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Galois theory for general rings with minimum condition.

TADASI NAKAYAMA

(Received Feb. 11, 1948)

In a very suggestive paper N. Jacobson founded a Galois theory for
division rings.1) The theory was then skilfully extended by G. Azumaya
to simple, and to uni-serial rings.2) The present work is to establish it for
general rings with minimum condition Most of our arguments are modificat-
ions or generalizations of theirs, while the others are those which have
been employed in a previous note on semilinear repesentations and normal
bases in noncommutative domains,4) and we shall also resume the $t1_{1}eorem$

of semilinear normal basis in a generalized and improved form.
The writer is grateful to Mr. G. Azumrya for his friendly cooperation

during the preparation of the present paper.

\S 1. Crossed product.

Let $R$ be a ring with unit element 1 and satisfying the minimum
condition (whence the maximum condition) for ideals. Let $\sigma$ be an auto-
morphism of $R$ . For a two-sided module $\mathfrak{m}$ of $R$ we can introduce a new
two-sided module $(\mathfrak{m}, \sigma)$ of $R$ which coincides with $\mathfrak{m}$ as right-module
and for which left operation by $R$ is defined: $a$ ee $u=a^{\sigma}u$ (a $\epsilon R,$ $u\in \mathfrak{m}$).

We call a finite group of automorphisms $\mathfrak{G}=\{1, \sigma, \ldots.,\tau\}$ a Galois
$g_{7^{\prime}}oup$ of $R$ when the following condition is satisfied:

$(^{*})$ $(R, \sigma),$ $(R, \tau)$ with $d\iota stinct\sigma,$ $\tau$ in $\mathfrak{G}$ kave no isomorpl $ic$ non-
$van\dot{x}s\nearrow\iota ing$ sub-residue-moduli.

If $\mathfrak{b}$ is a $\mathfrak{G}$ -invariant ideal in $R$ , our Galois group $\mathfrak{G}$ of $R$ can be,
in natural manner, looked upon as that of the residue-ring $R/\mathfrak{b}$.

A crossed product (=semilinear group ring with factor set) of $R$ with

1) N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann. Math.
41 (1940).

2) G. Azumaya, New foundation for the theory of simple rings, forthcoming in Proc. Imp.
Acad. Japan: G. Azumaya, Galois theory for uni-serial rings, Journ. Math. Soc. Japan 1 (1949).

3) Another extreme case is tltat of (closed) irreducible rings. See T. Nakayama, Note
on irreducible rings, forthcoming in Proc. Imp. Acad. Japan; T. Nakayama-G. Azumaya, On
irreducible rings, Ann. Math. $4S$ (1947).

4) T. Nakayama, Semilinear normal basis for quasifields, Amer. Journ. Math. 71 (1949).
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a finite group $\mathfrak{G}$ of automorphisms is a ring $(R,\mathfrak{G})$ which is decomposed
(1) $(R, \mathfrak{G})=u_{1}R\oplus u_{\sigma}R\oplus\cdots\ldots\oplus u_{\tau}R$

with regular elements $u_{\sigma}$ such that
(2) i) $u_{1}=1$ , ii) $xu_{\sigma}=u_{\sigma}x^{\sigma}$ $(x\in R)$ ,

iii) $u_{\sigma}u_{\tau}=u_{\sigma\tau}a_{\sigma,\tau}$
$(a_{\sigma.\tau}\epsilon R)$ .

Lemma 1. $1f\mathfrak{b}_{\sigma}$ are right-(resp. $Jeft-$) $ideals$ in $R,$ the (direct) sum
(3) $\Sigma u_{\sigma}\mathfrak{b}_{\sigma}$

forms an R-riglt-(resp. $left-$) $submodu\prime enf(R, \mathfrak{G})$ . $T/\iota e$ module is a right-
(resp. ’pft-) ideal of $(R, \mathfrak{G})rf$ and only if $\mathfrak{b}_{\sigma}=\mathfrak{b}_{1}^{\sigma}$ (resp. $\mathfrak{b}_{\sigma}=\mathfrak{b}_{1}$ ) $Jor$ every

$\sigma\epsilon \mathfrak{G}$ .
Proof is immediate.
Lemma 2. Let our $\mathfrak{G}$ be a Galois group.5) Then any ring containing

$R$ and regular elements $u_{1},$ $u_{\sigma},$ $\ldots.,u_{\tau}$ such that i), ii) in (2) lold is a
crossed $p’$ oduct. Evcry R-two-sided submodule of the crosscd product $(R, \mathfrak{G})$

has a form (3) with $\iota^{\prime}\iota vo$-sided ideals $\mathfrak{b}_{\sigma}$ in R. Every $rwo- sict^{p}d$ ideal in
$(R, \mathfrak{G})$ has a form

(4) $\mathfrak{B}=\Sigma\iota/\sigma \mathfrak{b}$ with $\mathfrak{G}$-invariant rwo-sided ideal $\mathfrak{b}$ of $R$ ;

we denote $i_{l}$ by $(\mathfrak{b}, \mathfrak{G})$ . And
$\mathfrak{b}\rightarrow \mathfrak{V}=(R, \mathfrak{G})\mathfrak{b}=(\mathfrak{b}, \mathfrak{G})$ , $\mathfrak{b}=\mathfrak{V}\cap R\leftarrow \mathfrak{V}$

gives $a$ 1-1 correspondence belzveen two-stded ideals $\mathfrak{V}$ in $(R, \mathfrak{G})$ and $\mathfrak{G}$-invariant
two-sided ideals $\mathfrak{b}$ in R. $1n$ particular,6) if $N$ denotes $t/\iota e$ rad\’ical $oJR$, the
radical of $(R, \mathfrak{G})$ is

(Al, $\mathfrak{G}$) $=\Sigma u_{\sigma}N$.
Further, if $R$ is two-sided directly indecomposable, tlen any regular element
$u$ in $(R, \mathfrak{G})suc\gamma_{l}t\gamma_{\iota at}uR=Ru\gamma_{las}$ aform $u=u_{\sigma}awitl_{l}$ certain $\sigma\in \mathfrak{G},$ a $\epsilon R$ .

Proof. The $R- two$-sided module $u_{\sigma}R=Ru_{\sigma}$ is isomorphic to $(R, \sigma)$ .
As $\mathfrak{G}$ is assumed to be a Galois group, $u_{\sigma}R$ with different $\sigma$ have no iso-
morphic sub-residue-moduli $\neq 0$ . Then every R-two-sided submodule of a
direct sum (1) has a form (3) with two-sided ideals $\mathfrak{b}_{\sigma}$ in $R^{7)}$ It follows

5) Cf. Remark 6 in $l3$.
6) We may make a similar statement for instance for the largest fully reducible two-sided

ideals. That $(\Lambda^{\gamma}, \mathfrak{G})$ is the radical of $(R, \mathfrak{G})$ also follows from a weaker assumption that $\mathfrak{G}$

induces a Galois group in $R/1V$ ; observe that $(R/\Lambda^{r}, \mathfrak{G})$ is then semisimple.
7) Cf. e.g. K. Shoda, \"Uber direkt $ze$rlegbare Gruppen, Journ. Fac. Sci. Tokyo Imp.

Univ. Sec. I. Vol. 2 (1930), Satz 3.
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from this readily that our ring in question is, considered as R-two-sided
module, not only homomorphic but isomorphic to the direct sum. The same
gives also the second assertion in the lemma, and the third and fourth too
when combined with Lemma 1. To prove the last, assume that $R$ is two-
sided directly indecomposable and $uR=Ru$ with a regular element $u$ in
$(R, \mathfrak{G})$ . The two-sided submodule $uR$ is directly indecomposable, whence
it assumes a form $uR=u.b$. with a $\sigma\in \mathfrak{G}$ when expressed as in (2).

Comparing the R-lengths we obtain $\mathfrak{b}_{\sigma}=R$ and $uR=u_{\sigma}R$ .

Now we consider a unit crossed product ( $=semilinear$ group ring),
that is, a crossed product with unit factor set $\{a_{\sigma,\tau}\}=\{1\}$ ;

(5) $(R, \mathfrak{G})=u_{1}R\oplus u_{\sigma}R\oplus\cdots\cdots\oplus u_{\tau}R$,

$u_{1}=1$ , $ xu_{\circ^{=}}l/\chi^{\sigma}\sigma$

’
$u_{\sigma}u_{\tau}=u_{\sigma\tau}$ .

$R$ itself, or any $\mathfrak{G}$-invariant right-ideal $\mathfrak{b}$ in $R$ in general, can be considered
as a right-module of $(R, \mathfrak{G})$ by $x(u_{\sigma}a)=x^{\sigma}a$ ($x\in R$ or $\epsilon \mathfrak{b}$). We denote
the , $(R, \mathfrak{G})- right$-module by $\tilde{R}$, or by $\sim b$ , and prove the fundamental

Lemma 3. Assume ihat $\mathfrak{G}$ is a Galois $gro\iota fp()fR$ , or tizat $\mathfrak{G}$ induces
$a$ such in $R/\Lambda^{\gamma}$. $T/le$ direct sum of,$c/=(\mathfrak{G}:1)$ copies $\prime f$ the $(R, \mathfrak{G})$ -righr-
$mod,’/le\tilde{R}$ is $isomwp\nearrow\iota ic$ to $t1_{l}e(R, \mathfrak{G})$ -right-module $(R, \mathfrak{G})$ iiself.

Proof.8) Since $(N, \mathfrak{G})$ is the radical of $(R, \mathfrak{G})$ the module $\tilde{R}(1V, \mathfrak{G})$

$=N$ is the intersection of all the maximal $((R, \mathfrak{G})- right-)$ submoduli of
$\tilde{R.}$ We want to show first that the $direct\backslash $ sum of $Jc$ copies of the residue-
module $\tilde{R}/A\tilde{V}$ is isomorphic to the $(R, \mathfrak{G})$ -right-module $(R, \mathfrak{G})/(\Lambda^{7}, \mathfrak{G})$ .
This assertion is however nothing but the special case of our lemma when
$N=0$ , because $\mathfrak{G}$ can be considered as a Galois group of the residue-ring
$R/N$. So, let for a moment $R$ be semisimple. Then $(R, \mathfrak{G})$ is so too. Let

$R=\mathfrak{a}_{1}\oplus 0_{2}\oplus\cdots\cdots\oplus \mathfrak{a}_{k}$

$with\sim$ minimal $\mathfrak{G}$-invariant two-sided ideals $\mathfrak{a}_{i}$ of $R$. We have $\tilde{R}(\mathfrak{a}_{i}, \mathfrak{G})=$

$\mathfrak{a}_{i}$ , and each $\sim_{i}\mathfrak{a}$ is a direct sum of submoduli $(R, \mathfrak{G})$ -right-isomorphic to
minimal right-ideals contained in the minimal two-sided ideal $(\mathfrak{a}_{i}, \mathfrak{G})$ of
(R. $\mathfrak{G}$), for it is annihilated by $(\mathfrak{a}_{j}, \mathfrak{G})$ with $j\neq i$ . Its R-length is equal
to $\sim that$ of $(\mathfrak{a}_{i}, \mathfrak{G})$ divided by $g$ . It follows that the direct sum of $g$ copies
of $\mathfrak{a}_{?}$. is $(R, \mathfrak{G})$ -right-isomorphic to $(\mathfrak{a}_{i}, \mathfrak{G})$ . Since this is the case for each
$i$, the direct sum of $g$ copies of $\tilde{R}$

$(=\mathfrak{a}\sim_{1}\oplus\cdots--\oplus \mathfrak{a}^{\sim_{k}})$ is $(R, \mathfrak{G})$ -right-
isomorphic to $(R, \mathfrak{G})$ .

8) For the following proof cf. Nakayama, 1. $c$. $4$), $\ell 1$ . Cf. also Lemma 5 below (in \S 3).
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Now we return to the general case of non-semisimple $R$ . The direct
sum of $g$ copies of $\tilde{R}/\tilde{N}$, that is, the residue-module of the direct sum of
$g$ copies of $R$ modulo the intersection of all its maximal submoduli, is
isomorphic to $(R, \mathfrak{G})$ modulo $(N, \mathfrak{G})$ . Hence $(R, \mathfrak{G})$ can be homomor-
phically mapped upon the direct sum of $g$ copies of $\tilde{R}$ . The homomor-
phism must be an isomorphism, for the two moduli have equal R-lengths.

Our lemma, thus proved, can be expressed by saying that $\tilde{R}$ is a regular
right-module with rank $1/Jc$ of the ring $(R, \mathfrak{G})$ , if we introduce the follow-
ing definition: A right-module $\mathfrak{m}$ of a ring $R$ , with unit element and
satisfying the minimum condition, is called regular when a direct sum of
a certain mumber, say $m$ , of its copies is isomorphic, as R-right-module, to
the direct sum of a certain number, say $n$ , of copies ot $R$ itself. The
rational number $l^{\prime}=n/m$ we call the rank of the regular module $\mathfrak{m}$ ; that
it is uniquely determined by $\mathfrak{m}$ follows readily from the Krull-Remak-
Schmidt theorem. We have

a) $\mathfrak{m}$ is also a regular module of rank $k^{-1}$ with respect to its (R-)
endomorphism ring $R^{*}$ .

$\beta)$ The $R^{*}$ -endomorphism ring of $\mathfrak{m}$ coincides with $R$ .
These are certainly true in the special case $\mathfrak{m}=R$ , and the general

case follows easily from that.
$\gamma)$ If $\iota \mathfrak{n}$ , a regular R-module of rank $k$ , is also regular and of rank

$l$ with respect to a subring $T$ of $R$ , then any other regular module of $R$

is regular with respect to $T$ and its T-rank is equal to $lk^{-1}$ times its R-
rank.

To show this it is perhaps convenient to treat two special cases where
respectively $\mathfrak{m}$ or the second module coincides with $R$ .

\S 2. Galois theory.

Let $\mathfrak{G}$ be, throughout in this section, a Galois group of the ring $R$ ,

and let $g$ be its order. Let $\mathfrak{A}$ be the absolute endomorphism ring of $R$

considered as a module. The right multiplication by $R$ forms a subring $R$

of $\mathfrak{A}$ The left multiplication ring $R^{\prime}$ , which is inverse-isomorphic to $R$ , is
the commuter $\lceil\nearrow(R)$ of $R$ in $\mathfrak{A}$ and is the (operator-) endomorphism ring
of the R-right-module $R;a^{f}=a_{i}$ : $x\rightarrow ax$. Automorphisms $\sigma$ of $R$ can
be regarded as those ot $R^{\prime}$ ; $(a^{\prime})^{\sigma}=(a^{o})^{\prime}$ , and our Galois group $\mathfrak{G}$ of $R$

becomes that of $R^{\prime}$ as one readily sees. Further, the subring of $\mathfrak{A}\dot{g}enerated$

by $R$ (resp. $R^{\prime}$ ) and $\mathfrak{G}=\{1, \sigma,\ldots\ldots,\tau\}$ is in fact a unit crossed product
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$(R, \mathfrak{G})$ ( $re$sp. ($R$‘, $\mathfrak{G}$)) according to Lemma $2$ ;
$(R, \mathfrak{G})=1R\oplus\sigma R\oplus\cdots\cdots\oplus\tau R$, $(R^{\prime}, \mathfrak{G})=1R^{\prime}\oplus\sigma R^{\prime}\oplus\cdots\cdots\oplus\tau R^{\prime}$ .

The commuter ring $V(R^{\prime}, \mathfrak{G})=V(R^{\prime})\cap V(\mathfrak{G})=R\cap V(\mathfrak{G})$ of $(R‘, \mathfrak{G})$ in $A$

is indeed the invariant systcm $S$ of $\mathfrak{G}$ in $R$ .
According to our fundamental lemma 3 $R(=R\tilde{)}$ is a regular $(R, \mathfrak{G})-$

-module of rank $1/\backslash r/$ , and similarly $R$ is a regular module of rank $1/g$ with
respect to $(R^{\prime}, \mathfrak{G})^{10)}$ By a) of \S 1 we see that $R$ is a regular module of
rank $g$ with respect to $S$, or, what is the same,

Lemma 4. $R$ has an (independent rigln-) basis of $g$ terms over $S$.
(This can be seen also calculatively as follows: We have, by Lemma 3,

$(R, \mathfrak{G})=\mathfrak{m}_{1}\oplus \mathfrak{m}_{2}\oplus\cdots\cdots\oplus\iota \mathfrak{n}_{g}$ ,

where each $\mathfrak{m}_{i}$ is isomorphic to the $(R, \mathfrak{G})$ -right-module $R=\tilde{R}$. Let $ v_{i}\epsilon$

$\mathfrak{m}_{i}$ correspond to 1 $\epsilon\tilde{R}$ . Since it must be invariant under $\mathfrak{G}$ , it has a form
$v_{i}=a_{t}+\sigma a_{i}^{\sigma}+\ldots\ldots+\tau a_{i}^{\tau}(a_{i}\in R)$ .

These $v_{1},$ $v_{2},\ldots\ldots,v_{g}$ are R-right-independent. We have
$\Sigma v_{i}s_{i}=(\Sigma a_{i}s_{\ell})+\sigma(\sum a_{i}s_{i,})^{\sigma}+\cdots\ldots+\tau(\Sigma a_{i}s_{i})^{\tau}$

for $s_{1},$ $c_{2},\ldots\ldots,$ $s_{g}\in S$, and the sum vanishes only when all the $s_{\iota}$ vanish,

which means that the $g$ elements $a_{1},$ $\ldots..,$ $a_{g}$ in $R$ are S-right-independent.
Further, an element in $(R, \mathfrak{G})$ is $\mathfrak{G}$ -invariant when and only when it has
a form $a+\sigma a^{\sigma}+\ldots\ldots+\tau a^{\tau}$ . The same is the case also when and only when
each of its $\mathfrak{m}_{i}$-components is $\mathfrak{G}$ -invariant, that is, it is a sum $\sum v_{j}s_{i}$ with $s_{i}$

$\epsilon S$ . It follows then that any $a$ $\epsilon R$ can be expressed as $\Sigma a_{i}s_{i}(s_{i}\in S)$ .
Thus $(a_{1}, a_{2}, \ldots...a_{g})$ forms an (independent) right-basis of $R$ over $S.$)

This S-right-bais of $R$ forms of course a right-basis of $(R, \mathfrak{G})$ over
the subring $(S, \mathfrak{G})$ . On the other hand the $(S, \mathfrak{G})$ -right-module $(R, \mathfrak{G})$

is, by Lemma 3, directly decomposed into $g$ submoduli isomorphic to the
$(S, \mathfrak{G})$ -right-module $R$ . By the Krull-Remak-Schmidt theorem the $(R, \mathfrak{G})-$

right-module $\dot{R}$ is isomorphic to $(S, \mathfrak{G})$ itself, which proves
Theorem 1 $R$ has a normal right- (or left-) basis over the $invar\iota ant$

system $S$ .
Next we prove
Theorem 2. Assume $R$ to be two-sidtd directly indecottzposab!e. Then

9) Cf. Remarks 5, 6 rn $l3$ . $(R, \mathfrak{G})$ is inverse-isomorphic to $(R, \mathfrak{G})a^{\prime}u_{\sigma^{-1}}\leftarrow\rightarrow tt\sigma^{a}$ .
10) The $(R^{\prime}, \mathfrak{G})$ -module $R$ is, by $x\leftarrow\rightarrow x^{\prime}$, isomorphic to the $(R^{\prime}, \mathfrak{G})-(right-)$ module $R^{\prime}$

defined similarly as $R$ .
11) For Lemma 4 and Theorem 1 cf. $Re$mark 5 below in \S 3.
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$\mathfrak{G}$ exlausts automorphisms of $R$ leaving $S$ elementwise invariant.
Let namely $\varphi$ be such an automorphism of $R$ . If we consider it as an

element of $\mathfrak{A}$ , then $\varphi\in V(S)$ . Here $V(S)=(R, \mathfrak{G})$ by $\beta$) of \S 1, since
$R$ is (right-) regular with respect to $S$ . As $\varphi R^{\prime}=R^{\prime}\varphi$ and $\varphi$ is regular
in $(R‘, \mathfrak{G})$ , we have, by Lemma 2 applied to $R^{\prime}$ instead of $R,$ $\varphi=\sigma a^{\prime}$

with $a^{\prime}\epsilon R^{\prime},$ $\sigma\in \mathfrak{G}$ . But we have necessarily $1=1^{\varphi}=1^{\sigma}a^{\prime}=n$ , and $\varphi=\sigma$ ,
whjch proves the theorem.

Now we consider a between-ring $T$ of $R,$ $S;R\supseteqq T\supseteqq S$. Its commuter
$V(T)$ in $\mathfrak{A}$ is between $R^{\prime}=V(R)$ and $(R, \mathfrak{G})=V(S)$ , and has so, as an

$R^{\prime}$ -two-sided submodule of $(R^{\prime}, \mathfrak{G})$ , a form
$V(T)=1\mathfrak{b}^{\prime}\oplus\sigma \mathfrak{b}^{r_{\sigma}}\oplus\cdots\cdots\oplus\tau \mathfrak{b}_{\tau}^{\prime}$

with $\mathfrak{G}$ -invariant two-sided$\cdot$ ideals $\mathfrak{b}_{\sigma}$ in $R^{\prime}$ .
$Assunle$ now that $R$ is T-right-regular with a celtain rank, say $h=w/v$ .

$T$ is then, by $\gamma$ ) of \S 1, a regular $S-(righf-)module$ of rank $gh^{-1}=gv/w$ .
Again12) by $a$), $\gamma$) $(R^{\prime}, \mathfrak{G})=V(S)$ is a regular $V(T)$ -module of rank $gh^{-1}$ .
So we consider the direct sum $(R^{\prime}, \mathfrak{G})^{w}$ of $zv$ copies of the $(R^{\prime}, \mathfrak{G})$ -right-
modeule $(R^{\prime}, \mathfrak{G})$ ;

$(R^{\prime}, \mathfrak{G})^{w}=x^{(1)}(R^{t}, \mathfrak{G})\oplus\cdots\cdots\oplus x^{(w)}(R^{t}, \mathfrak{G})$ .
Let further $r$ be the number of components in a direct decomposition of $R^{\prime}$ .
or $R$ , into directly indecomposable right ideals. Naturally $(R^{\prime}, \mathfrak{G})^{w}$ is
decomposed into $wgr$ directly indecomposable $R^{\prime}- right- submoduli$ . We
consider our module $(R^{\prime}, \mathfrak{G})^{w}$ modulo the submodule $(R^{\prime}, \mathfrak{G})^{w}(1V, \mathfrak{G})=$

$x^{(1)}(1\Psi, \mathfrak{G})\oplus\cdots\ldots\oplus\chi^{(w)}(N^{\prime}, \mathfrak{G})$ . The residue-module, the direct sum of
$w$ copies of $(R^{\prime}, \mathfrak{G})/(\Lambda^{\gamma/}, \mathfrak{G})$ , is decomposed, directly, into $wgr$ irreducible
$R^{\prime}- right- moduli$ . On the other hand $(R^{\prime}, \mathfrak{G})^{w}$ is $V(T)-$ , whence R-.
isomorphic to $t^{\nearrow}(T)^{gv}$. Hence it has a $V(T)$ -right-basis $y^{(1)},$ $y^{(2)},\ldots\ldots,$ $y^{(gv)}$ ;
$(R^{\prime}, \mathfrak{G})^{w}=y^{(1)}V(T)\oplus\cdots\ldots\oplus y^{(gv)}V(T)$ . If each $\mathfrak{b}_{\sigma^{\prime}}$ in $V(T)$ is decomposed
into $b_{\sigma}$ directly indecomposable right-ideals of $R^{\prime}$ , we have so $gv\Sigma b_{\sigma}=wyr$ .

Now we assert that no such direct component in $\mathfrak{b}_{\sigma}^{\prime}$ is contain $ed$ in
the racical $N^{\prime}$ . For if such a component $c_{\sigma}^{\prime}$ were contained in $N^{\prime}$ , then $\sigma_{C_{\sigma}^{t}}$

$\subseteqq(1V, \mathfrak{G}),$ $y^{(i)}\sigma c_{\sigma}^{\prime}\subseteqq(R^{t}, \mathfrak{G})^{w}(N^{\prime}, \mathfrak{G})$ and $y^{(i)}\sigma c_{\sigma}^{\prime}$ would contribute nothing
to $(R‘, \mathfrak{G})_{w}$ modulo $(R^{\prime}, \mathfrak{G})^{w}(N^{\prime}, \mathfrak{G})$ and the residue-module would be a
direct sum of less irreducible $R^{\prime}$ -submoduli than $gv\sum b_{\sigma}=wgr$, since each

12) From $a$), $\gamma$) follows, generally, that if $\mathfrak{m}$ is an R-regular module and $R$ is regular with
rank I over its subring $T$, then the T-endomorphism-ring $T^{\star}$ of $m$ is regular and of rank $h$

with respect to the R-endomorphism-ring $R^{*}$ .
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direct component of $\mathfrak{b}^{t_{\sigma}}$ , isomorphic to a direct right-ideal component of $R^{\prime}$ ,

contributes at most one irreducible component to the fully reducible residue-
module. Thus every direct component in $\mathfrak{b}_{\sigma^{\prime}}$ is not contained in $N^{/}$ , whence
contains a non-zero idempotent element. Each $\mathfrak{b}_{\sigma^{/}}$ is thus a direct summand
in $R^{\prime}$.

Further, $h$ is an integer. To see this, let $e^{/}$ be a primitive idempotent
element in $R^{\prime}$ , and there be $’(e^{t})$ components isomorphic to $e^{t}R^{\prime}$ in a
direct decomposition of $R^{\prime}$ into directly indecomposable right-ideals. As $\mathfrak{b}_{\sigma^{\prime}}$

is two-sided, it contains every right-ideal of $R^{\prime}$ homomorphic to $e^{t}R$ ‘ if it
contains $e^{\prime}R^{\prime}$ . Hence the number $b_{\sigma}(e$

‘
$)$ of direct components isomorphic

to $e^{\prime}R^{t}$ in $\mathfrak{b}_{\sigma^{/}}$ is either $r(e^{\prime})$ or $0$ . We have on the other hand, considering
only those components isomorphic to $e^{\prime}R^{\prime}$ in the above decompositions,
$gv\sum b_{\sigma}(e^{/})=w_{J^{r(e^{t})}}$ , or, $v\sum b_{\sigma}(e^{t})=wr(e^{\prime})$ . Since every $b_{\sigma}(e^{t})$ is divisible
by $r(\ell^{\prime})$ the rank $h=w/v$ is an integer, and we may set $w=h,$ $v=1$ .

We now assume $R$ to be two-sided directly indecomposable, and want
to show that $\mathfrak{b}_{\sigma^{\prime}}=R$ whenever $\frac{\Delta_{\backslash -}}{\backslash }0$ . For this purpose, let $\mathfrak{r}_{1^{\prime}},\ldots\ldots.\mathfrak{r}_{t^{\prime}}$ be
the sums of the totalities of mutually isomorphic directly indecomposable
right-ideal components in $R^{\prime}$ . Each $\mathfrak{b}_{\sigma^{\prime}}$ is, as noted above, a sum of certain
number of them. We consider those ideals in $R^{\prime}$ which are obtained from
$\mathfrak{b}_{1^{\prime}},$ $\mathfrak{b}_{\sigma^{t}},\ldots\ldots,$ $b_{\tau}^{\prime}$ by construction of intersection and sum, and consider a
maximal such ideal $c^{t}$ different from $R^{\prime}$ . By a suitable numeration we can
assume that $c^{t}=\mathfrak{r}_{1^{\prime}}\oplus \mathfrak{r}_{2^{\prime}}\oplus\cdots\cdots\oplus \mathfrak{r}_{s^{\prime}}$ Then we consider the intersection
$\mathfrak{d}^{f}$ of all those $\mathfrak{b}_{\sigma^{\prime}}$ which contain $\mathfrak{r}^{r_{s*1}}$ . $\mathfrak{d}^{\prime}$ contains no $\mathfrak{r}_{1^{\prime}},$ $\mathfrak{r}_{2^{\prime}},\ldots\ldots 6_{s}^{\prime}$ , whence
does not meet with $c^{\prime}$ For, if it contained $\mathfrak{r}_{1^{\prime}}$ , for instance, then $\mathfrak{r}_{1^{\prime}}$ would
be contained in a greater number of $\mathfrak{r}_{\sigma^{\prime}}$ than $\mathfrak{r}^{r_{s+1}}$ does, contrary to that
every $\mathfrak{r}_{i^{\prime}}$ should appear exactly in $h$ of $\mathfrak{b}_{\sigma^{\prime}}$ , since $\nu’(T)$ is a regular $R^{f}-$

module of rank $h$ . So the sum of $c^{\prime}$ and $b^{\prime}$ is direct, and coincides with
$R^{\prime}$ because of the maximality of $c^{\prime}$ . As $R^{\prime}$ is directly indecomposable, we
have necessarily $c^{t}=0$ , which shows that every $\mathfrak{b}_{o^{\prime}}$ is either $R^{t}$ or $0$ . Since
$V(T)$ is a ring, those $\sigma$ for which $\mathfrak{b}_{\sigma^{\prime}}=R$‘ form a certain subgroup $\mathfrak{H}$ of

$\mathfrak{G}$ . Thus
$V(T)=1R^{t}\oplus\varphi R^{t}\oplus\cdots\cdots\oplus\psi R^{\prime}=(R^{t}, \mathfrak{H})$ .

Furthermore $T=V(V(T))=V(R^{\prime}, \mathfrak{H})=R\cap V(\mathfrak{H})$ and $T$ is the invariant
system of $\mathfrak{H}$ in $R$ .

Combining the result with Theorem 2, applied to subgroups of $\mathfrak{G}$ , we
have

Theorem 3. Let $R$ be two-sided directly indecomposable. Subgroups $\mathfrak{H}$
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$\prime f\mathfrak{G}$ and between-rings $T$ of $R,$ $S$ such $th_{ll}tR$ is T-right-(or left-) rpgnlar
correspond $\iota 0$ each other 1-1 in the usual manner of Galois theory.

Remark 1. We can replace the condition for between-rings with a
stronger one that $R$ has a right- (or left-) basis over $T$. In fact both the
T-(right- or left-) rank of $R$ and the S-rank of $T$ are integer. The T-
right- and $T-$ ] $eft$-ranks of $R$ coincide, and similarly for S-ranks of $T$. The
i’-right- and T-left-regularity of $R$ imply each other.

Remark 2. $\mathfrak{G}$ can be looked upon as a Galois group of tlie residue-
ring $R/\mathfrak{b}$ of $R$ modulo $a\cdot \mathfrak{G}$ -invariant two-sided ideal $b$ The invariant
system of a subgroup in $R/\mathfrak{b}$ is obtained by taking the invariant system in
$R$ modulo $\mathfrak{b}$ , as one easily sees from Lemma 4 for instance. Hence the
Galois correspondence of $R$ is in a sense reflected in the residue-ring $R/\mathfrak{b}$ ,

for example in the semisimple residue-ring $R/N$. But we have to notice
that $R/b$ is in general directly decomposable, and in that case not every
subring of $R/\mathfrak{b}$ for which $R/\mathfrak{b}$ is regular corresponds to a subgroup of $\mathfrak{G}$ .

\S 3. Normal basis.
Let $\mathfrak{G}$ be again a Galois group of the ring $R$ , or more generally, let

$\mathfrak{G}$ induce a such iri $R/N$. Let U. be a subring of $R$ invariant, as a whole,
under $\mathfrak{G};(J^{\mathfrak{G}}=U$, and assu\’ine that $R$ is $right- regn1ar^{1_{c}\})}$ with respect to $C^{\gamma}$.
including the infinite rank case of generalized sense that $R$ is a direct sum
of two U-right-moduli, the first of which is regular with finite rank, while
the second has an independent U-right-basis with infiditely many terms;
we shall refer to $R$ simply as a regular U-module with rank $ f=\infty$ , since
it has an infinite (independent) U-right-basis.

We consider the unit crossed product $(R, \mathfrak{G})$ and its subring
$(U, \mathfrak{G})=1U\oplus\sigma U\oplus\cdots\cdots\oplus\tau U$,

which itself is a unit crossed product of $U$ with $\mathfrak{G}$ . Since $R^{g}$, the direct
sum of a copies of $R$ , and $(R, \mathfrak{G})$ are isomorphic with respect to the right
operator-domain $(R, \mathfrak{G})$ , they are so even more with respect to the sub-
domain $(U, \mathfrak{G})$ . Here $(R, \mathfrak{G})$ is $(U, \mathfrak{G})$ -right-regular and has the same
rank $f$ as $R$ has with respect to U. Sztpposefirst i) $f\geq g$. Then, by Krull-
Remak-Schmidt theorem,t4) $R$ has as $(U, \mathfrak{G})- right$-module a submodule

13) We may weaken the assumption somewhat by decomposing $U$ into directly indecom-
posable right-ideals and allowing different ranks, so to speak, with respect to non-isomorphic
components.

14) Cf. G. Azumaya. On generalized semi-primary rings and Krull-Remark-Schmidt theorem,

in Jap. Journ. Math. 19 (1948)-
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isomorphic to $(U, \mathfrak{G})$ , whence there exists an element $\xi$ in $R$ such that $\xi$ ,
$\xi^{\sigma},\ldots\ldots\xi^{r}$ are $r\iota\dot{g}ht- iud^{p}pendent$ over U. Suppose nexl ii) $f\leq g$ . Then $R$ is
conversely a direct summand of the $(U, \mathfrak{G})- right$-module $(U, \mathfrak{G})$ , and $t/z\ell^{\prime}re$

exists an element $\xi$ in $R$ so that $\xi,$ $\xi^{\sigma},\ldots\ldots,$ $\xi^{\tau}$ U-riglit-generate R. Suppose
generally iii)15) $f=gq+r$ whcre $q$ is integral and $r$ is a rational numb$er\geq 0$

$and<g$ . Then $R$ is a direct sum of $q+1(U, \mathfrak{G})-(rigl\iota t-)$ submoduli, $q$ of
$’\iota vhich$ are $(U, \mathfrak{G})-\iota somorpf_{l}ie$ to $(U, \mathfrak{G})(l/h\iota\iota t$ is, $haz/e$ (independent) rlormal
(riglit-) bases, so $b$ speak, over $U$) and one of whicli $;,s(U, \mathfrak{G})$ -homomorphic
$ro(U, \mathfrak{G})$ (i.e. $U-(right-)generatedb\parallel \mathfrak{G}- CO’ ljugales$ of a $ singI\ell$ element).

Our above assumption that $\mathfrak{G}$ is a Galois group of $R$ (or of $R/iV$ )
and the assumptions I, II in our previonS note16) cross each other, and
perhaps the present one is more natural. But the argument in the previous
note possesses a further range, and we may comprise the cases there and
here in one by making the following assumptions:

Let $\mathfrak{G}$ be a finite group of automorphisms of $R$ (which is not necessarily
a Galois group), and $\mathfrak{H}$ be an invariant subgroup of $\mathfrak{G}$ . Let $U$ be a subring
of $R$ such that $U^{\mathfrak{G}}=U$ and assume that $R$ is U-right-regular (in the
$ge’ 1$ eralized sense as abov $e$). We make

Assumption $I^{*}$ . The group $\mathfrak{G}/\mathfrak{H}$ induces a Galois class-group in the
residue-ring of the crossed product $(U, \mathfrak{H})$ modulo its radical; where under
a Galois class-group we mean a finite group of automorphism-classes17)
satisfying $(*)$ of \S 1.

Assumplion $1I^{*}$ . $\mathfrak{H}$ induces a Galois group of $R/lV$.
Under $I^{*},$ $1I^{*}$ the above statements remain valid. For, by virtue of the

second assumption $R^{h}(h=(\mathfrak{H}:1))$ and $(R, \mathfrak{H})$ are, again by Lemma 3,
$(R, \mathfrak{H})-$ , whene $(U, \mathfrak{H})-(right-)$ isomorphic. Taking the sums of their $\sqrt C/h$

copies, we have that. $R^{g}$ and $(R, \mathfrak{G})$ , which are $(R, \mathfrak{G})$ -moduli, are
$(U, \mathfrak{H})$ -isomorphic. By the first assumption th$ey$ are then $(U, \mathfrak{G})$ -isomorphic
too, in virtue of the following generalized formulation of Lemma 1 of
the previous not $e$ :

15) In case of infinite rank $ f=\infty$ we mean by this that $ q=\infty$ and ’ is a rational number
$<g$ ; the $re$striction being rather inessential.

16) Nakayama, 1. $c$ . $4$).
17) Classes are with respect to the subgroup of inner automorphisms. Automorphisms $\sigma$

in a same class (and only those in case $\mathfrak{m}=R$ ) give isomorphic two-sided moduli $(\mathfrak{m}, \sigma)$ . So
we can speak of $(\mathfrak{m}, \sigma)$ with an automorphism-class $\sigma$ .



212 T. NAKAYAMA

Lemma 5. Let $P$ be a $rtn_{\delta^{g}}$
. (wilh unit element and rmnimum condition)

and $Q$ be its radical. Le $t$ a finite group $\mathfrak{K}$ of $automorphism- classes’$)$fP$

induces a Galois class-group in $\iota$he residue-ring $P/Q$ . Consider a crossed
product $(P, \mathfrak{K})$ ( $’\iota vitI\ell$ factor set) defnd similarly as in \S 1 by $taf_{\triangleright}ing$

representatives of the classes,18) and two $(P, \mathfrak{K})$ -right-moduli $\mathfrak{r}$ , @, whicle are
direct sums of P-submoduli $l^{\supset}$-isomorphic to directly $indecomposa/ileright- i\iota i\ell d$

components of P. $1f\mathfrak{r}/\mathfrak{r}Q$ and 6/6 $Q$ are P-isomorphic, then $\mathfrak{r}$ and 6 are
$(P$, K $)$ -isomorphic19).

Proof runs similarly as in our Lemma 3, or in Lemma 1 in the previous
note, if we observe that $(Q, \mathfrak{K})$ forms the radical of $(P, \mathfrak{K})^{o}\sim 0)$ For the
case of infinite rank, where the argument of composition length fails, consult
the previous note, as well as a reproduction below.

Having thus shown thc $(U, \mathfrak{G})$ -isomorphism of $R^{g}$ and $(R, \mathfrak{G})$ , we
can now proce$ed$ as before.

We may also make division of $\mathfrak{G}$ finer. Assume namely:
Assumption III.* Let there be a series $\mathfrak{G}=\mathfrak{H}0’ \mathfrak{H}1,\ldots\ldots,\mathfrak{H}n$ of subgroups

of $\mathfrak{G}$ such that $\mathfrak{H}_{i+1}$ is invariant in $\mathfrak{H}_{i}$ $(i=0,1,\ldots\ldots,n-1)$ , and that of
subrings $U_{0},$ $U_{1},\ldots\ldots.U_{n}=R$ of $R$ such that $U^{\mathfrak{G}}=U_{i},U_{i}\subseteqq U_{i+1}$ and $R$ is
$U_{i}$-right-regular $(i=0,1,\ldots\ldots, n-1)$ . Assume further that $\mathfrak{H}_{i}/\mathfrak{H}_{i+1}$ induces
a Galois class-group in the $re$sidue-ring of th $e$ (unit) crossed product $(L^{\gamma_{i}}$ ,
$\mathfrak{H}_{i+1})$ modulo its radical $(i=0,1,\ldots\ldots, n-1)and\mathfrak{H}_{n}$ induces a Galois
group of $R/N$.

Under III* he above assertions, i.e. $ t\prime_{l}es\iota$atements of theorem ofsemilinear
normal basis, as we want to call, hold for $U=U_{0}$ . In fact, $R^{h_{n}}$ and $(R, \mathfrak{H}_{n})$

are $(R, \mathfrak{H}_{n})-$ , whenc $e(U_{n-1}, \mathfrak{H})-(right-)$ isomorphic, and so $\dot{R}^{h_{n-1}}$ and $(R$ ,
$\mathfrak{H}_{n-1})$ are $(U_{n-1}, \mathfrak{H}_{n})$ -isomorphic, where $h_{\dot{a}}$ denotes the order of $\mathfrak{H}_{i}$ . By
Lemma 5 they are $(U_{n-1}, \mathfrak{H}n-1)$ -isomorphic. They are $(U_{n-2}, \mathfrak{H}n-1)$ -isomorphic
even more. Hence $R^{n_{n-2}}$ and $(R, \mathfrak{H}_{n-2})$ are so. Th$ey$ are then, by Lemma
5, $(U_{n-2}, \mathfrak{H}_{n-2})$ -isomorphic. Repeating this process we find finally that $R^{ho}$

$=R^{9}$ is $(U_{0}, \mathfrak{H}_{0})=(U, \mathfrak{G})$ -isomorphic to $(R, \mathfrak{H}_{0})=(R, \mathfrak{G})$ . We may then
argue as before.

18) Cf. Nakayama-Azumaya, 1. $c$ . $3$).
19) For the case when @ is homomorphic to $\mathfrak{r}$ , as well as for some remarks on weakening

the assumptions, cf. the full proof below at the end of the paper. Cf. also Lemma 2 of the
previous note.

20) Our lemmas 1, 2 in $l^{1}$ remain valid for crossed product with automorphism class-group
and Galois class-group.
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Remark 3. Our assumption (in $I^{*}$ or $II1^{*}$) that $\mathfrak{G}/\mathfrak{H}$ resp. $\mathfrak{H}_{i}/\mathfrak{H}_{i+1}$

induces a Galois class-group in the residue-ring of $(U, \mathfrak{H})$ resp. $(U_{i}, \mathfrak{H}_{t+1})$

modulo the radical may be rather awkward. However, in the case of a
division ring $U$ it can be replaced by that $U$ be elementwise invariant under
$\mathfrak{H}$ and $\mathfrak{G}/\mathfrak{H}$ be a Galois group of $U$, and respectively for $U_{i}$ and $\mathfrak{H}_{l}/\mathfrak{H}_{i+1}$ ;
cf. the previous note.

Remark 4. Theorem 1 is included not in our theorem of semilinear
normal basis itself, but in its combination with Lemma 4.

In connection with Theorem 1 we want also to make
Remark 5. In order to prov$e$ Lemma 4 and Theorem 1 we used our

assumption that $\mathfrak{G}$ is a Galois group of $R$ only for Lemma 3 and for that
the subring $R\mathfrak{G}$ of $A$ generated by $R$ and $\mathfrak{G}$ is not only homomorphic but
isomorphic to. the (unit) crossed product $(R, \mathfrak{G})$ . Lemma 3 was stated
under the weaker assumption that $\mathfrak{G}$ induces a Galois group in $R/N$. But
this assumption is sufficient for the isomorphism of $R\mathfrak{G}$ and $(R, \mathfrak{G})$ too.21)

Namely $R\mathfrak{G}/lN\mathfrak{G}$ is then $(R,\mathfrak{G})-$ , or $R\mathfrak{G}-$ , isomorphic to $(\tilde{R}/N\tilde{)}^{g}=\tilde{R}^{g}/\tilde{N}^{g}$ .
Similarly as in the proof of Lemma 3 (or Lemma 5) $R\mathfrak{G}$ is $R\mathfrak{G}-$ , homo-
morphically mapped upon $\tilde{R}^{g}$. Since the R-length of the former module is
at most equal to the latter, the mapping must be an isomorphism. So $R\mathfrak{G}$

has the same length as $\tilde{R}^{g}$, and $R\mathfrak{G}=(R, \mathfrak{G})$ .
Hence Theorem 1, the theorem of normal basis, remains valid under

the assumption that $\mathfrak{G}$ induces a Galois group in $R/N$.
We may argue also as follows: Under the assumption Lemma 3 holds.

If $R\mathfrak{G}--(R, \mathfrak{G})/\mathfrak{a}$ with a two-sid $ed$ ideal $\mathfrak{a}$ in $(R, \mathfrak{G})$ , then $\tilde{R}\mathfrak{a}=0,\tilde{R^{g}}\mathfrak{a}=$

$0$ , whence, by Lemma 3, $(R, \mathfrak{G})\mathfrak{a}=0$ , which implies $\mathfrak{a}=0$ . So $R\mathfrak{G}--(R,\mathfrak{G})$

Thus indeed Theorem 1 is true if $\mathfrak{G}$ is a finite group of automorphisms
of $R$ and if the $(R, \mathfrak{G})$ -right-moduli $(\tilde{R}/\tilde{N})^{g}$ and $(R/N,\mathfrak{G})$ are isomorphic.
For, in the latter half of the proof to Lemma 3 we used only the isomor-
phism and that $(N, \mathfrak{G})$ is contain $ed$ in the radical of $(R, \mathfrak{G})$ ; cf. the
proof below to Lemma 5 too.

For Theorems 2, 3, however, we used rather in full the assumption
that $\mathfrak{G}$ is a Galois group of $R$ .

Remark 6. That $\mathfrak{G}$ induces a Galois group in $R/\Lambda^{7}$ is of course equi-
valent to an assumption $(**)$ obtained from $(*)$ in \S 1 by replacing “sub-
residue-moduli ” by “ residue-moduli ”. The above isomorphism of $R\mathfrak{G}$ and

21) This was pointed out to the writer by G. Azumaya.
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$(R, \mathfrak{G})$ follows also from the assumption $(\triangleleft_{\backslash }’\star\star)$ obtained by replacing “ sub-
residue-mouduli ‘’ in $(\backslash j_{\backslash }^{\prime})$ by “ submoduli ‘’. Indeed, under this $(Y^{\prime}\backslash ,\}_{\backslash \backslash }^{\prime\triangleleft z}$ ) the first
assertion of Lemma 2 remains true. For, every non-vanishin $\dot{g}R- t\iota vo$-sided
submodule in a direct sum (1) contains, under $(^{***})$ , a submodule $\neg\triangle_{-}o$ of
a form $u_{a}\mathfrak{b}_{\sigma}$ . Suppose namely the contrary and let $\mathfrak{m}$ be a minimal module
for which this is not case. There are at least two elements in $\mathfrak{G}$ , say $\sigma=$

$\sigma_{1},$ $\sigma_{-}1$ such that not all the $\sigma$ -coordinatcs $u_{o}a_{\sigma}$ of elements in $\mathfrak{m}$ vanish.
Observing the decomposition $l/OR\oplus^{-}\overline{\rangle}_{-+\circ}^{\urcorner}u_{\tau}R(\sigma=\sigma_{1}, \sigma_{\underline{\supset}})$ we find that those
$\sigma$-coordinates of In form an R-two-sided module isomorphic to $\mathfrak{m}^{22)}$ Hence
$u_{\sigma 1}R$ and $\iota/R\sigma^{\underline{y}}$ have isomorphic $submoduli_{3}0$ , contrary to $(^{***})^{2^{\backslash })}$

It is perhaps needless to note that in $(^{*}),$ $(^{**})$ or $(^{***})$ we may fix
$\sigma$ , say, unchanged; for instance we may set simply $\sigma=1$ .

Proof to $Lc’ mmpl5$ . Sincc Lcmma 5, as well as Lemma 3, was rather
fundamental, it is perhaps without use to reproduce its proof in the previous
note in a form adapted to the present generalized formulation and also to
make some remarks on it. Consider namely a $(P, \mathfrak{K})- right$-module $\mathfrak{r}$ and
suppose first that $\mathfrak{r}$ is fully reducible as P-module, which is equivalent to
that $\mathfrak{r}$ is so as (I‘, $\mathfrak{K}$ )-module, since a $(P, \mathfrak{K})$ -module is annihilated by
the radical $(Q, \mathfrak{K})$ if and only if it is annihilated by $Q$ . Let $ P/Q=\mathfrak{a}_{1}\oplus\cdots$

$\oplus a_{k}$ with minimal $\mathfrak{K}$-invariant two-sided ideals $0_{t}$ of $P/Q$. Then $(P/Q,\mathfrak{K})$

$(=(P, \mathfrak{K})/(Q, \mathfrak{K}))$ is decomposed into minimal two-sided ideals $(\mathfrak{a}_{\ell},\mathfrak{K})$ ;
$(P/Q, \mathfrak{K})=(\mathfrak{a}_{1}, \mathfrak{K})\oplus\cdots\ldots\oplus(\mathfrak{a}_{k}, \mathfrak{K})$ . Let $r_{i}$ be the number, finite or
infinite, of irreducible components in $\mathfrak{r}(\mathfrak{a}_{t}, \mathfrak{K})$ . Each such irreducible com-
ponent, isomorphic to an irreducible right-ideal in $(\mathfrak{a}_{i}, \mathfrak{K})$ , is a direct sum
of P-moduli which are decomposed into a same number, say $a_{i}$ , of isomorphic
irreducible P-moduli. The numbers $r_{\ell}a_{i}$ of mutually isomorphic P-irreducible
components in $\mathfrak{r}$ are determined completely by the structure of $\mathfrak{r}$ as P-
module. By $r_{i}a_{i}$ are determined $r_{i}$ , which determine the structure of $\mathfrak{r}$ as $(P$,
$\mathfrak{K})$ -module. So the P-structure of $\mathfrak{r}$ determines its $(P, \mathfrak{K})$ -structure, and
a second $(P, \mathfrak{K})$ -module $\mathcal{B}^{\prime}$ is ( $P$, R)isomorphic to $\mathfrak{r}$ if it is so with
respect to $P$.

Consider next a general $($ 1’, $\mathfrak{K})- right$-modulc $\mathfrak{r}$ $\mathfrak{r}(Q, \mathfrak{K})=\mathfrak{r}Q$ is the

22) Cf. K. Shoda, 1, $c$. $7$ ).
23) It follows from this, combined with Lemma 1, that also the 1-1 correspondence, in

Lemma 2, between two-sided ideals of $(R, \mathfrak{G})$ and G-invariant two-sided ideals of $R$ holds under
the weaker assumption that $(^{it*})$ is satisfied for every residue-ring of $R$ modulo a $\mathfrak{G}$ -invariant
two-sided ideal.



Galois theor $\gamma$ for gcneral $ri\prime rgs’\angle vith$ minimum condition. 215

intersection of all the maximal $(P, \mathfrak{K})$ -submoduli, and at the same time
that of all the maximal P-submoduli. Let $p_{l}$ be a primitive idempotent
element in $(P, \mathfrak{K})$ such that $e_{i}(mod. (Q, \mathfrak{K}))$ is in $(\mathfrak{a}_{i}, \mathfrak{K})$ . Let $r_{i}$ have
the same significance as above rvith respect to the fully reducible module
$\mathfrak{r}/\mathfrak{r}Q$ . We construct now for each $i$ a direct sum $\mathfrak{h}_{i}$ of $r_{i}(P, \mathfrak{K})- right-$

moduli $\mathfrak{h}_{c\nu}$ $(\nu=1,2,\ldots\ldots, r_{i})(P, \mathfrak{K})$ -isomorphic to $e_{i}(P, \mathfrak{K})$ by $\tau_{i\nu}\leftarrow\rightarrow C_{?}$ ,

and further the direct sum $\mathfrak{h}$ of such $\mathfrak{b}_{i}(i=1,2, .., k)$ . Then $\mathfrak{h}/0Q$ and
$\mathfrak{r}/\mathfrak{r}Q$ are $(P, \mathfrak{K})$ -isomorphic. Let $v_{i\nu}mod$ . $\mathfrak{b}Q$ correspond to $x_{i\nu}mod$ .
$\mathfrak{r}Q$ by the isomorphism. $0_{i\nu}=v_{t\nu}(F, \mathfrak{K})$ can be mapped $(P, \mathfrak{K})$ -homomor-
phically upon $x_{i\nu}e_{i}(P, \mathfrak{K})$ according to $v_{r\nu^{-\rightarrow x_{i\nu}e_{i}}}$ . The mappings toge-
ther give a mapping of $\mathfrak{h}$ upon the sum of $v_{\iota\nu}e_{\nu}(P, \mathfrak{K})$ ( $i=1,2,\ldots\ldots,$ $k$ ;
$\nu=1,2,\ldots\ldots,$ $r_{i}$) in $\mathfrak{r}$ The last sum consumes the whole $\mathfrak{r}$ , since it does
so modulo $\mathfrak{r}Q$ and $\mathfrak{r}Q$ is the intersection of all the maximal $((P, \mathfrak{K})- or$

P-) submoduli. Let $\mathfrak{w}$ be the kernel of this homomorphic mapping of $\mathfrak{h}$

on $\mathfrak{r}$ ; $\mathfrak{h}/t\mathfrak{v}_{-\mathfrak{r}}^{-}$ (with respect to $(P,$ $\mathfrak{K})$ ).
We now assume that $\mathfrak{r}$ is a direct sum of (finite or infinite number ot)

P-submoduli isomorphic to directly indecomposable right-ideal components
of $P$, and want to show that $\mathfrak{w}=0$ . For this purpose, let $\mathfrak{r}=\sum t_{\mu}$ be the
assumed decomposition of $\mathfrak{r}$ , where each $1_{\mu}$ is isomorphic to a right-ideal

$f_{\mu}P$ of $P$ generated by a primitive idempotent element $f_{\mu}$ ; $f_{\mu}$ with distinct
$\mu$ may coincide of course. Let $t_{\mu}\leftarrow\rightarrow f_{\mu}$ in the isomorphism, and let $v_{\mu}$ be
a counter image of $t_{\mu}$ in our $((P, \mathfrak{K})$ -whence P-) homomorphic mapping
of $\mathfrak{h}$ upon $\mathfrak{r}$ Siuce the sum $\sum t_{\mu}P$ is direct, so is even more the sum
$\Sigma v_{\mu}f_{\mu}P$, and the sums are necessarily isomorphic. Hence $\sum v_{\mu}f_{\mu}P$ and $\mathfrak{w}$

do not meet, and their (direct) sum coincides with $\mathfrak{h}$ , since its image con-
sumes $\mathfrak{r}$ ; $\mathfrak{v}=\sum v_{\mu}f_{\mu}P\oplus \mathfrak{n}$). Then $0Q=\sum 7_{\mu}f_{\mu}Q\oplus \mathfrak{w}Q$ . If here $\mathfrak{w}_{\neg}o$ , then
$\mathfrak{w}\neq \mathfrak{w}Q$ and $0Q\not\geqq \mathfrak{w}$ , which contradicts however to that 0/0 $Q$ is mapped by
our mapping in 1-1 manner. Hence necessarily $\mathfrak{w}=0$ , and $\mathfrak{h}$ is $(P, \mathfrak{K})\rightarrow$

isomorphic to $\mathfrak{r}$

Now $\mathfrak{h}$ is completely determined (up to $(P,$ $\mathfrak{K})$ -isomorphism) (by $r_{t}$

whence) by the $(P, \mathfrak{K})$ -structure of $\mathfrak{r}/xQ$ and this last is determined,
according to the above fully reducible case, by the P-structure of $\mathfrak{r}/\mathfrak{r}Q$ .
So $\mathfrak{v}$ , whence the $(P, \mathfrak{K})$ -structure of $\mathfrak{r}$ , is determined by the P-structure
of $\mathfrak{r}/\mathfrak{r}Q$ . Therefore, if a second $(P, \mathfrak{K})- right$-module @ has a similar P-
decomposition and if $\mathfrak{r}/rQ$ and $\hat{\wedge C_{\backslash }}/6Q$ are P-isomorphic, then $\mathfrak{r}$ and $\sim^{0}\backslash $ are
$(P, \mathfrak{K})$ -isomorphic.

Generally, if 6 is a $(P, \mathfrak{K})$ -module such that $6/6Q$ is P-homomor-
phic to $\mathfrak{r}/\mathfrak{r}Q$ , then 6 is $(P, \mathfrak{K})$ -homomorphic to $\mathfrak{r}$ For, $s_{i}\leq \mathscr{J}_{:}$. with $s_{j}$
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introduced similarly as $r$, for 6 and the module $0$ defined tor 6 similarly
as $\mathfrak{h}$ for $\mathfrak{r}$ is a direct summand in $\mathfrak{y}$ , while 6 is $((P, S\mathfrak{K})-)$ homomorphic
to $\mathfrak{y}$ . If here 6 has a similar P-decomposition as $\mathfrak{r}$ , then $\mathfrak{r}$ contains as
(P. $\mathfrak{K}$)-module a direct summand $(P, \mathfrak{K})$ -isomorphic to 6.

The abov $e$ proof of $\mathfrak{w}=0$ can be formulated as follows: Let $R$ be a
ring with unit element and satisfying the minimum condition, and $N$ be its
radical, or more generally a right-ideal contained in the radical. Let $\mathfrak{h},$ $\mathfrak{r}$

be R-right-moduli and let $\mathfrak{r}$ be a direct sum of submoduli isomorphic to
right-ideal direct components of $R$ . Let there be a homomorphic mapping
of $\mathfrak{v}$ upon $\mathfrak{r}$ such that it induces an isomorphism of $\mathfrak{y}/0N$ and $\mathfrak{r}/\mathfrak{r}N$.
Then the mapping must be a 1-1 correspondence between $0$ and (the
whole of) $\mathfrak{r}$ .

So we have only to assume, in order to $p\dot{ro}ve$ Lemma 5, that $\mathfrak{r}$ and
@ are direct sum of submoduli isomorphic to right-ideal direct components
of, instead of $P$, a between-ring $P_{1}$ of $(P, \mathfrak{K})$ and $P$ such that its radical
$Q_{1}$ contains $Q$ (or such that $(P,$ $\mathfrak{K})Q_{1}=\supset(Q,$ $\mathfrak{K})$ (which implies $\mathfrak{y}Q_{1}\supseteqq 0Q)$ ).
It is even allowed to take different $P_{1}$ for $\mathfrak{r}$ and 6. (In the $pre$vious note
we stated rather the case where $P_{1}$ is $P$ for $\mathfrak{r}$ and $(P, \mathfrak{K})$ for 6.)

Furthermore, we may replace $(P, \mathfrak{K})$ by its (fixed) residue-ring (and
the subrings by the corresponding sub-residue-rings), as was also noted in
the previous note, footnote 9), and this takes care of the isomorphism of
$R\mathfrak{G}$ and $(R,\mathfrak{G})$ in $Re$mark 5 too; consider namely the residue ring $R\mathfrak{G}$

of $(R,\mathfrak{G})$ and put $P_{1}=R\mathfrak{G}$ for $\mathfrak{r}=R\mathfrak{G}$ and $P_{1}=R(\subseteqq R\mathfrak{G})$ for $B=R$ .

Finally, the above proof is free from finiteness restriction and enables
us to $e$xtend our Galois theory to a certain type of rings without chain
conditions; to this point th $e$ writer hopes to come back shortly.

Revised $A/\nu,$ $10$,1948; $4Vov,$ $15$,1949.
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