeta_{0}}|z v(z)|=+\infty
$$

for any point ζ_{0} on \bar{E}, so that it can not satisfy the condition 1 .
Let Δ be a simply connected schlicht domain, and e be a closed set of accessible boundary points of Δ, which is of logarithmic capacity zero. Then M. Tsujii) proved the following extention of Beurling's theorem ${ }^{3}$ on exceptional sets: if we map Δ conformally on the interior of the unit circle C, then the set E of points on C, which corresponds to the set e, is of logarithmic capacity zero.

By this theorem, we have from Theorem 2 the following
Theorem 3. If each primary end of Δ in Carathéodory's sense, zuhich contains a point of e, consists of only one point, then we can map Δ conformally on a domain D satisfying the condition 1 of Theorcm 2, so that each point of e corresponds to the point at infinity. .

Proof. From the hypothesis we see easily that E is closed, so that the result follows from Tsuji's theorem and Theorem 2.

> Mathematical Institute,
> Tokyo University.

References.

1) G. C. Evans: Potentials and positively infinite singularities of harmonic functions. Monatshefte f. Math. u. Phys. 43 (1936).
2) M. Tsuji : Beurling's theorem on exceptional sets (which will appear in Tohoku Math. J.).
3) A. Beurling: Ensembles exceptionnels. Acta Math. 72 (1940).
