On the Cluster Sets of Analytic Functions in a Jordan Domain.

By Makoto Ohisuka.

(Received Oct. 11, 1948)

I. Cluster Sets defined by the convergence set.

1. Let D be a Jordan domain, C its boundary, E any set on $\left.D+C{ }^{1}\right)$ and z_{0}, z_{0}^{\prime} two points on C. Divide C into two parts C_{1} and C_{2} by z_{0} and z_{0}^{\prime}. We denote the part of D, C, E, C_{1} and C_{2} in $\left|z-z_{0}\right| \leqq r$ by D_{r}, C_{r}, $E_{r}, C_{r}{ }^{(1)}$ and $C_{r}{ }^{(2)}$ respectively and the part of $\left|z-z_{0}\right|=r$ in D by θ_{r}. Let $z=f(z)$ be a meromorphic fnnction in D and \mathfrak{D}_{r} the set of values taken by $f(z)$ in D_{r}. Then the intersection $\cap \overline{\mathfrak{D}}_{r}=S_{z_{0}}^{(D)}\left({ }^{(}\right)$is called the cluster set of $f(z)$ in D at z_{0} and the intersection $\cap_{r>0} \mathfrak{D}_{r}=R_{z_{0}}^{(D)}$ the range of values of $f(z)$ in D at z_{0}. The intersection ${ }_{r>0} \bar{M}_{r}^{(E)}=S_{z_{0}}^{(E)}$, where $M_{r}^{(E)}$ is the union $\cup S_{z^{\prime}}^{(D)}$, for $z_{0} \neq z^{\prime} \in E, S_{z^{\prime}}^{(D)}$ consisting of the single value $f\left(z^{\prime}\right)$ for $z^{\prime} \in D$, is called the cluster set of $f(z)$ on E at z_{0}. For example, $S_{z_{0}}^{(C)}, S_{z_{0}}^{\left(C_{1}\right)}, S_{z_{0}}^{\left(C_{2}\right)}$ and $S_{z_{0}}^{(L)}$, where L is a Jordan curve in D terminating at z_{0}, are thus defined. If $S_{z_{0}}^{(L)}$ consists of only one value π, we call α the asymptotic value, L the asymptotic path and we denote the set of all the asymptotic values at z_{0} by $\Gamma_{z_{0}}^{(D)}$, and call it the convergence set of $f(z)$ at z_{0}. When $f(z)$ omits at least three values in the neighbourhood of $\left.z_{0}{ }^{3}\right), \Gamma_{z_{0}}^{(D)}$ consists of at most one value $\left({ }^{4}\right)$. Then we call the value of non-empty $\Gamma_{z_{0}}^{(D)}$ the boundary value at z_{0}, and denote it by $f\left(z_{0}\right)$. Furthermore the intersection $\cap \overline{Y_{r}^{(k)}}=\Gamma_{z_{0}}^{(k)}$ for $E \subset C, Y_{r}^{(E)}$ being the union $\cup \Gamma_{z^{\prime}}^{(j)}$ for $z_{0} \not z^{\prime} \in E_{r}$, is called the cluster set of the convergence set of $f(z)$ on E at z_{0}.
$S_{z_{0}}^{(D)}$ includes all the other cluster sets and $S_{z_{0}}^{(E)}$ includes $\Gamma_{z_{0}}^{(E)} . S_{z_{0}}^{(D)}, S_{z_{0}}^{\left(C_{1}\right)}$, $S_{z_{0}}^{\left(C_{2}\right)}$ and $S_{z_{0}}^{(L)}$ are continuums but not necessarily $\Gamma_{z_{0}}^{(C)}, \Gamma_{z_{0}}^{\left(C_{1}\right)}$ and $\Gamma_{z_{0}}^{\left(C_{2}\right)}$ are ($\left.{ }^{5}\right)$.
2. Let $f(z)$ be bounded in the neighbourhood of z_{0}. Then it is known that $\left({ }^{6}\right)$

$$
\varlimsup_{z \rightarrow z_{0}}|f(z)|=\varlimsup_{C z z^{\prime} \rightarrow z_{0}}\left(\varlimsup_{z \rightarrow z^{\prime} \neq z_{0}}|f(z)|\right),
$$

and that this is equivalent to $B\left(S_{z_{0}}^{(D)}\right) \subset B\left(S_{z_{0}}^{(C)}\right), B(S)$ being the boundary set of $S\left(^{7}\right)$. Also it is known that $B\left(S_{z_{0}}^{(D)}\right) \subset B\left(\Gamma_{z_{0}}^{(C)}\right)$ holds in the case where D is a circle $\left({ }^{s}\right)$; then it holds also in the general case where D is a Jordan domain, by means of a one-to-one continuous corresponden-
ce between them, with their boundaries included. By the same reason we may, and shall, assume that D is a circle $|z|<1$ and $z_{0}=1$ in proofs of our theorems 1.1 to 1.3 .

Theorem 1.1. Let D be a Jordan domain, C its boundary, z_{0} a point on C and $f(s)$ a bounded regular function in D. Then

$$
B\left(S_{z_{0}}^{(D)}\right) \subset B\left(\Gamma_{z_{0}}^{(C)}\right)
$$

Proof. Transform the circle $|z|<1$ onto $|\zeta|<1$ by the transformation $\zeta=\frac{z-z_{1}}{1-\bar{z}_{1} z}\left(\left|z_{1}\right|<1\right)$ and put $z_{1}=1+x, f(z(\zeta))=F(\zeta)$ and $\zeta=\rho e^{i p}$. Then

$$
|\zeta+1|=\left|\frac{x+\bar{x} z}{1-z-\bar{x} z}\right| \leqq \frac{2|x|}{|1-z|-|x|}
$$

Hence for $|1-z| \geqq \delta$ and $|z| \leqq 1, \zeta+1$ tends to 0 uniformly as $x \rightarrow 0$. Put $\varlimsup_{\theta \rightarrow \pm 0}\left|f\left(e^{i \theta}\right)\right|=m$ and suppose $\left|f\left(e^{i \theta}\right)\right| \leqq m+\varepsilon$ when $|\theta| \leqq \delta_{1}$, for any given positive ε. Let this arc be transformed into the arc $\overparen{\alpha \beta}$ by $\zeta=\zeta(z)$ and suppose the length of $\overparen{\sigma \cdot \boldsymbol{\beta}} \geq 2 \pi-\varepsilon$ on taking $|x|$ sufficiently small. This is possible, because the both end-points of $\overparen{\alpha, \beta}$ tend to -1 as $x \rightarrow 0$. Put $|F(\vartheta)|=|f(z)|<M$ and let E be the set of points on $\overparen{\mu \beta}$ where $F\left(e^{i \phi}\right)$ exists, and $\overparen{\alpha \beta}$ the complementary set of $\overparen{\alpha \beta \beta}$ with respect to $|\zeta|=1$. Then by Cauchy's formula and Lebesgue's theorem

$$
\begin{aligned}
& \quad\left|f\left(z_{1}^{\prime}\right)\right|=|F(0)| \leqq \varlimsup_{\rho \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(\rho e^{i \varphi}\right)\right| d \varphi=\varlimsup_{\rho \rightarrow 1} \frac{1}{2 \pi} \int_{E}\left|F\left(\rho e^{i \rho}\right)\right| d \varphi \\
& +\varlimsup_{\rho \rightarrow 1} \frac{1}{2 \pi} \int_{\widetilde{\alpha, 3}}\left|F\left(\rho c^{i \varphi}\right)\right| d \varphi \geqq \frac{1}{2 \pi} \int_{E}\left|F\left(e^{i \varphi}\right)\right| d \varphi+\frac{M \varepsilon}{2 \pi} \leqq \frac{m+\varepsilon}{2 \pi}(2 \pi-\varepsilon) \\
& + \\
& +\frac{M \varepsilon}{2 \pi}=m+\frac{\varepsilon}{2 \pi}(2 \pi-\varepsilon+M-n) .
\end{aligned}
$$

Hence

$$
\overline{\lim }_{z \rightarrow 1}|f(z)| \leqq m
$$

that is

$$
\overline{\lim }_{z \rightarrow 1}|f(z)| \leqq \overline{\lim }_{\theta \rightarrow \pm 0}\left|f\left(e^{i \theta}\right)\right|
$$

On the Cluster Sets of. Analytic Functions in a Jordan Domain. ' 3
From this relation it follows easily $B\left(S_{z_{0}}^{(D)}\right) \subset B\left(\Gamma_{z_{0}}^{(0)}\right)\left({ }^{7}\right)$.
Now we divide C into C_{1} and C_{2}.
Lemma $1\left(^{9}\right)$. Under the same conditions as in theorem 1.1, there exists a domain G bounded by a part of C_{1} and a curve L in D terminating at z_{0} such that $S_{z_{0}}^{\left(C_{1}\right)}=S_{z_{0}}^{(G)}$.

Proof. Take a sequence of points $Q_{1} \supset Q_{2} \supset \ldots\left({ }^{10}\right), Q_{n} \rightarrow z_{0}$, on C_{1}, and a neighbourhood N ii D at every point $P, Q_{k} \supseteq P \supset Q_{k+1}$, such that every point of the image of N_{P} in the w-plane has a distance $<\frac{1}{k}$ from $S_{P}^{(D)}$. Then the arc $Q_{k} \supseteq P \supseteq Q_{k+1}$ can be covered by a finite number of N_{F}, which we denote by $N_{1}^{(k)}, \ldots \ldots, N_{n_{k}}^{(k)}$. Put $\bigcup_{k=1}^{\infty} \bigcup_{\nu=1}^{n_{k}} N_{\nu}^{(k)}=G$. Then G satisfies the conditions required.

Theorem 1. 2. Under the same conditions as in lemma 1,

$$
B\left(S_{z_{0}}^{(C i)}\right) \subset B\left(\Gamma_{z_{0}}^{(C i)}\right),(i=1,2) \text { and } B\left(S_{z_{0}}^{(C)}\right) \subset B\left(I_{z_{0}}^{(C)}\right) .
$$

Proof. Put $\varlimsup_{\theta \rightarrow+0}\left|f\left(e^{i \theta}\right)\right|=m$ and $\varlimsup_{\theta \rightarrow+0}\left(\varlimsup_{z \rightarrow e^{i \theta}}|f(z)|\right)=M$, and assume m $<M$. For any given positive ε, there exists $r_{0}>0$ such that $\overline{Y_{r_{0}}^{\left(C_{1}\right)}}$ is included in the circle $|w|<m+\varepsilon$, and $\overline{M_{r_{0}}^{(G)}}$ in $|w|<M+\varepsilon, G$ being the domain in lemma 1. Map conformally the domain, bounded by $C_{r_{0}}$ and parts of L in lemma 1 and $\theta_{r_{0}}$, on the unit circle in the ζ-plane so that $C_{r_{0}}^{(1)}$ corresponds to the upper semicircle and z_{0} to $\zeta=1$, and put $f(z(\zeta))=F(\zeta)$ and $\zeta=\rho e^{i \vartheta}$. Then $|F(\zeta)|<M+\varepsilon$. The boundary values $F\left(e^{i q}\right)$ exist at almost all points $e^{i \varphi}, 0 \leqq \varphi \leqq 2 \pi$, by Fatou's theorem and $\left|F\left(e^{i \varphi}\right)\right|<m+\varepsilon$ for $o<\varphi \leqq \pi$, since $\overline{Y_{r_{0}}^{\left(\sigma_{1}\right)}}$ is included in $|w|<m+\varepsilon$. Put $F(\zeta) \cdot \overline{F(\bar{\zeta})}=G(\zeta), \bar{\zeta}$ and \bar{F} designating the conjugate values of ζ and F. Then for almost all $e^{i \varphi}, 0 \leqq \varphi \leqq 2 \pi$, $\left|G\left(e^{i \varphi}\right)\right|=\left|F\left(e^{i \varphi}\right)\right| \cdot\left|F\left(e^{-i \varphi}\right)\right|<(M+\varepsilon)(m+\varepsilon)=m_{1}$. Similarly as in theorem $1.1|G(\zeta)|<m_{1}$ holds for all ζ in the unit circle. Especially for each real value $\zeta=t,|G(t)|=|F(t)|^{2}<m_{1}<M^{2}$ holds for sufficiently small ε. Applying theorem 1.1 to the upper semicircular disc, the cluster set of $F(\zeta)$ at $\zeta=1$, consequently the cluster set on the upper semicircle, which is nothing but the set $S_{\varepsilon_{0}}^{\left(C_{1}\right)}$, is included in $|w|<\sqrt{m_{1}}<M$. According to the definition of M, there exists, however, a point of $S_{z_{0}}^{\left(C_{1}\right)}$ on $|z v|=M$. This is a contradiction, and we get $m \geqq M$. But obviously $m \leqq M$ and so $m=M$, i.e. $\varlimsup_{\theta \rightarrow+0}$ $\left|f\left(e^{i \theta}\right)\right|=\varlimsup_{\theta \rightarrow+0}\left(\varlimsup_{\left.z \rightarrow i^{i \theta}\right)}|f(z)|\right)$. The equivalence of this with the proposition $B\left(S_{z_{0}}^{\left(C_{1}\right)}\right) \subset B\left(\Gamma_{z_{0}}^{\left(C_{1}\right)}\right)$ can be shown as usual ${ }^{\left({ }^{7}\right)}$.

Similarly $B\left(S_{z_{0}}^{\left(C_{2}\right)}\right) \subset B\left(I_{z_{0}}^{\left(C_{2}\right)}\right)$ and from both relations it follows $B\left(S_{z_{0}}^{(C)}\right)$ $\subset B\left(I_{z_{0}}^{\prime\left(C^{\prime}\right)}\right)$.

Theorem 1. 3. If there cxists a value α such that $\alpha \in S_{z_{0}}^{(D)}-\Gamma_{z_{0}}^{(C)}$ and $\alpha \bar{\varepsilon} R_{s o}^{(D)}$, under the same conditions as in theorem 1.1 , then $\alpha=f\left(z_{0}\right)$.

Froof. We may suppose that $\mu=0$. For sufficiently small $r_{0}>0,0 \bar{\epsilon} \mathfrak{T}_{r}$ and the distance ρ_{1} foom 0 to the set $\overline{Y_{r_{o}}^{(c)}}$ is positive. We may suppose by taking r_{0} stitably that at the two end-points of $\theta_{r_{0}}$ the boundary values exist. Theal $|f(z)|>\rho_{2}>0$ for $z \in \theta_{r_{0}}$. Put Min $\left(\rho_{1}, \rho_{2}\right)=0>0$. Sincè 0 $\epsilon S_{z_{0}}^{(D)}$, there is a point z_{1} in $D_{r_{0}}$, whose image $v_{1}=f\left(z_{1}\right)$ lies in $|w|<\rho$. Take an inverse element $e_{z_{1}}$ and continue it analytically (with algebraic characters) in $\cdot \mathrm{a} v \mathrm{y}$ way along the radius from τv_{1} to $\tau=0$. Since $0 \bar{\epsilon} \mathfrak{D}_{\text {ro }}$ the continuation up to 0 is impossible: it must end at a point β on the radits $\overline{0 \pi_{1}}$. There corresponds a curve L in $D_{r_{0}}$ such that $f(z) \rightarrow \beta$ when z approaches to $C_{r o}$ on L. If L oscillates, $f(s)$ reduces to a constant by Kocbe's theorem, so that L terminates at a point on $C_{r_{0}}$ and β is a boundary value at this point. But $\overline{Y_{r_{0}}^{(C)}}$ has no point in $|w|<\rho$ and so L terminates at $s_{0}=1$ and $f\left(z_{0}\right)=\beta$. However, if we take another element $e_{z_{2}}$ corresponding to $z_{2} \in D_{r_{0}}$ at a point $\tau \omega_{2}=f\left(z_{2}\right)$ i: $|w|<\rho$ which is near w_{1}, but not on $\overline{0 w_{1}}$, then follows similarly $f\left(z_{0}\right)=\gamma, \gamma$ being a point on the radius $\overline{0 w}$. Accorcingly $f\left(z_{0}\right)=\beta=\gamma=0$.

The followitg theorem is an immediate consequence of theorem 1.3.
Theorem 1. 4. Under the same conditions as in theorem 1.1, cucry valuc bilonging to $S_{z_{0}}^{(D)}-\Gamma_{z_{0}}^{(C)}$ belongs to $R_{z_{0}}^{(D)}$ except at most onc valuc.
3. Formerly we have defined $\Gamma_{z_{0}}^{\gamma()}, \Gamma_{z_{0}}^{\left(C_{1}\right)}$ and $\Gamma_{z_{0}}^{\left(C_{2}\right)}$ by considering all the boundary values on the general Jordan domain D. But we shall consider hereafter only the case when D is the unit circle $|z|<1$. Let ε be any set of points of Lebesgue measure zero on $|z|=1$, put $C-c=C^{\prime}, C_{1}-e=C_{1}^{\prime}$ and $C_{2}-\varepsilon=C_{2}^{\prime}$ and consider $\Gamma_{z_{0}}^{\left(C^{\prime}\right)}, \Gamma_{z_{0}}^{\left(C^{\prime}\right)}$ and $\Gamma_{z_{0}}^{\left(\left(_{1}^{\prime 2)}\right.\right.}$. Then a theorem similar to theorem 1.1 is obtained: we shall call it theorem 1.1^{\prime}. Furthermore, using the same method as in theorem 1.2, we can prove $B\left(S_{z_{0}}^{(C i)}\right) \subset B\left(S_{z_{0}}^{\left(C_{0}^{\prime \prime}\right)}\right)$ $\subset B\left(\Gamma_{z_{0}}^{\left(C^{\prime}\right)}\right)(i=1,2)$ and $B\left(S_{z_{0}}^{(C)}\right) \subset B\left(S_{z_{0}}^{\left(C C^{\prime}\right)}\right) \subset B\left(\Gamma_{z_{0}}^{(C \prime)}\right)$, which we shall call theorem 1.2'. However, theorems corresponding to theorems 1.3 and 1.4 must be stated in somewhat different forms. Namely :

Theorem 1.3'. If there exists a value α suck that $\alpha \in S_{z_{0}}^{(D)}-\Gamma_{z_{0}}^{\left(C^{\prime}\right)}$ and and $\alpha \bar{\epsilon} R_{z_{0}}^{(D)}$ under the same conditions. as in theorem 1.1 (with $D=$ unit circle), then $\mu=f\left(z_{0}\right)$ or there is a sequence $z_{1}, z_{2}, \ldots, z_{n} \rightarrow z_{0}$ of points on $|z|=1$, such that $\mu=f\left(z_{n}\right)$.

Proof. To prove this theorem we have to employ a method different from that used in the proof of theorem 1.3. We may suppose that $\alpha=0$, and we determine r_{0} and ρ as in theorem 1.3, provided that the two end-points of $\theta_{r_{0}}$ do not belong to the exceptional set e. Since $0 \in S_{z_{0}}^{(D)}$, there is a point z_{1} in $D r_{0}$ such that $v_{1}=f\left(z_{1}\right)$ is in $|w|<\rho$ and consequently there exists a domain Δ_{1} in $D_{r_{0}}$, in which $f(z)$ takes the values in $|w|<\rho$ and on whose boundary $|f(z)|=\rho$ in $|z|<1$. Hence Δ_{1} has no common point with $\theta_{r_{0}}$ and is a simply connected domain because $f(z)$ is regular in $|z|$ <1. Now we shall prove that $1 / f(z)$ is not bounded in Δ_{1}. Map Δ_{1} conformally on $|\zeta|<1$ and put $f(z(\zeta))=F(\zeta)$. Then by Fatou's theorem there exist boundary values of both $F(\zeta)$ and $z(\zeta)$ at almost all points on $|\zeta|=1$. Now, let E be the set of points on $|\zeta|=1$ at which both $F(\zeta)$ and $z(\zeta)$ exist and the relation : $|z(\zeta)|=1$ holds, and E^{\prime} be the image of E by $z(\zeta)$. By Kametani-Ugaheri's theorem (${ }^{11}$) $m_{*} E \leqq m^{*} E^{\prime}$. Then we have $E^{\prime} \subset e$, because $\lim f(z)$ exists along a curve terminating at every point of E^{\prime}. Therefore $m E^{\prime}=0$ and $m_{*} E=0$. By Tsuji (${ }^{12}$) the set of all points on $|\zeta|=1$ at which boundary values $z(\zeta)$ exist and the relation : $|z(\zeta)|=1$ holds is measurable. This set consists of E and a set of measure zero where boundary values of $F(\zeta)$ do not exist, so that E is also measurable and $m E=0$. Consequently both $F(\zeta)$ and $z(\zeta)$ exist on $|\zeta|=1,|z(\zeta)|<1$ and hence $|F(\zeta)|=\rho$ holds almost everywhere. If $1 / F(\zeta)$ were bounded, we would have as in lemma $1,1 /|F(\zeta)| \leqq 1 / \rho$. Hence $|F(\zeta)| \leqq \rho$ and this is a contradiction. Therefore $1 / F(\zeta)$ is unbounded and there exists a point z_{2} in U_{1} such that $\left|f\left(z_{2}\right)\right|<\rho / 2$. Let Δ_{2} be the component of the image of $|z|<\rho / 2$ which contains z_{2}. Similarly as in the proof of Iversen's theorem $\left.{ }^{(13}\right)$ there exists a curve L in D_{r} along which $f(z) \rightarrow 0$. However small r_{0} may be taken, there exists such a curve L in $D_{r_{0}}$ and the theorem is proved.

Theorem 1.4'. Under the same conditions as in theorem $1.3^{\prime}, S_{z_{0}}^{(D)}-\Gamma_{z_{0}}^{(C(1)}$ is contained in $R_{z_{0}}^{(D)}$ except at most a set of capacity zero $\left({ }^{14}\right)$.

Proof. Since $S_{z_{0}}^{(D)}-I_{z_{0}}^{(C)}$ is an open set by theorem 1.1, it consists of an at most enumerably infinite number of connected domains and it suffices to prove the theorem for a component Ω chosen arbitrarily. The intersection of Ω and the complement of $R_{z_{0}}^{(D)}$, namely the exceptional set, is a Borel set. Assume that its capacity is positive. Take a sequence $r_{1}>r_{2}>\ldots$, $r_{n} \rightarrow 0$ and let E_{n} be the set of values in Ω not belonging to $D_{r_{n}}$. Since E_{1} $\subset E_{2} \subset \ldots$ and $\bigcup_{n=1}^{\infty} E_{n}$ is the exceptional set, there exists n_{j} such that $E_{n}(n \geq$
n_{0}) is of positive capacity. We may suppose that in $D_{\gamma_{n}} f(z)$ takes no value of a closed set E of positive capacity in Ω, which is then of positive distance from the boundary of Ω. By Frostman's theorem $\left(^{(15)}\right.$) there exists a positive mass-distribution $\mu(z v)$ on E such that $u(z v)=\int_{E} \log \frac{1}{|z v-\omega|}$ $d \mu(\omega)$ is bounded : $u(v) \leqq k, u(w)=k$ holds on E except a set of capacity zero and $u(w)$ is harmonic outside E. Let $v(w)$ be the conjugate function of $u(z v)$ and put $g(v v)=e^{u(w)+i v(w)}$. Then $|g(z v)| \leqq e^{k}$. Take r_{n} sufficiently small and let the distance between E and $\overline{Y_{r_{n}}{ }^{(r)}}$ be positive. Put $\chi=F(s)=g(f(z))$ by selecting a branch of $g(z)$. Then $F(z)$ is a one-valued bounded regular function in $D_{r_{n}}$ and $\left|F\left(c^{i \theta}\right)\right| \leqq c^{k \prime}$, where $F\left(c^{i \theta}\right)$ is the boundary value on C^{\prime} and $k^{\prime}=\max u(w)$ for $w \in \overline{Y_{r_{n}}^{(0)}}$. Applying theorem 1.1' to $F(z)$ and D, we have $\varlimsup_{z \rightarrow z_{0}}|F(z)| \leqq c^{k^{\prime}}$. Since $E \subset S_{z_{0}}^{(\lambda)}$, there exists a sequence $z_{1}, z_{2}, \ldots, z_{n} \rightarrow z_{0}$ such that $f\left(z_{n}\right) \rightarrow w_{0} \in E$, where $u\left(z v_{0}\right)$ $=k$. Therefore $\left|F\left(z_{n}\right)\right| \rightarrow e^{k}$. Since $k^{\prime}<k$, this is a contradiction. Hence the exceptional set of values in Ω must be of capacity zero.

Example. Exclude a non-empty closed set E of capacity zero from a circle $|w|<1$; map conformally the remaining domain on a curcle D : $|z|<1$ and let z_{0} be a singular point of $v(z)$ on $C:|z|=1$. Then $S_{z_{0}}^{(\not))}$ $=S_{20}^{(C)}$ is the closed circle $|w| \leqq 1$ and $\Gamma_{z_{0}}^{(C)}$ is the sum of E and the circumference $|v|=1$. If we exclude the image of E from C, which is of measure zero, $\Gamma_{z 0}^{\left(C_{0}^{\prime}\right)}$ is $|w|=1$ for remaining C_{1}^{\prime} and $S_{z 0}^{(D)}-\Gamma_{z 0}^{\left(C_{0}^{\prime}\right)}$ is $|z v|<1$ and is included in $R_{z o}^{(D)}$ except a set of capacity zero, which is just the excluded set E.
4. Now we remove the restriction of boundedness of $f(z)$. If $S_{z 0}^{(D)}$ is not the whole plane, it is easily reduced by a linear transformation to the case where $f(s)$ is bounded. If $S_{z 0}^{(D)}$ is the whole plane, theorem 1.1 is trivial. If both $S_{z_{0}}^{\left(C_{1}\right)}$ and $S_{z_{0}}^{\left(C_{2}\right)}$ are the whole planes, theorem 1.2 is trivial, but if $S_{z_{0}}^{\left(C_{1}\right)}$, for example, is not the whole plane although $S_{20}^{\left(C_{2}\right)}$ is, lemma 1 and hence the relation: $B\left(S_{z_{0}}^{\left(C_{1}\right)}\right) \subset B\left(\Gamma_{z_{0}}^{\left(C_{1}\right)}\right)$ holds good still. When $f(z)$ is of class α near z_{0}, theorems 1.3 and 1.3^{\prime} hold and are proved in fact by generalized Koebe's theorem (${ }^{(16)}$) and by the following theorem, to which we shall give a simple proof.

Theorem (Cartwright) $\left({ }^{17}\right) . \operatorname{Let} f(z)$ be meromorphic in a circle $|z|<1$. If $f(z)$ is of class α near z_{0}, then boundary values of $f(z)$ exist at points which are dense on $|z|=1$ near z_{0}.

Proof. It is sufficient to prove that in any neighbourhood on $|z|=1$
of z_{0}, there exists a point at which a boundary value exists. Suppose that $f(z)$ omits three values α, β, γ in D_{r}. If $S_{z_{0}}^{(D)}$ is not the whole plane, we can prove the theorem by reducing to the case where $f(z)$ is bounded. Hence we may suppose $\alpha \in S_{z_{0}}^{(D)}$ and there exists a sequence $z_{1}, z_{2}, \ldots, z_{n} \rightarrow$ z_{0} such that $v_{n}=f\left(z_{n}\right) \rightarrow a$. Continue the inverse element $e_{z_{n}}$ from ψ_{n} toward α along $\overline{\psi_{n} \mu}$. Since $f(z) \neq \alpha$ in D_{r}, the continuation up to α is impossible and must stop at a point on $\overline{\delta_{n} \mu .}$ The z-image L_{n} does not oscillate by generalized Koebe's theorem. Therefore each L_{n} terminates at a point on C_{r} or θ_{r}. But if there exists an infinite number of L_{n} terminating on θ_{r}, $f(z) \rightarrow \alpha$ on these curves which accumulate on $C_{r}^{(1)}$ or $C_{r}^{(2)}$ and $f(z)$ reduces to a constant α by generalized Koebe's theorem. Hence every $L_{n}\left(n \geq n_{0}\right)$ terminates at some point on C_{r} and the theorem is proved, because we can take r arbitrarily small and any point near z_{0}, instead of z_{0}.

In the proof of theorem $1.3\left({ }^{18}\right)$, we take a curve L in D_{r}, whose two end-points terminate at two points on $C_{r}^{(1)}$ and $C_{r}^{(2)}$ respectively where boundary values exist, instead of θ_{r}.

For theorem $1.3^{\prime}\left({ }^{18}\right)$, it may happen that there exists no such point belonging to C^{\prime}. But to prove the theorem for α we take instead of θ_{r} a curve whose two end-points on $C_{r}^{(1)}$ and $C_{r}^{(2)}$ have boundary values different from α. The existence of such points is shown as in the proof of Cartwright's theorem. Next we shall consider theroems 1.4 and 1.4^{\prime}. Theorem $1.4\left({ }^{18}\right)$ is deduced directly from theorem $1.3\left({ }^{18}\right)$ and it can be stated in the following form.

Theorem 1.4'. Let $f(z)$ be meromorplic in a Jordan domain. Then $S_{z_{0}}^{(D)}-\Gamma_{z_{0}}^{(C)} \subset R_{z_{0}}^{(D)}$ holds except at most two values. Especially if $f(z)$ omits $j u s t$ two values near $z_{0}, R_{z_{0}}^{(D)}$ contains all values except these two values ${ }_{3}$

In theorem $1.4^{\prime}\left({ }^{18}\right)$ we may suppose that E is a bounded closed set and boundary values exist almost everywhere near z_{0}, because $f(z)$ is of bounded type near z_{0} on account of the assumption that $f(z)$ omits values of positive capacity $\left({ }^{19}\right)$. Therefore the theorem is proved similarly as before.
5. Seidel $\left({ }^{20}\right)$ has proved that if $f(z)$ is regular in $|z|<1,|f(z)|<1$ and $\left|f\left(e^{i \theta}\right)\right|=1$ on an arc A almost everywhere, then an inner point of A is a regular point of $f(z)$ or $S_{z_{0}}^{(D)}$ at any ingular point $z_{0} \in A$ is a closed circular disc $|w| \leqq 1$, by the same metho $w^{\prime \prime}$ in the proof of Schwarz's theorem. We shall call such function a function of class U^{\prime}. From this and theorem 1.3^{\prime} we have

Theorem (Seidel) $\left({ }^{20}\right)$. Let $f(z)$ be a function of class U^{\prime} and be not regular on A. If $f(z) \rightleftharpoons \backsim(|\alpha|<1)$ in $|z|<1, f(z)$ has boundary value α at any singular point or at points on A accumulating on this singular point.

From theorem 1.4^{\prime} we have
Theorem (Exbension of Seidel's theorem) $\left({ }^{(00}\right)$. Let $f(z)$ be a function of class U^{\prime} and not regular on A. Then $R_{z 0}^{(D)}$ at any singular point contains every value except at most values of capacity zero.

From theorem $1.4^{\prime \prime}$ the next theorem is easily proved.
Theorem (Cartouright) ${ }^{(17}$). Let $f(z)$ be meromorphic in $|z|<1$ and $w_{0} \in \Gamma_{z_{0}}^{(D)}$. If each $\Gamma_{z}^{(p)}$, for $z^{\prime} \in C$, has no value in $d: 0<\left|z-w w_{0}\right|<\eta$ for some η, then $f(z) \equiv i v_{0}$ or $R_{z_{0}}^{(D)}$ contains $d^{\prime \prime}: 0<\left|z-w_{0}\right|<\eta^{\prime}$ for some η^{\prime}.

II. On Hössjer's theorems.

1. We add to $S_{z_{0}}^{\left(C_{1}\right)}$ all the possible bounded domains limited by $S_{z_{0}}^{\left(C_{1}\right)}$, which we will call holes of $S_{z 0}^{\left(C_{1}\right)}$, and denote the continuum by Ω_{1}. Similarly we get Ω_{2}. G. Hössjer proved $\left({ }^{21}\right)$

Theorem I (Hössjer). Under the same conditions as in theorm 1.2, Ω_{1} and Ω_{2} have at least one common point and $S_{z_{0}}^{(D)} \subset \Omega_{1} \cup \Omega_{2} \cup \Delta$ holds, where Δ denotes the set of bounded domains limited by $\Omega_{1} \cup \Omega_{2}$.

This theorem is a consequence of the theorem that for any component J_{i} of the complementary set of $S_{z_{0}}^{(C)}$ with respect to \tilde{U}-plane either $\Delta_{i} \subset S_{z 0}^{(D)}$ or $\Delta_{i} \cap S_{80}^{(1)}=\phi$ holds $\left({ }^{(2)}\right)$, and this latter theorem is easily proved from $B\left(S_{80}^{(D)}\right) \subset B\left(S_{80}^{(C)}\right)\left({ }^{23}\right)$.

Corollary. Every value of $S_{z_{0}}^{(D)}$ which belongs to some hole of $S_{z_{0}}^{\left(C_{1}\right)}$ but not to Ω_{2}, or to some hole of $S_{z_{0}}^{\left(C_{2}\right)}$ but not to Ω_{1}, or to Δ, belongs to $R_{z_{0}}^{(D)}$ without exccption.

Proof. If one such value $\%$ does not belong to $R_{z 0}^{(D)}$, then by theorem 1.3 there exists a curve L in D terminating at z_{0} such that the cluster set on L consists of one value α and this value does not belong to Ω_{2} or not to Ω_{1} (or not to both). Applying Hössjer's theorem to the domain lying between L and C_{2} or C_{1}, a contradiction is obtained.

Moreover Δ is unnecessary in theorem I; we have namely $S_{z_{0}}^{(D)} \subset \Omega_{1}$ $\cup \Omega_{2}$ or $S_{z_{0}}^{(\nu)} \cap \Delta=\phi\left({ }^{24}\right)$. To prove this assertion, the following lemma is useful.

Lemma 2 (Gross) ${ }^{9}$). Under the same conditions as in lemma 1, there exists a curve L_{1} in D terminatng at z_{0} such that $S_{z_{0}}^{\left(L_{1}\right)}=S_{z_{0}}^{\left(C_{1}\right)}$.

Proof. Consider the domain G in lemma 1. Let a_{1}, a_{2}, \ldots be a sequence of points which are dense in $S_{z 0}^{(G)}$. Put $D_{\frac{1}{n}} \cap G=G_{n}$. Since $a_{n} \in S_{z 0}^{(G)}$, there exists a point $Q_{n} \in G_{n}$ such that ${\overline{Q_{n}} a_{n}}<\frac{1}{n}$ for each n. Bý connecting Q_{1}, Q_{2}, \ldots and removing the superfluous parts we gain L_{1}.

Remark. Since we may suppose that two domains G for C_{1} and.$_{2}$ are disjoint, we can take L_{1} and L_{2} disjoint in D.

Theorem 2.1. Under the same conditions as in theorem 1.2

$$
S_{z_{0}}^{(D)} \subset \Omega_{1} \cup \Omega_{2}
$$

Proof. Without loss of generality we miy suppose that D is a circle $|z|<1, z_{0}=1$ and $f(z)$ is regular oa $|z|=1$ except at z_{0} since L_{1} and L_{2} may be taken instead of C_{1} and C_{2}, by lemma 2. Assume that there exists a hole $\Delta_{i_{0}}$ which is included in $S_{z_{0}}^{(D)}$, whence in $R_{z_{0}}^{(D)}$ by the corollary. In it we take a point $w_{i 0}$, which is not an image of a double point of $f(z)\left({ }^{25}\right)$., We cover Ω_{1} and Ω_{2} by bounded simply connected domains Φ_{1} and Φ_{2} with boundaries Γ_{1} and Γ_{2} of analytic closed curves, having $z v_{i_{0}}$ as their outer point. Connect $z v_{i_{0}}$ with infinity outside $\bar{\Phi}_{2}$ by an analytic curve L which passes no branch point. Because of the analyticity of Γ_{1} and Γ_{2} the number of holes of $\bar{\Phi}_{1} \cup \bar{\Phi}_{2}$, each of which is contained in some hole of $\Omega_{1} \cup \Omega_{2}$, is finite and we denote these holes by $\delta_{i}(i=1,2, \ldots, p)$. According to the definition of Φ_{1} and $\Phi_{2}, z v_{i 0}$ belongs to some hole δ_{n}. We enumerate δ_{i} such that L meets $\delta_{1}, \delta_{2}, \ldots, \delta_{u}$, and only those, in this order coming from infinity; so in particular $\infty \in \delta_{1}$ and $v_{i_{0}} \in \hat{\delta}_{n 1}$. And we assume $\bar{\delta}_{m} \cap S_{z_{0}}^{(D)}=\phi$ but $\overline{\delta_{m+1}}$ $\subset S_{z_{0}}^{(D)}$. Then $\bar{\delta}_{m+1} \subset R_{z_{0}}^{(D)}$ by corollary. If it is shown that this is impossible, we have $\bar{\delta}_{x_{2}} \cap S_{z_{0}}^{(D)}=\phi$ by induction, hence $z v_{i_{0}} \bar{\epsilon} S_{z_{0}}^{(D)}$ which is a contradiction. We take a point w_{1} which is the first intersection of L with $\overline{\delta_{m+1}}$ counting from infinity, and denote, by L_{1} the part of L between τv_{1} and the point w_{2}, which L meets for the first time counting from w_{1} toward infinity. Then $L_{1} \subset \bar{\Phi}_{1}$. Connect w_{1} with infinity by a curve L_{2}, lying outside \bar{D}_{1} except w_{1}, and which divides ∂_{m+1} into two domains and passes no branch point.

Let us turn to the z-plane. For sufficiently small $r_{0}>0, \overline{\mathfrak{D}_{r_{0}}} \cap \bar{\delta}_{m}=\phi$, $\bar{M}_{r_{0}}^{\left(C_{1}\right)} \subset \Phi_{1} \bar{M}_{1_{0}}^{\left(C_{2}\right)} \subset \Phi_{2}$. Since $\tau v_{1} \in R_{z_{0}}^{(D)}$, there exists a point z_{1} in $D_{r_{0}}$ such that $f\left(z_{1}\right)=w_{1}$. Let $l_{1}^{(1)}$ and $l_{1}^{(2)}$ be the curves through z_{1} corresponding
to L_{1} and L_{2} respectively and put $l_{1}{ }^{(1)}+l_{1}{ }^{(9)}=l_{1} \cdot l_{1}{ }^{(1)}$ and $l_{1}{ }^{(2)}$ terminate at points on the boundary of $D_{r_{0}}$, and the end-points of $l_{1}{ }^{(1)}$ and $l_{1}{ }^{(9)}$ are not on C_{2} and C_{1} respectively except for z_{0}, because the boundary values at that end-points are outside $\bar{\Phi}_{2}$ and $\bar{\Phi}_{1}$ respectively and $\bar{M}_{1_{0}}^{\left(C_{1}\right)} \subset \Phi_{1}$ and $\bar{M}_{r_{0}}^{\left(c_{2}\right)}$ $\subset \Phi_{2}$. Moreover each end-point is different from z_{0}, because according to Hössjer's theorem applied to the domain lying between $l_{1}{ }^{(1)}$ and C_{2} or $l_{1}{ }^{(2)}$ and C_{1} it is impossible that the cluster set on $l_{1}{ }^{(1)}$ or $l_{1}{ }^{(2)}$, which consists of that boundary value only, is outside Ω_{2} or Ω_{1}.

Therefore l_{1} is a cross-cut of $D_{r_{0}}$ and hence $D_{r_{0}}$ is divided into two domains by it, only one of which has z_{0} on its boundary and will be denoted by G_{1}. Since $w_{1} \in R_{z_{0}}^{(D)}$, there is a point z_{2} in G_{1} such that $f\left(z_{2}\right)=w v_{1}$.

Similarly we get $l_{2}{ }^{(1)}, l_{2}{ }^{(2)}, l_{2}$ and G_{2}. There exists a sequence $z_{\nu}(\nu=$ $1,2, \ldots$) of points such that $z_{\nu} \rightarrow 1$ as $\nu \rightarrow \infty$ and $f\left(z_{\nu}\right)=\tau v_{1}$, and we get $l_{\nu}{ }^{(1)}$, $l_{\nu}{ }^{(2)}, l_{\nu}$ and $G_{\nu}(\nu=1,2 \ldots)$ such that l_{ν} and $l_{\nu+1}$ have no common point in $D r_{0}$ and $G_{\nu+1} \subset G_{\nu}$. Since $f(z)$ is regular on C except at z_{0}, l_{ν} and G_{ν} converge to z_{0} as $\nu \rightarrow \infty$ and there exists a number ν_{0} such that end-points of ${l_{\nu}}^{(1)}, l_{\nu}{ }^{(2)}$, for $\nu \geqq \nu_{0}$ terminate on $C_{r_{0}}^{(1)}, C_{r 0}^{(2)}$ except at z_{0} respectively. We take a point τv_{3} in δ_{m+1} but not on L_{2}. Since $\tau v_{3} \in R_{z 0}^{(\nu)}$ by corollary, there exists a domain G_{0}, which is enclosed by $l_{\nu_{1}}, l_{\nu_{1}+1}\left(\nu_{1} \geqq \nu_{0}\right)$ and parts of $C_{r_{0}}^{(\mathrm{P})}, C_{r_{0}}^{(2)}$ and which contains. a point z^{\prime} such that $f\left(z^{\prime}\right)=\tau v_{3}$. Denote the part of the boundary of G_{0} composed of $l_{\nu_{1}}^{(1)}, l_{\nu_{1}+1}^{(1)}$ and a part of $C_{i_{0}^{(1)}}^{(1)}$ by l_{1} and the part composed of $l_{\nu_{1}}^{(2)}, l_{\nu_{1}+1}^{(2)}$ and a part of $C_{20}^{(2)}$ by k_{2}.

By the principle of argument the number of zero points of $f(z)-w_{3}$ in G_{6},

$$
\frac{1}{2 \pi} \int_{k_{1}+k_{2}} d \arg \left(f(z)-\pi v_{3}\right)>0
$$

Now it is possible by using L_{2} to connect σ_{3} with infinity by a curve having no common point with the image of k_{1} which is a closed curve on $L_{1} \cup \mathscr{D}_{1}$, therefore

$$
\int_{k_{1}} d \arg \left(f(z)-\tau v_{3}\right)=0 .
$$

Since $w_{2} \in \overline{\delta_{m}}$, there holds $v_{2} \bar{\epsilon} \mathfrak{D}_{r_{0}}$ and hence

$$
\int_{k_{1}+k_{2}} d \arg \left(f(z)-\tau v_{2}\right)=0,
$$

furthermore

$$
\int_{k_{1}} d \arg \left(f(z)-w_{2}\right)=0
$$

.because we can connect v_{2} with infinity with a curve having no common point with the set $L_{1} \cup \Phi_{1}$.
Consequently

$$
\int_{k_{2}} d \arg \left(f(z)-w w_{2}\right)=0
$$

But by using L_{1} it is also possible to connect τv_{2} with $z v_{3}$ by a curve without having common point with $L_{2} \cup \Phi_{2}$, on which the image of k_{2} lies. Accordingly

$$
\int_{k_{2}} d \arg \left(f(z)-\tau v_{3}\right)=0 .
$$

whence

$$
\int_{k_{1}+k_{2}} d \arg \left(f(z)-w_{3}\right)=0
$$

This is a contradiction and the theorem is proved.
Remark. We denote holes of $S_{z_{0}}^{\left(C_{1}\right)}$ and $S_{z_{0}}^{\left(C_{2}\right)}$ by $\left\{\omega_{i}^{(1)}\right\}$ and $\left\{\omega_{j}^{(2)}\right\}$ respectively and call also the complements of Ω_{1} and Ω_{2} holes. Then for each of $\left\{\omega_{i}^{(1)}\right\}$ and $\left\{\omega_{j}^{(2)}\right\}$, we can decide whether it belongs to $S_{z_{0}}^{(D)}$ or not in the following sense. When it belongs to $S_{20}^{(D)}$, it does to $R_{z 0}^{(D)}$ with one possible exception. When $\omega_{n}^{(1)}$ for example, does not, then $\left\{\omega_{n}^{(1)}-\left(S_{z_{0}}^{\left(c_{2}\right)}+\Sigma^{\prime} \omega_{j}^{(2)}\right)\right\}$ $\cap S_{z_{0}}^{(\nu)}=\phi$, where Σ^{\prime} means the summation for $\omega_{j}^{(2)}$ which belongs to $S_{z_{0}}^{(D)}$. And the one possible exception cannot lie in the hole, be it of $S_{z_{0}}^{\left(C_{1}\right)}$ or $S_{20}^{\left(C_{2}\right)}$, which does not belong to $S_{80}^{(D)}$. These facts, which contain theorem 2.1, are shown by the same method as the one used in this theorem.
2. In the same paper G. Hössjer proved

Theorem II. (Hössjer). Under the same conditions as in theorcm I and under the hypothesis that $f(z)$ is continuous on $D+C$ except at z_{0}, there exists a Jordan curve L on $D+C$ terminating at z_{0} such that

$$
S_{z_{0}}^{(L)} \subset \Omega_{1} \cap \Omega_{2}=\Omega
$$

But his proof seems to be imperfect in some point $\left({ }^{26}\right)$ and unless theorem 2.1 is proved, we can say only. $S_{z_{0}}^{(L)} \subset \Omega \cup \Delta$ when Δ exists. We state the theorem in the following form.

Theorem 2.2. Under the same conditions as in theorem 1.2, there exists a Jordan curve L in D terminating at z_{0} such that

$$
S_{20}^{(L)} \subset \Omega .
$$

To prove this theorem the following lemma is to be mentioned.
Lemma 3. Let D be a Jordan domain, z_{0} be on its bonndary, $\Omega_{i}(i=1$, $2, \ldots$) be the sequence of cross-cuts in D, disjoint of each other, not terminating at z_{0} and not accumlating in $D\left({ }^{27}\right)$. D being divided by Q_{i} into two domains, let D_{i} be the one which has z_{0} on its bonndary and let the area of each $D_{i} \geqq$ $k>0 \quad\left({ }^{28}\right)$. Then $D_{0}=\bigcap_{i=1}^{\infty} D_{i}$ is a domain.

Proof. Take an arbitrary sequence of domains $G_{n}(n=1,2, \ldots)$, such that $\overline{G_{n}} \subset G_{n+1} \rightarrow D$. If there is a sequence of domains $D_{i_{i}}(n=1,2, \ldots)$ such that $D_{i_{n}} \cap G_{n}=\phi$, then the area of $D_{i,} \rightarrow 0$. Consequently there exists a number n_{0} such that for each $u \geqq n_{0}, G, \cap D_{i} \neq \phi(i=1,2, \ldots)$. Since only a finite number of cross-cuts $Q_{i_{1}}, Q_{i_{2}}, \ldots, Q_{i p}$ has common points with G, and for other cross-cuts $Q_{i}, D_{i} \supset G_{n}$, so $D_{0} \cap G_{n}=\left(\bigcap_{j=1}^{p} D_{i j}\right) \cap G_{n}$ is a non-empty open. set $\left({ }^{29}\right)$. Since $D_{0}=D_{0} \cap\left(\bigcup_{n=1}^{\infty} G_{n}\right)=\bigcup_{n=1}^{\infty}\left(D_{0} \cap G_{n}\right), D_{0}$ is a non-empty open set and consists of components of domains.

Assuming that there are at least two components of D_{0}, connect a point z_{1} in one component H_{1} with a point z_{2} in other component H_{2} by a polygonal curve in D. Let z_{3} be the point at which the curve has a point in common with the boundary of H_{1} finally counting from z_{1} and $Q_{i_{0}}$ be the cross-cut on which z_{3} lies. Since the one side of $Q_{i_{0}}$ belongs to H_{1}, the curve does not enter into H_{1} across $Q_{i_{0}}$ after z_{3} and hence z_{2} can not belong to $D_{i_{0}}$ because the another side of $Q_{i_{0}}$ does not belong to $D_{i_{0}}$. This contradicts the definition of D_{0}. Therefore D_{0} is a domain.

Proof of theorem 2.2. Without loss of generality, we may suppose that D is a circle $|z|<1, z_{0}=1$ and $f(z)$ is regular on C except at z_{0} by lemma 2. We shall first consider the case where one of Ω_{1}, Ω_{2} does not contain the other. Approximate Ω_{1} and Ω_{2} by two sequences of simply connected domains $\Phi_{n}^{(1)}, \Phi_{n}^{(2)}(n=1,2, \ldots)$ respectively so that $\Phi_{n}^{(i)} \supset \Omega_{i}, \Phi_{n}^{(i)}$ $\supset \overline{\Phi_{n+1}^{(i)}}(i=1,2)$ and the boundary $\Gamma_{i n}^{(i)}$ of $\Phi_{n}^{(i)}(i=1,2)$ is an analytic curve and passes no branch point.

For fixed n, there exists a positive number r_{n} such that $\overline{\mathfrak{D}}_{r_{n}} \subset \Phi_{n}^{(1)} \cup$ $\Phi_{n}^{(2)}$ by theorem 2.1 and $\overline{M_{r_{r i}}^{\left(C_{i}\right)}} \cup \Phi_{i=}^{(i)}(i=1,2)$. Then there is no point of $D_{r_{n}}$ which corresponds to the point on $\Gamma_{i n}^{(1)}$ outside $\Phi_{n}^{(2)}$ or on $\Gamma_{n}^{(2)}$ outside $\Phi_{n}^{(1)}$, because these points are not in $\Phi_{i 2}^{(1)} \cup \Phi_{i 2}^{(2)}$.

Consider the domains in $D_{r_{n}}$ in which $f(z)$ takes the values belonging to $\Phi_{n}^{(1)}$ and let $D_{n}^{(1)}$ be a component which is in contact with $C_{r_{n}}^{(1)}$. The values, which $f(z)$ takes on $C_{r_{n}}^{(1)}$ except at z_{0}, belong to $\Phi_{n}^{(1)}$, and hence some part of $D_{r_{n}}$ near $C_{r_{n}^{(1)}}^{(1)}$, is contained in $D_{n}^{(1)}$.

Next we shall investigate the boundary curves of $D_{n}^{(1)}$ inside $D_{r_{n}}$. These curves are images of an analytic $\Gamma_{n}^{(1)}$, and hence consist of at most an enumerably infinite number of cross-cuts having no common point with each other, not accumulating in $D_{r_{n}}$ and not terminating on $C_{r_{n}}^{(1)}$, including z_{0}. For if a cross-cut terminates at z_{0}, the cluster set on that curve consists of one point on $\Gamma_{n}^{(1)}$ and $\Omega_{1} \subset \Phi_{n}^{(1)}$, and they are disjoint, but it is impossible by Hössjer's theorem. And further $D_{n}^{(1)}$ is a simply connected domain.

Considering $\mathscr{D}_{n}^{(2)}$, we.get another domain $D_{n}^{(2)}$ with the same character. The boundary curves of both domains inside $D_{i_{n}}$ are cross-cuts not accumulating in $D_{i_{n}}$, not terminating at z_{0} and free from each other, because the common point corresponds to the point of intersection of $\Gamma_{n}^{(1)}$ and $\Gamma_{n}^{(2)}$, and this is outside $\overline{\mathfrak{D}}_{r_{n}}$ by selecting r_{n} sufficiently small. Considering that any cross-cut is the boundary curve of non-empty $D_{n}^{(1)}$ or $D_{n}^{(2)}$, the further assumption of lemma 3 is satisfied and the intersection $D^{n}=D_{n}^{(1)} \cap D_{n}^{(2)}$ is a domain.

For each n we get domains $D_{n}^{(1)}, D_{n}^{(2)}$ and D^{n} such that $D_{n+1}^{(i)} \subset D_{n}^{(i)}$ $(i=1,2)$ and hence $D^{n+1} \subset D^{n}$ holds. If we take $r_{n} \rightarrow 0$, then $D^{n} \rightarrow z_{0}$. Let z_{n} be a point in D^{n}, connect z_{n} with z_{n+1} in D^{n} by a polygonal curve, combine them and make it a simple curve by removing the superfluous parts from it. Then it is easily seen that $S_{z_{0}}^{(L)} \subset \Omega$.

Now in the case where the one contains the other, for instance $\Omega_{1} \subset \Omega_{2}$, we get L by lemma 2 .

Remark. When Ω consists of many continuums, $S_{z_{0}}^{(L)}$ belongs to a component of Ω since $S_{z_{0}}^{(L)}$ is a continuum, and there is no more such a curve on which the cluster set belongs to the other component of Ω, because of Hössjer's theorem.

Notes.

(1) We use + for sums of disjoint sets.
(2) \mathfrak{D}_{r} denotes the closure of \mathfrak{D}_{r} : ditto concerning $\vec{M} \bar{r}_{r}(E) \vec{Y}_{r}(E)$ etc.
(3) We will call this a function of class a.
(4) Cf. W. Gross: Zum Verhalten der konformen Abbildung am Rande. Math. Zeit. 3 (1919).
(5) An example will be shown at the end of $n^{\circ} 3$.
(6) F. Iversen:- Sur quelques propriétés des fonctions monogènes au voisinage d'un point singulier. Öfv. af Finska Vet-Soc. Förh. 58 (1916).
W. Seidel: On the cluster values of analytic functicns Trans. Amer. Math. Soc. 34 (1932).
(7) J. L. Doob: On a theorem of Gross and Iversen. Ann. of Math. 33 (1932).
K. Noshiro: On the singularities of analytic functions. Jap. Jour. Math. 17 (1940).
(8) Cf. S. Ishikawa: On the cluster sets of analytic functions. Nippon Sugaku-Butsurigaku Kaishi. 13 (1939) (in Japanese).
(9) W. Gross: Zum Verhalten analytischer Funktionen in der Umgebung singulärer Stellen. Math. Zeit. 2 (1918).
(10) $\quad Q_{1} \triangleright Q_{2}$ represents that Q_{2} is nearer to z_{0} than Q_{1}.
(11) S. Kametani and T. Ugaheri: A remark on Kawakami's extension of Löwner's lemma. Proc. Imp. Acad. Tokyo. 18 (1942).

- (12) M. Tsuji : On an extension of Löwner's theorem. Proc. Imp. Acad. Tokyo. 18 (1942).
(13) F. Iversen: Recherches sur les fonctions inverses des fonctions méromorphes. Thèse de Helsingfors. 1914.
K. Noshiro: loc. cit. (7).
(14) Capacity means logarithmic capacity.
(15) O. Frostman: Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel. Lunds Univ. Mat. Sem. 3 (1935).
(16) We denote Koebe's theorem for a function of class a by generalized Koebe's theorem. Cf. W. Gross : Über die Singularitäten analytischer Funktionen. Mh. Math. u. Physik. 29 (1918).
(17) M. L. Cartwright : On the behaviour of analytic functions in the neighbourhood of its essential singularities. Math. Ann. 112 (1936).
- (18) Here, theorems for a function of class a are considered.
(19) $C f$. R. Nevanlinna: Eindeutige analytische Funktionen. Berlin. 1936.
(20) W. Seidel: On the distribution of values of bounded analytic function. Trans. Amer. Math. 36 (1934).
(21) G. Hössjer : Bemerkung über einen Satz von E. Lindelöf. Fysiogr. Sällsk. Lunds. Förh. 6 (1937). G. Hössjer assumed the continuity of $f(z)$ on the closed Jordan domain except for z_{0}, but here it is unnecessary.
(22) ϕ represents an empty set.
(23) K. Noshiro: loc. cit. (7).
(24) W. Gross has obtained already some similar results. But our results are different from his in several points. W. Gross : loc. cit. (9).
(25) We will call it briefly the branch point (in the w-plane).
(26) Giving two sequences of points $\left\{z_{n}\right\}$ and $\left\{z_{n}^{\prime \prime}\right\}$ which converge to z_{0} on C_{1} and C_{9} respectively and proving that any curve in D connecting two points z_{n} and $z_{n^{\prime}}$ meets at least
one of given domains in D, he concluded the existence of a domain having z_{0} on its boundary among these domains. But it seems hasty to conclude so.
(27) That is, there runs only a finite number of curves near any point in D.
(28) Area means the inner extent in Jordan's sense.
(29) Since $Q_{i j}(j=1,2, \ldots \ldots, p)$ don't pass z_{0}, some neighbourhood of z_{0} in D is included in $\bigcap_{j=1}^{p} D_{i j}$. Connect z_{0} with a point z_{1} in G_{n} by a curve in D. If this curve does not meet $Q_{i j}$ $\left(j=1,2, \ldots \ldots, p_{2}\right), z_{1}$ will belong to $\bigcap_{j=1}^{p} D_{i j}$, otherwise there will exist a cross-cut $Q_{i o}$ which the curve intersects at the first time counting from z_{0}. Since one side of Q_{i} 。 belongs to $\bigcap_{j=1}^{p} D_{i j}$ and $\underset{\substack{\text { some } \\ p}}{ }$ part of Q_{i} lies in G_{n}, it is possible to enter into G_{n} staying inside $\bigcap_{j=1}^{p} D_{i j}$. Accordingly $\left(\bigcap_{j=1}^{p} D_{i j}\right) \cap G_{n}$ is a non empty open set.

