Base conditions for hypersurfaces at a point.

Kôtaro Okugawa.
(Received Feb. 3, 1949).
In this paper we shall study systematically the base condition at a given point for hypersurfaces in an n-dimensional affine space over an arbitrary ground field K.

A base condition for a system of hypersurfaces will be expressed by a certain set of linear (homogeneous) relations between the coefficients of the equations of hypersurfaces belonging to the system. Namely, taking the given point O as the origin of the coordinate system $O X_{1} X_{2} \ldots X_{n}$, and the equation of such hypersurface being $f=\sum a_{i j} \cdots_{k} X_{1}{ }^{i} X_{2}{ }^{j} \ldots X_{n}^{k}=0$ (a ' $s \in K$), the base condition is expressed by a set of equations

$$
\sum a_{i j} \cdots{ }_{k} u_{i j}^{(\lambda)} \cdots_{k}=0\left(u^{\prime} s \in K\right) \quad(\lambda=1,2, \ldots \ldots)
$$

for the coefficients of the polynomial f. The totality of polynomials satisfying the base condition forms an ideal in the ring of polynomials.

Since the degree of the polynomial is not assigned by base conditions, it is preferable to deal more generally with formal power series. In §§ $2-3$ the base condition will be discussed as a set of linear conditions related with linear mappings of K-vector space into K. In $\S 4$ we shall characterize the base condition by using the Macaulay's inverse system from a new point of view. ${ }^{1)}$ In § 5 some results concerning with irreducible ideals are obtained.

I express my sincere thanks to Prof. Akizuki for his many valuable advices.

1. The ring of formal pozecr series.

Let L be the ring $K\left[\left[X_{1}, \ldots \ldots, X_{n}\right]\right]$ of formal power series in $X_{1}, \ldots \ldots, X_{n}$ over K. Let us arrange all non-negative power products of $X_{1}, \ldots \ldots, X_{n}$ lexicographically and consider them linearly ordered. We denote them, for brevity, by $x_{i}(i=1,2, \ldots \ldots)$. Then, any series f of L is expressible in the form $f=\sum_{i=1}^{\infty} a_{i} x_{i}\left(a_{i} \in K\right)$. If $a_{1}=\ldots \ldots=a_{r-1}=0, a_{r} \neq 0$, then r will be called the rank of f.

Let $f=\sum_{i=1}^{\infty} a_{i} x_{i}$ be a series of L. We introduce in L a weak topology, namely we define a neighborhood of f, for each finite set $i_{1}, \ldots \ldots, i_{m}$ of positive integers, as being the set of all such series $\sum_{i=1}^{\infty} a_{i}^{\prime} x_{i}$ that a_{i}^{\prime} is equal
to a_{i} in case i is equal to one of $i_{1}, \ldots \ldots, i_{m}$ and is arbitrary (ϵK) in other cases. Then, L can be considered as a complete Hausdorff space. All topological notions applied to L will be mentioned with regard to this. topology.

Lemma. Every ideal of L is a closed linear subspace of L, if L is considered as a topological vector space over K.

Proof. Let A be an ideal of L, and $f_{1}, \ldots \ldots, f_{m}$ a finite set of generators of the ideal A. Any infinite linear combination of the products $x_{i} f_{j}$ ($i=1,2, \ldots \ldots ; j=1, \ldots \ldots, m$) over K is significant and contained in A, since there can not exist any such infinite subset of the $x_{i} f_{j}$ that all of its elements have a same rank. Hence, A is equal to the totality of all: (finite or infinite) linear combinations of the $x_{i} f_{j}$ over K, and every convergent sequence of elements from A has its limit in A. Thus A is a closed linear subspace of L.

2. Linear conditions and linear mappings.

A linear mapping φ of the vector space L in the field K is called continuous if φ satisfies the condition :

$$
\lim _{k \rightarrow \infty} \varphi\left[f_{k}\right]=\varphi\left[\lim _{k \rightarrow \infty} f_{k}\right]
$$

for every convergent sequence f_{k} from L, namely, if almost all of $\varphi\left[f_{k}\right]$ $(k=1,2, \ldots \ldots)$ are equal to $\varphi\left[\lim _{k \rightarrow \infty} f_{k}\right]$. The above condition is satisfied if and only if there exists such a neighborhood of the zero of L that is mapped by φ on the zero of K.

If φ is a continuous linear mapping of L in K, all but a finite number of the images $\varphi\left[\dot{x}_{i}\right]$ of $x_{i}(i=1,2, \ldots \ldots)$ must be zero. Conversely, a continuous linear mapping φ is uniquely determined by assigning arbitrary values from K as $\varphi\left[x_{i}\right]$ for a finite number of i and zero for the others.

Now, for each $i(i=1,2, \ldots \ldots)$, let $\hat{夫}_{i}$ be such a linear mapping that

$$
\xi_{i}\left[x_{i}\right]=1, \quad \xi_{t}\left[x_{j}\right]=0 \quad(\text { for all } j \neq i) .
$$

If we define as usual the addition and the K-multiplication for linear mappings of L in K, we see at once that a linear mapping φ is continuous if and only if φ is equal to a finite linear combination of $\xi_{i}(i=1,2, \ldots \ldots)$ over K.

Let Λ be the totality of all finite linear combinations (or all continuous linear mappings) $\varphi=\sum_{i=1}^{m} \alpha_{i} \xi_{i}\left(\alpha_{i} \in K\right)$ (the number m depending on φ), and let us consider Λ as a vector space over K with trivial topology.

If $f=\sum_{i=1}^{\infty} a_{i} x_{i}, \varphi=\sum_{i=1}^{m} \alpha_{i} \xi_{i}$ are elements of L, Λ respectively, we get

$$
\varphi[f]=\sum_{i=1}^{m} a_{i} \alpha_{i} .
$$

From now on, we shall express φ and $\varphi[f]$ as $\varphi=\sum_{i=1}^{\infty} \alpha_{i} \xi_{i}$ and

$$
\begin{equation*}
\varphi[f]=\sum_{i=1}^{\infty} a_{i} \alpha_{i}, \tag{1}
\end{equation*}
$$

considering all the $\alpha_{i}(i>m)$ as zeros. So φ is a K-character of the topological K-module L and Λ the K-character group.

By setting

$$
f[\varphi]=\varphi[f]
$$

f can be considered as a linear mapping of Λ in K (a K-character of Λ), and we see at once that L is equal to the totality of all such linear mappings; namely, L is the K-character group of Λ.

3. Duality between L and Λ.

If f, φ are elements of L, Λ respectively such that $\varphi[f]=f[\varphi]=0$, then each of f, φ is called an annihilator of the other. If Γ is a linear subspace of Λ, the totality of all common annihilators (in L) of all elements of Γ will be denoted by $L\left(I^{\prime}\right)$; and if A is a closed linear subspace of L, we use the similar notation $\Lambda(A)$ for the set of all common annihilators in Λ of elements of A. Clearly $L(\Gamma)$ and $\Lambda(A)$ are always linear subspaces of L and A respectively, and the former is always closed on account of the continuity.

Let A be a closed linear subspace of L. Then, it is easily verified that there exists a set of vectors $f_{k}(k=1,2, \ldots \ldots)$. of ascending ranks such that A is equal to the set of all (finite or infinite) linear combinations of $f_{k}(k=1$, $2, \ldots .$.) over $K .{ }^{2)}$ Such a set f_{k} will be called a normal base A.

For a vector $\varphi=\sum \omega_{i} \xi_{i}$ of Λ, if we have $\alpha_{m} \neq 0, \alpha_{i}=0$ ($i>m$), m will be called the order of φ. If Γ is a linear subspace of Λ, we see easily that there exists a set of vectors $\varphi_{k}(k=1,2, \ldots \ldots)$ of ascending orders such that I' consists of all finite linear combinations of the φ_{k} over K. Such a set φ_{k} will be called a normal base of I.

Let A be a closed linear subspace of L with a normal base $f_{k} \quad(k=$ $1,2, \ldots \ldots$). and r_{k} the rank of f_{k}. Let us now set, for all $i(i=1,2, \ldots \ldots)$,

$$
y_{i}=\sum_{j=1}^{\infty} p_{i j} x_{j}=\left\{\begin{array}{l}
f_{k}\left(\text { if } i \text { is equal to } r_{k}\right) \tag{2}\\
x_{i}(\text { if } i \text { is otherwise }),
\end{array}\right.
$$

then we get another normal base y_{i} of the whole space $L . A$ consists of all linear combinations of $y_{i}\left(i=r_{1}, r_{2}, \ldots ..\right)$. In the infinite matrix $P=$
$\left\|p_{i j}\right\|$ of the coefficients of the equations (2), we have $p_{i i} \neq 0(i=1,2, \ldots \ldots)$, $p_{i j}=0(i>j)$, and we see at once that P has the inverse matrix $P^{-1}=$ $\left\|p_{i j}^{\prime}\right\|$ such that $p_{i i}^{\prime} \neq 0(i=1,2, \ldots \ldots), p_{i j}^{\prime}=0(i>j)$.

Now, we transform also the normal base ξ_{i} of Λ using the transposed matrix of p^{-1} into the normal base

$$
\begin{equation*}
\eta_{i} \sum_{j=1}^{\infty} \xi_{j} p_{j i}^{\prime} \quad(i=1,2, \ldots \ldots) \tag{3}
\end{equation*}
$$

Under these contragredient transformations (2), (3), the form of (1) is invariant: namely, if $f=\sum a_{i} x_{i}=\sum b_{i} y_{i} \quad\left(a_{i}, b_{i} \in K\right), \varphi=\sum a_{i} \xi_{i}=\sum \beta_{i} \eta_{i}$ $\left(\alpha, \beta \in K^{\prime}\right)$ are the expressions of f, φ of L, Λ respectively with regard to the old and the new normal beses of L, Λ, then we get

$$
\varphi[f]=f[\varphi]=\sum \alpha_{i} \alpha_{i}=\sum b_{i} \beta_{i}
$$

Therefore, $\Lambda(A)$ is constituted of all finite linear combinations of $\eta_{i}\left(i \neq r_{1}\right.$, $\left.r_{2}, \ldots ..\right)$, and hence $L(\Lambda(A))$ is equal to the totality of all linear combinations of $y_{i}\left(i=r_{1}, r_{2}, \ldots \ldots\right)$, i.e. $L(\Lambda(A))=A$.

We can similarly show the equality $\Lambda\left(L\left(\Gamma^{\prime}\right)\right)=\Gamma$ for any linear subspace I^{\prime} of Λ. Thus we get the Pontrjagin's theorem of duality in our case:

If A is a closed linear subspace of L, then zee get $L(\Lambda(A))=A$. If Γ is a linear subspace of Λ, we get $\Lambda(L(\Gamma))=\Gamma$.

Since the sum-space and the intersection of any two closed linear subspaces of L are also closed, the lattice $\{A\}$ of all closed linear subspaces A of L and the lattice $\{\Gamma\}$ of all linear subspaces Γ of Λ are dual-isomorphic by the rever sible correspondence $A \rightarrow \Lambda(A), \Gamma \rightarrow L(\Gamma)$.

Remark. The statements of $\S \S 2-3$ hold true in more general cases. Let L be a complete vector space over K with a base x_{λ} (λ running over a well-ordered set. M of indices), i.e. the totality of all finite or enumerably infinite linear combinations of the x_{λ} over K; the topology being defined in our sense. On the other hand, let Λ be a vector space over K with a base ξ_{λ} (λ running over the same set M as above), i.e. the totality of all finite linear combinations of the ξ_{λ} over K. Then, we see that L and Λ are related in a same manner as it was stated above.

4. Base conditions at a point.

Let Δ be the vector space over K generated by the reciprocals x_{i}^{-1} of the power products $x_{i}(i=1,2, \ldots \ldots)$, i.e. the totality of all finite linear combinations of x_{i}^{-1} over K. Now, Δ can be considered as an L-module. Namely, for each $x_{i} \in L$ and for each $x_{j}^{-1} \in \Delta$, we define the multiplication
$x_{i} \times x_{j}^{-1}$ by setting
(4) $\quad x_{i} \times x_{j}^{-1}=\left\{\begin{array}{l}x_{k}^{-1} \text { (if the usual product } x_{i} x_{j}^{-1} \text { is equal to } x_{k}^{-1} \text { for a } \\ 0 \text { (if otherwise) } k \text {. }\end{array}\right.$

And, if $f=\sum_{i=1}^{\infty} a_{i} x_{i} \in L, \varphi^{\prime}=\sum_{i=1}^{m} \alpha_{i} x_{i}^{-1}=\sum_{i=1}^{\infty} \alpha_{i} x_{i}^{-1} \quad\left(\mu_{i}=0(i>m)\right) \in \Delta$, we set

$$
\begin{equation*}
f \times \varphi^{\prime}=\sum_{i, j=1}^{\infty} a_{i} a_{j}\left(x_{i} \times x_{j}^{-1}\right) . \tag{5}
\end{equation*}
$$

Since the right-hand side consists effectively of a finite number of non-zero terms, $f \times \varphi^{\prime}$ is always an element of Δ, and we have

$$
\begin{equation*}
f \times \varphi^{\prime}=\sum_{k=1}^{\infty}\left(\sum_{i, j}^{(k)} a_{i} \alpha_{j}\right) x_{k}^{-1}, \tag{6}
\end{equation*}
$$

where the summation $\sum_{i, j}^{(k)}$, for each k, means the summation over all pairs (i, j) such that $x_{i} x_{j}^{-1}=x_{k_{1}}^{-1}$. We have clearly

$$
\begin{gathered}
(f g) \times \varphi^{\prime}=f \times\left(g \times \varphi^{\prime}\right)=g \times\left(f \times \varphi^{\prime}\right)=(g f) \times \varphi^{\prime}, \\
(f+g) \times \varphi^{\prime}=f \times \varphi^{\prime}+g \times \varphi^{\prime}, f \times\left(\varphi^{\prime}+\psi^{\prime}\right)=f \times \varphi^{\prime}+f \times \psi^{\prime}, \\
(c f) \times \varphi^{\prime}=c\left(f \times \varphi^{\prime}\right), f \times\left(\gamma \varphi^{\prime}\right)=\gamma(f \times \varphi), \\
\left(f, g \in L ; \varphi^{\prime}, \psi^{\prime} \in \Delta ; \quad c, \gamma \in K\right) .
\end{gathered}
$$

If we define an L-multiplication on Λ by replacing ξ_{j}, ξ_{k} for x_{j}^{-1}, x_{k}^{-1} respectively in (4), (5), then Λ becomes an L-module isomorphic to the L-module Δ.

While, if $f=\sum a_{i} x_{i} \in L$, then

$$
x_{k} f=\sum_{i=1}^{\infty} a_{i}\left(x_{i} x_{k}\right)=\sum_{j=1}^{\infty} a_{i} x_{j},
$$

in the last summation i being, for each j, such that $x_{i} x_{k}=x_{j}$ i.e. $x_{i} x_{j}^{-1}=x_{k}^{-1}$ and if $\varphi=\sum \alpha_{j} \xi_{j} \in \Lambda$, then

$$
x_{k} \times \varphi=\sum_{j=1}^{\infty} \alpha_{j}\left(x_{k} \xi_{j}\right)=\sum_{i=1}^{\infty} \alpha_{j} \xi_{i},
$$

in the last summation f being, for each i, such that $x_{k} \times \hat{₹}_{j}=\hat{F}_{i}$ i.e. $x_{i} x_{k}^{-1}=$ x_{k}^{-1}. Consequently we get

$$
\left(x_{k} f\right)[\varphi]=\left(x_{k} \times \varphi\right)[f]=\sum_{i, j}^{(k)} \quad a_{i} \alpha_{j},
$$

$\sum_{i, j}^{(k)}$ meaning the same as in (6). Hence, if $f=\sum \alpha_{i} x_{i} \in L, \varphi^{\prime}=\sum \alpha_{i} x_{i}^{-1} \in$ $\Delta, \varphi=\sum \alpha_{i} \xi_{i} \in \Lambda$, we get from (6)

$$
\left\{\begin{array}{l}
f \times \varphi^{\prime}=\sum_{k=1}^{\infty}\left(x_{k} f\right)[\varphi] x_{k}^{-1}=\sum_{k=1}^{\infty}\left(x_{k} \times \varphi\right)[f] x_{k}^{-1}, \tag{7}\\
f \times \varphi=\sum_{k=1}^{\infty}\left(x_{k} f\right)[\varphi] \xi_{k}=\sum\left(x_{k} \times \varphi\right)[f] \xi_{k} .
\end{array}\right.
$$

Thus every element $\varphi \in \Lambda$ can be considered as an L-homomorphism of the L-module L into the L-module Δ (i.e. a Δ-character of the L-module L). And Λ can be considered as the Δ-character group of L.

According to (7), we get $f \times \varphi=0$ if and only if $\left(x_{k} f\right)[\varphi]=\left(x_{k} \times \varphi\right)$ $[f]=0$ for all k i.e. if and only if $\varphi \in \Lambda(L f)$ or $f \in L(L \times \varphi)$. Hence, we obtain the duality betzeeen ideals (i.e. L-submoduli) A of L and L-submoduli Γ of Λ by the reversible correspondences $A \rightarrow \Lambda(A), \Gamma \rightarrow L(\Gamma)$:

Theorem 1. If Γ is an L-submodule of Λ, then $L(\Gamma)$ is an ideal of L and equal to the set of all $f \in L$ such that $f \times L=\{0\} .{ }^{3)}$ If A is an ideal of L, then $\Lambda(A)$ is an L-submodule of Λ and equal to the set of all $\varphi \in \Lambda$ such that $A \times \varphi=\{0\}$.

If an L-submodule Γ is not expressible as a sum of two L-submoduli both of which are properly contained in Γ, then Γ will be called an irreducible' L-submodule.

We get by the duality:
Theorem 2. Let Γ be an L-submodule and A the ideal (of L) defined by Γ, i.e. $A=L(\Gamma)$. Then, 1°) A is an irreducible ideal of and only if Γ is irreducible as L-submodule; 2°) a decomposition of A into an intersection of irreducible ideals induces a decomposition of $[$ ' into a sum of irreducible L submoduli, and vice versa.

Now we add a remarkable theorem:
Theorem 3. The ideal $A=L(\Gamma)$ is o-dimensional if and only if the L submodule Γ has a finite K-module-base.

Proof. Let $P=\left(X_{1}, \ldots \ldots, X_{n}\right)$ be the maximal prime ideal of the power series ring L. Then, A is 0 -dimensional if and only if there exists a positive integer m such that $P^{m} \subset A$. Suppose that Γ has a finite module-base $\varphi_{k}(k=1 \ldots \ldots, s)$ and that m_{0} is the maximum of the orders of $\varphi^{k}(k=1, \ldots$ $\ldots, s)$. Then, $\varphi_{k}\left[x_{i}\right]=0$ for all $i>m_{0}$ and for all k, and hence $x_{i} \in L(\Gamma)$ $=A$ for all $i>m_{0}$. This implies that $P^{m} \subset A$ for sufficiently large m.

Conversely, suppose that $P^{m} \subset A$ for an integer m. Then, $x_{i} \in P^{m} \subset A$ for all sufficiently large $i\left(\right.$ say $\left.>m_{0}\right)$. Accordingly, if $\varphi=\sum \alpha_{i} x_{i}^{-1} \in \Gamma$, we shall have $a_{i}=\varphi\left[x_{i}\right]=0$ for all $i>m_{0}$. Hence Γ is contained in the module $K x_{1}{ }^{-1}+\ldots \ldots+K x_{m}^{-1}$ of finite rank over K.

Remark. An L-submodule has a finite K-module base if it has a finite L-generators (cf. $§ 5$), and vice versa.

5. Irreducible L-submoduli.

Let. Φ be a subset of Λ. The minimum L-submodule containing Φ will be denoted by (Φ), and Φ will be called a set of L-generators of the L-submodule (Φ).

Lemma. An L-submodule Γ is irreducible if and only if, for each set Φ of L-generators of Γ and for each separation $\Phi=\left\{\Phi_{1}, \Phi_{2}\right\}$ of Φ into two subsets Φ_{1}, Φ_{2}, either $\left(\Phi_{1}\right)$ or $\left(\Phi_{2}\right)$ coincides with I.

If we separate a set Φ of L-generators of Γ into two nonvacuous subsets Φ_{1}, Φ_{2}, we get clearly $\Gamma=\left(\Phi_{1}\right)+\left(\Phi_{2}\right)$, and so the proof of the lemma is immediate.

Now, given any element $\varphi \in \Lambda,(\varphi)$ will be called a principal L submodule $;(\varphi)=\{f \times \varphi \mid f \in L\}$.

Theorem 4. An L-submodule L defines a 0-dimensional irreducible ideal of L if and only if Γ is principal.

Proof. If $A=L(\Gamma)$ is a 0 -dimensional irreducible ideal, then Γ has a finite K-module-base, say $\varphi_{1}, \ldots \ldots, \varphi_{s}$ (by Theorem 3), consequently $\Gamma=$ $\left(\varphi_{1}, \ldots \ldots, \varphi_{s}\right)$, and is irreducible as L-submodule. (Theorem 2). It follows (by the preceding lemma) that Γ coincides with one of $\left(\varphi_{1}\right), \ldots \ldots,\left(\varphi_{s}\right)$.

Conversely, let $\Gamma=(\varphi), \varphi$ being of order m. Since every element of $(\varphi)=\{f \times \varphi \mid f \in L\}$ is of order $\leqq m$, (φ) will have a finite K-module-base, and consequently A is a 0 -dimensional ideal. Furthermore, each set of generators of Γ must contain at least one element of order m, and such an element is necessarily of the form $f \times \varphi$ with a unit f of the ing L. Hence, Γ satisfies the condition of irreducibility of the preceding lemma. Thus A is irreducible. q.e.d.

It is easy to prove the following theorems:
Theorem 5. If A_{1}, A_{2} are ideals defined by L-submoduli Γ_{1}, Γ_{2} respectively, then $\Gamma_{1}: \Gamma_{2}=A_{2}: A_{1}$ where $\Gamma_{1}: I_{2}^{\prime}$ means the set $\left\{f \mid f \times \Gamma_{2} \subset \Gamma_{1}\right\}$ and $A_{2}: A_{1}$ the quotient-ideal.

Theorem 6. Let A_{1}, A_{2} be 0-dimensional irreducible ideals defined by principal L-submoduli $\left(\varphi_{1}\right),\left(\varphi_{2}\right)$ respectively. Then, A_{1} contains A_{2} if and only if $\varphi_{2}=f \times \varphi_{1}$ for an element $f(\epsilon L)$. When that is so, $\left.1^{\circ}\right) A_{1}$ contains A_{2} properly if and only if f is a non-unit of $L, \cdots 2^{\circ}$) $A_{2}: A_{1}$ is equal to the ideal $\left(f, A_{2}\right) ; 3^{\circ}$) there exists no 0-dimensional irreducible ideal between A_{1} and A_{2} if and only if f is irreducible mod A_{2}.

Theorem 7. If A is a 0-dimensional irreducible ideal, then so is $A: f$ for any non-zero $f \in L$.

Remark 1. Let $R=K\left[X_{1}, \ldots \ldots, X_{n}\right]$ be the ring of polynomials of $X_{1}, \ldots \ldots, X_{n}$ over K. The 0 -dimensional ideal a of R belonging to the point O and the 0 -dimensional ideal A of L correspond one to one by the reversible correspondences $a \rightarrow L \cdot a, A \rightarrow R \cap A$. Hence, we have a one-to-one
correspondence between L-submoduli with finite module-bases and such 0 -dimensional ideals of R. Theorems 4-7 hold true for 0 -dimensional ideals of R.

Remark 2. Assume that the ground field K is algebraically closed and of characteristic 0 . Let $\boldsymbol{K}=K\left(X_{1}, \ldots \ldots, X_{n}\right)$ be the quotient field of R. Let \boldsymbol{m} be the 0 -dimensional prime ideal of R belonging to the point O. Given a 1-dimensional prime ideal $\boldsymbol{p}(\subset \boldsymbol{m})$ of R definig an irreducible algebraic curve C through O, let \bar{B} be a valuation along C with centre O. Namely, \bar{B} is a valuation of the rest-class field $Q(R / \boldsymbol{p})$ such that every element of \bar{K} has \bar{B}-value 0 and the rest-classes $\bmod \boldsymbol{p}$ of $X_{1}, \ldots \ldots X_{n}$ have positive \bar{B}-values. By means of \bar{B} we shall define a "valuation" B of \boldsymbol{K}. If z is any element of the quotient-ing R_{p}, the \bar{B}-value of the rest-class of $z \bmod \boldsymbol{p} R_{p}$ will be denoted by $v_{B}(z)$; if $z \in \boldsymbol{K}, z \in R_{p}$, then we do not define its B-value $v_{B}(z)$. Such an evaluation B will be called a valuation of \boldsymbol{K} with centre O (along C).

Let B be such a valuation of \boldsymbol{K} with centre O. The set \boldsymbol{B} of all elements of R_{P} with non-negative B-values is called the valuation-ring of B. The intersection of an ideal of \boldsymbol{B} with R will be called the v-ideal of R belonging to the valuation B. Then, similarly as in Zariski (loc. cit.), we see the followings: 1°) all the v-ideals \boldsymbol{q}_{i} of R belonging to B form a Jordan sequence $\left\{\boldsymbol{q}_{i}\right\} 2^{\circ}$) \boldsymbol{q}_{i} are primary ideals for \boldsymbol{m} and $\cap \boldsymbol{q}_{i}=\boldsymbol{p}, 3^{\circ}$) for each non-zero element $a \in R$ and for each $i, \boldsymbol{q}_{i}: a=\boldsymbol{q}_{j}$ (j being an integer $\geqq i)$. Furthermore, we can prove that any Jordan sequence $\left\{\boldsymbol{q}_{i}\right\}$ of ideals of R belongs to a valuation of \boldsymbol{K} with centre O if all \boldsymbol{q}_{i} contain a same 1 -dimensional prime ideal of R and if the condition 3°) is satisfied.

Let $\left\{\boldsymbol{\varphi}_{i}\right\}$ be such a Jordan sequence of ideals in R. We can prove that if an ideal \boldsymbol{q}_{i} is irreducible, then the set of irreducible ideals among $\boldsymbol{q}_{1}, \ldots$ $\ldots, \boldsymbol{\boldsymbol { q }}_{i-1}$ is completely determined by \boldsymbol{q}_{i}. Namely, they are the set of all distinct ideals $\boldsymbol{q}_{i}: a(a \in R)$ (necessarily irreducible by Theorem 7), arranged in accordance with inclusion relation.

Department of mathematics
Kyôto University.

Notes.

1) Cf. F. S. Macaulay, Algebraic theory of modular systems. Cambridge Tracts, No. 19. Cambridge (1916); O. Zariski, Polynomial ideals defined by infinitely near base points. Amer. J. of Math., vol. 60 (1938), pp. 151-204.
2) If there are infinitely many f_{k}, all infinite linear combinations of f_{k} over K are convergent, since f_{k} are of ascending ranks.
3) Cf. Macaulay (loc. cit.).
