On the Cluster Sets of Analytic Functions in a Jordan Domain.

Ву Макото Онтзика.

(Received Oct. 11, 1948)

I. Cluster Sets defined by the convergence set.

1. Let D be a Jordan domain, C its boundary, E any set on $D + C^{(1)}$ and z_0 , z_0' two points on C. Divide C into two parts C_1 and C_2 by z_0 and z_0' . We denote the part of D, C, E, C_1 and C_2 in $|z-z_0| \leq r$ by D_r , C_r , E_r , $C_r^{(1)}$ and $C_r^{(2)}$ respectively and the part of $|z-z_0|=r$ in D by θ_r . Let w=f(z) be a meromorphic function in D and \mathfrak{D}_r the set of values taken by f(z) in D_r . Then the intersection $\bigcap_{r>0} \overline{\mathfrak{D}_r} = S_{z_0}^{(D)}(^2)$ is called the *cluster* set of f(z) in D at z_0 and the intersection $\bigcap_{r>0} \mathfrak{D}_r = R_{z_0}^{(D)}$ the range of values of f(z) in D at z_0 . The intersection $\bigcap_{r>0} \overline{M}_r^{(E)} = S_{z_0}^{(E)}$, where $M_r^{(E)}$ is the union $\cup S_{z'}^{(D)}$, for $z_0 \rightleftharpoons z' \in E$, $S_{z'}^{(D)}$ consisting of the single value f(z') for $z' \in D$, is called the cluster set of f(z) on E at z_0 . For example, $S_{z_0}^{(C)}$, $S_{z_0}^{(C_1)}$, $S_{z_0}^{(C_2)}$ and $S_{z_0}^{(L)}$, where L is a Jordan curve in D terminating at z_0 , are thus defined. If $S_{z_0}^{(L)}$ consists of only one value α , we call α the asymptotic value, L the asymptotic path and we denote the set of all the asymptotic values at z_0 by $\Gamma_{z_0}^{(D)}$, and call it the convergence set of f(z) at z_0 . When f(z) omits at least three values in the neighbourhood of $z_0(^3)$, $\Gamma_{z_0}^{(D)}$ consists of at most one value (4). Then we call the value of non-empty $\Gamma_{z_o}^{(D)}$ the boundary value at z_0 , and denote it by $f(z_0)$. Furthermore the intersection $\bigcap \overline{Y_r^{(k)}} = \Gamma_{z_0}^{(k)}$ for $E \subset C$, $Y_r^{(E)}$ being the union $\cup \Gamma_{z'}^{(D)}$ for $z_0 \neq z' \in E_r$, is called the cluster set of the convergence set of f(z) on E at z_0 .

 $S_{z_0}^{(D)}$ includes all the other cluster sets and $S_{z_0}^{(E)}$ includes $\Gamma_{z_0}^{(E)}$. $S_{z_0}^{(D)}$, $S_{z_0}^{(C_1)}$, $S_{z_0}^{(C_2)}$ and $S_{z_0}^{(L)}$ are continuums but not necessarily $\Gamma_{z_0}^{(C)}$, $\Gamma_{z_0}^{(C_1)}$ and $\Gamma_{z_0}^{(C_2)}$ are (⁵). 2. Let f(z) be bounded in the neighbourhood of z_0 . Then it is known

2. Let f(z) be bounded in the neighbourhood of z_0 . Then it is known that (⁶)

$$\overline{\lim_{z \to z_0}} |f(z)| = \overline{\lim_{C \ni z' \to z_0}} (\overline{\lim_{z \to z' \neq z_0}} |f(z)|),$$

and that this is equivalent to $B(S_{z_0}^{(D)}) \subset B(S_{z_0}^{(O)})$, B(S) being the boundary set of $S({}^7)$. Also it is known that $B(S_{z_0}^{(D)}) \subset B(\Gamma_{z_0}^{(O)})$ holds in the case where D is a circle (⁸); then it holds also in the general case where D is a Jordan domain, by means of a one-to-one continuous corresponden-

Makoto OHTSUKA.

ce between them, with their boundaries included. By the same reason we may, and shall, assume that D is a circle |z| < 1 and $z_0=1$ in proofs of our theorems 1.1 to 1.3.

Theorem 1.1. Let D be a Jordan domain, C its boundary, z_0 a point on C and f(z) a bounded regular function in D. Then

$$B(S_{z_{o}}^{(D)}) \subset B(\Gamma_{z_{o}}^{(C)}).$$

Proof. Transform the circle |z| < 1 onto $|\zeta| < 1$ by the transformation $\zeta = \frac{z - z_1}{1 - \bar{z}_1 z}$ ($|z_1| < 1$) and put $z_1 = 1 + x$, $f(z(\zeta)) = F(\zeta)$ and $\zeta = \rho e^{i\varphi}$. Then

$$|\zeta+1| = \left| \frac{x + \bar{x}z}{1 - z - \bar{x}z} \right| \leq \frac{2|x|}{|1 - z| - |x|}.$$

Hence for $|1-z| \ge \delta$ and $|z| \le 1$, $\zeta + 1$ tends to 0 uniformly as $x \to 0$. Put $\lim_{\theta \to \pm 0} |f(e^{i\theta})| = m$ and suppose $|f(e^{i\theta})| \le m + \varepsilon$ when $|\theta| \le \delta_1$, for any given positive ε . Let this arc be transformed into the arc $\widehat{a\beta}$ by $\zeta = \zeta(z)$ and suppose the length of $\widehat{a\beta} \ge 2\pi - \varepsilon$ on taking |x| sufficiently small. This is possible, because the both end-points of $\widehat{a\beta}$ tend to -1 as $x \to 0$. Put $|F(\zeta)| = |f(z)| < M$ and let E be the set of points on $\widehat{a\beta}$ where $F(e^{i\varphi})$ exists, and $\widehat{a\beta}'$ the complementary set of $\widehat{a\beta}$ with respect to $|\zeta| = 1$. Then by Cauchy's formula and Lebesgue's theorem

$$\begin{split} |f(z_{1})| &= |F(0)| \leq \overline{\lim_{p \to 1}} \ \frac{1}{2\pi} \int_{0}^{2\pi} |F(\rho e^{i\varphi})| d\varphi = \overline{\lim_{p \to 1}} \frac{1}{2\pi} \int_{\mathbb{R}} |F(\rho e^{i\varphi})| d\varphi \\ &+ \overline{\lim_{p \to 1}} \frac{1}{2\pi} \int_{\widehat{\alpha_{3}}'} |F(\rho e^{i\varphi})| d\varphi \geq \frac{1}{2\pi} \int_{\mathbb{R}} |F(e^{i\varphi})| d\varphi + \frac{M\varepsilon}{2\pi} \leq \frac{m+\varepsilon}{2\pi} (2\pi-\varepsilon) \\ &+ \frac{M\varepsilon}{2\pi} = m + \frac{\varepsilon}{2\pi} (2\pi-\varepsilon+M-m). \end{split}$$

Hence

$$\overline{\lim_{z \to 1}} |f(z)| \leq m,$$

that is

$$\overline{\lim_{z \to 1}} |f(z)| \leq \overline{\lim_{\theta \to \pm 0}} |f(e^{i\theta})|.$$

3

From this relation it follows easily $B(S_{z_o}^{(D)}) \subset B(\Gamma_{z_o}^{(C)})$ (7).

Now we divide C into C_1 and C_2 .

Lemma 1 (9). Under the same conditions as in theorem 1.1, there exists a domain G bounded by a part of C_1 and a curve L in D terminating at z_0 such that $S_{z_0}^{(C_1)} = S_{z_0}^{(G)}$.

Proof. Take a sequence of points $Q_1 \supset Q_2 \supset \dots$ (¹⁰), $Q_n \rightarrow z_0$, on C_1 , and a neighbourhood N in D at every point P, $Q_k \supseteq P \supset Q_{k+1}$, such that every point of the image of N_P in the w-plane has a distance $<\frac{1}{k}$ from $S_P^{(D)}$. Then the arc $Q_k \supseteq P \supseteq Q_{k+1}$ can be covered by a finite number of N_F , which we denote by $N_1^{(k)}, \dots, N_{n_k}^{(k)}$. Put $\bigcup_{k=1}^{\infty} \bigcup_{\nu=1}^{n_k} N_{\nu}^{(k)} = G$. Then G satisfies the conditions required.

Theorem 1. 2. Under the same conditions as in lemma 1,

$$B(S_{z_{\circ}}^{(Ci)}) \subset B(\Gamma_{z_{\circ}}^{(Ci)}), (i=1, 2) \text{ and } B(S_{z_{\circ}}^{(C)}) \subset B(\Gamma_{z_{\circ}}^{(C)}).$$

Proof. Put $\overline{\lim_{\theta \to +0}} |f(e^{i\theta})| = m$ and $\overline{\lim_{\theta \to +0}} (\overline{\lim_{z \to e^{i\theta}}} |f(z)|) = M$, and assume m < M. For any given positive ε , there exists $r_0 > 0$ such that $\overline{Y_{r_0}^{(C_1)}}$ is included in the circle $|w| < m + \varepsilon$, and $M_{r_{o}}^{(G)}$ in $|w| < M + \varepsilon$, G being the domain in lemma 1. Map conformally the domain, bounded by C_{r_o} and parts of L in lemma 1 and θ_{r_o} , on the unit circle in the ζ -plane so that $C_{r_o}^{(1)}$ corresponds to the upper semicircle and z_0 to $\zeta = 1$, and put $f(z(\zeta)) = F(\zeta)$ and $\zeta = \rho e^{i\varphi}$. Then $|F(\zeta)| < M + \varepsilon$. The boundary values $F(e^{i\varphi})$ exist at almost all points $e^{i\varphi}$, $0 \leq \varphi \leq 2\pi$, by Fatou's theorem and $|F(e^{i\varphi})| < m + \varepsilon$ for $o < \varphi \leq \pi$, since $\overline{Y_{r_o}^{(c_1)}}$ is included in $|w| < m + \epsilon$. Put $F(\zeta) \cdot \overline{F(\overline{\zeta})} = G(\zeta), \overline{\zeta}$ and \overline{F} designating the conjugate values of ζ and F. Then for almost all $e^{i\varphi}$, $0 \leq \varphi \leq 2\pi$, $|G(e^{i\varphi})| = |F(e^{i\varphi})| \cdot |F(e^{-i\varphi})| < (M+\varepsilon)(m+\varepsilon) = m_1$. Similarly as in theorem 1.1 $|G(\zeta)| < m_1$ holds for all ζ in the unit circle. Especially for each real value $\zeta = t$, $|G(t)| = |F(t)|^2 < m_1 < M^2$ holds for sufficiently small ϵ . Applying theorem 1.1 to the upper semicircular disc, the cluster set of $F(\zeta)$ at $\zeta=1$, consequently the cluster set on the upper semicircle, which is nothing but the set $S_{z_{\circ}}^{(C_1)}$, is included in $|w| < \sqrt{m_1} < M$. According to the definition of *M*, there exists, however, a point of $S_{z_0}^{(C_1)}$ on |zv| = M. This is a contrad-But obviously $m \leq M$ and so m = M, i.e. $\overline{\lim}$ iction, and we get $m \ge M$. $|f(e^{i\theta})| = \overline{\lim_{\theta \to +0}} (\overline{\lim_{z \to e^{i\theta}}} |f(z)|)$. The equivalence of this with the proposition $B(S_{z_{\circ}}^{(C_{1})}) \subset B(\widetilde{\Gamma}_{z_{\circ}}^{(C_{1})})$ can be shown as usual (7).

Makoto Ohtsuka.

Similarly $B(S_{z_{\circ}}^{(C_2)}) \subset B(I_{z_{\circ}}^{(C_2)})$ and from both relations it follows $B(S_{z_{\circ}}^{(C)}) \subset B(I_{z_{\circ}}^{(C)})$.

Theorem 1. 3. If there exists a value u such that $u \in S_{z_0}^{(D)} - \Gamma_{z_0}^{(C)}$ and $u \in \mathbb{R}_{z_0}^{(D)}$, under the same conditions as in theorem 1.1, then $u = f(z_0)$.

Proof. We may suppose that u=0. For sufficiently small $r_0 > 0$, $0 \in \mathfrak{D}_{r_0}$ and the distance ρ_1 from 0 to the set $\overline{Y_{r_0}^{(0)}}$ is positive. We may suppose by taking r_0 suitably that at the two end-points of θ_{r_0} the boundary values exist. Then $|f(z)| > \rho_2 > 0$ for $z \in \theta_{r_0}$. Put Min $(\rho_1, \rho_2) = \rho > 0$. Since 0 $\epsilon S_{z_0}^{(D)}$, there is a point z_1 in D_{r_0} , whose image $w_1 = f(z_1)$ lies in $|w| < \rho$. Take an inverse element e_{z_1} and continue it analytically (with algebraic characters) in any way along the radius from w_1 to w=0. Since $0 \in \mathfrak{D}_{r_0}$ the continuation up to 0 is impossible: it must end at a point β on the radius $\overline{0w_1}$. There corresponds a curve L in D_{r_0} such that $f(z) \rightarrow \beta$ when z approaches to C_{r_0} on L. If L oscillates, f(z) reduces to a constant by Koebe's theorem, so that L terminates at a point on $C_{r_{\circ}}$ and β is a boundary value at this point. But $\overline{Y_{r_{\circ}}^{(C)}}$ has no point in $|w| < \rho$ and so L terminates at $z_0=1$ and $f(z_0)=\beta$. However, if we take another element e_{z_2} corresponding to $z_2 \in D_{r_0}$ at a point $w_2 = f(z_2)$ in $|w| < \rho$ which is near w_1 , but not on $\overline{0w_1}$, then follows similarly $f(z_0) = \gamma$, γ being a point on the radius Ow. Accordingly $f(z_0) = \beta = \gamma = 0$.

The following theorem is an immediate consequence of theorem 1.3.

Theorem 1. 4. Under the same conditions as in theorem 1.1, every value belonging to $S_{z_0}^{(D)} - \Gamma_{z_0}^{(O)}$ belongs to $R_{z_0}^{(D)}$ except at most one value.

3. Formerly we have defined $\Gamma_{z_0}^{(C)}$, $\Gamma_{z_0}^{(C_1)}$ and $\Gamma_{z_0}^{(C'_2)}$ by considering all the boundary values on the general Jordan domain D. But we shall consider hereafter only the case when D is the unit circle |z| < 1. Let c be any set of points of Lebesgue measure zero on |z|=1, put C-c=C', $C_1-e=C'_1$ and $C_2-e=C'_2$ and consider $\Gamma_{z_0}^{(C')}$, $\Gamma_{z_0}^{(C_1')}$ and $\Gamma_{z_0}^{(C'_2)}$. Then a theorem similar to theorem 1.1 is obtained: we shall call it theorem 1.1'. Furthermore, using the same method as in theorem 1.2, we can prove $B(S_{z_0}^{(Ci)}) \subset B(S_{z_0}^{(Ci')})$ $\subset B(\Gamma_{z_0}^{(Ci')})(i=1,2)$ and $B(S_{z_0}^{(C)}) \subset B(S_{z_0}^{(C')}) \subset B(\Gamma_{z_0}^{(C')})$, which we shall call theorem 1.2'. However, theorems corresponding to theorems 1.3 and 1.4 must be stated in somewhat different forms. Namely:

Theorem 1.3'. If there exists a value u such that $u \in S_{z_0}^{(D)} - \Gamma_{z_0}^{(C')}$ and and $u \in R_{z_0}^{(D)}$ under the same conditions as in theorem 1.1 (with D=unit circle), then $u=f(z_0)$ or there is a sequence $z_1, z_2, \ldots, z_n \rightarrow z_0$ of points on |z|=1, such that $u=f(z_n)$.

 $\mathbf{4}$

Proof. To prove this theorem we have to employ a method different from that used in the proof of theorem 1.3. We may suppose that a=0, and we determine r_0 and ρ as in theorem 1.3, provided that the two end-points of $\theta_{r_{\circ}}$ do not belong to the exceptional set e. Since $0 \in S_{z_{\circ}}^{(D)}$, there is a point z_1 in D_{r_o} such that $w_1 = f(z_1)$ is in $|w| < \rho$ and consequently there exists a domain \mathcal{A}_1 in D_{r_0} , in which f(z) takes the values in $|w| < \rho$ and on whose boundary $|f(z)| = \rho$ in |z| < 1. Hence \mathcal{A}_1 has no common point with θ_{r_o} and is a simply connected domain because f(z) is regular in |z|<1. Now we shall prove that 1/f(z) is not bounded in \mathcal{A}_1 . Map \mathcal{A}_1 conformally on $|\zeta| < 1$ and put $f(z(\zeta)) = F(\zeta)$. Then by Fatou's theorem there exist boundary values of both $F(\zeta)$ and $z(\zeta)$ at almost all points on $|\zeta|=1$. Now, let E be the set of points on $|\zeta|=1$ at which both $F(\zeta)$ and $z(\zeta)$ exist and the relation : $|z(\zeta)|=1$ holds, and E' be the image of E by $z(\zeta)$. By Kametani-Ugaheri's theorem $\binom{11}{m_*} m_* E \leq m^* E'$. Then we have $E' \subset e$, because $\lim f(z)$ exists along a curve terminating at every point of E'. Therefore mE'=0 and $m_*E=0$. By Tsuji (¹²) the set of all points on $|\zeta|=1$ at which boundary values $z(\zeta)$ exist and the relation: $|z(\zeta)|=1$ holds is measurable. This set consists of E and a set of measure zero where boundary values of $F(\zeta)$ do not exist, so that E is also measurable and mE=0. Consequently both $F(\zeta)$ and $z(\zeta)$ exist on $|\zeta|=1, |z(\zeta)|<1$ and hence $|F(\zeta)| = \rho$ holds almost everywhere. If $1/F(\zeta)$ were bounded, we would have as in lemma 1, $1/|F(\zeta)| \leq 1/\rho$. Hence $|F(\zeta)| \leq \rho$ and this is a contradiction. Therefore $1/F(\zeta)$ is unbounded and there exists a point z_2 in \mathcal{A}_1 such that $|f(z_2)| < \rho/2$. Let \mathcal{A}_2 be the component of the image of $|\tau v| < \rho/2$ which contains z_2 . Similarly as in the proof of Iversen's theorem (13) there exists a curve L in D_{ro} along which $f(z) \rightarrow 0$. However small r_0 may be taken, there exists such a curve L in D_{r_0} and the theorem is proved.

Theorem 1.4'. Under the same conditions as in theorem 1.3', $S_{z_o}^{(D)} - \Gamma_{z_o}^{(C')}$ is contained in $R_{z_o}^{(D)}$ except at most a set of capacity zero⁽¹⁴⁾.

Proof. Since $S_{z_0}^{(D)} - I_{z_0}^{(C')}$ is an open set by theorem 1.1, it consists of an at most enumerably infinite number of connected domains and it suffices to prove the theorem for a component \mathcal{Q} chosen arbitrarily. The intersection of \mathcal{Q} and the complement of $R_{z_0}^{(D)}$, namely the exceptional set, is a Borel set. Assume that its capacity is positive. Take a sequence $r_1 > r_2 > ...,$ $r_n \rightarrow 0$ and let E_n be the set of values in \mathcal{Q} not belonging to \mathfrak{D}_{r_n} . Since E_1 $\subset E_2 \subset ...$ and $\bigcup_{n=1}^{\infty} E_n$ is the exceptional set, there exists n_0 such that $E_n(n \ge n)$

Makoto Onakoto.

 n_0 is of positive capacity. We may suppose that in $D_{r_n} f(z)$ takes no value of a closed set E of positive capacity in \mathcal{Q} , which is then of positive distance from the boundary of *Q*. By Frostman's theorem (15) there exists a positive mass-distribution $\mu(w)$ on E such that $u(w) = \int_{E} \log \frac{1}{|w-w|}$ $d\mu(\omega)$ is bounded: $u(\omega) \leq k$, $u(\omega) = k$ holds on E except a set of capacity zero and u(w) is harmonic outside E. Let v(w) be the conjugate function of u(w) and put $g(w) = e^{u(w) + iv(w)}$. Then $|g(w)| \leq e^k$. Take r_n sufficiently small and let the distance between E and $\overline{Y_{r_n}}^{(C')}$ be positive. Put $\lambda = F(z) = g(f(z))$ by selecting a branch of g(w). Then F(z) is a one-valued bounded regular function in D_{r_n} and $|F(e^{i\theta})| \leq e^{k'}$, where $F(e^{i\theta})$ is the boundary value on C' and $k' = \max u(w)$ for $w \in \overline{Y_{r_n}}^{(CV)}$. Applying theorem 1.1' to F(z) and D, we have $\overline{\lim} |F(z)| \leq e^{k'}$. Since $E \subset S_{z_0}^{(D)}$, there exists a sequence $z_1, z_2, \dots, z_n \to z_0$ such that $f(z_n) \to w_0 \in E$, where $u(w_0)$ =k. Therefore $|F(z_n)| \rightarrow e^k$. Since k' < k, this is a contradiction. Hence the exceptional set of values in \mathcal{Q} must be of capacity zero.

Example. Exclude a non-empty closed set E of capacity zero from a circle |w| < 1; map conformally the remaining domain on a circle D: |z| < 1 and let z_0 be a singular point of w(z) on C: |z| = 1. Then $S_{z_0}^{(D)} = S_{z_0}^{(C)}$ is the closed circle $|w| \leq 1$ and $\Gamma_{z_0}^{(C)}$ is the sum of E and the circumference |w| = 1. If we exclude the image of E from C, which is of measure zero, $\Gamma_{z_0}^{(C')}$ is |w| = 1 for remaining C'_i and $S_{z_0}^{(D)} - \Gamma_{z_0}^{(C')}$ is |w| < 1 and is included in $R_{z_0}^{(D)}$ except a set of capacity zero, which is just the excluded set E.

4. Now we remove the restriction of boundedness of f(z). If $S_{z_0}^{(D)}$ is not the whole plane, it is easily reduced by a linear transformation to the case where f(z) is bounded. If $S_{z_0}^{(D)}$ is the whole plane, theorem 1.1 is trivial. If both $S_{z_0}^{(C_1)}$ and $S_{z_0}^{(C_2)}$ are the whole planes, theorem 1.2 is trivial, but if $S_{z_0}^{(C_1)}$, for example, is not the whole plane although $S_{z_0}^{(C_2)}$ is, lemma 1 and hence the relation: $B(S_{z_0}^{(C_1)}) \subset B(\Gamma_{z_0}^{(C_1)})$ holds good still. When f(z) is of class a near z_0 , theorems 1.3 and 1.3' hold and are proved in fact by generalized Koebe's theorem (¹⁶) and by the following theorem, to which we shall give a simple proof.

Theorem (Cartwright) $\binom{17}{17}$. Let f(z) be meromorphic in a circle |z| < 1. If f(z) is of class a near z_0 , then boundary values of f(z) exist at points which are dense on |z|=1 near z_0 .

Proof. It is sufficient to prove that in any neighbourhood on |z|=1

of z_0 , there exists a point at which a boundary value exists. Suppose that f(z) omits three values a, β , γ in D_r . If $S_{z_0}^{(D)}$ is not the whole plane, we can prove the theorem by reducing to the case where f(z) is bounded. Hence we may suppose $a \in S_{z_0}^{(D)}$ and there exists a sequence $z_1, z_2, \ldots, z_n \rightarrow z_0$ such that $w_n = f(z_n) \rightarrow a$. Continue the inverse element e_{z_n} from w_n toward a along $\overline{w_n a}$. Since $f(z) \succeq a$ in D_r , the continuation up to a is impossible and must stop at a point on $\overline{w_n a}$. The z-image L_n does not oscillate by generalized Koebe's theorem. Therefore each L_n terminates at a point on C_r or θ_r . But if there exists an infinite number of L_n terminating on θ_r , $f(z) \rightarrow a$ on these curves which accumulate on $C_r^{(1)}$ or $C_r^{(2)}$ and f(z) reduces to a constant a by generalized Koebe's theorem. Hence every $L_n(n \geq n_0)$ terminates at some point on C_r and the theorem is proved, because we can take r arbitrarily small and any point near z_0 , instead of z_0 .

In the proof of theorem $1.3(^{18})$, we take a curve L in D_r , whose two end-points terminate at two points on $C_r^{(1)}$ and $C_r^{(2)}$ respectively where boundary values exist, instead of θ_r .

For theorem $1.3'(^{18})$, it may happen that there exists no such point belonging to C'. But to prove the theorem for α we take instead of θ_r a curve whose two end-points on $C_r^{(1)}$ and $C_r^{(2)}$ have boundary values different from α . The existence of such points is shown as in the proof of Cartwright's theorem. Next we shall consider theorems 1.4 and 1.4'. Theorem $1.4(^{18})$ is deduced directly from theorem $1.3(^{18})$ and it can be stated in the following form.

Theorem 1.4''. Let f(z) be meromorphic in a Jordan domain. Then $S_{z_0}^{(D)} - \Gamma_{z_0}^{(O)} \subset R_{z_0}^{(D)}$ holds except at most two values. Especially if f(z) omits just two values near z_0 , $R_{z_0}^{(D)}$ contains all values except these two values;

In theorem 1.4'(¹⁸) we may suppose that E is a bounded closed set and boundary values exist almost everywhere near z_0 , because f(z) is of bounded type near z_0 on account of the assumption that f(z) omits values of positive capacity(¹⁹). Therefore the theorem is proved similarly as before.

5. Seidel⁽²⁰⁾ has proved that if f(z) is regular in |z| < 1, |f(z)| < 1and $|f(e^{i\theta})|=1$ on an arc A almost everywhere, then an inner point of Ais a regular point of f(z) or $S_{z_0}^{(D)}$ at any ingular point $z_0 \in A$ is a closed circular disc $|w| \leq 1$, by the same method as in the proof of Schwarz's theorem. We shall call such function a function of class U'. From this and theorem 1.3' we have

Makoto Онотѕика.

Theorem (Seidel) $\binom{20}{2}$. Let f(z) be a function of class U' and be not regular on A. If $f(z) \neq a$ (|a| < 1) in |z| < 1, f(z) has boundary value a at any singular point or at points on A accumulating on this singular point.

From theorem 1.4' we have

Theorem (Extension of Seidel's theorem) $\binom{20}{2}$. Let f(z) be a function of class U' and not regular on A. Then $R_{z_0}^{(D)}$ at any singular point contains every value except at most values of capacity zero.

From theorem 1.4'' the next theorem is easily proved.

Theorem (Cartwright) $\binom{1\eta}{2}$. Let f(z) be meromorphic in |z| < 1 and $w_0 \in \Gamma_{z_0}^{(D)}$. If each $\Gamma_{z'}^{(D)}$, for $z' \in C$, has no value in $d: 0 < |w - w_0| < \eta$ for some η , then $f(z) \equiv w_0$ or $R_{z_0}^{(D)}$ contains $d': 0 < |w - w_0| < \eta'$ for some η' .

II. On Hössjer's theorems.

1. We add to $S_{z_0}^{(C_1)}$ all the possible bounded domains limited by $S_{z_0}^{(C_1)}$, which we will call holes of $S_{z_0}^{(C_1)}$, and denote the continuum by \mathcal{Q}_1 . Similarly we get \mathcal{Q}_2 . G. Hössjer proved⁽²¹⁾

Theorem I (Hössjer). Under the same conditions as in theorem 1.2, Ω_1 and Ω_2 have at least one common point and $S_{z_0}^{(D)} \subset \Omega_1 \cup \Omega_2 \cup \Delta$ holds, where Δ denotes the set of bounded domains limited by $\Omega_1 \cup \Omega_2$.

This theorem is a consequence of the theorem that for any component Δ_i of the complementary set of $S_{z_0}^{(O)}$ with respect to w-plane either $\Delta_i \subset S_{z_0}^{(D)}$ or $\Delta_i \cap S_{z_0}^{(D)} = \phi$ holds (²²), and this latter theorem is easily proved from $B(S_{z_0}^{(D)}) \subset B(S_{z_0}^{(O)})$ (²³).

Corollary. Every value of $S_{z_0}^{(D)}$ which belongs to some hole of $S_{z_0}^{(C_1)}$ but not to Ω_2 , or to some hole of $S_{z_0}^{(C_2)}$ but not to Ω_1 , or to Δ , belongs to $R_{z_0}^{(D)}$ without exception.

Proof. If one such value α does not belong to $R_{z_0}^{(D)}$, then by theorem 1.3 there exists a curve L in D terminating at z_0 such that the cluster set on L consists of one value α and this value does not belong to Ω_2 or not to Ω_1 (or not to both). Applying Hössjer's theorem to the domain lying between L and C_2 or C_1 , a contradiction is obtained.

Moreover Δ is unnecessary in theorem I; we have namely $S_{z_0}^{(D)} \subset \mathcal{Q}_1$ $\cup \mathcal{Q}_2$ or $S_{z_0}^{(D)} \cap \Delta = \phi(^{24})$. To prove this assertion, the following lemma is useful.

Lemma 2 $(Gross)({}^{9})$. Under the same conditions as in lemma 1, there exists a curve L_1 in D terminating at z_0 such that $S_{z_0}^{(L_1)} = S_{z_0}^{(C_1)}$.

Proof. Consider the domain G in lemma 1. Let $a_1, a_2,...$ be a sequence of points which are dense in $S_{z_0}^{(G)}$. Put $D_{\frac{1}{n}} \cap G = G_n$. Since $a_n \in S_{z_0}^{(G)}$, there exists a point $Q_n \in G_n$ such that $\overline{Q_n a_n} < \frac{1}{n}$ for each *n*. By connecting $Q_1, Q_2,...$ and removing the superfluous parts we gain L_1 .

Remark. Since we may suppose that two domains G for C_1 and C_2 are disjoint, we can take L_1 and L_2 disjoint in D.

Theorem 2.1. Under the same conditions as in theorem 1.2

$$S_{z_0}^{(D)} \subset \mathcal{Q}_1 \cup \mathcal{Q}_2.$$

Proof. Without loss of generality we may suppose that D is a circle |z| < 1, $z_0 = 1$ and f(z) is regular on |z| = 1 except at z_0 since L_1 and L_2 may be taken instead of C_1 and C_2 , by lemma 2. Assume that there exists a hole $\mathcal{A}_{i_{\circ}}$ which is included in $S_{z_{\circ}}^{(D)}$, whence in $R_{z_{\circ}}^{(D)}$ by the corollary. In it we take a point w_{i_0} , which is not an image of a double point of f(z) (25). We cover \mathcal{Q}_1 and \mathcal{Q}_2 by bounded simply connected domains \mathcal{P}_1 and \mathcal{P}_2 with boundaries Γ_1 and Γ_2 of analytic closed curves, having w_{i_0} as their outer point. Connect w_{i_0} with infinity outside $\overline{\varphi}_2$ by an analytic curve L which passes no branch point. Because of the analyticity of Γ_1 and Γ_2 the number of holes of $\overline{\varphi}_1 \cup \overline{\varphi}_2$, each of which is contained in some hole of $\Omega_1 \cup \Omega_2$, is finite and we denote these holes by δ_i (i=1,2,...,p). According to the definition of Φ_1 and Φ_2 , w_{i_0} belongs to some hole δ_n . We enumerate δ_i such that L meets $\delta_1, \delta_2, \dots, \delta_n$, and only those, in this order coming from infinity; so in particular $\infty \in \delta_1$ and $zv_{i_0} \in \delta_n$. And we assume $\overline{\delta}_m \cap S_{z_0}^{(D)} = \phi$ but $\overline{\delta}_{m+1}$ $\subset S_{z_0}^{(D)}$. Then $\bar{\delta}_{m+1} \subset R_{z_0}^{(D)}$ by corollary. If it is shown that this is impossible, we have $\bar{\delta}_n \cap S_{z_0}^{(D)} = \phi$ by induction, hence $w_{i_0} \in S_{z_0}^{(D)}$ which is a contradiction. We take a point w_1 which is the first intersection of L with δ_{m+1} counting from infinity, and denote by L_1 the part of L between w_1 and the point w_2 , which L meets for the first time counting from w_1 toward infinity. Then $L_1 \subset \overline{\Phi_1}$. Connect w_1 with infinity by a curve L_2 , lying outside $\overline{\Phi_1}$ except w_1 , and which divides ∂_{m+1} into two domains and passes no branch point.

Let us turn to the z-plane. For sufficiently small $r_0 > 0$, $\overline{\mathfrak{D}_{r_0}} \cap \overline{\delta}_m = \phi$, $\overline{\mathcal{M}}_{r_0}^{(C_1)} \subset \mathcal{P}_1 \quad \overline{\mathcal{M}}_{r_0}^{(C_2)} \subset \mathcal{P}_2$. Since $w_1 \in R_{z_0}^{(D)}$, there exists a point z_1 in D_{r_0} such that $f(z_1) = w_1$. Let $l_1^{(1)}$ and $l_1^{(2)}$ be the curves through z_1 corresponding

to L_1 and L_2 respectively and put $l_1^{(1)} + l_1^{(2)} = l_1$. $l_1^{(1)}$ and $l_1^{(2)}$ terminate at points on the boundary of D_{r_0} , and the end-points of $l_1^{(1)}$ and $l_1^{(2)}$ are not on C_2 and C_1 respectively except for z_0 , because the boundary values at that end-points are outside $\overline{\Psi}_2$ and $\overline{\Psi}_1$ respectively and $\overline{\mathcal{M}}_{r_0}^{(C_1)} \subset \Psi_1$ and $\overline{\mathcal{M}}_{r_0}^{(C_2)} \subset \Psi_2$. Moreover each end-point is different from z_0 , because according to Hössjer's theorem applied to the domain lying between $l_1^{(1)}$ and C_2 or $l_1^{(2)}$ and C_1 it is impossible that the cluster set on $l_1^{(1)}$ or $l_1^{(2)}$, which consists of that boundary value only, is outside \mathcal{Q}_2 or \mathcal{Q}_1 .

Therefore l_1 is a cross-cut of D_{r_0} and hence D_{r_0} is divided into two domains by it, only one of which has z_0 on its boundary and will be denoted by G_1 . Since $w_1 \in R_{z_0}^{(D)}$, there is a point z_2 in G_1 such that $f(z_2) = w_1$.

Similarly we get $l_2^{(1)}$, $l_2^{(2)}$, l_2 and G_2 . There exists a sequence $z_{\nu}(\nu = 1, 2, ...)$ of points such that $z_{\nu} \rightarrow 1$ as $\nu \rightarrow \infty$ and $f(z_{\nu}) = w_1$, and we get $l_{\nu}^{(1)}$, $l_{\nu}^{(2)}$, l_{ν} and $G_{\nu}(\nu = 1, 2, ...)$ such that l_{ν} and $l_{\nu+1}$ have no common point in D_{r_0} and $G_{\nu+1} \subset G_{\nu}$. Since f(z) is regular on C except at z_0 , l_{ν} and G_{ν} converge to z_0 as $\nu \rightarrow \infty$ and there exists a number ν_0 such that end-points of $l_{\nu}^{(1)}$, $l_{\nu}^{(2)}$, for $\nu \geq \nu_0$ terminate on $C_{r_0}^{(1)}$, $C_{r_0}^{(2)}$ except at z_0 respectively. We take a point w_3 in δ_{m+1} but not on L_2 . Since $w_3 \in R_{z_0}^{(D)}$ by corollary, there exists a domain G_0 , which is enclosed by l_{ν_1} , l_{ν_1+1} ($\nu_1 \geq \nu_0$) and parts of $C_{r_0}^{(1)}$, $C_{r_0}^{(2)}$ and which contains a point z' such that $f(z') = w_3$. Denote the part of the boundary of G_0 composed of $l_{\nu_1}^{(1)}$, $l_{\nu_1+1}^{(1)}$ and a part of $C_{r_0}^{(2)}$ by k_2 .

By the principle of argument the number of zero points of $f(z) - w_3$ in G_0 ,

$$\frac{1}{2\pi}\int_{k_1+k_2}^{k_1+k_2} d \arg (f(z)-\tau v_3) > 0.$$

Now it is possible by using L_2 to connect w_3 with infinity by a curve having no common point with the image of k_1 which is a closed curve on $L_1 \cup \varphi_1$, therefore

$$\int_{k_1} d \arg (f(z) - w_3) = 0.$$

Since $w_2 \in \overline{\delta_m}$, there holds $w_2 \in \mathfrak{D}_{r_0}$ and hence

$$\int_{k_1+k_2} d \arg (f(z) - w_2) = 0,$$

furthermore

$$\int_{k_1} d \arg (f(z) - w_2) = 0,$$

because we can connect w_2 with infinity with a curve having no common point with the set $L_1 \cup \varphi_1$.

Consequently

$$\int_{k_2} d \arg (f(z) - w_2) = 0.$$

But by using L_1 it is also possible to connect w_2 with w_3 by a curve without having common point with $L_2 \cup \Phi_2$, on which the image of k_2 lies. Accordingly

$$\int_{k_2} d \arg (f(z) - w_3) = 0.$$

whence

$$\int_{k_1+k_2} d \arg (f(z) - w_3) = 0.$$

This is a contradiction and the theorem is proved.

Remark. We denote holes of $S_{z_0}^{(C_1)}$ and $S_{z_0}^{(C_2)}$ by $\{\omega_i^{(1)}\}$ and $\{\omega_j^{(2)}\}$ respectively and call also the complements of \mathcal{Q}_1 and \mathcal{Q}_2 holes. Then for each of $\{\omega_i^{(1)}\}$ and $\{\omega_j^{(2)}\}$, we can decide whether it belongs to $S_{z_0}^{(D)}$ or not in the following sense. When it belongs to $S_{z_0}^{(D)}$, it does to $R_{z_0}^{(D)}$ with one possible exception. When $\omega_n^{(1)}$ for example, does not, then $\{\omega_n^{(1)} - (S_{z_0}^{(C_2)} + \sum' \omega_j^{(2)})\}$ $\cap S_{z_0}^{(D)} = \phi$, where Σ' means the summation for $\omega_j^{(2)}$ which belongs to $S_{z_0}^{(D)}$. And the one possible exception cannot lie in the hole, be it of $S_{z_0}^{(C_1)}$ or $S_{z_0}^{(C_2)}$, which does not belong to $S_{z_0}^{(D)}$. These facts, which contain theorem 2.1, are shown by the same method as the one used in this theorem.

2. In the same paper G. Hössjer proved

Theorem II. (Hössjer). Under the same conditions as in theorem I and under the hypothesis that f(z) is continuous on D+C except at z_0 , there exists a Jordan curve L on D+C terminating at z_0 such that

$$S_{z_0}^{(L)} \subset \mathcal{Q}_1 \cap \mathcal{Q}_2 = \mathcal{Q}.$$

But his proof seems to be imperfect in some point $\binom{26}{2}$ and unless theorem 2.1 is proved, we can say only $S_{z_0}^{(D)} \subset \Omega \cup \Delta$ when Δ exists. We state the theorem in the following form.

Theorem 2.2. Under the same conditions as in theorem 1.2, there exists a Jordan curve L in D terminating at z_0 such that

 $S_{z_0}^{(L)} \subset \Omega.$

To prove this theorem the following lemma is to be mentioned.

Lemma 3. Let D be a Jordan domain, z_0 be on its boundary, $\mathcal{Q}_i(i=1, 2,...)$ be the sequence of cross-cuts in D, disjoint of each other, not terminating at z_0 and not accumulating in D (²⁷). D being divided by \mathcal{Q}_i into two domains, let D_i be the one which has z_0 on its boundary and let the area of each $D_i \geq k > 0$ (²⁸). Then $D_0 = \bigcap_{i=1}^{\infty} D_i$ is a domain.

Proof. Take an arbitrary sequence of domains $G_n(n=1,2,...)$, such that $\overline{G_n} \subset G_{n+1} \rightarrow D$. If there is a sequence of domains $D_{i_n}(n=1,2,...)$ such that $D_{i_n} \cap G_n = \emptyset$, then the area of $D_{i_n} \rightarrow 0$. Consequently there exists a number n_0 such that for each $n \ge n_0$, $G_n \cap D_i \rightleftharpoons \emptyset$ (i=1,2,...). Since only a finite number of cross-cuts $Q_{i_1}, Q_{i_2},...,Q_{i_p}$ has common points with G_n and for other cross-cuts $Q_i, D_i \supset G_n$, so $D_0 \cap G_n = (\bigcap_{j=1}^p D_{i_j}) \cap G_n$ is a non-empty open.set (²⁹). Since $D_0 = D_0 \cap (\bigcup_{n=1}^{\infty} G_n) = \bigcup_{n=1}^{\infty} (D_0 \cap G_n), D_0$ is a non-empty open set and consists of components of domains.

Assuming that there are at least two components of D_0 , connect a point z_1 in one component H_1 with a point z_2 in other component H_2 by a polygonal curve in D. Let z_3 be the point at which the curve has a point in common with the boundary of H_1 finally counting from z_1 and Q_{i_0} be the cross-cut on which z_3 lies. Since the one side of Q_{i_0} belongs to H_1 , the curve does not enter into H_1 across Q_{i_0} after z_3 and hence z_2 can not belong to D_{i_0} because the another side of Q_{i_0} does not belong to D_{i_0} . This contradicts the definition of D_0 . Therefore D_0 is a domain.

Proof of theorem 2.2. Without loss of generality, we may suppose that D is a circle |z| < 1, $z_0=1$ and f(z) is regular on C except at z_0 by lemma 2. We shall first consider the case where one of \mathcal{Q}_1 , \mathcal{Q}_2 does not contain the other. Approximate \mathcal{Q}_1 and \mathcal{Q}_2 by two sequences of simply connected domains $\mathcal{P}_n^{(1)}$, $\mathcal{Q}_n^{(2)}$ (n=1,2,...) respectively so that $\mathcal{P}_n^{(i)} \supset \mathcal{Q}_i$, $\mathcal{Q}_n^{(i)} \supset \overline{\mathcal{Q}_{n+1}}$ (i=1, 2) and the boundary $\Gamma_n^{(i)}$ of $\mathcal{P}_n^{(i)}$ (i=1, 2) is an analytic curve and passes no branch point.

For fixed *n*, there exists a positive number r_n such that $\overline{\mathfrak{D}}_{r_n} \subset \mathcal{P}_n^{(1)} \cup \mathcal{P}_n^{(2)}$ by theorem 2.1 and $\overline{\mathcal{M}}_{r_n}^{(\overline{c}_i)} \cup \mathcal{P}_n^{(i)}$ (i=1, 2). Then there is no point of \mathcal{D}_{r_n} which corresponds to the point on $\Gamma_n^{(1)}$ outside $\mathcal{P}_n^{(2)}$ or on $\Gamma_n^{(2)}$ outside $\mathcal{P}_n^{(2)}$, because these points are not in $\mathcal{P}_n^{(1)} \cup \mathcal{P}_n^{(2)}$.

Consider the domains in D_{r_n} in which f(z) takes the values belonging to $\mathcal{P}_n^{(1)}$ and let $D_n^{(1)}$ be a component which is in contact with $C_{r_n}^{(1)}$. The values, which f(z) takes on $C_{r_n}^{(1)}$ except at z_0 , belong to $\mathcal{P}_n^{(1)}$, and hence some part of D_{r_n} near $C_{r_n}^{(1)}$, is contained in $D_n^{(1)}$.

Next we shall investigate the boundary curves of $D_n^{(1)}$ inside D_{r_n} . These curves are images of an analytic $\Gamma_n^{(1)}$, and hence consist of at most an enumerably infinite number of cross-cuts having no common point with each other, not accumulating in D_{r_n} and not terminating on $C_{r_n}^{(1)}$, including z_0 . For if a cross-cut terminates at z_0 , the cluster set on that curve consists of one point on $\Gamma_n^{(1)}$ and $\mathcal{Q}_1 \subset \mathcal{Q}_n^{(1)}$, and they are disjoint, but it is impossible by Hössjer's theorem. And further $D_n^{(1)}$ is a simply connected domain.

Considering $\mathscr{Q}_n^{(2)}$, we get another domain $D_n^{(2)}$ with the same character. The boundary curves of both domains inside D_{r_n} are cross-cuts not accumulating in D_{r_n} , not terminating at z_0 and free from each other, because the common point corresponds to the point of intersection of $\Gamma_n^{(1)}$ and $\Gamma_n^{(2)}$, and this is outside $\overline{\mathfrak{D}}_{r_n}$ by selecting r_n sufficiently small. Considering that any cross-cut is the boundary curve of non-empty $D_n^{(1)}$ or $D_n^{(2)}$, the further assumption of lemma 3 is satisfied and the intersection $D^n = D_n^{(1)} \cap D_n^{(2)}$ is a domain.

For each *n* we get domains $D_n^{(1)}$, $D_n^{(2)}$ and D^n such that $D_{n+1}^{(i)} \subset D_n^{(i)}$ (*i*=1,2) and hence $D^{n+1} \subset D^n$ holds. If we take $r_n \rightarrow 0$, then $D^n \rightarrow z_0$. Let z_n be a point in D^n , connect z_n with z_{n+1} in D^n by a polygonal curve, combine them and make it a simple curve by removing the superfluous parts from it. Then it is easily seen that $S_{z_0}^{(L)} \subset \Omega$.

Now in the case where the one contains the other, for instance $\mathcal{Q}_1 \subset \mathcal{Q}_2$, we get L by lemma 2.

Remark. When \mathcal{Q} consists of many continuums, $S_{z_0}^{(L)}$ belongs to a component of \mathcal{Q} since $S_{z_0}^{(L)}$ is a continuum, and there is no more such a curve on which the cluster set belongs to the other component of \mathcal{Q} , because of Hössjer's theorem.

Mathematical Institute, Nagoya University.

Notes.

(1) We use + for sums of disjoint sets.

(2) \mathfrak{D}_r denotes the closure of \mathfrak{D}_r : ditto concerning M_r (E) \vec{Y}_r (E) etc.

(3) We will call this a function of class a.

(4) Cf. W. Gross: Zum Verhalten der konformen Abbildung am Rande. Math. Zeit. 3 (1919).

(5) An example will be shown at the end of $n^{\circ}3$.

(6) F. Iversen: Sur quelques propriétés des fonctions monogènes au voisinage d'un point singulier. Öfv. af Finska Vet-Soc. Förh. 58 (1916).

W. Seidel: On the cluster values of analytic functions Trans. Amer. Math. Soc. 34 (1932).
(7) J. L. Doob: On a theorem of Gross and Iversen. Ann. of Math. 33 (1932).

K. Noshiro: On the singularities of analytic functions. Jap. Jour. Math. 17 (1940).

(8) Cf. S. Ishikawa: On the cluster sets of analytic functions. Nippon Sugaku-Butsurigaku Kaishi. 13 (1939) (in Japanese).

(9) W. Gross: Zum Verhalten analytischer Funktionen in der Umgebung singulärer Stellen. Math. Zeit. 2 (1918).

(10) $Q_1 \supset Q_2$ represents that Q_2 is nearer to z_0 than Q_1 .

(11) S. Kametani and T. Ugaheri: A remark on Kawakami's extension of Löwner's lemma. Proc. Imp. Acad. Tokyo. 18 (1942).

(12) M. Tsuji: On an extension of Löwner's theorem. Proc. Imp. Acad. Tokyo. 18 (1942).
 (13) F. Iversen: Recherches sur les fonctions inverses des fonctions méromorphes. Thèse de Helsingfors. 1914.

K. Noshiro: loc. cit. (7).

(14) Capacity means logarithmic capacity.

(15) O. Frostman: Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel. Lunds Univ. Mat. Sem. 3 (1935).

(16) We denote Koebe's theorem for a function of class α by generalized Koebe's theorem. Cf. W. Gross: Über die Singularitäten analytischer Funktionen. Mh. Math. u. Physik. 29 (1918).

(17) M. L. Cartwright: On the behaviour of analytic functions in the neighbourhood of its essential singularities. Math. Ann. 112 (1936).

(18) Here, theorems for a function of class α are considered.

(19) Cf. R. Nevanlinna: Eindeutige analytische Funktionen. Berlin. 1936.

(20) W. Seidel: On the distribution of values of bounded analytic function. Trans. Amer. Math. 36 (1934).

(21) G. Hössjer: Bemerkung über einen Satz von E. Lindelöf. Fysiogr. Sällsk. Lunds. Förh. 6 (1937). G. Hössjer assumed the continuity of f(z) on the closed Jordan domain except for z_0 , but here it is unnecessary.

(22) ϕ represents an empty set.

(23) K. Noshiro: loc. cit. (7).

(24) W. Gross has obtained already some similar results. But our results are different from his in several points. W. Gross: loc. cit. (9).

(25) We will call it briefly the branch point (in the w-plane).

(26) Giving two sequences of points $\{z_n\}$ and $\{z_n'\}$ which converge to z_0 on C_1 and C_2 respectively and proving that any curve in D connecting two points z_n and $z_{n'}$ meets at least

one of given domains in D, he concluded the existence of a domain having z_0 on its boundary among these domains. But it seems hasty to conclude so.

- (27) That is, there runs only a finite number of curves near any point in D.
- (28) Area means the inner extent in Jordan's sense.
- (29) Since Q_{ij} (j=1, 2, ..., p) don't pass z_0 , some neighbourhood of z_0 in D is included

in $\bigcap_{\substack{j=1\\j=1}}^{p} D_{ij}$. Connect z_0 with a point z_1 in G_n by a curve in D. If this curve does not meet Q_{ij} $(j=1, 2, \ldots, p_i)$, z_1 will belong to $\bigcap_{\substack{j=1\\j=1}}^{p} D_{ij}$, otherwise there will exist a cross-cut Q_{io} which the curve intersects at the first time counting from z_0 . Since one side of Q_{io} belongs to $\bigcap_{\substack{p\\j=1}}^{p} D_{ij}$ and some part of Q_{io} lies in G_n , it is possible to enter into G_n staying inside $\bigcap_{\substack{p\\j=1}}^{p} D_{ij}$. Accordingly $(\bigcap_{\substack{j=1\\j=1}}^{p} D_{ij}) \bigcap_{\substack{p\\j=1}}^{p} G_n$ is a non empty open set.