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Introduction

Recently, Steenrod [6]* has laid the foundation for the construction of
tensor functions by introducing the notion of the so-called characteristic
cocycle, which plays an important role in the theory of fibre bundles. The
characteristic cocycle was thereby defined for a special type of fibre bundle,
so that the characteristic class obtained is a topological invariant.

The object of the present note is to show that the generalization of
the ideas involved is likewise of some help in studying homotopy proper-
ties of fibre bundles. We shall restrict ourselves largely to ‘the case that
the base space has a simple topological nature. It turns out that the charac-
teristic class is a topological invariant. The msthod is then applied to homo-
geneous spaces. In particular, we take the spheres as such and are led to
some results concerning group manifolds.

§ 1. Properties of the ¢-cocycle

1. Let R be a fibre buudle, with the base space B and with fibres
which are simple in every dimension. 2B is supposed to be a polyhedron,
and we take a simplicial decomposition X of B which is so fine that the
star of each simplex lies in a coordinate neighborhood of B. We then
denote by 7 the projection of R onto B. Let K7 be the subcomplex
of K, consisting all simplexes of dimension not greater than 7.
~ Suppose it is defined a continuous map ¢ of X7 in R such that each
point is mapped into a point belonging to the fibre over it. Such a map
we refer to as slicing map. ILet 77*' be a simplex of dimension »+1 of
K and NV a coordinate neighborhood containing 77*!. We resolve n~1(V)
into the topological product of /V and a fixed fibre 7 and denote by A the
projection of #7'(/V) onto . Since the map A¢ is defined over the boundary
7+ we get a map of a sphere of dimension » into a fibre and hence an
element of the homotopy group of dimension 7, which we denote by ¢(¢,
77*%). Following Steenrod, we shall define the ¢P-cocpcle, by assigning
c(¢, T7**) to each simplex 77+!:

*) Numbers in brackets refer to the bibliography.
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which depends on the decomposition used and on the map ¢. In general,
the cohomology group is based on local coefficient groups connected by
local isomorphisms [6], [7].

We assume except for [Theoreml (1.3) throughout this paper that 2%
Siore is connected and simple in every dimension.

Lemma 1.%) ¢ () =0 is a necessary and sufficient condition that ¢
can be extended to a slicing map of K™+

Proof. Suppose ¢ is defined on X~*'. Then, we have c(¢, T7*1) =0
for every 77*'. Conversely, if c¢(¢, 77*")=0, A can be extended tq a

map of 77** in /. We obtain the extension of ¢, by assignment x— (&,
ip(x)) for x € Tr+.

Lemma 2. **) [f c’”(g/J) ~0, there exzsls a slzcmg map ' of K1,
suck that ¢'=¢ on K.
Proof. By hypothesis, there exists an »-chain ¢~ with the coboundary
oc"=c"*'(¢), namely, we have ¢+ (¢, 77*") =31¢"(7%). For each simplex
]

7%, we choose a homothetic simplex ¢;. Let r; map 77j—¢; linearly onto
T—p; p; € T5. Let further ¢, be a map of ¢ into F carrying 7 into
A ¢(p,;), which represents—c"(7%) of n"(F). We define the map ¢/ of T’
into 7'} x F:
¢ (2) = (x, 4ry(x)), xeTj—4,
= (#, /‘J(x))’ x€L;.
¢/ coincides with ¢ on 7. It follows directly from the construction just
given, that the map A¢’ of 7+Vin F determines O of n"(F). Hence we
have ¢*'(¢/, 77*')=0. This leads to a map ¢’ of K" with ¢*'(¢')=0.
Thus, by Lemma 1, ¢’ can be extended to a slicing map of K™*'. '
- With these preparations we can state the following theorem :

(1. 1) Let H'(B) ée the r-th cokomology group (with local
coefficient group n"~'(F)) of B. If H}(B)y=H*(B)=...=H*(B),=0 it is
possible to define a slicing map over K-°. -

Proof. For a vertex of K, we choose a point in the fibre over it.
Since F is connected, we can easily define a slicing map ¢ over all sim-
plexes of K. Suppose inductively that ¢ has been defined over K.

*) This is identical with Theorem 4 (a) in the paper f Steenrod [61.
**) Cf. [6] Theorem 4 (c).
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Then ¢ is defined on 7. Thus, we have, as before, an 7-dimensional ¢-
cocycle ¢ (¢), by putting
(P =%y, T T

By assumption, " (§)~O0, hence by Lemma 2, there can be deﬁned a
"s’licmg map ¢’ over K”. Repeating this process, we can, finally construct
a slicing map over K" '

2. Lef again R be a fibre bundle over a polyhedron B. If for any
simplicial decomposition X of B, there is no slicing map of K7 in R, we
say B has an r-dimensional Jindrance. 1f there is no slicing map of 5B, we
simply say, B has a /Zindrance.

In the following, B is taken to be a sphere S™ of dimension ». We
suppose that X is a fixed simplicial decomposition of S™  Let further p
be a inner point of an z-cimensional simplex 7 of K. Since S"—p is con-
tractible, we can easily construct a slicing map ¢ over S” with exactly
one singular point p. To the map ¢, we attach ¢-cocycle ¢”(¢) as before.
It is clear that *(¢) =u7, a € 7" (F).

Let ¢, be another slicing map over S"—p, and ¢"(¢,)=«,7 be a cor-
responding ¢-cocycle. Since S*—7 is an n-cell, it follows by Feldbau’s

theorem [1] that the part of R over S®—T7 is fibre homeomorphic to the
topological product S"—7 x Z. Hence, the maps ¢, ¢, are glven by

P = ()
¢ (x) = (x, f1(2))
for x ¢ S"—7. Clearly, the maps f,, f; of the boundary (S"—7) into F

are inessential and are therefore homotopic to each other. We denote
such a homotopy by f; (0<¢<{1) and put

$(2)=(x, fi(%)), x €(S"—T)"
Since (S"—7)- ‘=7" and ¢=¢,, it follows that ¢ and ¢, are Lomotopic in
7~1(7"), which means, by definition, that a=«,. Thus we find that the ¢-
cocycle ¢"(¢) does not depend on the choice of ¢.

It is easily verified that the cohomology class of <"*(¢) is independent
of the simplicial decomgosition, which is used to define ¢-cocycle. The
cohomology class of ¢*(¢) will be called the characteristic class of S". We
summarize these results as follows :

(1.2)  The characteristic class of S™ is a topological invariant
o R.
This leads us naturally to the definition of the characteristic number.
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‘The characteristic class of S" is determined by the homotopy gtoup
7" 1(F). In fact, the cohomology class of ¢"(¢) is determined by the sum
of its coefficients, which we call the characteristic number. In particular, if R
is the fibre bundle of non zero tangent vectors of S™*, the characteristic num-
ber is nothing else than the so-called Euler-Poincaré characteristic.  This-
has the value 2, if # is even, and O, if 7 is odd. The characteristic number
is, a fortiori, a topological invariant.

For the further investigations we shall need the following

Theorem| (1.3)*) Let R be a fibre bundle over a normal space B and
F z‘/ze ﬁbre. ]f there exists a slicing map ¢, we have

" (R) ~n"(R) +="(F), r>1
Moreover, if 7'(F) is abelian, the same formula is also valid for r—-l**)
Proof. We first consider the homotopy sequence
oY (R, FY—ar(F)—a" (R)—n"(R,F)—>...
It follows, from the covering homotopy theorem [8], that the boundary
homomorphisms a"*'(R, F)—n"(F) are all trivial. Hence we have
(R —n"(F)~n" (R, F)~n(B).
Moreover ¢ is a homeomorphism B—B'=¢(B).

It is easily seen that the injection map of B’ in R defines in a natural
way the imbedding of n"(A’) in #n"(R). Thus, given « € n"(R), there
exists B and y such that a=pf+y, where B e n"(8), r e n"(F). Since
7" (B8") nn"(F)=0, we have

7 (R)~n"(B) + 7" (F)~n"(B) +7"(F),
which is to be proved.

§ 2. Homogeneous spaces

3. In this §, we consider homogeneous space W with a compact,
transitive, Lie group G of automorphisms; such a space can also be defined
as the space G /U of the cosets determined by a closed subgroup U; the
cosets may be considered as fibres in G, making G into a fibre bundle,
with the base-space G/U. W is a compact, orientable, differentiable mani-
fold. In particular, # can be triangulated. As is well known, U is simple

*) As indicated above, we do not require here that the fibre is simple in every dimension.
**) 1If R is orientable relative to 71(#) in the sense explained by Steenrod, this relation
still holds for »=1 [6].
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dimension. Thus, if / is supposed to be connected, our method can be ap-
plied to fiberings of G. -

Lemma 3. I[f there exists a slicing map ¢ over W, U~A~O in G (with,
rational coefficients) and W is a [-manifold with unit.*) \

Proof. U and ¢(W) meet only in one point. Clearly, the index of
" intersection of U with ¢(U) is equal to +1. Hence, by Poincaré-Veblen’s
duality theorem, U~-O. ‘

Now we shall show that ¥ is a /™manifold with unit. In fact, the
product in ¥ is induced by group multiplication in G. Let @ be the pro-
jection, which takes each point of G into the coset of U containg it. We
set (g, ¢)=nm(P(p)-¢(g)). It is easily seen that the so defined multi-
plication is continuous in both p and ¢. Putting mw(¢) =¢, where ¢ is the
unit in G, we obtain f(¢, ¢)=n(¢x(e) -¢(9))=n¢(q)=g for every g4 in
W. Similarly, f(p, ¢)=p for every p in W. Therefore, we have ¢,=¢,=1.
Thus, W is a [-manifold with unit.

The FEuler-Poincaré characteristic of a I™manifold is always O [3].
Henée

Theoreml (2.1) Zet y(W) denote the Euler-Poincaré characteristic of
W. If y(W)>0, W has a hindrance. :

We may now prove the following

(2.2) Let W be simply connected and acyclic in every dimensions
<s. If U~O in G (with rational coefficients), amongst the groups = (U),

TV NO)Y (n=dim W), there exists at least a non-trivial one.

Proof. We suppose a suitable simplicial decomposition X of W. Clearly,
we have a slicing map ¢ over the s-dimensional skeleton X*, and hence a
¢-cocycle **'(¢) with the coefficient group #*(U). Suppose =*(U)=0,
then ¢**'(¢) =0, which implies, by Lemma 1, that ¢ can be extended to
a map of X**'. In just the same manner, if #**(U),...,a*"(U) are all
trivial, we can define a slicing map of the whole X. Since U~O0 in G, by
Lemma 3, W has a hindrance. The assumption that #*(0),..., 7" (U)
are trivial, has now led to a contradiction.

4. As an application, we shall prove the following

Mheoreml (2.3) Let G b2 a compact, semi-simple, connected Lie group

*) Let W be a closed manifold. Given a contintous map of WX W in IV, for p fixed,
WxXp and pxX W are mapped with degrees ¢, and ¢; respectively. M is said to be a Imanifold,
if there exists a continuous map of WX I¥ in ¥ such that ¢, #£054¢; . In particular, if it is the
case with ¢, =¢; =1, W is called a Imanifold with unit [3]. ’ .
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and T be a toral subgroup of G. Then G/T can not be homemorphic to the
r-dimensional sphere S™ (r<2).

Proof. We suppose G/T= W to be sudivided into a suitable simplicial
complex K. Since G is arcwise connected, it is always possible to construct
a slicing map ¢ over K. If W=S", by (1.3), we have 7' (G)~
n'(SY) +7'(7). It is impossible, because 7n'(G) is a finite group [4], while
n'(7) is infinite. Hence W can not be homeomorphic to S.

Since 7 is a toral group, n"(7)=0(»>1). We denote by 2(J) a 2-
dimensional ¢-cocycle. If &*(¢)~O0, there exists, by Lemma 2, a slicing
map ¢’ over K% Since 7*(7)=0, we have &(¢’)=0. Hence we can
define a slicing map over K®. Repeating the same argument with '(¢')
etc., it is easily verified, that we can construct a slicing map over the whole
IW. Again, we obtain 7'(G)~a'(W)+n'(7). This is impossible, since
#'(7") is infinite. Thus, we have ¢2(¢)~~0. In other words, W has a 2-
dimensional hindrance.

Suppose W=JS" (»>2). Then there exists a slicing map at least over
K? contrary to the existence of a 2-dimensional ‘hindrance. Thus, the
is proved. ‘

" Remark. Let R® denote the group of all rotations of S% R' be the
subgroup consisting of those rotations, which leave invariant a fixed point.
Clearly, R' is a toral group and R*/R'=S> A

In the rest of this §, we shall take spheres S™ as homogeneous spaces.
In this case, we need only to consider the n-dimensional hindrance. This
in turn is determined by the characteristic number. Hence

(2.4) The necessary and sufficient condition that there exis’s
a hindrance in G/U=S" is that the characteristic number is not the unit 0O
of n*1(U). ]

By (2.1), there exists a hindrance for even ». Thus

Theorem (2.5) If G/U=S™, = '(U)=>=O0.

Let R* be the group of all rotations of S*. We may suppose R™ (m
<n) to be the subgroup of R". It is easily seen that R*/R*~'=S". Hence,
as a corollary, we obtain

Corollary. #"-'(R*™1)#0. _

Finally, (2.4) combined with (1.3) and Lemma 3
imply the following

(2.6)*) Ifa"'(U)=0, S* is a [manifold with unit, and

*) Cf 9], Theoreh 2 and Theorem 3. See, also [2].
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| (G)~n"(U) +2°(S*) (r=1).
Consider, as an example, R* over R*/R’=S® Since 7n*(R*)=0, we
have °

T (R ~a"(R) +7n7(S%)  (»r=1).
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