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Base conditions for hypersurfaces at a point.
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In this paper we shall study systematically the base condition at a
given point for hypersurfaces in an n-dimensional affine space over an ar-
bitrary ground field $K$.

A base condition for a system of hypersurfaces will be expressed by
a certain set of linear (homogeneous) relations between th $e$ coefficients of
the equations of hypersurfaces belonging to the system. Namely, taking
the given point $0$ as the origin of the coordinate system $OX_{1}X_{2}..X_{n}$ ,
and the equation of such hypersurface being $f=\Sigma a_{ij}X_{1}^{i}X_{2}^{j}\ldots X_{n^{k}}=0$

\langle $a’ s\in K$), the base condition is $e$xpressed by a set of equations

$\Sigma a_{ij}a_{ij}^{(\lambda)}=0(a’ s\epsilon K)$ $(\lambda=1,2,\ldots\ldots)$

for the coefficients of the polynomial $f$. The totality of polynomials satisfy-
ing the base condition forms an ideal in the ring of polynomials.

Since the degree of the polynomial is not assigned by base conditions,
it is preferable to deal more generally with formal power series. In \S \S
2–3 the base condition will be discussed as a set of linear conditions re-
lated with linear mappings of K-vector space into $K$. In \S 4 we shall chara-
cterize the base condition by using the Macaulay’s inverse system from a
new point of view.1) In \S 5 some results concerning with irreducible ideals
are obtained.

I express my sincere thanks to Prof. Akizuki tor his many valuable
advices.

1. The ring offormal power series.
Let $L$ be th $e$ ring $K[[X_{1},\ldots\ldots,X_{n}]]$ of formal power series in $X_{1},\ldots\ldots,X_{n}$

over $K$. Let us arrange all non-negative power products of $X_{1}$ , $\ldots,$
$X_{n}$

lexicographically and consider them linearly ordered. We denote them,
for brevity, by $x_{i}(i=1,2,\ldots\ldots)$ . Then, any series $f$ of $L$ is expressible
in the form $f=\sum_{i\simeq 1}^{\infty}a_{i}x_{i}(a_{i}\in K)$ . If $a_{1}=\ldots\ldots=a_{r-\underline{\rceil}}=0,$ $a_{r}\neq 0$ , then $r$

will be called the rank of $f$

Let $f=\sum_{i\approx 1}^{\infty}$ $a$ $x_{i}$ be a series of $L$ . We introduce in $L$ a weak topology,
namely we define a neighborhood of $f$, for each finite set $i_{1},\ldots\ldots,i_{m}$ of posi-
tive integers, as being the set of all such series $\Sigma_{i=1}^{\infty}a_{i}^{\prime}x$, that $a_{i}^{t}$ is equal
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to $a_{i}$ in case $i$ is equal to one of $i_{1},\ldots\ldots,i_{m}$ and is arbitrary $(\epsilon K)$ in other
cases. Then, $L$ can be considered as a complete Hausdorff space. All
topological notions applied to $L$ will be mentioned with regard to this.
topology.

LEMMA. Every ideal of $L$ is a closed linear subspace of $L,$ $lfL$ is $con-$

sidered as a $topof’$)$gical$ vector space over $K$.
Proof. Let $A$ be an ideal of $L$ , and $f_{1},\ldots\ldots,f_{m}$ a finite set of genera-

tors of the ideal $A$ . Any infinite linear combination of the products $x_{i}f_{j}$

$(i=1,2,\ldots\ldots;j=1,\ldots\ldots, m)$ over $K$ is significant and contained in $A$ , since
there can not exist any such infinite subset of the $x_{i}f_{j}$ that all of its
elements have a same rank. Hence, $A$ is equal to the totality of all.
(finite or infinite) linear combinations of the $x_{i}f_{j}$ over $K$, and every
convergent sequence of elements from $A$ has its limit in $A$ . Thus $A$ is a
closed linear subspace of $L$ .

2. Linear conditions and linear mappings.

A linear mapping $\varphi$ of the vector space $L$ in the field $K$ is called $con-$

tinuous if $\varphi$ satisfies the condition:
$\lim_{k\rightarrow\infty}\varphi[f_{k}]=\varphi[\lim_{k\cdot*\infty}f_{k}]$

for every convergent sequence $f_{k}$ from $L$ , namely, if almost all of $\varphi[f_{k}]$

(lv $=1,2,\ldots\ldots$ ) are equal to $\varphi_{1^{\ulcorner}}\lim_{k\rightarrow\infty}f_{k}$]. The above condition is satisfied if

and only if there exists such a neighborhood of the zero of $L$ that is mapped
by $\varphi$ on the zero of $K$

If $\varphi$ is a continuous linear mapping of $L$ in $K$, all but a finite number
of the images $\varphi[x_{i}]$ of $x_{i}(i=1,2,\ldots\ldots)$ must be zero. Conversely, a con-
tinuous linear mapping $\varphi$ is uniquely determined by assigning arbitrary
values from $K$ as $\varphi[x_{i}]$ for a finite number of $i$ and zero for th $e$ others.

Now, for each $i(i=1,2,\ldots\ldots)$ , let -\sim t be such a linear mapping that
$\xi_{i}[x_{i}]=1$ , $\xi_{i}[x_{j}]=0$ (for all $j\neq i$).

If we define as usual th $e$ addition and the $K_{- m^{1}J}1tiplication$ for linear map-
pings of $L$ in $K$, we see at once that a linear mapping $\varphi$ is continuous if
and only if $\varphi$ is equal to a fnite linear combination of $\xi_{i}(i=1,2,\ldots\ldots)$ over
$K$.

Let $\Lambda$ be the totality of all finite linear combinations (or all continuous
linear mappings) $\varphi=\sum_{i=1}^{m}$ $a$ $\xi_{i}(a_{i}\in K)$ (the number $m$ depending on
$\varphi)$ , and let us consider $\Lambda$ as a vector space over $K$ with trivial topology.
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If $f=\sum_{i=1}^{\infty}a_{i}x_{i},$ $\varphi=\Sigma_{i=1}^{m}a_{i}\xi_{i}$ are elements of $L,$ $Jl$ respectively, we get

$\varphi[f]=\Sigma_{l}^{m_{=1}}a_{i}a_{i}$ .
From now on, we shall $e$xpress $\varphi$ and $\varphi[f]$ as $\varphi=\sum_{i=1}^{\infty}a_{i}\xi_{i}$ and

(1) $\varphi[f]=\sum_{i=1}^{\infty}a_{i}a_{i}$ ,

considering all the $a_{i}(i>m)$ as zeros. So $\varphi$ is a K-character of the to-
pological K-module $L$ and $\Lambda$ th $e$ K-character group.

By setting
$f[\varphi]=\varphi[f]$ ,

$f$ can be considered as a linear mapping of $\Lambda$ in $K$ (a K-character of $\Lambda$ ),
and we see at once that $L$ is equal to the tolality of all suck linear mappings;
namely, $L$ is $t’\iota e$ K-c/laracter group of $\Lambda$ .

3. Duality between $L$ and $\Lambda$ .
If $ f\varphi$ are elements of $ L,\Lambda$ respectively such that $\varphi[f]=f[\varphi]=0$ , then

each of $ f\varphi$ is called an anniliilator of the other. If $\Gamma$ is a linear subspace
of $\Lambda$ , the totality of all common annihilators (in $L$) of all elements of $\Gamma$

will be denoted by $L(\Gamma)$ ; and if $A$ is a closed linear subspace of $L$ , we
use the similar notation $\Lambda(A)$ for the set of all common annihilators in $\Lambda$

of elements of $A$ . Clearly $L(\Gamma)$ and $\Lambda(A)$ are always linear subspaces of
$L$ and $\Lambda$ respectively, and the former is always closed on account of the
continuity.

Let $A$ be a closed linear subspace of $L$ . Then, it is easily verified that
there exists a set of vectors $f_{k}(k=1,2,\ldots\ldots)$ of ascending ranks $sucI\iota t1\iota atA$

is equal to $t1\iota e$ set of all (finite or infinite) linear combinalions of $f_{k}(k=1$ ,
2, $\ldots\ldots$ ) over $K^{\underline{o}}$

) Such a set $f_{k}$ will be called a normal base $A$ .
For a vector $\varphi=\sum a_{i}\xi_{i}$ of $\Lambda$ , if we have $u_{m}\neq 0,$ $a_{i}=0(i>m),$ $m$ will

be called the order of $\varphi$ . $ 1f\Gamma$ is a linear subspace of $\Lambda$ , we see easily
that $t\gamma_{lere}$ exists a set of vectors $\varphi_{k}(k=1,2,\ldots\ldots)$ of ascending orders $ suc\nearrow\iota$

$t/latI^{\prime}$ consists of all finile linear combinalions of $tf_{l}e\varphi_{k}$ over $K$. Such a set
$\varphi_{k}$ will be called a normal base of $T$ .

Let $A$ be a closed linear subspace of $L$ with a normal base $f_{k}(k=$

$1,2,\ldots\ldots)$ . and $r_{k}$ the rank of $f_{k}$ . Let us now set, for all $i(i=1,2,\ldots\ldots)$ ,

(2) $y_{i}=\Sigma_{g=1}^{\infty}p_{ij}x_{j}=\left\{f_{k_{i}}(i_{i}f_{f}i_{i}i_{i}s_{S}x(equa1tor_{k})otherwise),\right.$

then we get another normal base $y_{i}$ of the whole space L. $A$ consists of
all linear combinations of $y_{i}(i=r_{1}, r_{2},\ldots\ldots)$ . In the infinite matrix $P=$
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$||p_{ij}||$ of the coefficients of the equations (2), we have $p_{ii}\neq 0(!=1,2,\ldots\ldots)$ ,
$t_{ij}=0(i>])$ , and we $see$ at once that $P$ has the inverse matrix $P^{-1}=$

$||p^{r_{ij}}||$ such that $p_{ii}^{\prime}\neq 0(i=1,2,\ldots\ldots),$ $p_{ij}^{\prime}=0(i>j)$ .
Now, we transform also the normal base $\xi_{i}$ of $\Lambda$ using the transposed

matrix of $p^{-1}$ into the normal base
(3) $\eta_{i}\sum_{j=1}^{\infty}\xi_{j}p^{t_{ji}}$ $(i=1,2,\ldots\ldots)$ .

Under these contragredient transformations (2), (3), the form of (1) is
$i$ nvariant: namely, if $f=\sum a_{i}x_{i}=\sum b_{i}y_{i}$ $(a_{i}, b_{i}\in K)$ , $\varphi=\Sigma a_{i}\xi_{i}=\sum\beta_{i}\eta_{i}$

$(a,\beta\in K)$ are the expressions of $ f\varphi$ of $L,$ $\Lambda$ respectively with regard to
the old and the new normal beses of $L,$ $\Lambda$ , then we get

$\varphi[f]=f[\varphi]=\sum a_{t\%}=\Sigma b_{i}\beta_{i}$ .
Therefore, $\Lambda(A)$ is constituted of all finite linear combinations of $\eta_{i}(i\neq r_{1}$ ,
$r_{2},\ldots\ldots)$ , and henc$eL(\Lambda(A))$ is equal to the totality of all linear combina-
tions of $y_{i}(i=r_{1},r_{2},\ldots\ldots)$ , i.e. $L(\Lambda(A))=A$ .

We can similarly show the equality $\Lambda(L(\Gamma))=\Gamma$ for any linear subspace
$l^{7}$ of $\Lambda$ . Thus we get the Pontrjagin’s theorem of duality in our case:

$1f$ $A$ is a closed linear subspace of $L$ , then we gel $L(\Lambda(A))=A$ . $1f\Gamma^{\prime}$

is a linear subspace of $\Lambda$ , we get $\Lambda(L(\Gamma))=\Gamma$.
Since the sum-spac $e$ and the intersection of any two closed linear subs-

paces of $L$ are also closed, the latlice $\{A\}$ of all closed linear subspaces $A$

of $L$ and the lattice $\{\Gamma\}$ of all lmear subspaces $\Gamma$ of $\Lambda$ are dual-isomorphic
by the rever $si_{J}^{\gamma}le$ correspondence $A\rightarrow\Lambda(A),\Gamma\rightarrow L(\Gamma)$ .

REMARK. The statements of \S \S 2-3 hold true in more general cases.
Let $L$ be a complete vector space over $K$ with a base $\chi_{\lambda}(\lambda$ running over
a well-ordered set. $M$ of indices), i.e. the totality of all finite or enumerably
infinite linear combinations of the $x_{\lambda}$ over $K$ ; the topology being de-
fined in our sense. On the other hand, let $\Lambda$ be a vector space over $K$

with a base $\xi_{\lambda}$ ( $\lambda$ running over th $e$ same set $M$ as above), i.e. the totality
of all finite linear combinations of the $\xi_{\lambda}$ over $K$. Then, we see that $L$ and
$\Lambda$ are related in a same manner as it was stated above.

4. Base conditions at a point.

Let $\Delta$ be the vector space over $K$ generated by the reciprocals $x_{i}^{-1}$ of
the power products $x_{i}$ $(i=1,2,\ldots\ldots)$ , i.e. the totality of all finite linear
combinations of $x_{i}^{-1}$ over $K$ Now, $\Delta$ can be considered as an L-module.
Namely, for each $\chi_{i}\in L$ and for each $ x_{j^{-1}}\in\Delta$ , we define the multiplication



246 K\^oTARO OKUGAWA

$x_{i}\times x_{j}^{-1}$ by setting

(4) $x_{i}\times x_{j}^{-1}=\{va1ueofk$)
$x_{i}\chi_{j}^{-I}$ is equal to $x_{k}^{-}$ for a

And, if $f=\Sigma_{i=1}^{\infty}a_{i}x_{i}\in L,$ $\varphi^{t}=\Sigma_{i\Leftarrow 1}^{m}a_{i}x_{i}^{-1}=\sum_{=1}^{\infty}a_{i}x^{-\iota}(a_{i}=0(i>m))\in\Delta$ ,
we set

(5) $f\times\varphi^{\prime}=\Sigma_{i,j=1}^{\infty}a_{i}a_{j}(x_{i}\times x_{j}^{-1})$ .
Since th $e$ right-hand side consists effectively of a finite number of non-zero
terms, $f\times\varphi^{\prime}$ is always an element of $\Delta,$ . and we have

(6) $f\times\varphi^{\prime}=\sum_{=1}^{\infty}(\Sigma_{i.j}^{(k)}a_{i}a_{j})x_{k}^{-1}$ ,

where the summation $\Sigma_{i,j}^{(k)}$ , for each $f$ , means the summation over all pairs
$(i, j)$ such that $x_{i}x_{j}^{-1}=x_{k}^{-.1}$ . We have clearly

$(fg)\times\varphi^{\prime}=f\times(g\times\varphi^{\prime})=g\times(f\times\varphi^{\prime})=(gf)\times\varphi^{\prime}$ ,
$(f+g)\times\varphi^{\prime}=f\times\varphi^{\prime}+g\times\varphi^{\prime},$ $f\times(\varphi^{\prime}+\psi^{\prime})=f\times\varphi^{\prime}+f\times\psi^{\prime}$ ,

$(cf)\times\varphi^{\prime}=c(f\times\varphi^{\prime}),$ $f\times(\gamma\varphi^{\prime})=\gamma(f\times\varphi)$ .
$(f, g\epsilon L;\varphi^{\prime}, \psi^{\prime}\epsilon\Delta; c, \gamma\epsilon K)$ .

If we define an L-multiplication on $\Lambda$ by replacing $\hat{\zeta}_{j}\xi_{k}$ for $x_{j}^{-1},$ $x_{k}^{-1}$

respectively in (4), (5), then $\Lambda$ becomes an L-module isomorphic to the
L-module $\Delta$ .

While, if $f=\sum a_{i}x\in L$ , then
$x_{k}f=\Sigma_{t=1}^{\infty}a_{i}(x_{i}x_{k})=\Sigma_{j=1}^{\infty}a_{l}x_{j}$ ,

in the last summation $i$ being, for eachj, such that $x_{i}x_{k}=x_{j}$ i.e. $x_{i}x_{i^{-1}}=x_{k}^{-1}$

and if $\varphi=\sum a_{j}^{\xi_{j}}\in\Lambda$ , then
$x_{k}\times\varphi=\Sigma_{j=1}^{\infty}a_{j}(x_{k}\xi_{j})=\Sigma_{i\rightarrow 1}^{\infty}a_{j}\xi_{i}$ ,

in the last summation $f$ being, for each $i$, such that $ x_{k}\times_{\overline{\backslash }j}=^{r_{i}}\wedge$ i.e. $x_{i}x_{k}^{-1}=$

$x_{k}^{-1}$ . Consequently we get

$(x_{k}f)[\varphi]=(x_{k}\times\varphi)[f]=\Sigma_{i,j}^{(k)}a_{i}a_{j}$ ,

$\Sigma_{i,j}^{(k)}$ meaning the same as in (6). Hence, if $f=\sum a_{i}x_{i}\in L,$ $\varphi^{t}=\Sigma a_{i}x_{t}^{-1}\epsilon$

$\Delta,$ $\varphi=\Sigma a_{i}\xi_{i}\in\Lambda$ , we get from (6)

(7) $\{_{f\times}=(x_{k}f)[\varphi\rfloor\xi_{k}=^{-1}\Sigma(x_{k}\times^{1}\varphi)^{k}[f]\xi_{k}$ .
Thus every element $\varphi\in\Lambda$ can be considered as an L-homomorphism of the
L-module $L$ into the L-module $\Delta$ (i.e. a $\Delta$-character of the L-module $L$).
And $\Lambda$ can be considered as the $\Delta$ -character group of $L$ .
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According to (7), we get $f\times\varphi=0$ if and only if $(x_{k}f)[\varphi]=(x_{k}\times\varphi)$

$[f]=0$ for all $k$ i.e. if and only if $\varphi\in\Lambda(Lf)$ or $f\epsilon L(L\times\varphi)$ . Hence,
we obtain $t/le$ duality $b^{\rho}t^{l}zveen$ ideals (i.e. L-submoduli) $A$ of $L$ and L-submoduli
$\Gamma$ of $\Lambda$ by the reversible correspondences $A\rightarrow\Lambda(A),$ $\Gamma\rightarrow L(\Gamma)$ :

THEOREM 1. If $\Gamma$ is an L-submodule of $\Lambda$ , then $L(\Gamma)$ is an ideal of
$L$ and equal to the set of all $f\in L$ such that $ f\times L=\{0\}.\$ $

) If $A$ is an ideal
of $L$, then $\Lambda(A)$ is an L-snbmodule of $\Lambda$ and equal to $ti/e$ set $\phi$ all $\varphi\in\Lambda$

such that $A\times\varphi=\{0$ .
If an L-submodule $\Gamma$ is not expressible as a sum of two L-submoduli

both of which are properly contain $ed$ in 1‘, then $I^{7}$ will be called an irre-
$ducibl_{b}$ L-submodule.

We get by the duality:
THEOREM 2. $ L_{\vee}^{\rho}t\Gamma$ be au L-submodule and A the ideal (of $L$) defined

by $\Gamma$, i.e. $A=L(\Gamma)$ . Then, 1) $A$ is an irreducible ideal $tf$ and only $ lf\Gamma$

is irreducible as $L- subf^{\prime}Jdule;2^{o}$ ) a decomposition of $A$ into an intersection
of irreducible ideals induces a decomposition of $\Gamma$

’ into a sum of irreducible L-
submoduli, and vice versa.

Now we add a remarkable theorem:
THEOREM 3. The ideal $A=L(\Gamma)$ is o-dimensional if and $0\prime lly$ if $lheL-$

$su_{\vee}^{f}$module $\Gamma$ has a finite K-module-base.
Proof. Let $P=(X_{1},\ldots\ldots, X_{n})$ be the maximal prime ideal of the power

series ring $L$ . Then, $A$ is O-dimensional if and only if there exists a posi-
tive intege$rm$ such that $P^{m}\subset A$ . Suppose that $\Gamma$ has a finite module-base
$\varphi_{k}(k=1\ldots\ldots,s)$ and that $m_{0}$ is the $maxim|Jm$ of the orders of $\varphi^{k}(k=1,\ldots$.... $s$). Then, $\varphi_{k}[x_{i}]=0$ for all $i>m_{0}$ and for all $k$, and hence $x_{i}\in L(\Gamma)$

$=A$ for all $i>m_{0}$ . This implies that $P^{m}\subset A$ for sufficiently large $m$ .
Conversely, suppose that $P^{m}\subset A$ for an integer $m$ . Then, $x_{i}\in P^{m}\subset A$

for all sufficiently large $i(say>m_{0})$ . Accordingly, if $\varphi=\sum u_{i}x_{i}^{-1}\in\Gamma$, we
shall have $a_{i}=\varphi[x_{i}]=0$ for all $i>m_{0}$ . Hence $\Gamma$ is contained in the module
$Kx_{1}^{-1}+\ldots\ldots+Kx_{m}^{-1}$ of finite rank over $K$.

REMARK. An L-submodule has a finite K-module base if it has a finite
L-generators (cf. \S 5), and vice versa.

5. Irreducible $L$-submoduli.

Let $\Phi$ be a subset of $\Lambda$ . The minimum L-submodule containing $\Phi$

will be denoted by $(\Phi)$ , and $\Phi$ will be called a set of L-generators of the
L-submodule $(\Phi)$ .
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LEMMA. An L-submodule $\Gamma$ is irreduciZ le if $a\prime td$ only if far each set $\Phi$

of L-generators of $\Gamma$ and for each separation $\Phi=\{\Phi_{1},\Phi_{2}\}$ of $\Phi$ into $\gamma_{\iota}vo$ subsets
$\Phi_{1},$ $\Phi_{2}$ , either $(\Phi_{1})$ or $(\Phi_{2})$ coincides with $I’$.

If we separate a set $\Phi$ of L-generators of $\Gamma$ into two nonvacuous sub-
sets $\Phi_{1},$ $\Phi_{2}$ , we get clearly $\Gamma=(\Phi_{1})+(\Phi_{2})$ , and so the proof of th $e$ lemma
is immediate.

Now, given any element $\varphi\in\Lambda,$ $(\varphi)$ will be called a principal L-
submodule; $(\varphi)=\{f\times\varphi|f\epsilon L\}$ .

THEOREM 4. An L-submodule $L$ defines $a$ O-dimensional irreducible ideal
of $Llf$ and only if $\Gamma$ is principal.

Proof. If $A=L(\Gamma)$ is a O-dimensional irreducible ideal, then $\Gamma$ has a
finite K-module-base, say $\varphi_{1},\ldots\ldots,$ $\varphi_{s}$ (by Theorem 3), consequently $\Gamma=$

$(\varphi_{1},\ldots\ldots, \varphi_{\epsilon})$ , and is irreducible as L-submodule. (Theorem 2). It follows
\langle by the preceding lemma) that $\Gamma$ coincides with one of $(\varphi_{1}),\ldots\ldots,(\varphi_{s}.)$ .

Conversely, let $\Gamma=(\varphi),$ $\varphi$ being of order $m$ . Since every element of
\langle $\varphi$) $=\{f\times\varphi|f\in L\}$ is of order$=<m,$ $(\varphi)$ will have a finite K-module-base,
and consequently $A$ is a O-dimensional ideal. Furthermore, each set of
generators of $\Gamma$ must contain at least one element of order $m$ , and such
an element is necessarily of the form $ f\times\varphi$ with a unit $f$ of the ling $L$ .
Hence, $\Gamma$ satisfies the condition of irreducibility of the $pre$ceding lemma.
Thus $A$ is irreducible. q.e. $d$ .

It is easy to prove the following theorems:
THEOREM 5. $/fA_{1},$ $A_{2}$ are ideals defined by Lsubmoduli $\Gamma_{1},$ $T_{2}res-$

pectively, then $\Gamma_{1}$ : $\Gamma_{2}=A_{2}$ : $A_{1}w\gamma_{lere}\Gamma_{1}$ : $I_{2}^{7}$ means the $sel\{f|f\times\Gamma_{2}\subset\Gamma_{1}\}$

and $A_{2}$ : $A_{1}t^{\gamma}\iota e$ quotient-ideal.
THEOREM 6. Let $A_{1},$ $A_{2}$ be O-dimensional irreducible ideals defined by

principal L-submoduli $(\varphi_{1}),$ $(\varphi_{2})$ respectively. $7^{\backslash }hen,$ $A_{1}$ contains $A_{2}$ if and
only if $\varphi_{2}=f\times\varphi_{1}$ for an element $f(\epsilon L)$ . PVhen $t/\ell at$ is so, $1^{o}$ ) $A_{1}$ contains
$A_{2}$ properly if and only $lff$ is a non-unit of $L;\cdot 2^{o}$ ) $A_{2}$ : $A_{1}$ is equal to $t/le$

ideal $(fA_{2})$ ; 3) there exists no O-dimensional irreducible ideal between $A_{1}$

and $A_{2}$ if and only if $f$ is irreducible mod $A_{2}$ .
THEOREM 7. $1f$ $A$ is $a$ O-dimcnsional irreducible ideal, then so is $A;f$

for any $’\iota on$-rero $f\in L$ .
REMARK 1. Let $R=K[X_{1}, \ldots.., X_{n}]$ be the ring of polynomials of

$X_{1},\ldots\ldots,$ $X_{n}$ over $K$. The O-dimensional ideal $a$ of $R$ belonging to th $e$ point
$O$ and the O-dimensional ideal $A$ of $L$ correspond one to one by the r\’e-
versible correspondences $a\rightarrow L\cdot a,$ $A\rightarrow R\cap A$ . Hence, we have a one-to-one
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correspondence between L-submoduli with finite module-bases and such
O-dimensional ideals of $R$ . Theorems 4–7 hold tru $e$ for O-dimensional
ideals of $R$ .

REMARK 2. Assume that the ground field $K$ is algebraically closed
and of characteristic $0$ . Let $K=K(X_{1},\ldots\ldots, X_{n})$ be the quotient field of $R$ .
Let $/m$ be the O-dimensional prime ideal of $R$ belonging to the point $O$ .
Given a l-dimensional $P^{1}ime$ ideal $p(\subset m)$ of $R$ definig an irreducible
algebraic curv$eC$ through $O$ , let $\overline{B}$ be a valuation along $C$ with centre $O$ .
Namely, $\overline{B}$ is a valuation of the rest-class field $Q(R/p)$ such that every
element of $\overline{K}$ has $\overline{B}$-value $0$ and the rest-classes $mod p$ of $X_{1},$ $\ldots..X_{n}$

have positive $B^{-}$-values. By means of $\overline{B}$ we shall define a “ valuation ‘’

$B$ of K. If 2 is any element of the quotient-ring $R_{p}$ , the $B^{-}$-value of the
rest-class of $zmod pR_{p}$ will be denoted by $v_{R}(2)$ ; if $z\in K,$ $2\in R_{p}$ ,

then we do not define its B-value $v_{R}(z)$ . Such an evaluation $B$ will be
call $ed$ a valuation of $K$ with centre $O$ (along $C$).

Let $B$ be such a valuation of $K$ with centre $O$ . The set $B$ of all
elements of $R_{P}$ with non-negative B-values is called the valuation-ring of
$B$ . The intersection of an ideal of $B$ with $R$ will be called the v-ideal of
$R$ belonging to the valuation $B$ . Then, similarly as in Zariski (loc. $Clt.$),
we see the followings: 1) all the v-ideals $q_{i}$ of $R$ belonging to $B$ form a
Jordan sequence $\{q_{i}\}2^{o}$ ) $q_{i}$ are primary ideals for $m$ and $nq_{i}=p,$ $3^{o}$ )
for each non-zero element $a$ $\epsilon R$ and for each $i,$ $q_{i}$ ; $a=q_{j}(J$ being an
integer $\geqq i$). Furthermore, we can prove that any Jordan sequence $\{q_{i}\}$

of ideals of $R$ belongs to a valuation of $K$ with centre $O$ if all $q_{i}$ contain
a same l-dimensional prime ideal of $R$ and if the condition 3) is satisfied.

Let $\{q_{i}\}$ be such a Jordan sequence of ideals in $R$ . We can prove that
if an ideal $q_{i}$ is irreducible, then the set of irreducible Ideals among $ q_{1},\ldots$

..., $q_{i-1}$ is completely determined by $q_{i}$ . Namely, they are the set of all
distinct ideals $q_{i}$ : $a$ (a $\epsilon R$) (necessarily irreducible by Theorem 7), arrang-
ed in accordance with inclusion relation.

Department of mathematics
Ky\^oto University.
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Notes.

1) Cf. F. S. Macaulay, Algebraic theory of modular systems. Cambridge Tracts, No. 19.
Cambridge (1916); O. Zariski, Polynomial ideals defined by infinitely near base points. Amer. J.
of Math., vol. 60 (1938), pp. 151-204.

2) If there are infinitely many $f_{k}$ , all infinite linear combinations of $f_{k}$ over $K$ are con-
vergent, since $f_{k}$ are of ascending ranks.

3) Cf. Macaulay (loc. cit.).
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