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On the Cluster Sets of Analytic Functions in a Jordan Domain.
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I. Cluster Sets defined by the convergence set.

1. Let $D$ be a Jordan domain, $C$ its boundary, $E$ any set on $ D+C(1\rangle$

and $z_{0},$
$z_{0}^{\prime}$ two points on $C$. Divide $C$ into two parts $C_{1}$ and $C_{2}$ by $z_{0}$ and

$\sim\prime\prime 0^{\prime}$ We denote the pal$: of $D,$ $C,$ $E,$ $C_{1}$ and $C_{2}$ in $|z-z_{0}|\leqq r$ by $D_{r},\check{C}_{r}$ ,
E., $C_{r}^{(1)}$ and $C_{r}^{()}\underline{o}$ respectively and the part of $|z-z_{0}|=r$ in $D$ by $\theta_{!}.$ . Let
$7v=f(z)$ be a meromorphic fnnction in $D$ and $\mathfrak{D}_{r}$ the set of values taken

by $f(\sim q)$ in $D_{r}$ . Then the intersection $\bigcap_{r>0}\overline{\mathfrak{D}_{r}}=S_{z_{o}}^{(JJ)}(\underline{o})$ is called the cluster

set of $f(\sim)$ in $D$ at $\sim r_{0}$ and the intersection $n\mathfrak{D}_{r}=R_{z\circ}^{(D)}$ the $\prime^{\prime}a/lge$ of $’\angle,\prime alues$

$r>0$

of $f(\sim\sim)$ in $D$ at $z_{0}$ . The intersection $n\overline{M_{r}}^{(F.)}=S_{z_{o}^{\backslash }}^{E)}’$ , where $M_{r}^{(\ovalbox{\tt\small REJECT})}$ is the union
$r>0$

$\cup S_{z^{\prime}}^{(D)}$ , for $z_{0}\neq z^{\prime}\epsilon E,$ $S_{t}^{(D)}$ consisting of the single value $f(z^{\prime})$ for $z^{f}\in D$ ,
is called the cluster set of $f(z)$ on $E$ at $z_{0}$ . For example, $S_{\nu,\sim 0}^{(C)},$ $S_{z_{o}}^{(C_{1})},$ $S_{z_{o}}^{(c_{2})}$

and $S_{z_{o}}^{(\Gamma,)}$ , where $L$ is a Jordan curve in $D$ terminating at $z_{0}^{\sim}$ , are $th\iota\iota s$ defined.
If $S_{z_{0}}^{(J,)}$ consists of only one $va1\iota^{1_{(}}e\alpha$, we call $a$ th $e$ asymptotic value, $L$ the
asymptotic path and we denote the set of all the asymptotic values at $2_{(\rangle}$

by $\Gamma_{z_{0}}^{(JJ)}$ , and call it the $co/l’\iota/erg_{6^{\prime}}nce$ set of $f(z)$ at $\approx_{0}$ . When $f(\epsilon)$ omits
at least three values in the neighbourhood $of\sim 0\sim(s),$ $\Gamma_{z_{0}}^{(J))}$ consists of at most
one value (). Then we call the value of non-empty $\Gamma_{z_{o}}^{(JJ)}$ the boundary valne
at $z_{0}$ , and denote it by $f(z_{0})$ . Furthermore the intersection $nI^{\overline{\Lambda_{7}}F)}=\Gamma_{z_{o}}^{(F,)}$

$r>0$

for $E\subset C,$ $Y_{r}^{(F_{I})}$ being the union $\cup\Gamma_{l}^{(J))}$ for $z_{0}\frac{\backslash }{\backslash }z^{t}\in E,$ , is called the cluster
set of the convergence set off(2) on $E$ at $z_{0}$ .

$S_{z_{O}}^{(JJ)}$ includes all the other cluster sets and $S_{z_{o}^{(F)}}$ includes $\Gamma_{z_{Q}}^{(F_{\lrcorner})}$ . $S_{z_{o}}^{(JJ)},$ $S_{z_{o}}^{(C_{1})}$ ,
$S_{z_{o}^{(C_{2})}}$ and $S_{z_{0}}^{(L)}$ are continuums but not necessarily $\Gamma_{z_{o}}^{(C)},$ $\Gamma_{z_{o}}^{(C_{1})}$ and $\Gamma_{z_{o}}^{(\infty)}$ are (’).

2. Let $f(z)$ be bounded in the neighbourhood of $2_{0}$ . Then it is known
that (’)

$\varlimsup_{z\rightarrow z_{0}}|f(z)|=\varlimsup_{Cz\rightarrow z_{o}}(\varlimsup_{z’ z\not\simeq 0},|f(z)|)$ ,

and that this is equivalent to $B(S_{z_{O}}^{(JJ)})$ $\subset B(S_{z_{o}}^{(C)}),$ $B(S)$ being the bound-
ary set of $S()$ . Also it is known that $B(S_{z_{0}}^{(JJ)})\subset B(\Gamma_{z_{o}}^{(C)})$ holds in the
case where $D$ is a circle (’); then it holds also in the general case where
$D$ is a Jordan domain, by means of a one-to-one continuous corresponden-
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ce between them, with their boundaries included. By the same reason we
may, and shall, assume that $D$ is a circle $|2|<1$ and $\sim 0\vee=1$ in proofs of
our theorems 1.1 to 1.3.

Theorem 1.1. Let $D$ be a Jordan domain, $C$ its boundary, $2_{0}$ a point
on $C$ and $f(\alpha)$ a bounded regular function in D. The$n$

$B(S_{z_{o}}^{(D)})$ $\subset B(I^{\tau_{z_{o}}0)})$ .
Proof. Transform the circle $|\approx|<1$ onto I $\zeta|<1$ by the transforma-

tion $\zeta=\frac{\sim\sim\sim-\sim_{1}}{1--\wedge’\sim}(|_{\sim}\sigma_{1}|<1)$ and put $z_{1}=1+x,f(\approx(\zeta))=F(\zeta)$ and $\zeta=\rho e^{i\varphi}$ .
Then

$|\zeta+1|=|\frac{X+\overline{X}_{\sim}^{\sim}}{1-\sim\alpha-\overline{X}\approx}|\leqq\frac{2|x|}{|1-z|-|x|}$ .

Henc $e$ for $-|1-2|\geqq\delta$ and $|\approx|\leqq 1,$ $\zeta+1$ tends to $0$ uniformly as $x\rightarrow 0$ .
Put $\varlimsup_{\theta\rightarrow\pm 0}|f(e^{i\theta})|=m$ and suppose $|f(e^{i0})|\leqq m+\epsilon$ when $|\theta|\leqq\delta_{1}$ , for any

given positive $\epsilon$ . Let this arc be transformed into the arc $ a\beta\wedge$ by $\zeta=\zeta(z)$

and suppose the length of $ a\beta\wedge\geqq 2\pi-\epsilon$ on taking $|x|$ sufficiently small.
This is possible, because the both end-points of $\wedge/.\beta$ tend to $-1$ as $x\rightarrow 0$ .
Put $|F(_{\backslash _{-}}^{r})|=|f(z)|<M$ and let $E$ be the set of points on $\wedge a\beta$ where
$F(e^{i\varphi})$ exists, and $\wedge a\beta^{\prime}$ the complementary set of $\wedge c/.\beta$ with respect to $|\zeta|=1$ .
Then by Cauchy’s formula and Lebesgue’s theorem

$|f(z_{1})|=|F(0)|\leqq\varlimsup_{\rho\rightarrow 1}\frac{1}{2\pi}\int_{0^{2\pi}}|F(\rho e^{i\varphi})|d\varphi=\varlimsup_{p\rightarrow 1}\frac{1}{2\pi}\int_{B}|F^{\cdot}(\rho e^{ip})|d\varphi$

$+\varlimsup_{p-\succ 1}\frac{1}{2\pi}\int_{\frac{1}{\alpha}}F(\rho_{\mathcal{L}^{i_{l}}}’)|d\varphi\geqq\frac{1}{2\pi}\int_{E}|F(e^{i\varphi})|d\varphi+\frac{M\epsilon}{2\pi}=<\frac{\prime n+\epsilon}{2\pi}(2\pi-\epsilon)$

$+\frac{\wedge\Psi\epsilon}{2r}=m+\frac{\epsilon}{2\pi}(2\pi-\epsilon+M-m)$ .

Hence

$\varlimsup_{e\rightarrow 1}|f(z)|\leqq ul$ ,

that is

$\varlimsup_{z\rightarrow 1}|f(z)|\leqq\varlimsup_{\theta\rightarrow\pm 0}|f(e^{i9})|$ .
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From this relation it follows easily $B(S_{z_{O}}^{(D)})\subset B(\Gamma_{z_{O}}^{(c)})(^{7})$ .
Now we divide $C$ into $C_{1}$ and $C_{2}$ .
Lemma 1 (). Under $ th\ell$ same conditions as in tkeorem 1.1, there exists

a domain $G$ bounded $f^{\gamma}y$ a part of $C_{I}$ and a curve $L$ in $D$ terminating at
$z_{0}$ such tltat $S_{\epsilon_{o}^{(O_{1})}}=S_{*^{v}}^{(c}$ .

$ Pr\theta l\gamma$ Take a sequence of points $Q_{1}\supset Q_{2}\supset\ldots(^{10}),$ $Q_{n}\rightarrow z_{0}$ , on $C_{1}$ , and
a neighbourhood Al ii $D$ at every point $P,$ $Q_{k}\supseteqq P\supset Q_{k+1}$ , such that every

point of the image of $\Lambda^{f_{P}}$ in the w-plane has a distance $<\frac{1}{k}$ from $S_{P}^{(D)}$ . Then

the arc $Q_{k}\supseteqq P\supseteqq Q_{k+1}$ can be covered by a finite number of $N_{F}$ , which we

denote by $N_{1}^{(k)},\ldots\ldots,N_{n_{k}}^{(k)}$ . Put $\bigcup_{k=1}^{\infty}\bigcup_{\nu=1}^{n_{k}}N_{\nu}^{(k}=^{)}G$ . Then $G$ satisfies the condi-

tions required.
Theorem 1. 2. Under $ th\ell$ same conditions as in lemma 1,

$B(S_{z_{o}}^{(Ct)})\subset B(\Gamma_{z_{o}}^{(Ci)}),$ $(i=1,2)$ and $B(S_{z_{o}}^{(C)})\subset B(l^{\chi_{z_{o}}C)})$ .

Proof. Put $\varlimsup_{\theta\rightarrow+0}|f(e^{i9})|=m$ and $\varlimsup_{\theta\rightarrow+0}z\overline{\rightarrow e^{i\theta}}(\lim|f(2)|)=M$, and assume $m$

$<M$. “For any given positive $\epsilon$ , there exists $r_{0}>0$ such that $\overline{Y_{ro}^{(C_{1})}}$ is included
in the circle $|w|<m+\epsilon$ , and $M_{r_{0}}^{\overline{(G)}}$ in $|w|<M+\epsilon,$ $G$ being the domain in
lemma 1. Map conformally the domain, bounded by $C_{ro}$ and parts of $L$ in
lemma 1 and $\theta_{ro}$ , on the unit circle in the $\zeta$-plane so that $C_{r_{o}}^{(1)}$ corresponds
to the upper semicircle and $z_{0}$ to $\zeta=1$ , and put $f(2(\zeta))=F(\zeta)$ and $\zeta=\rho e^{i\varphi}$ .
Then $|F(\zeta)|<M+\epsilon$ . Th $e$ boundary values $F(e^{i\varphi})$ exist at almost all points
$e^{i\varphi},$ $ 0\leqq\varphi\leqq 2\pi$ , by Fatou’s th $e$orem and $|F(e^{i}$ “‘$)$ $|<m+\epsilon$ for $0<\varphi\leqq\pi$ , since
$\overline{Y_{r_{O}}^{(C_{1})}}$ is included in $|w|<m+\epsilon$ . Put $F(\zeta)\cdot\overline{F(\overline{\zeta})}=G(\zeta),\overline{\zeta}$ and $\overline{F}$ designat-
ing the conjugate values of $\zeta$ and $F$. Then for almost all $e^{i\varphi},$ $0\leqq\varphi\leqq 2r$ ,
$|G(e^{i\varphi})|=|F(e^{i\varphi})|\cdot|F(e^{-i\varphi})|<(M+\epsilon)(m+\epsilon)=m_{1}$ . Similarly as in theorem
1.1 $|G(\zeta)|<m_{1}$ holds for all $\zeta$ in the unit circle. Especially for each real
value $\zeta=t,$ $|G(t)|=|F(t)|^{2}<m_{1}<M^{2}$ holds for sufficiently small $e$ . Applying
theorem 1.1 to the upper semicircular disc, the cluster set of $F(\zeta)$ at $\zeta=1$ ,
consequently the cluster set on the upper semicircle, which is nothing but
the set $S_{z_{o}}^{(C_{1})}$ , is includ$ed$ in $|w|<\sqrt{m_{1}}<M$. According to the definition of
$M$, there exists, however, a point of $S_{z_{Q}}^{(C_{1})}$ on $|zv|=M$. This is a contrad-
iction, and we get $m>M=$. But obvIously $m\leqq M$ and so $m=M$, i.e. $\varlimsup_{\theta\rightarrow+0}$

$|f(e^{i\theta})|=\varlimsup_{\theta\rightarrow+0}(\varlimsup_{z\rightarrow e^{i\theta)}}|f(\sim\alpha)|)$ . The equivalence of this wlth th $e$ proposition

$B(S_{z_{o}}^{(C_{1})})\subset B(\Gamma_{z_{o}}^{(C_{1}})$ can be shown as usual $()$ .
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Similarly $B(S_{z_{o^{2}}}^{(C)})\subset B(I_{z_{o}}^{(c_{2})})$ and from both relations it follows $B(S_{z_{O}}^{(C)})$

$\subset B(l_{z_{o}}^{(C)})$ .
Theorem 1. 3. $lf$ there exists a $’\iota/alne$ $a$ such thaet a $\epsilon S_{z_{0}}^{(JJ)}-\Gamma_{z_{0}}^{(C)}$ and

$a\overline{\epsilon}R_{O\vee}^{(.JJ)}$ , under tlie same $conditio_{\dot{i}}lS$ as in tfieorem 1.1, $tJ_{l}ena=f(\mathcal{P})$ .
$f_{J^{\prime}}^{\backslash }oof$. We may suppose that $a=0$ . For sufficiently smqll $r_{0}>0,0\overline{\epsilon}C_{r\circ}\sim^{\backslash }$

and the distance $\rho_{1}$ fiom $0$ to the set $Y_{ro}^{\overline{(}C)}$ is positive. We may suppose
by taking $\prime 0s\iota$ itably that at the two end-points of $\theta_{o}$ th $ebo\iota!ndary$ values
exist. Then $|f(\vee\sim)|>\rho_{2}>\theta$ for 2 $\epsilon\theta_{r\circ}$ . Put fflin $(\rho_{1}, \rho_{2})=\rho>0$ . Since $0$

$\epsilon S_{z_{0}}^{(IJ)}$ , there is a point $\sim r_{1}$ in $D_{r\circ}$ , whose image $\prime v_{1}=f(2_{1})$ lies in $|w|<p$ .
Take an inverse element $e_{z_{1}}$ and continue it analytically (with algebraic
characters) in $\cdot aly$ svay along the $radi_{c}!s$ from $’\iota U_{1}$ to $’\iota U=0$ . Since $0\overline{\epsilon}\mathfrak{D}_{r\circ}$

the $conti_{1}\urcorner n_{\epsilon 1}^{r}tion$ up to $0$ is impossible: it must end at a $I^{;oint}\beta$ on the
$radi\llcorner s\overline{0_{\iota i_{1}}^{\prime}}$. There corresponds a curve $L$ in $D_{ro}$ such that $ f(\approx)\rightarrow\beta$ when $z$

approaches to $C_{r\circ}$ on $L$ . If $L$ oscillates, $f(\sim\prime\prime)$ reduces to a constant by
Koebe’s theorem, so that $L$ terminates at a point on $C_{r\circ}$ and $\beta$ is a boun-
dary value at this point. But $\overline{Y_{r\circ}^{(C)}}$ has no point in $|_{L}^{r}v|<\rho$ and so $L$

terminates at $\sim=10$ and $ f(’\vee\nearrow 0)=\beta$ . However, if we take anotl: er element
$d_{Z2}$ corresponding to $\sim\sim_{2}\in D_{o}$ at a point $’\iota V_{2}=f(z_{2})$ in $|_{\iota}^{r}v|<()$ which is near
$w_{1}$ , but not on $\overline{0w_{1}}$ , then fol’ows similarly $f(\approx 0)=\gamma,$

$\gamma$ being a point on the
radius $\overline{Ow.}$ Accorcingly $f(\prime\prime)=\beta=\gamma=0$ .

The $follo\iota viI_{l}^{\sim}g$ theorem is an immediate consequence of theorem 1.3.
Theorem 1. 4. Under the same conditions as in $t\nearrow_{l}corem$ $1.1,$

$e_{\iota’}^{r}er_{j^{\prime}}$

$vnll/’.b_{-}lo/l_{\wedge}^{0ing}\iota^{\prime 0}S_{z_{0}}^{(JJ)}-\Gamma_{z_{0}^{(}}^{C)}$ bclongs to $R_{z_{0}}^{(D)}$ except at most $on_{\vee}^{\rho}$ valne.
3. Formerly we have defined $I_{z_{0}^{\backslash }}^{vc)},$ $\Gamma_{z_{0}}^{(C_{1})}$ and $\Gamma_{z_{0}}^{(c\prime_{2)}}$ by considering all

the boundary values on the general Jordan domain $D$ . But we shall con-
sider hercafter only the case when $D$ is the unit circle $|2|<1$ . Let $e$ be
any set of points of Lebesgue measure zero on $|z|=1$ , put $C-e=C^{t},$ $C_{1}-e=C_{1}^{\prime}$

and $C_{\underline{o}}-e=C_{2}^{\prime}$ and consider $\Gamma_{z_{0}}^{(C^{\prime})},$ $\Gamma_{z_{0}}^{C_{1^{\prime}})}$ and $I^{(r_{J};_{2)}}r_{z_{0}}$ Then a theorem similar
to theorem 1.1 is obtained: we shall call it theorem 1.1’. Furthermore,
$n$ si ng the same method as in theorem 1.2, we can prove $B(S_{z_{0}}^{(Ci)})\subset B(S_{zo}^{(Ci\prime)})$

$\subset B(I^{\chi_{z_{0}}\prime}Ci))(i=1,2)$ and $B(S_{z_{0}}^{(C)})\subset B(S_{z_{0}}^{(c;)})\subset B(I^{\chi_{z_{0}}c;)})$ , which we shall call
theorem 1.2’. However, theorems corr\‘esponding to theorems 1.3 and 1.4
must be $st\check{a}$ ted in somewhat different $form\dot{s}$ . Namely:

$Th\epsilon orem1.3^{\prime}$ . $1ft1_{l}ere$ exists a value a suck $t\gamma_{lat}$ $a$ $\epsilon S_{z_{0}}^{(D)}-\Gamma_{z_{0}}^{\{CJ)}$ and
and a $\overline{\epsilon}R_{z_{0}}^{(D)}$ under tlte same conditions. as in tlcore$m1.1$ ($’\iota uitl\ell D=unil$ circle),
$t1\iota ena=f(\approx 0)$ or $t\gamma_{lCre}$ is a sequence $\Leftrightarrow 1\sim,$ $z_{2},\ldots,’\rightarrow n-z_{0}$ of points on $|z|=1,$ $s?tC\nearrow l$

that $\alpha=f(\approx n)$ .
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Proof. To prove this theorem we have to employ a meth\‘od different from
that used in the proof of theorem 1.3. We may suppose that $a=0$ , and we
determine $r_{0}$ and $\rho$ as in theorem 1.3, provided that the two end-points of
$\theta_{r\circ}$ do not belong to the exceptional set $e$ . Since $0\in S_{z_{0}^{(:))}}$ , there is a point
$z_{1}$ in $D_{o}$ such that $-\angle v_{1}=f(z_{1})$ is in $|w|<\rho$ and consequently there exists
a domain $\Delta_{1}$ in $D_{r\circ}$ , in which $f(z)$ takes the values in $|w|<\rho$ and on
whose boandary $|f(z)|=\rho$ in $|z|<1$ . Hence $\Delta_{I}$ has no common point
with $\theta_{r_{0}}$ and is a simply connected domain because $f(z)$ is regular in $|z|$

$<1$ $No_{1}v$ we shall prove that $1/f(z)$ is not bounded in $\Delta_{\iota}$ . Map $\Delta_{I}$ con-
formally on $|\zeta|<1$ and put $f(\sim r(\zeta))=F(\zeta)$ . Then by Fatou’s theorem
there exist boundary values of both $F(\zeta)$ and 2 $(\zeta)$ at almost all points on
$|\zeta|=1$ . Now, let $E$ be the set of points on $|\zeta|=1$ at which both $F(\zeta)$

and 2 $(\zeta)$ exist and the relation: $|_{\sim}\alpha(\zeta)|=1$ holds, and $E^{\prime}$ be the image of
$E$ by $z(\zeta)$ . By Kametani-Ugaheri’s theorem () $m_{*}E\leqq m^{*}E^{\prime}$ . Then we
have $E^{\prime}\subset e$ , because $\lim f(z)$ exists along a curve termir\’iating at every point
of $E^{\prime}$ . Therefore $mE^{\prime}=0$ and $m_{*}E=0$ . By Tsuji () the se $t$ of all points on
$|\zeta|=1$ at which boundary values 2 $(\zeta)$ exist and the relation: $|\approx(\zeta)|=1$ holds
is measurable. This set consists of $E$ and a set of measure zero where
boundary values of $F(\zeta)$ do not exist, so that $E$ is also measurable and
$mE=0$ . Consequently both $F(\zeta)$ and 2 $(\zeta)$ exist on $|\zeta|=1,$ $|z(\zeta)|<1$ and
hence $|F(\zeta)|=\rho$ holds almost everywhere. If $1/F(\zeta)$ were bounded, we
would have as in lemma 1, $ 1/|F(\zeta)|\leqq 1/\rho$ . Hence $|F(\zeta)|\leqq\rho$ and $this’ is$ a
contradiction. Therefore $1/F(\zeta)$ is unbounded and there exists a point $\sim_{2}\vee$

in $\Delta_{1}$ such that $|f(\sim r_{2})|<\rho/2$ . Let $\Delta_{2}$ be the component of the image of
$|7v|<\rho/2$ which contains $z_{2}$ . Similarly as in the proof of Iversen’s theorem
() there exists a curve $L$ in $D_{0}$ along which $f(z)\rightarrow 0$ . Howevcr small

$r_{0}$ may be taken, there exists such a curve $L$ in $D_{70}$ and the theorem is proved.
Theorem 1.4’. Under the same coffdilions as in theorem 1.3’, $S_{z_{0}^{(JJ)}}-I^{-.(C\prime}\bigwedge_{\vee\circ}$

)

is contained in $R_{z_{0}}^{(D)}$ except at most a set of capacity $\sim\sigma ero(14)$ .
Proof. $Si_{1^{\urcorner_{A}}}ceS_{z-}^{(D)}-I_{z_{0}}^{7(c;)}$ is an open set by theorem 1.1, it consists of

an at most enumerably infinite number ot connected domiins and it suffices
to prove the theorem for a component $\Omega$ chosen arbitrarily. The intersec-
tion of $\Omega$ and the complement of $R_{z_{0}}^{(J\supset)}$ , namely the exceptional set, is a
Borel set. Assume that its capacity is positive. Take a sequence $ r_{1}>r_{2}>\ldots$ ,
$r_{n}\rightarrow 0$ and let $E_{n}$ be th $e$ set of values in $\Omega$ not belonging to $\mathfrak{D}_{r_{n}}$ . Since $E_{I}$

$\subset\not\leq^{\neg}i_{2}\subset\ldots$ and $\bigcup_{n=1}^{\infty}E_{n}$ is the exceptional set, $t^{1}1e$re exists $77_{()}$ such that $ E_{n}(n\geqq$



6 Makoto OHakoto.

$n_{0})$ is of positive capacity. We may suppose that’ in $D\prime_{n}f(2)$ takes no
value of a closed set $E$ of positive capacity in $\Omega$ , which is then of positive
distance from th $e$ boundary of $\Omega$ . By Frostman’s theorem (15) there exists

a positive mass-distribution $\mu(’\iota(y)$ on $E$ such that $u(’\iota v)=\int_{P},$ $\log\frac{1}{|w-\omega|}$

$tl\mu(\omega)$ is bounded: $u(p\prime v)\leqq k,$ $u(’\iota v)=k$ holds on $E$ except a set of $ca\triangleright\urcorner a-$

city zero and $u(’\iota v)$ is harmonic outside $E$. Let $v(w)$ be the conjugate
function of $n(’\iota v)$ and put $g(\iota\prime v)=e^{u(w)+iv(w)}$ . Then $|_{\wedge^{\gamma}}(\prime v)|=<e^{k}$ . Take $7_{n}^{\prime}$

sufficiently small and let the distance between $E$ and $\overline{Y_{r_{n}^{(c^{\prime};)}}}$ be positive.
Put $x=F(.\rightarrow)=g(f(z))$ by selecting a branch of $g(p\prime c!)$ . Then $F(2)$ is a
one-valued bounded regular \’iunction in $D_{r_{n}}$ and $|F(e^{i9})|\leqq c^{k^{\prime}}$ , where $F(\iota^{i\mathfrak{g}})$

is the boundary value on $C^{t}$ and $k^{\prime}=\max u(’\iota t!)$ for $’\iota v\in\overline{Y^{(C\backslash )},_{n}}$ . Applying
theorem 1.1 to $F(2)$ and $D$ , we have $\varlimsup$

$|F(\approx)|\leqq c^{k^{\prime}}$ . Since $E\subset S_{z_{0}}^{(D)}$ ,

there exists a sequence $2_{1},$

$Z_{2},\ldots,2_{n}-\approx su^{0}ch0z\rightarrow z$ that $f(z_{n})\rightarrow w_{0}\in E$ , where $u(w_{0})$

$=l^{\prime}$ . Therefore $|F(2_{n})|\rightarrow e^{k}$. Since $k^{\prime}<k$ , this is a contradiction. Hence
the exceptional set of values in $\Omega$ must be of capacity zero.

Example. Exclude a non-empty closed set $E$ of capacity zero fiom a
circle $|_{\iota}\prime v|<1$ ; map conformally the remaining domain on a clrcle $D$ :
$|\approx|<1$ and let $2_{0}$ be a singular point of $w(z)$ on $C:|\approx|=1$ . Then $S_{z_{0}}^{(D)}$

$=S_{z_{0}}^{(C)}$ is the closed circle $|w|\leqq 1$ and $\Gamma_{zo}^{(C)}$ is the sum of $E$ and the
circumference $|_{\iota}^{r}v|=1$ . If we exclude the image of $E$ from $C$, which is of
measure zero, $\Gamma_{zo}^{(c;)}$ is $|_{L}^{r}v|=1$ for remaining $C1$ and $S_{z_{0}}^{(J))}-\Gamma_{\epsilon 0}^{(c;)}$ is $|w|<1$

aiid is \’included in $R_{\epsilon 0}^{(D)}$ except a set of capacity zero, which is just
the excluded set $E$.

4. Now we remov $e$ the restriction of boundedness of $f(\approx)$ . If $S_{z_{0}}^{(D)}$

is not the whole plane, it is easily reduced by a linear transformation to
the case where $f(z)$ is bounded. If $S_{zo}^{(D)}$ is the whole plane, theorem 1.1
is trivial. If both $S_{zo}^{(C_{1})}$ and $S_{z_{0}}^{(C_{2})}$ are the whole planes, theorem 1.2 is
trivial, but if $S_{zo}^{(C_{1})}$ , for example, is not the whole plane although $S_{e_{0}}^{(c_{2})}$ is,
lemma 1 and hence the relation: $B(S_{zo}^{(C_{1})})\subset B(\Gamma_{zo}^{(C_{1})})$ holds good still.
When $ f(\sigma$ is of class $a$ near $2_{0}$ , theorems 1.3 and 1.3’ hold and are proved in
fact by generalized Ko$ebe’ s$ theorem () and by the following theorem,
to which we shall give a simple proof.

Theorem
‘

$(Cart\iota\ell/rig/\iota t)$ ( ‘). Letf $(\sim\sim)$ be meromorphic in a circle $|z|<1$ .
$1ff(\approx)$ is of class $a$ near $z_{0},$

$t/\iota en$ boundary values of $f(\wedge\sim)$ exist at points
’cvhich are dense on $|2|=1$ near $z_{0}$ .

Proof. It is sufficient to prove that in any neighbourhood on $|z|=1$
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of $z_{0}$ , there exists a point at which a boundary value exists. Suppose that
$f(z)$ omits three values $a,$ $\beta,$

$\gamma$ in $D_{r}$. If $S_{z_{0}}^{(D)}$ is not the whole plane, we
can prove the theorem by reducing to the case where $f(z)$ is bounded.
Hence we may suppose $a$ $\epsilon S_{z_{0}}^{(D)}$ and there exists a sequence $Z_{1},$ $\sim r_{2}\ldots,$ $ 2_{n}\rightarrow$

$z_{0}$ such that $’\iota v_{n}=f(2_{n})\rightarrow a$ . Continue the inverse eJement $e_{z_{n}}$ from $w_{n}$ toward
$a$ along $\overline{Zp_{n}\gamma/}.$ . Since $f(2)\neq a$ in $D_{r}$ , the continuation up to $a$ is impossible
and must stop at a point on $\overline{w_{n}a.}$ The 2-image $L_{n}$ does not oscillate by
$ge$neralized Koebe’s theorem. Therefore each $L_{n}$ terminates at a point on
$C_{r}$ or $\theta_{r}$ . But if there exists an infinite number of $L_{n}$ terminating on $\theta_{r}$ ,

$f(z)\rightarrow a$ on th $ese$ curves which accumulate on $C_{r}^{(1)}$ or $C_{r^{2}}^{()}$ and$f(2)$ reduces
to a constant $a$ by generalized Koebe’s theorem. Hence every $L_{n}(n\geqq \mathcal{F}l_{0})$

terminates at some point on $C_{r}$ and the theorem is proved, because we
can take $r$ arbitrarily small and any point near $z_{0}$ , instead of $2_{0}$ .

In the proof of theorem 1.3 (), we take a curve $L$ in D., whose
two end-points terminate at two points on $C_{r}^{(1)}$ and $C_{r}^{(2)}$ respectively
where boundary values exist, instead of $\theta_{r}$ .

For theorem 1.3’ (), it may happen that there exists no such point
belonging to $C^{\prime}$ . But to prove the theorem for $a$ we take instead of $\theta_{r}$ a
curve whose two end-points on $C_{r}^{(1)}$ and $C_{r}^{(2)}$ have boundary $v\dot{a}lues$ different
from $a$ . The existence of such points is shown as in the proof of Cart-
wright’s theorem. Next we shall consider theroems 1.4 and 1.4’. Theorem
1.4 $(^{})$ is deduced directly from theorem 1.3 $(^{1_{1}S})a1^{\urcorner d}$ it can be stated in
the following form.

Theorem 1.4’. Let $f(z)$ be meromorpliic in a $Jo’ dando;nai;l$ . Then
$S_{z_{0}}^{(j))}-\Gamma_{zo}^{(C)}\subset R_{z_{0}^{(D)}}$ holds except at most two values. Especially $\iota ff(z)$ omits

just $t^{\prime}\iota vo$ values near $z_{0)}R_{z_{0}}^{(JJ)}$ contains all values except these tzvo $values_{s}$

In theorem 1.4’(18) we may suppose that $E$ is a bounded closed set
and $bounda1^{-y}$ valu es exist almost everywhere near $2_{0}$ , because $f(z)$ is
of bounded type near $z_{0}$ on account of the assumption that $f(z)$ omits
values of positive capacity $(^{})$ . Therefore the theorem is proved similarly
as before.

5. Seidel () has proved that if $f(z)$ is regular in $|z|<1,$ $|f(\sim r)|<1$

and $|f(e^{i\theta})|=1$ on an arc $A$ almost everywhere, then an inner point of $A$

$C^{Saregarpf(z)orS_{z}^{(D)}atany}iu1ointircu1ardisc|w|\leqq^{of_{1,bythes^{0}amemet}} _{sin}^{v}u1arpointz_{0}\epsilon AisaclosedtheproofofScllwarz’ s$

theorem. We shall call such function a function of class $U^{\prime}$ . From
this and theorem 1.3’ we have
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Theorem $(S^{\iota}.idel)(^{\underline{o}_{0}})$ . Let $f(2)$ be a firnction of class $U^{\prime}$ and be not
regular oii A. If $f(\approx)_{\overline{\nabla}}^{\underline{\triangle}}a(|a|<1)$ in $|z|<1,f(\rightarrow r)$ has boundary $valr./e$ $a$ at
any $si’\iota gular$ point or at points on $A$ accumulating on this singular point.

From theorem 1.4’ we have
Theorem ($Ext_{\vee}^{\rho}nsion$ of Seidel’s theorem) (”). Let $f(\approx)$ be a function of

class $U^{\prime}$ and not regular on A. $\tau\gamma_{\iota en}R_{zo}^{(JJ)}$ at any singular poinf contains
every valne except at most value$s$ of capacity zero.

From theorem $1.4^{\prime\prime}$ the next theorem is easily proved.
Theorem $(Cart_{L}^{r}vright)(^{17})$ . Let $f(z)$ be meromorphic in $|z|<1$ and

$w_{0}\in\Gamma_{z_{O}}^{(D)}$ If each $\Gamma_{z}^{(D)}$ , for 2’ $\epsilon C$, has no valn $e$ in $ d:0<\cdot|_{\iota}^{r}v-w_{0}|<\eta$

for $ so;ne\eta$ , then $f(\rightarrow\sim)\equiv’\grave{\iota}/_{0}$ or $R_{zo}^{(J))}$ contains $d^{\prime}:0<|_{\iota}^{r}v-w_{0}|<\eta^{t}$ for some $\eta^{\prime}$

II. On H\"ossjer’s theorems.

1. We add to $S_{zo’}^{(c_{1})}$ all the possible bounded domains limited by $S_{z_{0}}^{(C_{1})}$ ,

which we will call holes of $S_{zo}^{(C_{1})}$ , and denote the continuum by $\Omega_{1}$ . Similarly
we get $-(2_{2}$ . G. H\"ossjer proved $(^{\underline{o}_{1}})$

Theorem I $(H\tilde{c})ssjer)$ . Unde’ the same conditions as in theorem 1.2, $\Omega_{1}$

and $\Omega_{2}ha_{\iota}^{\prime}/e$ at least one common point and $ S_{zo}^{(J))}\subset\Omega_{1}\cup\Omega_{2}\cup\Delta$ holds, $’\iota/here$

$\Delta d\ell/lotes$ the set of $boml\ell ted$ domains limited $/\nu\Omega_{1}\cup\Omega_{2}$ .
This theorem is a consequence of the theorem that for any com-

ponent $\Delta_{i}$ of the complementary set of $S_{zo}^{(C)}$ with respect to $Tt^{\prime}$ -plane either
$A_{t}\subset S_{zo}^{(JJ)}$ or $\Delta_{i}\cap S_{z_{0}}^{(JJ)}=\phi$ holds (”), and this latter theorem is easily proved
from $B(S_{z_{0}}^{(D)})\subset B(S_{zo}^{(C)})(^{\underline{o}_{3}})$ .

Corollary. Every $’\iota^{falne}$ of $S_{z_{O}}^{(JJ)}’\iota vhichbelo//gs$ to some hole of $S_{z_{O}}^{(C_{1})}$ bzi $t$

$nol$ to $\Omega_{2}$ , or to some hole of $S_{z_{O}}^{(c_{2})}bnt$ not to $\Omega_{1}$ , or to $\Delta,$ $b/2lo/rgs$ to $R_{z_{0}}^{(JJ)_{r}}\iota uithont$

excc$ptio7t$ .
Proof. If one such value $\alpha$ does not belong to $R_{z_{0}}^{(JJ)}$ , then by theorem

1.3 there exists a curve $L$ in $ Dte\iota$ minating at $z_{0}$ such that the cluster set

on $L$ consists of one value $a$ and this value does not $b$ elong to $\Omega_{2}$ or not
to $\Omega_{1}$ (or not to both). Applying H\"ossjers) theorem to the domain lying
between $L$ and C. or $C_{1}$ , a contradiction is obtained.

Moreover $\Delta$ is unnecessary in theorem I; we have namely $S_{zo}^{(D)}\subset\Omega_{1}$

$u\Omega_{\underline{o}}$ or $S_{\approx 0}^{(D)}\cap\Delta=\phi(\underline{o}_{4})$ .
$T_{0}\&ve$

this assertion, the following lemma is
useftl.

Lemma 2 (Gross) (’). Under th: same conditions as in lemma 1, there
exists a curve $L_{1}$ in $D$ terminalng at $\sigma_{0}$, such that $S_{zo}^{(L)}1=S_{zo}^{(C_{1})}$ .
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Proof. Consider the domain $G$ in lemma 1. Let $a_{1},$ $ a_{2},\ldots$ be a sequence
of points which are dense in $S_{z_{0}}^{(G)}$ . Put $ D_{\frac{l}{n}}nG=G\downarrow n\cdot$

’

Since $a_{n}\in S_{z_{0}}^{(G)}$ ,

there exists a point $Q_{n}\in G_{n}$ such that $\overline{Q_{n}a}_{n}<\frac{1}{n}$ for each $n$ . By connecting

$Q_{1},$ $ Q_{2},\ldots$ and removing the superfluous parts we.gain $\cdot L_{1}$ .
Remark. Since we may suppose that two domains $G$ for $C_{J}$ and $C_{2}$

are disjoint, we can take $L_{1}$ and $L_{2}$ disjoint in $D$ .
Theorem 2.1. Under the same conditions as in theore$rn1.2$

$S_{z_{0}}^{(D)}\subset\Omega_{1^{\cup}}(2_{2}$ .

$P\prime^{\prime}oof$. Without loss of generality we $m^{r}\iota y$ suppose that $D$ is a circle
$|z|<1,$ $z_{0}=1$ and $f(z)$ is regular $01|z|=1$ except at $\alpha_{0}\vee$ since $L_{1}$ and $L_{2}$

may be taken instead of $C_{1}$ and $C_{2}$ , by lemma 2. Assume that there exists
a hole $\Delta_{i_{o}}$ which is included in $S_{z_{0}}^{(J))}$ , whence in $R_{z_{0}}^{(D)}$ by the corollary. In
it we take a point $w_{io}$ , which is not an image of a double point of $ f(z)(^{\underline{o}_{5}}).\iota$

We cover $\Omega_{1}$ and $J2_{2}$ by bounded simply connected domains $\Phi_{1}$ and $I)_{2}$ with
boundaries $\Gamma_{1}$ and $\Gamma_{2}$ of analytic closed curves, having $zv_{i_{0}}$ as their outer
point. Connect $w_{i_{O}}$ with infinity outside $\overline{\Phi}_{2}$ by an analytic curve $L$ which
passes no branch point. Because of the analyticity of $\Gamma_{1}$ and $\Gamma_{2}$ the number
of holes of $\overline{\Phi}_{1}\cup\overline{\Phi_{2}}$ , each of which is contained in some hole of $\Omega_{1}\cup\Omega_{2}$ , is
finite and we denote these $lJoles$ by $\delta_{j}(i=1,2,\ldots p)$ . According to the de-
finition of $\Phi_{1}$ and $\Phi_{2},$

$zv_{i_{0}}$ belongs to some hole $\delta_{1}$ . We enumerate $\delta_{i}$ such
that $L$ meets $\delta_{1},\delta_{2},\ldots,\delta,,$ , and only those, in this order coming from infinity;
so in particular $\infty\in\delta_{J}$ and $-\iota v_{j_{O}}\in\delta.,$ . And we assume $\overline{\delta}_{m}nS_{z_{0}}^{(D)}=\phi but\overline{\delta}_{m+1}$

$\subset S_{zo}^{(JJ)}$ . Then $\overline{\delta}_{m+1}\subset R_{zo}^{(D)}$ by corollary. If it is shown that this is impossible,
we have $\overline{\delta},,$ $nS_{zo}^{(IJ)}=\phi$ by induction, hence $w_{i_{0}}\overline{\epsilon}S_{zo}^{(IJ)}$ which is a contradiction.
We take a point $w_{1}$ which is the first intersection of $L$ lvith $\delta_{rr\iota+I}^{-}$ counting
from infinity, and denote. by $L_{1}$ the part of $L$ between $\prime cV_{\rceil}$ and the point
$w_{2}$ , which $L$ meets for the first time $CO_{\vee}\iota nting$ from $w_{1}$ toward $i\iota_{J}^{\backslash }finity$ .
Then $L_{1}\subset\overline{\Phi_{1}}$ . Connect $w_{1}$ with infinity by a curve $L_{2}$ , lying outside $\overline{\Phi_{1}}$ except
$w_{1}$ , and which divides $\delta_{n+1}$, into two domains and passes no branch point.

Let us turn to the z-plane. For sufficiently small $ r_{0}>0,\overline{\mathfrak{D}_{70}}n\overline{\delta}_{m}=\phi$ ,
$\overline{M}_{r_{0}}^{(C_{1})}\subset\Phi_{1}\overline{M}_{/0}^{(c_{2})}\subset\Phi_{2}$ . Since $’\angle v_{1}\in R_{z()}^{(1J)},$ $t^{\tau_{l1}}ere$ exists a point $z_{1}$ in $D_{r\circ}$ such
that $f(z_{1})=w_{1}$ . Let $l_{!}^{(1)}$ and $l_{1}^{(2)}$ be the curves through $z_{1}$ corresponding
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to $L_{1}$ and $L_{2}$ respectively $ald$ put $l_{1}^{(1)}+l_{1}^{(-)}=l_{1}$ . $l_{1}^{(1)}$ and $l_{1}^{(\underline{o})}te$rminate at
points on th $e$ boundary of $D_{r_{0}}$ , and the end-points of $l_{1}^{(1)}$ and $l_{1}^{()}\underline{o}$ are not
on C. and $C_{1}re$spectively except for $z_{0}$ , because th $e$ boundary values at

that end-points are outside $\overline{\Phi_{2}}$ and $\overline{\Phi_{\iota}}$ respectively and $\overline{M}_{0}^{(C_{1})},\subset\Phi_{1}$ and $\overline{M}_{r_{0^{2}}}^{(C)}$

$\subset\Phi_{2}$ . Moreover each $e$nd-point is different from $\sim\alpha_{0}$ because according to
H\"ossjer’s theorem applied to the domain lying between $l_{1}^{(1)}$ and $C_{2}$ or $l_{1}^{(2)}$

$all\zeta iC_{1}$ it Is impossible that the cluster set on $l_{1}^{(1)}$ or $l_{1}^{()}\underline{o}$ which consists
of that boundary valu $e$ only, is outside $J2_{2}$ or $\Omega_{1}$ .

Therefore $l_{1}$ is a cross-cut of $D_{0}$ and hence $D_{r_{0}}$ is divided into two
domains by it, only one of which has $z_{0}$ on its boundary and will be denoted
by $G_{1}$ . Since $w_{1}\in R_{z_{0}}^{(J))}$ , there is a point $2_{2}$ in $G_{J}s\dot{uc}h$ that $f(\vee\sim_{2})=^{\ovalbox{\tt\small REJECT}}zv_{1}$ .

Similarly we get $l_{2}^{(1)},$ $l_{2}^{()}\underline{o}l_{2}$ and $G_{2}$ . There exists a sequence $z_{\nu}(\nu=$

$1,2,\ldots)$ of points such that $\sim\nu\theta\rightarrow 1$ as $\nu\rightarrow\infty$ and $f(\sim r_{\nu})=’\iota v_{1}$ , and we get $l_{\nu}^{(1)}$ ,
$l_{\nu}^{()}\underline{o}l_{\nu}$ and $G_{\nu}(\nu=1,2\ldots)$ such that $1_{\nu}$ and $l_{\nu+1}$ have no common point in
$D_{r_{o}}$ and $G_{\nu+1}\subset G_{\nu}$ . Since $f(\sim r)$ is regular on $C$ except at $z_{0},1_{\nu}$ and $G_{\nu}$

converg $e$ to $z_{0}$ as $\nu\rightarrow\infty$ and th $ere$ exists a number $\nu_{0}$ such that end-points
of $l_{\nu}^{(1)},$ $l_{\nu}^{()}\underline{o}$ for $\nu\geqq\nu_{0}$ terminate on $C_{l}^{(1)}0C_{J0}^{(2)}$ except at $z_{0}$ respectively. We
take a point $’\iota U_{3}$ in $\delta_{m+1}$ but not on $L_{2}$ . Since $a7v_{3}\in R_{z_{0}}^{(D)}$ by corollary, there
exists a domain $G_{0}$ , which is enclosed by $l_{\nu_{1}},$ $l_{\nu_{1}+1}(\nu_{1}\geqq\nu_{0})$ and parts of
$C_{?0}^{(l)},$ $C_{ro}^{(2)}$ and which contains.a point $z^{f}$ such that $ f(z^{\prime})=w_{3}.\cdot$ Denote the
part of the boundary of $G_{0}$ composed of $l_{\nu_{1}}^{(1)},$ $l_{\nu_{1}}^{(1)_{+1}}$ and a part of $C_{o}^{(1)}$ by $\gamma_{\vee}1$

and the part composed of $l_{\nu_{1}}^{(2)},$ $l_{\nu_{1}}^{(2)_{+1}}$ and a part of $C_{lO}^{(2)}$ by $k_{2}$ .
By the principle of argument the number of zero points of $f(\approx)-w_{3}$

in $G_{0}$ ,

$\frac{1}{2\pi}\int_{k_{1}tk_{2}}d\arg(f(2)-’\iota v_{3})>0$ .

Now it is possible by using $L_{2}$ to connect $’\iota v_{3}$ with infinity by a curve
having no common point with th $e$ image of $lt_{1}$ which is a closed $Ctl\ovalbox{\tt\small REJECT} e$ on
$L_{1}\cup\Phi_{1}$ , therefore

$\int_{k\iota}d\arg(f(0\sim)-’\angle v_{3})=0$ .

Sinc $ew_{2}\in\overline{\delta_{m}}$ , there holds $w_{2}\overline{\epsilon}\mathfrak{D}_{ro}$ and hence
$\int_{k_{1}+k_{2}}darg(f(2)-’\iota v_{2})=0$ ,

furthermore
$\int_{k_{1}}d\arg(f(\sim\sim)-w_{2})=0$ ,



On the Cluster Sels of Anafytic Functions in a Jordan Domain. 11

.because we can connect $w_{2}$ with infinity with a curve having no common
point with th $e$ set $L_{1}\cup\Phi_{1}$ .
Consequently

$\int_{k_{2}}d\arg(f(z)-w_{2})=0$ .

But by using $L_{1}$ it is also possible to connect $zv_{2}$ with $w_{3}$ by a curve
without having common point with $L_{2}\cup\Phi_{2}$ , on which the image of $l_{2}^{J}$ lies.
Accordingly

$\int_{kz}d\arg(f(z)-’\iota u_{3})=0$ .

whence

$\int_{k_{1}+k_{2}}d\arg(f(\sim r)-w_{3})=0$ .

This is a contradiction and the theorem is proved.
Remark. We denote holes of $S_{z_{0}}^{(C_{1})}$ and $S_{zo}^{(c_{2})}$ by $\{\omega_{i}^{(1)}\}$ and $\{cv_{j^{2}}^{()}\}$ respec-

tively and call also the complements of $\Omega_{1}$ and $\Omega_{2}$ holes. Then for each
of $\{\omega_{i}^{(1)}\}$ and $\{cu_{j^{\underline{9}}}^{()}\}$ , we can decide whether it $\cdot belongs$ to $S_{z_{0}}^{(D)}$ or not in
the following sense. When it belongs to $S_{z_{0}^{(D)}}$ , it does to $R_{z_{0}}^{(D)}$ with one possible
exception. When $\omega_{?l}^{(1)}$ for example, does not, then $\{\omega_{n}^{(1)}-(S_{z_{0}}^{(c_{2})}+\sum^{\prime}\omega_{j}^{(2)})\}$

$nS_{z_{0}}^{(D)}=\phi$ , where 2” means the summation for $\omega_{j^{(2)}}$ which belongs to $S_{z_{0}}^{(D)}$ .
And the one possible exception cannot lie in the hole, be it of $S_{z_{0}}^{(C_{1})}$ or $S_{z_{0}^{(C_{2})}}$ ,
which does not belong to $S_{z_{0}}^{(D)}$ . These facts, which contain theorem 2.1,
are shown by the same method as the one used in this theorem.

2. In the same paper G. H\"ossjer proved
Theorem II. $(H\ddot{o}ssi^{er})$ . Under the same cond tions as in $th_{\vee}$,orcm I and

under the hypotlzesis that $f(z)$ is contimtous on $D+C$ excepl at $z_{0}$ , there exists
a Jordan curve $L$ on $D+Ctermina\dot{ti}ng$ at $z_{0}$ such that

$ S_{z_{O^{\lrcorner}}^{(I)}}\subset\Omega_{1}n\Omega_{2}=\Omega$ .
But his proo $f$ seems to be imperfect in some point(26) and unless theorem

2.1 is proved, we can say only. $ S_{z_{\Theta}}^{(L)}\subset\Omega\cup\Delta$ when $\Delta$ exists. We state the
theorem in the following form.

Theorem 2.2. Under t1W $sa$me $co’\ell ditions$ as in theorem 1.2, there exists
a Jordan curve $L$ in $D$ terminating at $2_{0}$ such that
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$ S_{z_{0}^{(J,)}}\subset\Omega$.
To prove this theorem the following lemma is to be mentioned.
Lemma 3. Let $D$ le a Jordan tlomain, $\approx_{0}/,e$ on its boundary, $\Omega_{i}(i=1$ ,

2, $\ldots$ ) be the sequence of cross-cuts in $D$ , disjoint of each $ot\gamma_{l}rr$ , not $termi’\iota ati/lg$

at $z_{0}$ and not accumlating in $D$ () . $D$ being divided by $Q_{i}$ into $t_{\overline{L}}vo$ domains,

let $D_{i}$ be the one $ whic1\iota$ has $2_{0}$ on its $bo1l/ntnryaz\iota\prime l$ let the area of each $ D_{i}\geqq$

$k>0$ (”). $T/lenD_{0^{=\bigcap_{i=1}}}D_{i}$ is a $\ell Jomain$ .
Proof. Take an arbitrary $seqne1^{\backslash ,}ce$ of domiins $G_{n}(n=1,2,\ldots)$ , such

that $\overline{G_{\iota}}\subset G_{1+1}\rightarrow D$ . If there is a sequence of domains $D_{i}$

.
$(n=1,2,\ldots)St\iota ch$

that $ D_{i}\cap 1\cap G_{n}=\psi$ , then the area of $D_{i}\rightarrow 0$ . Consequently $thei^{\sim}e$ exists a
number $n_{0}$ such that for each $r\iota\geqq/l_{0},$ $G,$ $\cap D_{i}\neq\phi(i=1,2,\ldots)$ . Since only a
finite number of cross-cuts $Q_{i_{1}},$ $Q_{i_{2}},\ldots,Q_{jp}$ has common points with $G$ , and

for other cross-cuts $Q_{i},$ $D_{i}\supset G_{?1}$ , so $D_{0}\cap G,,$ $=(\bigcap_{j=1}D_{ij})pnG_{7l}$ is a non-empty
$\infty$

open. set $(-\eta)$ . Since $D_{0}=D_{0}\cap(\cup G_{l})=1=\bigcup_{\iota=1}(D_{0}nG_{l}),$ $D_{0}$ is a non-empty open

set and consists of components of domains.
Assuming that there are at least two components of $D_{0}$ , connect a

point $\approx_{1}$ in one component $H_{1}$ with a point $\alpha_{2}$ in other component $H_{2}b;$
;

a polygonal curve in $D$ . Let $\approx_{3}$ be the point at which the curve has a
point in common with the boundary of $H_{1}$ finally counting from $z_{1}$ and $Q_{i_{0}}$

be the cross-cut on which $\sim\sigma_{3}$ lies. Since the one side of $Q_{i_{0}}$ belongs to
$H_{1}$ , the curve does not enter into $H_{1}$ across $Q_{i_{0}}$ after $\sim\sim_{3}$ and hence $\sim_{2}d$ can
not belong to $D_{i_{0}}$ because the another side of $Q_{i_{0}}$ does not $be101^{\rceil}.g$ to $D_{i_{0}}$ .
This contradicts the definition of $D_{o}$ . Therefore $D_{0}$ is a domain.

Proof of $t/leorem2.2$ . Withou $t$ loss of generality, we may suppose that
$D$ is a circle $|z|<1,$ $\sim\sim_{0}=1$ and $f(\sim\sim)$ is regular on $C$ except at $\sim 0$ by
lemma 2. We shall first consider the case where one of $\Omega_{1},$ $f2_{2}$ does not
contain the other. Approximate $\Omega_{1}$ and $\Omega_{2}$ by $t\iota vo$ sequences of simply
connected domains $\Phi^{(1)}’$

”
$\Phi_{2l}^{(2)}(n=1,2,\ldots)$ respectively so that $\Phi_{l}^{(i)}\supset\Omega_{t},$ $\Phi_{r1}^{(i)}$

$\supset\Phi_{l+1}^{\overline{(}i)}\wedge(i=1,2)$ and the boundary $\Gamma_{\iota}^{(t)}$ of $\Phi_{rl}^{(i)}(i=1,2)$ is an analytic
curve and passes no branch point.

For fixed $7l$ , there exists a positive number $r,$ , such that $\overline{\mathfrak{D}_{r_{l}}},\subset\Phi^{(1)}\cup$

$\mathcal{O}_{9l}^{(2)}$ by theore$m2.1$ and $\overline{M^{(C_{\iota}i)},_{\wedge}}\cup\Phi_{\iota\prime}^{(i)}(i=1,2)$ . Then there is no point of
$D_{r_{?i}}$ which corresponds to the point on $l^{7}(1)$ outside $\Phi_{?l}^{(2)}$ or on $\Gamma_{9l}^{(2)}$ outside
$\phi_{ll}^{(1)}$ because these points are not in $\mathcal{O}_{\iota}^{(1)}\cup\Phi_{\iota}^{(2)}\wedge\cdot$
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Consider the domains in $D_{r_{0l}}$ in which $f(2)$ takes the values belonging
to $\Phi^{(1)}\ovalbox{\tt\small REJECT}$

’ and let $D_{n}^{(1)}$ be a component which is in contact with $C_{r_{n}}^{(1)}$ . The
values, which $f(\sim r)$ takes on $C_{r_{n}}^{(1)}$ except at $z_{0}$ , belong to $\mathcal{O}_{n}^{(1)}$ , and hence
some part of $D_{r_{n}}$ near $C_{ln}^{(1)}$ , is contained in $D_{n}^{(1)}$ .

Next we shall investigate the boundary curves of $D_{n}^{(1)}$ inside $D_{rn}$ .
These curves are images of an analytic $I^{T_{n}l)}$ , and hence consist of at most
an enumerably infinite number of cross-cuts having no common point with
each other, not acc\‘umulating in $D_{7n}$ and not terminating on $C_{r_{n^{\grave{J}}}}^{(1}$ , including
$\sim r_{0}$ . For if a cross-cut terminate $s$ at $z_{0}$ , the cluster set on that curve con-
sists of one point on $\Gamma_{n}^{(1)}$ and $\Omega_{1}\subset\Phi_{n}^{(1)}$ , and they are disjoint, but it is
impossible by H\"ossjer’s theorem. And further $D_{n}^{(1)}$ is a simply connected
domain.

Considering $\Phi_{n}^{(2)}$ , we, get another domain $D_{n}^{(2)}$ with the same character.
The boundary curves of both domains inside $D_{n}$ are cross-cuts not accumula-
ting in $D_{l}n$ not $te$rminating at $z_{0}$ and free from each other, because the
common point corresponds to the point of intersection of $\Gamma_{n}^{(1)}$ and $\Gamma_{n}^{(9)}$ , and
this is outside $\overline{\mathfrak{D}}_{r_{n}}$ by selecting $r_{n}$ sufficiently small. Considering that agy
cross-cut is the boundary curve of non-empty $D_{n}^{(1)}$ or $D_{n}^{(2)}$ , the further as-
sumption of lemma 3 is satisfied and the intersection $D^{n}=D_{n}^{(1)}nD_{n}^{(2)}$ is a
domain.

For each $n$ we get domains $D_{n}^{(1)},$ $D_{n}^{(2)}$ and $\backslash D^{n}$ such that $D_{n+1}^{(i)}\subset D_{n}^{(i)}$

$(i=1,2)$ and hence $D^{n+1}\subset D^{n}$ holds. If we take $r_{n}\rightarrow 0$ , then $D^{n}\rightarrow 2_{0}$ . Let
$z_{n}$ be a point in $D^{n}$ , connect $z_{n}$ with $z_{n+1}$ in $D^{n}$ by a polygonal $c\iota^{1}rve$,
combine them and make it a simple curve by $removirlg$ the superfluous
parts fi om it. Then it is easily seen that $S_{o^{\prime}}^{(.)}’,\subset-()$

Now in the case where the one contains the other, for instance $\Omega_{1}\subset\theta_{2}$ ,
we get $L$ by lemma 2.

Remark. When $\Omega$ consists of many ‘continuums, $S_{z_{O}}^{(L)}$ belongs to a
component of $\Omega$ since $S_{\approx_{o}}^{(L)}$ is a continuum, and there is no more such a
curve on which the cluster set $be$} $ongs$ to the other component of $\Omega$ , because
of H\"ossjer’s theorem.

Mathematical Institute, Nagoya University.
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Notes.

(1) We use + for sums of disjoint sets.
(2) $\mathfrak{D}_{r}$ denotes the closure of $\mathfrak{D}_{r}$ : ditto concerning $M_{r}^{(E)}^{\overline}$ $Y_{r}^{(E)}^{\overline}$ etc.
(3) We will call this a function of class $a$

(4) Cf. W. Gross: Zum Verhalten der konfornuen Abbildung am Rande. Math. Zeit. 5
(1919).

(5) An example will be shown at the end of n\circ 3.
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(9) W. Gross: Zum Verhalten analytischer Funktione’n in der Umgebung singularer

Stellen. Math. Zeit. 2 (1918).
(10) $Q_{1}\supset Q_{2},$ represents that $Q_{2}$ is nearer to $z_{0}$ than $Q_{1}$ .
(11) S. Kametani and T. Ugaheri: A remark on Kawakami’s extension of L\"owner’s lemma.

Proc. Imp. Acad. Tokyo. 18 (1942).
(12) M. Tsuji: On an extension of L\"owner’s theorem. Proc. Imp. Acad. Tokyo. 18 (1942).
(13) F. Iversen: Recherches sur les fonctions inverses des fonctions m\’eromorphes. Th\‘ese

de Helsingfors. 1914.
K. Noshiro: loc. cit. (7).
(14) Capacity means logarithmic capacity.
(15) O. Frostman: Potentiel d’\’equilibre et capacit\’e des ensembles avec quelques applica-

tions \‘a la th\’eorie des fonctions. Meddel. Lunds Univ. Mat. Sem. 3 (1935).
(16) We denote Koebe’s theorem for a function of class $a$ by generalized Koebe’s theorem.

Cf. W. Gross: \"Uber die Singularit\~aten analytischer Funktionen. Mh. Math. u. Physik. 29 (1918).
(17) M. L. Cartwright: On the behaviour of analytic functions in the neighbourhood of its

essential singularities. Math. Ann. 112 (1936).
(18) Here, theorems for a function of class $a$ are considered.
(19) Cf. R. Nevanlinna: Eindeutige analytische Funktionen. Berlin. 1936.
(20) W. Seidel: On the distribution of values of bounded analytic function. Trans. Amer.

Math. 36 (1934).
(21) G. H\"ossjer: Bemerkung \"uber einen Satz von E. Lindel\"of. Fysiogr. S\"allsk. Lunds.

F\"orh. 6 (1937). G. H\"ossjer assumed the continuity of $f(z)$ on the closed Jordan domain
except for $z_{0}$ , but here it is unnecessary.

(22) $\phi$ represents an empty set.
(23) K. Noshiro: loc. cit. (7).

(24) W. Gross has obtained already some similar results. But our results are different from
his in several points. W. Gross: loc. cit. (9).

(25) We will call it briefly the branch point (in the $w$-plane).
(26) Giving two sequences of points $\{z_{n}\}$ and $\{z_{n}^{\prime}\}$ which converge to $z_{0}$ on $C_{1}$ and $C_{2}$

respectively and proving that any curve in $D$ connecting two points $z_{n}$ and $z_{n}^{\prime}$ meets at least
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one of given domains in $D$, he concluded the existence of a domain having $z_{0}$ on its boundary
among these domains. But it seems hasty to conclude so.

(27) That is, there runs only a finite number of curves near any point in $D$ .
(28) Area means the inner extent in Jordan’s sense.
(29) Since $Q_{ij}$ ( $j=1,2,\cdots, p$) don’t pass $z_{0}$ , some neighbourhood of $z_{0}$ in $D$ is included

in $\bigcap_{j=1}^{p}D_{ij}$ . Connect $z_{0}$ with a point $z_{1}$ in $G_{n}$ by a curve in $D$ . If this curve does not meet $Q_{ij}$

( $j=1,2,\cdots,p$ ), $z_{1}$ will belong to $\bigcap_{j=1}^{p}D_{ij}$ otherwise there will exist a cross-cut $Q_{io}$ which the

curve intersects at the first time counting from $z_{0}$ . Since one side of $Q_{i_{o}}$ belongs to$\bigcap_{j=1}^{p}D_{ij}$ and

some part of $Q_{i_{o}}$ lies in $G_{n}$ , it is possible to enter into $G_{h}$ staying inside $\bigcap_{j=1}^{p}D_{ij}$ . Accordingly
$(\bigcap_{j=1}^{p}D_{ij})\bigcap G_{n}$ is a non empty open set.
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