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A boundary value problem of some special ordinary
differential equations of the second order.

Shigeo SASAKI.
(Received Oct. 2, 1947)

\S 1. Statement of the problem.

1. Among various results concerning the behaviour of geodesics in
the large, there are many theorems’ which can be stated without the con-
cept of length. They seem to be only properties in the large of integral
curves of a system of differential equations of the second order. Hence,

some of them may be generalized to the geometry of paths in $the^{\backslash }$ large.
Now, the first-problem in the theory of‘geodesics in the large is that

“ Given any two points on a surface, can they always be bound by a

geodesic $p$
” From the point of view stated above, there then arises the.

following problem: Given any two points in a plane, can they always be

bound by a path $p$ A path is, by definition, an integral curve of a system

of ordinary differential equations of the second order of the following type

$x=A_{1}\dot{x}^{2}+2B_{1}xy+C_{1}\dot{y}^{2}$ , 1

1 $(1\rangle$

$\ddot{y}yJ^{\prime}\underline{\rangle}$

.
where dots denote derivatives with respect to a parameter $t$, and $A_{1},$ $B_{1},$

$.$ .
..., $C\underline{\circ}$ denote continuous functions of $\chi$ and $y$ . Putting $x=x^{1},$ $\parallel=x^{2}$ , the

set of equations (1) are usually written as

$x^{i}+\Gamma_{j^{i}k}x^{j}x^{k}=0$ , $(i, j, k=1,2)$ (2)

$\Gamma_{jk}^{i}$ being $called$
’

parameters of an affine connexion.
The answer of the problem is in general negative. But, it is desirable

to. know in what manner it becomes impossible, in other words, the be-

haviour of integral curves.
In this paper we shall confine $0\iota\rceil rselves$ to the simplest cas6 where $A_{1}$ ,

$B_{1}$ , ......, $C_{2}$ are all real constants. Our result may be stated as follows:
Theorem. Let there be given a system of $d\iota ffer\ell nt\iota^{\prime}al$ equations of the

form (1) $ wit/\iota$ real $consta_{-}ntCo\mathscr{J}fficicntsA_{1},$ $B_{I},$
$\ldots\ldots,$

$C_{2}$ . $T1\iota en$ tizey. can be

cJassified into two types. For one of $t/\iota cm$ any two points in plane can be
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$\delta oumIaJ_{\mathcal{L}}^{\prime}\iota\prime ays$ by a path, anal $fo\prime anot/\iota er$ any point in $plar\iota e\dot{c}$an $\sigma e\gamma_{i}ou\prime fd$

by $a$ $pa1/zr,l\dot{n}th- t/\iota os^{\underline{\rho}}$ aml $ onl,\gamma$ those points $ whic/\iota$ lie between cerlarn parallel
Iines at cqual distance from $tJ\iota c^{y}|first$ point.

2. If we eliminate the parameter $t$, the set of equations (1) reduces
to a single equation

$y^{\prime\prime}+C_{1f^{\prime^{\prime 3}}}+(2B_{1}-C_{-}\rangle)y^{;2}+(A_{1}-2B_{\underline{9}})y^{\prime}-A_{2}=0$ , (3)

where dashes denote derivatives with respect to $\chi$ . Hence our problem
may. be regarded also as a boundary value problem of a differential equation
of the second order of the type

$y^{\prime\prime}+P_{3}(y^{\prime})=0$ ,

where $P_{3}(y^{\prime})$ denotes a polynomal of the third order of $y^{\prime}$ with constant
coefficients.

The equation (3) will be also used to give a proof of our theorem.

\S 2. Canonical forms of the differential equations.

3. The equation (3) shows that system of paths depends only on the
values $C_{I},$ $A_{2}$ and the differences 2 $B_{1}-C_{2},$ $A_{1}-2B_{2}.$. Hence we can change
the coefficients of (r) without altering paths. This fact corr\‘esponds to the
projective change of affine co.nnexion in the geometry of paths, which is
analytically expressed by

$\overline{1}_{jk}^{t\prime}=1_{jk}^{\prime}i+\delta_{j}^{f}\psi_{k^{+\delta_{J^{?}}}}\}_{j}^{\prime}$ ,
$\cdot$ ,

(4)

where $\psi_{1}$ and $\psi_{-}$ are arbitrary functions of $\chi$ and $y$ . Thus we can put any
given set of equations (1) in the form

$x=A_{1}\dot{x}^{2}+C_{1}y^{\underline{9}}$

(6)
$\dot{y}=A_{2^{\dot{\chi}^{\sim}}}^{0}+C_{2}y^{\dot{2}}$ ,

without altering the system $\cdot$ of $\tau$)$a^{t}t11si$

Now consider the transformation of coordinates:

$x^{*}=\lambda x$ , $y^{*}=\mu y$ ,

$w1_{1}ele$ ), $\mu$ denote non $zc_{\backslash }ro$ coIistants. Then the set of equations (5)
reduces to ,
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.
$x^{*}=\frac{A_{1}}{\lambda}\dot{x}^{*2}+\frac{\lambda C_{1}}{\mu^{2}}y^{*2}$ ,

$c$

(6)
$\dot{y}^{*}=\frac{\mu A_{2}}{\lambda^{2}}x^{*2}+\frac{C_{2}}{\mu}\dot{y}^{*2}$

’ $q$

’

Taking $\lambda$ and $\mu$ suitably, we can reduce (5) to the following ! canonical
fofms ‘. 1

Case I. $C_{1}\neq 0,$ $A_{2}\neq 0$ . If $v_{t}\cdot e$ put

$\lambda=V^{3/\overline{\circ}}C_{1}A_{2}^{\rightarrow}$ $\mu=\sqrt[3]{C_{1}^{2}A_{2}}$ ,

$C_{1^{*}}$ and $A_{2^{*}}becom_{I}eboth^{\theta}1$ . Hence (6) reduces to

$x=a\dot{x}^{2}+\dot{y}^{2}$

$y=\dot{x}^{2}+\delta_{l^{2}}$ ,

where $a$ and $\delta$ may be zero.
Case II. $C_{1}=0,$ $A_{2}\neq 0,$ $C_{2}\frac{-L}{I}0$ . Take $\cdot$ the sign of $\mu$ so that $\mu A_{2}$ be-

comes positive, and define the values of $\lambda$ and $\mu$ by the relations

$\lambda=\sqrt{\mu A}$ , $’|\frac{C_{\underline{o}}}{\mu}|=1$ ,

then (6) reduces to

$x=a\dot{x}^{2}$ ,

$y=\dot{x}\pm\dot{y}^{2}$

where $a$ may be lzero.
. Case III. $C_{1}=0,$ $A_{2}\neq 0,$ $C=0,$ $A_{1}\neq 0$ . It is clear that (6) reduces in

this case to

$x=\dot{x}^{\underline{9}}$ ,

$J^{!=\dot{x}^{\underline{o}}}$

Case IV. $C_{1}=0,$ $A_{s},\neq 0,$ $C_{\underline{9}}=0,$ $A_{1}=0$ . (6) reduces in this case to

$x=0$ ,

$y=\dot{x}^{2}$
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In the cases II, III, IV, we have treated the case where $C_{1}=0,$ $A_{2}\neq 0$ .
There may happen also the case where $A_{2}=0,$ $C_{1}\neq 0$ . How\v{e}ver, the latter
is equivalent to the fornler as is easily seen by interchanging $\chi$ and $y$ .
Hence we can omit it.

Case V. $C_{1}=0,$ $A_{2}=0,$ $A_{1}\neq 0,$ $C_{2}\neq 0$ . In this case (6) reduces to
$t$

$x=\dot{x}^{2}$ ,

$\ell\gamma=\dot{\mathscr{J}}$ .

Case VI. $C_{1}=0,$ $A_{2}=0,$ $A_{1}=0,$ $C_{0}\sim\neq 0$ .

$x=0$ ,

$y=\dot{y}\underline’$

$B_{Y}$ a similar reason as above we can omit the case where $C_{1}=0,$ $A_{2}=0$ ,

$A_{1}\neq 0,$ $C_{2}=0$ .
Case VII. All coefficients are zero.

$x=0$ ,
..
$y=0$ .

These are the canonical forms of the equations $(\mathfrak{H})$ . . The correspond-
ing non-homogeneous forms are as follows:

$y^{\prime\prime}+y^{\prime 3}-by^{\prime 2}+ay^{\prime}-1=0$ , (I)
$y^{\prime\prime}$ $\pm y^{\prime 2}+ay^{\prime}-1=0$ , (II)
$y^{\prime\prime}$

$+y^{\prime}-1=0\backslash $ , (III)
$y^{\prime\prime}$ $-1=0$ , (IV)
$y^{\prime\prime}$ $-y^{\underline{o}}+y$ $=0$ , (V)
$y^{\prime\prime}$ $-y^{r2}$ $=0$ , (VI)

$y^{\prime\prime}$ $=0$ . (VII)

\S 3. Canonical forms of the differential equations (continued).

4. If we transform the coordinates bv a linear transformation:

$x^{\prime}=px+\grave{q}y$ ,
$p_{\backslash }’$ , (7)

$y^{\prime}=rx+^{\backslash }sy$ ,
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the parameters of the affine connexion obey the following transformation
law

$\Gamma_{\beta^{L}\Gamma}^{\alpha}=A_{i}^{\alpha}A_{\beta}^{\prime j}A_{r}^{\prime k}\Gamma_{j^{i}k}$ ,

where we have put

$A_{1}^{1}=p$, $A_{2}^{1}=q$,

$A_{1}^{2}=r$, $A_{2}^{2}=s_{:}$

$A_{1}^{\prime 1}=\frac{s}{t^{s-qr}}$ , $A_{2}^{\prime 1}=\frac{-q}{p_{s-qr}}$ ,

$A^{\prime}\frac{9}{1}=\frac{-r}{l^{s-qr}}$ , $A^{\prime}\frac{o}{2}=\frac{p}{ps-qr}$ .

If we apply this transformation to (5), we get $\tau$

$A_{1}^{\prime}=\frac{1}{(ps-qr)^{\wedge}}[(pA_{1}+qA_{2})s^{2}+(pC_{1}+qC_{2})r^{2}]$ ,

$\iota$

$C_{1}^{\prime}=\frac{\grave{1}}{(p_{S}-qr)^{2}}[(pA_{1}+qA_{2})q^{2}+(pC_{1}+qC_{2})i^{2}]$ , (8)

$B_{2^{\prime}}=\frac{-1}{(ps-qr)}[(rA_{1}+sA_{2})qs+(;C_{1}+sC_{2})pr]$ ,

etc.,

-where we have put

$A_{1}^{\prime}=-\Gamma_{1_{\backslash }1}^{J1}$ , $C_{1}^{\prime}==\Gamma_{22}^{;1}$ , $B_{2}‘=-I_{12}^{Y2}$ , etc.

Now, consider the differential equations of the type II:.

$x^{2}=a\dot{x}^{2}$ ,
(9)

$y=\dot{x}^{2}\pm y^{\dot{2}}$

Then, we can easily see that
.

$A_{1}=a$ , $C_{1}=0$ , $A_{J}=1$ , $C_{2}=\pm 1$ . (10)

Let us study whether equations of the type (9) with $a\mp O$ are redthcible “

to the form:
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$x^{f}=0$ ,

$y^{\prime}=A_{2^{*}}\dot{x}^{\prime 2}+C_{2^{*}}\dot{y}^{\prime g}$

or not. If we put (10) into (8), we see that $C_{1}^{\prime}$

, becomes zero when w6
put $q=0$ . Moreover, when $q=0$ , we get.

$A_{1}^{\prime}-2B_{2}^{\prime}=\frac{\pm 2r+as}{p_{S}}$ . $\cdot$

$e$

Hence, if we put

$q=0$ , $\frac{\gamma}{s}=\mp\frac{a}{2}$ ,

’

$C_{1}^{\prime}$ and $A_{1}^{\prime}\rightarrow 2fi)_{\sim}$

; become both zero. Accordingly, by an appropriate pro-
jectLve $chan\vec{g}e$ of affine connexion, it is possible to reduce. our equations
of paths to the desired form.

Now the curvature tensor of the affine connexion defined by (5) is

easily calculated from the formula:

$Ri_{jkl}=\frac{\partial I_{jk}^{vi}}{\partial x^{l}}-\frac{\partial\Gamma_{jl}^{i}}{\partial x^{k}}+\Gamma_{hl}^{i}\Gamma_{jk}^{h}-\Gamma_{hk}^{i}\Gamma_{jl}^{h}$ , (11)

and givec us

$R_{112}^{1}=C_{1}A_{,\sim}$ , $R_{2I2}^{1}=-A_{1}C1$ ,
(12).

$R_{12}^{\frac{}{l},}=C_{2}A_{2}$ , $R_{212}^{2}=-A_{2}C_{1}$ ,

the other components being ’all zero.
.

(12) show that the affine connexion defined by equations of the type II is
not $affine1\}^{r}$ flat. Hence $A_{2}^{*}an\dot{d}c_{\supseteq}*can$ not vanish. Consequently, our
equations are reducible to the canonical form:

$x=0$ ,
$(II_{0})$

$y=\dot{x}^{2}\pm\dot{y}^{\underline{o}}$

5. In the next place, let us, consider the equations of the type I:

$- x=a\dot{x}\underline’+j-)$

’

$\uparrow y=\dot{x}^{\underline{y}}+\dot{\Psi}$ .
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$I^{)}\iota\downarrow tting$

$A_{1}=a$ , $C_{1}--1$ , $A_{1}=1$ , $C_{2}=$ [)
.

into (6) , we see that $C_{J}^{\prime}$ becomes zero when and only when

$p^{3}+bp^{2}q+ap\mathscr{J}+q^{3}=0$ .

Evidently there exist real values of $p$ and $q$ satisfying this equation. We
denote these values by $p_{1}$ and $q_{1}$ and take arbitrary real values $r_{1}$ and $s_{1}$

so as to satisfy

$p_{1}s_{1}-q_{1}r_{1}\neq 0$ .

Then by the transformation (7), $C_{1}$ becorpes zero.
, Accordingly, if we perform a suitable projective change of affine con-
nexion, the equations of the type I reduce.to the form

$x^{\prime}=A_{1}^{*}\dot{x}^{\prime 2}$ ,

$y^{\prime}=A_{2}^{*}\dot{x}^{r2}+C_{\underline{o}^{*}}\dot{y}^{r2}$

where $A_{2^{*}}$ and $C_{2^{*}}$ can not vanish in virtue of the same reasol] as ,above.

Hence they are reduci’ole to the canonical form II and consequently to the
canonical form $II_{0}$ . Thus we have proved the following lemma $\dot{i}$

Lemma. The $equ$ations of $t1\iota c$ type I and $\Pi$ are $al_{\mathcal{L}}^{\prime}\ell/ays$ reducible to the
canonical form $II_{0}\delta yapplyi/t_{A}^{\sigma}s$zt $itabl_{c^{\prime}}coo’\prime di/1at_{\vee}$, transformations and $pro_{*}^{-}$

$ jectiv\ell$ clanges of affine $conn_{\sim}^{\rho}nons$ .
$c_{onse(}\urcorner\iota^{neIJtly}$ all the equations of paths in $considerat_{1}^{J}ons$ are reduced

to one of the canonical forms of the type $II_{0}$ , III, IV, V, VI and VII.

\S 4. The possibility of binding any two points
in plane by a path.

6. Now the parameters of an affine connexiqn vary by $coordin^{\gamma}’-\cdot te$

transformations as follows :
$b$

$\Gamma_{jk}^{i}\frac{\partial x^{\prime\alpha}}{\partial x^{i}}=\frac{\partial^{\gamma}x^{r\alpha}}{\partial x^{j}\partial x^{k}}+\Gamma_{2}^{\prime_{1}\alpha_{T}}-\frac{\theta x^{r\beta}}{\partial x^{j}}\frac{\partial x^{\prime\tau}}{\partial x^{k}}$ .

If the given system of paths is affinely flat, coordinate system $\chi scan_{\vee}$ be
taken so that in the new coordinate system all paths can be represented
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analytically by linear equations of $coordi_{I1}atesx^{\prime\alpha}$ These coordinate systems
are characterized analytically by those for $w1_{1}ic1_{1}$ $I_{s}^{Y^{(}\alpha_{T}}=0$ . Ifence, in our
two $dimens\dot{j}onal$ problem the tranformation functions $x^{\prime}=x^{\prime}(x, y),$ $y^{\prime}=y^{\prime}$

$(x, \parallel)$ are characterized as a pair of $so\Gamma utions$ of the following system of
partial differential equations:

.
$\frac{\partial\underline’\emptyset}{\partial x^{2}}=-A_{1}\frac{\partial i}{\partial x}-A_{2}\frac{\partial\phi}{\partial y}$ ,

$\frac{\partial^{2}\phi}{\partial x\partial y}=-B_{1}-\frac{\partial\phi}{\partial x}-B_{2}\frac{\partial\phi}{\partial y}$ , (i3)

$\frac{\partial^{2}\phi}{\partial y^{\sim}}=-C_{1}\frac{\partial\phi}{\partial x}-C_{2}\frac{\partial\oint}{\partial y}$ .

7. Although we are considering of binding arbitrary $point\dot{s}(x_{0}, y_{0})$

and $(x_{1}, y_{1})$ each other by. a path, it will be sufficient to discuss only the
$\dot{p}os\dot{s}ibility$ of binding the origin with an arbitiary points $(x_{1}, \parallel 1)$ by a path.
For the set of differential equations (1) is $invariatn$ under any translation

$x^{*}=x+a$ , $ y^{*}=y+\beta$ ,

where $a$ and $\beta$ are arbitrafy constants.
Using these facts we shall study the possibility of $bindin\dot{g}_{\wedge}any^{(}$ two

points in plane by a path of the given system.
8. Case VII. In this case, evidently, any two points in plane can

be bound by a path (straight lin,e).
Case VI. From (12) we see that the system of paths of the type VI

is affincly flat. The set of equations (13) reduces in this case to

$c\frac{\partial^{\sim}\oint}{\partial x^{2}}=0$ , $\frac{\partial^{\varphi_{\sim}}\phi}{\partial x\partial y}=0$ , $\frac{\partial^{2}\oint}{\partial y^{2}}=-\frac{\partial\phi}{\partial y}$ .

Hence we can take, as a pair of solutions,

$x^{\prime}=x$ , $f=c^{-y}$ .

In the new coord\’inate system. $(x^{\prime}, y^{\prime})$ , the paths are straight.lines and the
whole plane $(x, y)$ is mapped onto the upper half plane $y^{\prime}>0$ . The image
of the origin of the $(x, y)$ plane is the point $(0,1)$ in the $(x^{\prime}, y^{\prime})$ plane.
Hence, the problem whether the origin and any point in the $(x, \parallel)$ plane
can be $bou’ nd$ by a path or not is equivalent to the problem: whether the
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point $(0, \cdot 1)$ and any point $(x^{\prime}, y^{\prime})y^{\prime}>0$ can be bound or not by a straight
line in the upper half plane $y^{\prime}>0$ , which is evidently possible. Consequently,
in the Case VI the answer of our boundary value problem is affirmative.

Case V. The system of paths. of the type V being also affinely flat,

the set of equations (13) reduces in this case to

$\frac{\partial^{2}\phi}{\partial x^{2}}=--\frac{\partial\phi}{\partial x}$ . $\frac{\partial^{2}\phi}{\partial x\partial y}=0$ , $\frac{\partial^{2}\oint}{\theta^{\underline{o}}}=-\frac{\partial\beta}{\partial y}$ .

Hence we can take, as a pair of solutions,
$r$

$x^{\prime}=e^{-x}$, $y=e^{-y}$ .

In the new coordinate system $(x^{J}, y^{\prime})$ , paths are straight lines and the
whole plane $(x, y)$ is mapped onto the first quadrant $x^{\prime}>0,$ $y^{\prime}>0$. The
image of origin of the $(x, y)$ plane is the point $0(1,1)$ in the $(x^{\prime}, y^{\prime})$

plane. Hence by the same reasoning as in Case VI, we can conclude
that any two points $\tau in$ the $(x, y)$ plane can be bound by a path.

Case IV. The system of paths of the $t^{\iota}ype$ IV is also affinely flat.
The set of cquations (13) reduces in this case to

$\frac{\partial’\emptyset}{\partial x^{\underline{9}}}=-\frac{\partial\phi}{\partial y}$ , $\frac{\partial\gamma}{\partial x\partial y}=0$ , $\frac{\mathfrak{X}\mu}{\partial y^{\underline{y}}}=0$ .

Hence, we can take, as a pair of solutions,

$x^{\prime}=x$ , $y^{\prime}=-\frac{\chi^{2}}{2}+y$ .

The whole plane $(x, \parallel)$ is mapped onto the whole plane $(x^{r},\backslash y^{\prime})$ one-to-
one and continuous.ly. The origins on both planes correspond to each other.
In $tbe$ . new coordinate system $(x^{\prime}, y^{\prime})$ , paths are straight lines. By tlte
same reasoning as in cases“ VI and V, we can conclude that any two points
in $(\tau^{\prime}, y)$ plane can be bound always by a path.

Case III. The system of paths of the type III is also $affinel\gamma$ flat.
The set of equations (13) reduces in this case to

$\frac{\partial^{2}\oint}{\partial x^{2}}=-\frac{\partial\phi}{\partial x}-\frac{\partial\phi}{\partial y}$ , $\frac{\partial^{2}\phi}{\partial x\partial y}=0$ , $\frac{\partial^{\varphi}\phi}{\partial\parallel^{\underline{}}}=0$ .

We can take, as a pair of solutions,
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$\chi^{\prime}=t^{-x}$ , $y^{\prime}=-x+y$ .

The whole plane $(x, .y)$ is mapped onto the right half plane $x^{\prime}>0$ one-to-
one and continuously. The origin of the $(x, y)$ plane is transformed to
$tt_{1}e$ point $(1, 0)$ on the $(x‘, \parallel^{\prime})$ plane. In the new coordinate system
$(x^{\prime}, y^{\prime})$ , paths are straight lines. Hence by the same reasoning as in cases
VI, V, and IV, we can conclude that any two pojnts in $(x, y)$ plane can
be bound always by a patJx.

$\iota$

9. Case $II_{0}$ . $x=0$ ,
$J$

$y=\dot{x}^{2}+\epsilon_{J^{\prime^{2}}}$ , $\epsilon=\pm 1$ .

In this case the corresponding affin $e$ connexion is not flat. Indeed its
curvature tensor becomes

$ R_{112}^{2}=\epsilon$ and th $e$ others are all zero.

However, if we apply a projective $cha\backslash nge$ of affine connexion (4) with
$\psi_{1}=0,$ $\phi_{2}=\epsilon$ the equations of paths $II_{0}$ reduce to

$x=a\dot{r}^{9}-2\epsilon xy$ ,

$y=\dot{x}^{2}-\epsilon j^{2}$ ,

which show that $th_{l}e$ affine connexion, is flat, as we can easily verify it.
The set of equations (13) reduces $i_{1}\iota$ this case to

$\frac{\partial\underline’\phi}{\partial_{-b^{2}}}=-\frac{\partial\phi}{\partial y}$ , $\frac{\partial^{2_{\}}}i}{\partial x\partial y}=\epsilon\frac{\partial\phi}{\partial x}$ . $\frac{\partial^{2}\phi}{\partial y^{2}}=\epsilon\frac{\partial\phi}{\partial y}$ . (14)

We can easily see that the general solution of the last. set of equations is

$\phi=a(x)^{p^{5y}}+\beta$ ,

where $\beta$ is a const. and $\alpha(x)$ is a soiution of the equation

$a^{\prime\prime}+e\alpha=0$ .

10. Case $e=+1$ . In this case a pair of solutions of (14) is given by

$x^{\prime}=e^{y}\sin x$ , $y^{\prime}=e^{y}\cos x$ .

Every other solution is given as a linear $\cdot combination$ of them:
$|$
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$\lambda x^{\prime}+\mu y^{\prime}+\nu$,
$\iota$

the coeffici\’ents being all constants.
Now, in the new coordinate system $(x^{\prime}, y^{\prime})$ , the paths are straight

lines. However, in this case there happens somewhat different circumstance.
from before. $t$

Consider the strip between two straight lines both parallel to y-axis
and passing through the points $(-\pi, 0)$ and $(\pi, 0)$ respectively. Then
the strip is mapp$ed$ one-to-one and continuously onto the whole $(x^{\prime}, y^{\prime})$

plane with the exception of the negative y’-axis. $r_{ndeed}$ , the points on
both boundary parallel lines of the strip are mapped onto the points of
negative $\parallel^{\prime}$ -axis: Moreover, the origin of $(x^{\prime}, y^{\prime})$ plane is the image of
points at infinity $ y=-\infty$ . $(x:a\prime rbitrary)$ of $(x, y)$ plane.

Accoridingly, the $prob$ ] $em$ whether the origin and any point in (and

not on the boundary of) the strip can be bound by a path. or not is equi-
valent to the problem whether ,the point $(0, 1)$ (image of the origin in
$(x, y)$ plane) and a point (not on the negative $y^{\prime}$ -axis) can be bound by
a strai.$3rht$ line or not, which does not pass through the origin. This is

evidently possible. Btit, the origin and any point on the boundary $oi$ the
strip in $(x, y)$ plane can not be bound by a path. For, it $i\cdot s$ equivalent to
inquire whether the point $(0,1)$ and a point on the negative y’-axis can’
be bound by. a straight line or not, which does not pass through the origin.
We can not allow the straight line segment between these two points $1$)$ass$

through the origin of the $(x^{\prime}, y^{\prime})$ -plane, for the origin is the image of the
points at infinity of $(x, \parallel)$ -plane. This is evidently impossible. Hence we
can not bind the origin and any point on the boundary of the strip in
$(x, y)$ -plane by a path. Moreover, $1e$ can not bind the origin with any
point outside of..the strip, too. It is clear that this fact does not alter
when we take any other pair of solutions of (14),

Case $\epsilon=-1$ . Jn this case a pair of solutions of (14) is given by
$x^{\prime}=c^{x-y}$ , $y^{\prime}=^{-x-y}$ .

The whole $1^{Jlane}$ ‘is mapped onto the first quadrant $x^{\prime}>0,$ $\parallel>0$ one-to-one
and $continuo_{U}gly$ . In the new coordinate system $(x^{\prime}, y^{\prime}),$ $paths_{\mathfrak{l}}$ are straigh}
lines. $l$ Ience by the same reasoning as in cases III–IV we can conclude
tltat any two points in the $(x, y)$ -plane can always be bound by a path.

Summing up the results obtained in $n^{o}8$ and $n^{o}10$ we can recognize
th $e$ truth of our theorem.
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\S 5. A remark on the geometry of paths in the large.

11‘. In the theory $oi$ geodesics in the large, we know that any two
points on a closed surface of any genus can always be bound at least by
one geodesic which is homotopic to any preassigned curve passing through
the given two points. However, this fact does not hold in general $ior$

, systems of paths even $ior$ the case $oi$ constant coefficients $A_{1},$ $B_{1},$ $\ldots\ldots.C_{2}$.
To see this, let us take the system of paths of the type $II_{0}$ with $\epsilon_{1}=+1$ .
Devide the $(x, y)$ plane into a set of rectangles by two sets $oi$ equidistant
parallel lines including $\chi$-axis and $y$-axis respectively. We can regard
the $(x, y)$ plane as the universal covering surface $6f$ a torus endowed vvith
a system of paths $oi$ the type $II_{0}$ with $\epsilon=+1$ . Then, on account of the
fact proved in $n^{o}10$ , we can easily see the trnth of our assertion.

Mathematical Institute
T\^ohoku University.
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