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An Asymptotic Series for the Number of Three-Line Latin Rectangles
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Introduction

An (»,#)-latin rectangle is a (4,2)-matrix having 4 permutations of
degree # as its £ rows and admitting no coincidences of letters in each of
letters in each of its # columns. For the number f(7,%4) of such latin rec-
tangles, P. Erdés and I. Kaplansky” recently proved an asymptotic relation

[ (k) ~e ¥EDE( /),

And for the special ease of f(#», 3), nugperous results are reported to be
obtained by authors of the United States and other countries thongh we
have access to only a few of them.?

In this paper we shall give some formulas for the number f(#, 3).
Explicit formulas are given in 1. They would require heavy computations.
Our principal aim is an asymptotic series for f(#, 3).

£, 3)—
-3 3( __1___.1_ -———l~———— —5— - !
() {l n 2 n(n-—1) " 6 n(r—1)(n-2)

PR ! .}
24 w(n—1)n—2)(n—3)

given in 2. The close-up to the coefficients M, of this series will be found
in 3, and finally in 4 numerical values of NV,=s/ M, and ¢,=f(n, 3)/n!
are given for #<20. Our series seems to give far better approximations
than we can prove, at least as far as #<20.

Prof. Y. Kawada of Tokyo Bunrika Daigaku communicated m= many
valuable svggestions and advices. 1 wish to express in this place my
hearty thanks to him.

1. Explicit Formulas
We shall first modify the numbers f (7, 2) and f(7, 3) slightly :
On=f(n, 2) /!, o=f(n, 3)/n!,

and use them exclusively. These are the numbers of reduced latin rectangles,
i.e. of those latin rectangles, whose first rows consist of natural permutations.
For ¢, a well-known theorem (probléeme des rencontres) states that
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(1) .ga,,,—_—_n!{l_li!(+21_‘!;—+...+(~—)" *,%T} :
Moreover 1 make usc of the gereral partial discordance numbers

(2) Cre=¢> +( 'f >¢r_1+ N

or ,

@*) Zriren =70—( 9 Y=l — et (=) =)

The numbers ¢, and #/ are the both extremities of ¢, .

@r=C, —_¥2fr./=A”O./, | r/={,, =A%/ =d%. ‘
Originally ¢, , is defined as the number of permutations of degree 7,
which leave at most £ preassigned, e.g. the first £, letters unchanged (which
change at least all of the »r—#4 preassigned, e.g. all of the last »— £ letters).
But we prefer to consider £, ; as the number of discordant arrangements

12...... .
a=(¢z1 a, at) (1756!1,_ 276(22,; ..... ,r#ar).

......

of a prescribed set {a,, a,,...... 2} of » letters, where there are just 4 let-
ters in this set not appearing in {1,2,...... s+t We shall call these £ let

ters Jeterogeneous particles of the second row of our arrangement «. Then the
recurrence relation

ot =Crim1H+Crmr, 11 (7, £2=1), (,0=¢,
is easily verified to hold, which is immediately extended to integral forms
(2) and (2%). ‘
Now we proceed to obtain the number ¢,=f(n, 3)/n’.

Lemma 1. 7/e number ¢, is expressible by the partial discordance
numbers {,, as follows :

=33 (=) ()25 )7 Jors Comrs

The inner summation extends from k=0 to k=r,=min. (r, n—7r).

PrOOF. We can pick up from a given reduced three-line latin

rectangle
11 ... n
a @y ...... Qn
Oy Oy ... bal

the twe discordant permutétions
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12 ... 7\

A By auen.. ,,) and ( by by e ,.)’
which are discordant to each other. Conversely any such an ordered pair
of discordant permutations determines a three-line latin rectangle in the
reduced form. Hence ¢, is also the number of such pairs. If we apply

Poincare’s inclusion and exclusion method® to obtain this number, the mu-
tual discordance reflects itself in the following manner :

(35 ¢n=¢%— (li) 2 +(2i)ﬂ2— oot (—);';tn-

Herein g, denotes the number of pairs of discordant permutations having
coincidences in all of the » preassigned, e.g. in all of the first #, posttions.
This number pg,, however, can be immediately calculated if we know the
number 2 ...a, Of discordant permutatlons

= Ayeonnn. a, *...... *
of degree 7, such that 1,...... ,» are matched against the prescribed letters
7 2 ,@, respectively. Indeed,
(4) ' ,‘er=,2,22a1----ar ’
summation extending over all discordant partiai arrangeménts
1...... v ) '
u, =
Ayeenn.. a,.
(ayyeeee.. ,a,-being arbitrararily selected from among 1,...... ,2 under the condi-
tion of discordance). But as is easily seen, the number X,,l ...... o, depends
only upon the distribntion of elements of our prescribed set {a,...... 7, }
between {1,...... , #} and {r+1,......, #}. Indéed, if there are just »r—4
elements common to {a,;...... .} and {1,...... , 7}, then since the remaining
# elements of {1,......, »} should appear in the second row of the second
partial arrangement
_(+1...... n)
2T k. *
as /% heterogeneous particles, llal....ar reduces to £ ,_, . If we fix the value 4,
there are (1: ,é)(n;r)ways to choose the set {a,...... ,a,} which shares
just »—/% elements common with {1,...... , #}. And after choosing this set
there are {,, ways of arranging this set so as to be dlscordant to 1,...... e

Hence there are



An Asympo’ic Series for the Number of Three-Line Latin Rectangles 229

()5 K

terms in the sum (4), for which 4, ...... o turns to {u, i Thus (4) may
be written :

®) M( ) i Y-

and this together with (3) furnishes the proof of Lemma 1.

In the course of the proof above we eventually classified discordant
permutations of degree » with regard to the first » positions. Hence if we
replace -, »in (b) by Cu_, : itself we would restore ¢, (for any value

of ) :
3 (A (g Sy S

We can generalize (6) to the following Lemma, which is essential in
our further discussions.

LemmA 2. For p<r,=min. (», n—r) there holds the identity :

k—p( )< ;f)c"kc"“"k =—(;:_‘;)—'—Cn », p*

Proor. The proof goes  analogusly to that of Lemma 1. Suppose
there are given a set of #+p symbols

{1, ...... ’ n—p; n—p+1,..... , %, n—p+1,...... 7}
and consider of various discordant arrangements

... an
where {a,...... @} consists of 1,...... m—pyn—p+1,.... ,n2. Thus in a. =
—p+n...... nand n—p+1,...... 2 are the respective heterogeneous particles of

the first and the second rows. Let us determine the number y of discordant
arrangements a with the following property :

(C) all the p heterogeneneOus particles of the second row are matched
against those Jomogeneous particles of the first row contained in the pars
{1,...... y 7} v
(Note that p<r<n—p.) "We shall show

(7) ' k__p( r )(7Z g, p)Cr kCn—r ke

In fact, let us devide « into two parts
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1...... 7 _(r+1...... 7 )
a’_((zl ...... a,) and o= Qpyq wevnes an

and suppose in «, there are

2 elements common to {ay,...... ,a,} and {1,...... , 7}, then there are

r—p—u elements common to {a...... ,2,} and {r+1,...... , n—pt,
because there should be

2 elemements common to {a,...... .} and {n—p+1,...... ,7} accord-
ing to (C). Hence in ¢, there are

r—u elements common to {@..qyeeee.. ,,} and {1,...... , 7}
n—y—(r—u) elements common to {@, y-.-... y @,} and {r+1,...... n—p},

and no element common to {,,i,...... a,} and {n—p+1,...... s},

The two partial arrangements «; and «, have the same number £2=7—u
of (relative) heterogeneous particles. If we fix ¢, there are {,_, , ways
to obtain «,’s or to enlarge «; to an wu.
And if we fix the number 4, there are

B R P Crts R

ways to obtain «,’s. This proves (7).

In order to give another form to 7, we loose the condition (C) im-
posed upon a and require only that

(C*) all the p heterogeneous particles of the second row are matched
against homogeneous particles of the first row.
The number 7* of arrangements « satisfying the new condition (C*) is
easily calculated :

n——
(7*) T*=( pﬁ) f’ $n-p,
Indeed, if we devide a into the two parts

B,= 1...... 7—=2Y and ‘32=(7z—p+1 ...... n)’

Qioocoos Ayep Dp—ptl coeoee y

B; and B, have p (relative) heterogeneous paiticles. For a fixed B, there
are ' ways to obtain #’,s or to enlarge 3, to an «.

And there are (7‘;?){,,_,,, , ways to obtain B,’s, hence (7*) is true. Mo-

reover the ratio y*:y is equal to (”;p ): (;) This is obvious because

. . n— o .
7¥ can be devided into pf) ‘“ classes ”’, each containing the same num-
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ber of «’s, as are characterized by the p homogeneous elements of the first
row matching against heterogeneous ones of the second row, while y has

‘only <;) of such *“ classes’”. Hence

( 2 )
Combining this with (7) and (7*) we obtain the desired proof.

By the help of this Lemma we can simplify the formula for ¢, given
in Lemma 1.

A

Lemma 3. The number ¢, is expressible in tevmns of wvencontre numbers
@, as follows - ‘

n

¢n=2

r=0p

hi

-]

L N\~ Pr—r—p Pn—p—g .
D sy T ey e

!

il
<

Proor.

S”n:fé'o(—)( ) ( )(n r) CrkConmr, (Lemma 1)
P COU ()G9 (g | AN+ )so,,-,_,, [@]

P PCOL (K (ug NN 5 G (apey AN AN
=25 ()" )%—r—p T e

pile )( (7)ol (G e (@]
=B BNy o e aed

This formula is not convenient for the actual computation. We state
here another formula though it is also dtfficultly.

Lemma 4. Te number $, is given by
S/Jn‘:”,z Cn—a Pn—s »

where the number C,_, is the coefficient of 0"=*&° in the Taylor expansion of
an analytic function

(1—0) 1. p~s2-s0-2.
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Proor. If we change the arguments #, p, ¢ in the fotmula of Lemma
3 to

w=r—g, s=p+g and g,
the summation domain
(8) 0=g=p<r, n—r=n

is changed to

n=>w+s, ws=>0, %_2_ g =0, s——2w .

Thus

iy (2] 1 w

¢n=”! 2 E(_)w Pn—s Prn—s—w (_ q_' 9 )
§=0 w=0 w! (n—s—1w)! o=max.([£5],0) gl \§—=24g
=7n !i‘ﬂ”n-a i Pns=n ° (—1) ’ w, Sy
s=0 w=0 (1—s—w)! w !
2 ) 1 w : : s 3

where C,,= S (—=)7 is the coefficient of &% in the

g=max. ([¢52],0) g! \s—2q.

expansion of (14§)¥~% and hence (—)¥ &'8— is the coefficient of
w
&0 of e~+90=%2  Thus
E’ spn—n-—'w (— 1) ’ w,8
w=0 (n—s—w)! w ! '
is the coefficient of 6" in -5 ¢~0+99-¥ hecause the generating func-
4 s "
tion 3'-Z= . 0™ for the pencontre numbers is
m=0 m! ].—0

2. Asymptotic Series

Our next step and chief aim is to obtain an asymptotic series which
simplifies our former results in the sense of actual calculation. This is done

by a simple idea to substitute ¢™' ! for ¢, in the formula of [Lemma 3.
If we substitute

€)) C=m2! (e“+(ﬂ%"'l)!> (Jen] <1)

in that formula, we have
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Pn r (n—p—9) ! /e—l €n—yr—p )( -1 En—p-

— - + e+ L
7! r.erq( ) =)' (p—9)!g! \ (n—r—p+1)! (n—p—g—1)! )

—p—2 _\r (”-__zﬂ_g)y
ewz-v( . (r—2)! 2—9)! ¢

-1 A\ en—r—p
R (n=r=p+ D'\ —2)'p—2! ¢!
e (=) €n—p—g
AT AT G=0 ¢t —p=g+ D)
+€—'lz (_)r En—r—p sn—p—q

5.9 (=) = ¢ r—r—p+1)! (n—p—g+1)
The summation is over the domain (8). Let us denote the four sums by
S S, S; and S, respectively.
Before we can estimate these sums effectively it is convenient to prove

a simple lemma.

LemMma B, Let the numbers o, be defined by

=0, (x)= [2%}(7”; Zl)x". |

u=0

Then thetr generating function G (0)=3la, 0™ is
m=0

1
; 0 _ - - .
¢ (6) 1—60—20°

Proor. ¢,’s satisfy the recurrent relation
Opm+2 ™ Omi1 —xo-'rn:O’ 0'0'___0-]:1'

This leads to the'following equation for G(0) :

G(0) =0, + 0,0+ 3 (0,47 +x0,) O™

=1+040(G(0) —1) + 268G (0) =1+ (0426 G (6),
(1—0—2°)G @) =1, ged.

We need in the sequel only the two special cases: x=1 and =1 .

In these cases G'(0) and o, become respectively :

1 vV5+1 v5—-1
G(O)=—= S — 1\,
2 2
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R B S MR

and

1 V241 V21
GO) =575 (1_@“ PR 0) :
T2 2

u=0 V2 2
Now let us proceed to estimate the sums S, S,, S, and S, succesively.
In all of them we shall change the arguments 7, p, ¢ to
s=p+gq, t=r—p and g.
The summation is then to extend over all integral triples (s, ¢ ¢) in the
domain equivalent to (8), or in the domain defined by

0=r<n—2(s—q.), osqgg—_gg.

a0 e E (= (-

First S, becomes (using (9))

[782] (” —S) ! "3—2(33‘—0)

x 1
S]= -2 —\s+q —\¢
oA q-mzx:. (s-[3] o)( ) g (s—2g)! = (9
=e-—-2 i [zé'v] —\s+tg (”'—5)' o1 En—2s+29
#=0  gemmax. (s—[%] 0) gl (s—2g)! (n—2s5+2g+1)!
’ n [i] . . n 8-~ [”]-—1
a2 GO LR S+
5=0 ¢g=0 7' (s—29)! = [%]-1 270
__\1l+s+g (7’_5)'
=) 7! (s—2¢)!
+e-—2i [%] (”_S)! €n—2s+2¢

§=0 q=max.(s—[%].0)q!(s—g)! (”—25-'-29_1)! '
Let us denote the three sum by A4, S;’¥ and S,” respectively. Above all
A=e33 M,(n—s)!,

§=0
where

(3] 1
M= () ) T =2 |
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is a well-defined function of s, independent of n. This term A virtually
furnishes the principal part of our asymptotic series. Next we shall show
the remaining sums S/, S,”, S, S; and S, are all relatively small.

‘ 8”["2]" n
EYPIST I I S B D (I
s=[%] a=0 2 g 2 o=[3]-1 (-[3D!
, » ;
11 . <_"__("__'_1_)_ .
(n .
Here we make use of the relation

(72—'5) ! SL
(s—2¢9)! — 2

(This inequality follows from
0<¢=<s—[3]—1.

Indeed, (s—2¢)— (2—s)>2, M'—-ZQ)
(n—s)!
[5] o+[3] (n—s)!

S ”» <e—2 ul
5771 qéo‘ s=§q: (n—25+29)! ¢! (s—29)!

— [‘Q] 1 [E] (n__gg_w

qa‘) q, wao w (w=s—29)
[—2-] 1 ‘\/ “/ n+1-—2q
-2 5+1 n+i-2¢ /= ’3+1)
=SS —( b o)
3—v 5 3+v 5 )
-2 B B o n+
ad) («/5+1 L, T [ VBl
PV ‘ 2 ‘ 2
- (12) <ef“’(—“/-%-tl—)n (n=4).
3] [3]+en-2e-0 (n—s)!

]5]<.e‘1qgo 2 2 =25+ 29)1 2! ¢! (5—29)!

o1 EZ ( —'é.; )n-t—}::';(s—q) (”-—2(5‘—-9) )

n—2 (s—q)
= 6-12 E ot \ s— 59)2
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(3] oo (310
>

=2ne-—l

2

g=0 q ! w=0

2”(,’-1 %‘J '\/§+1 n—2q+1
N 2 -

(w= s— 29)7

n—2'g—w‘ S
w )2

| _,\/2?_*_ 1) n—2g+1 } [(10*)]

{‘,3—2\/7 (~/7+ 1)”’”-{-63”""2‘(4/'2_— 1)"“}

-1

<
2.4 9

-1
(13) <G (VT (7).
Similarly :
(14 |S5] <e®—e  [Sy|>e—e—1.
Combining ((11), ((12), (13), (14) we now conclude:
. Pn

n!

% ‘ <ISTHIST+ (S + S|+ S <(v2+D" (n=7).

TureoreM 1. For the number ., of reduced three-line latin rvectangles
with n columns, there holds an asympiotic expression

b

Po~n! A=ec"*(n !)giM,@_—f)!
7!

s=0

where the coefficient M, are grven by

1

(3]
M= (=), et

and the approximation error is
|fn—ntA] <n! (V2 +1D" °)
RemArk. The last inequality was proved for »—=7. But we can verify
this for » <7 by actual calculation (see 4).
3. The Coefficients 17,

Now let us make clear some properties of the numbers A7, which will

enable us to compute them actually. The following Lemma is also im-
portant.

Lemma 6. For any value of s=2,
|M,] <1.
Proor. Let us define
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M+ [z—%] 1
TR0 gl (s—29)0.
Then we can show the sequences {AM,*} and {M,%,} are decreasing but

for the first terms. In fact, if s=>2, M *—M¥ ,=— 0!'(.:-1{-2)! +(O!ls!—

| (5]
1 1 1 1 1
11 5! )+( 11G—2)! 21(s—2)! )+§2( 7' s—29)! _(q+1)!(s—29)!)

1 _ 1 >0
2(s—2)!  (s+2)!
We know on the other hand

=25 e 8L g 331

24 ’ 120/ T 720

Therefore

| M,| <M* <1 for s=>5.
For s<4, M, has the values

M=1, M=-1, My=——, M=, M=
Thus is proved. _
Lemma 7. The generating function K (0) =8§;}]Ws0“ Jor the numbers M,
is .
K () —e-oron b, P i

PRroOF.

07 o or s 6%
e =31 (—)r L Si(—yr L
p=0 gl a0 q!

f%%% yro L lp—x(@6), qed
—_ — q S = , gq.e.d,
5| 72 7' (s—29)! 4

This Lemma reveals an interesting fact that the numerator
Ny=s! M,
of M, becomes ‘
8 1 8 ,—r2 8 ,—22
N, = d°K(0) 2 q’e — d'e”
d0° 0=0 ax’ v=3 dx® |»=%
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1 1
=\ ‘Ha . =H; )
(=)'H, () =H=—)
where H,(x) =( ——)’e"ﬂﬁ;'g is the Hermite polynomial® of degree s.
£7

Levma 8.  The numbers M, and N, satisfy the following recurrvence
relations :

(s 4+2) Mysot My +2M,=0, M=1, M,=—1;
N+ Ny +2(s+ 1) N,=0, N,=1, N,=-—1.
Proor. The Lemma is nothing but the recurrence relation for Hermite
polynomials. .
The two equations in Lemma 8 are known as Poincaré’s equation® in
the theory of finite differences. Hence we observe first
M,y

lim =0,
which is another flank of fact stated in Lemma 6. More precisely, Poincaré
himself proved that®

5 -4

NS=2 (s .
is the sum of two numbers
N/=P,+0,
such that
(15) 1im%=z’, lim- Qe+t — (i=+v=0),

8

although the sequence

[ N’s+1

{ N’a }
itself is not convergent. From (19) follows immediately
N,s 2
__+_._]_

8

lim

or
Nypo~—25V, (as s—>.)

THEOREM 2. The coefficient M, of the asymptotic series in Theorem 1 is

-1
——HL'?)—-, where H(x) is the Hermite polynomidl of degree s. The sequence
S .
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{ M\ converges to 0, and
]WH,,N—-1 M, (as s—>o0.).
S .

CoroLLARY.”  For an arbitrary, but fixed non-negetive integral value of
v, there holds an asymptotic relation :

G~ (1 1)* {JWO+M,L+ My— L 4o
. n n(n—1)
1 1
+ M, o( }
n(n—1)...(n—r+1) + nrtt

Proor. The propsition follows immediately from and the
boundedness of the sequence {4}, established in [Theorem 2 (or Lemma 6).

4. Numerical Tables

The following is a short table for the numbers /V,, calculated through
the recurrence relation. [Lemma 8.

s N, s N,
0 +1 11 +107 029
1 -1 12 — 604 031
2 -1 ‘ 13 —1 964 665
3 +5 14 +17 669 471
4 +1 15 +37 341 149 -
5 —41 16 —567 425 279

+31 ‘ 17 —627 491 489
7 +461 18 +19 919 950 975
8 —895 19 +2 669 742 629
9 —6 481 20 —759 627 879 679
10 422 591 21 +652 838 174 519

The following is a beginning of the table for the numbers ¢, : in each
pair of values, the upper are the true,’” the lower are approximated ones

n! A=en !éM;(n—s)!.

§=0
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&
»” and
n! A
3 2
1.3
4 24
21.4
5 552
564
6 21 280
21 249
7 1 073 760
1 073 89
8 70 299 264
: 70 297 8
9 5 792 853 248
5 792 866
10 587 159 944 704
587 159 83
11 . 71 822 743 499 520
71 822 744 6
12 10 435 273 503 677 440
10 435 273 482
13 1 776 780 700 509 416 448
: 1 776 780 700 65
14 350 461 958 856 515 690 496
350 461 958 854 4
15 79 284 041 282 622 163 140 608
79 284 041 282 652
16 20 392 765 404 792 755 583 221 760
20 392 765 404 792 31
17 5 917 934 230 798 104 348 783 083 520
5 917 934 230 798 115
18 1 924 427 226 324 694 427 836 833 857 536
1 924 427 226 324 694 58
19 696 979 289 286 274 520 909 680 184 328 192
696 979 289 286 274 523 1
20 279 603 955 400 790 511 301 713 870 268 399 616

279 603 355 400 790 511 59
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