Journal of the Mathematical Society of Japan Vol. 1, No. 1, Sept., 1948.

On the weak Topology of an infinite Product Space.

Atuo Komatu.

(Received Oct. 25, 1947.)

1. Introduction. We shall define a monotonic topology of a space R as a closure operator which assigns to each subset M of R a closure $\overline{M} \subset R$ with following properties

$$\bar{0}=0, \qquad M \supset N \to \bar{M} \supset \bar{N}.$$

If we assume furthermore

$$\overline{M\cup N}\subset \overline{M}\cup \overline{N},$$

then we say that the topology is additive.

In this note we define a weak monotonic topology and from it a weak additive topology of an infinite product space by means of the closure operator, and show that these topologies are the weakest respectively in all allowable topologies.

2. Let $R = P\{R^x | X\}$ be the $X = \{x\}$ product space of R^x whose points are $p = \{p^x | p^x \in R^x, x \in X\}$. Usually the topology of R is necessarily to satisfy the condition that the projection $\pi^x : R \to R^x$ is continuous. This condition is expressed by the closure operator as follows:

$$\pi^{x}(\overline{M}) \subset \overline{\pi^{x}(M)} = \overline{M^{x}} \quad \text{for any} \quad M \subset R, \tag{1}$$

where the left side closure means that in R, and the right side closure in R^{*} .

If we define

 ${}^{m}\overline{M} = P\{\overline{M}^{x} \mid x \in X\}$ for any $M \subset R$,

this closure determines a monotonic topology of R, for it follows that

$$M \supset N \to M^x \supset N^x \to \overline{M^x} \supset \overline{N^x} \to P\{\overline{M^x} \mid X\} \supset P\{\overline{N^x} \mid X\}.$$

Clearly this topology ${}^{m}\overline{M}$ is the weakest in all topologies of R satisfying (1).

3. We shall define now the weakest additive topology of R. Let μ be a finite subdivision of $M(\subset R)$,

 $\mu: M = M_1 \cup \ldots \cup M_{n(\mu)},$

and let $\mathfrak{M} = \{\mu\}$ be the set of all finite coverings of M.

If we take as a new closure \tilde{M} of M the set

$$\tilde{M} = \bigcap_{\mathfrak{M}} (\overset{m-}{M_1} \cup \ldots \cup \bigcup \overset{m-}{M_{n(\mu)}}),$$

then the topology given by the closure \overline{M} is weaker than any additive \overline{M} of R. For an additive topology is monotonic, therefore clearly

$$\overset{a-}{M} \subset \overset{m-}{M},$$

also for any $\mu \in \mathfrak{M}$

$$\overset{a-}{M} = \overset{a-}{M_1} \cup \dots \cup \overset{a-}{M_{n(\mu)}} \subset \overset{m-}{M_1} \cup \dots \cup \overset{m-}{M_{n(\mu)}}, \quad \text{i.e.} \quad \overset{a-}{M} \subset \widetilde{M}.$$

We prove next the additivity of \tilde{M} .

Let a binary covering of M be $M=A\cup B$, and the sets of all finite coverings of A, B repectively $\mathfrak{A}=\{\alpha\}$, $\mathfrak{B}=\{\beta\}$, then the closure \tilde{A} and \tilde{B} are from definition

$$\widetilde{A} = \bigcap_{\mathfrak{A}} (\widetilde{A}_{1} \cup \dots \cup \widetilde{A}_{n(\alpha)}),$$
$$\widetilde{B} = \bigcap_{\mathfrak{B}} (\widetilde{B}_{1} \cup \dots \cup \widetilde{B}_{n(\beta)}),$$

and

$$\tilde{A} \cup \tilde{B} = \bigcap_{\mathfrak{A}, \mathfrak{B}} (\bigcup_{i=1}^{n(\alpha)} A_i \cup \bigcup_{i=1}^{n(\beta)} B_i).$$

Any two elements α and β determine a finite covering $\mu: M = A_1 \cup ...$... $\bigcup A_{n(\alpha)} \bigcup B_1 \cup ... \cup B_{n(\beta)}$ of M, but all pairs (α, β) form a subset of \mathfrak{M} . Hence it follows

$$\tilde{A} \cup \tilde{B} \supset \tilde{M}. \tag{2}$$

Conversely we reduce from a covering μ of M to a pair of coverings a and β respectively of A and B such that

$$M = \bigcup M_i, A = \bigcup (M_i \cap A) = \bigcup A_i, B = \bigcup (M_i \cap B) = \bigcup B_i.$$

From monotonic property

$$\bigcup_{n(\mu)}^{m-} M_i \supset \bigcup A_i \cup \bigcup B_i \supset \tilde{A} \cup \tilde{B}_i$$

it follows that

А. Комати.

$$\bigcap_{\mathfrak{M}} \left(\bigcup_{n(\mu)} \overset{m-}{M_i} \right) = \tilde{M} \supset \tilde{A} \cup \tilde{B}.$$
(3)

From (2) and (3) $\tilde{M} = \tilde{A} \cup \tilde{B}$ for every binary covering $M = A \cup B$.

The continuity of the projection π^{x} of R with the topology \tilde{M} on R^{x} is clear from the fact

$$\pi^{x}(\tilde{M}) \subset \pi^{x}(\tilde{M}) = \bar{M}^{x}.$$

4. We shall now consider the bases of neighborhood systems of these weakest topologies.

Let U^x be a neighborhood of a point p^x in R^x , and $U^{x'}$ denote the complement of U^x in R^x , then the subset

$$U = U^{x} \times P'\{R^{y} \mid y \in X - x\}$$
(4)

is a neighborhood of a point p whose x-coordinate is $\pi^{x}(p) = p^{x}$, for $\overline{U'} = \overline{U^{x'} \times P'} \{ R^{y} | y \in X - x \} = \overline{U^{x'}} \times P' \{ R^{y} \}$ and $\overline{U^{x'}} \ddagger p^{x}$ reduce to $\overline{U'} \ddagger p$. When x and U^{x} rnn respectively through all elements of X and all neighborhoods U_{i}^{x} of p^{x} , then the system $\{U\}$ defined by (4) is a neighborhood system of p of R in the monotonic topology.

For let N be a neighborhood of the point p. This means $N' \not = p$, i.e. $P\{\overline{N'^x} | x \in X\} \not = p$. Therefore for some x

 $\overline{N'^x} \not p^x$,

also $N'^{x'}$ is a neighborhood U^x of p^x in R^x , i.e. $N'^x = U^{x'}$. Clearly from $N' \subset P\{N'^x \mid X\} \subset U^{x'} \times P'\{R^y \mid X - x\} = U'$ the formula $N \supset U$ holds.

Hence N must be included in the neighborhood system $\{U\}$.

Next we consider the system of neighborhoods of the weakest additive topology \tilde{M} which is stronger than the monotonic topology \tilde{M} . A neighborhood $U=U^x \times P'\{R^y | y \in X-x\}$ of $p=\{p^x\}$ in the topology \tilde{M} therefore must be a neighborhood of p in the additive topology \tilde{M} . If U_1 , U_2 are two neighborhoods of p thus defined, then from the additive property of the topology, $U_1 \cap U_2$ must be again a neighborhood of p. Hence the set of all the neighborhoods of p

$$U_1 \cap \dots \cap U_n (n: \text{ finite}): \begin{cases} U_i = U_i^{x(i)} \times P' \{ R^y | y \in X - x(i) \}, \\ \overline{U_i^{x(i)'}} \neq p^{x(i)} \end{cases}$$
(5)

60 [\]

gives an additive topology, also the weakest additive. We conclude therefore that the neighborhoods $U = U^x \times P'\{R^y\}$ in \tilde{M} are a subbase of the neighborhood system in \tilde{M} . If the topologies of R^x are all additive, then the usual weak topology defined by means of neighborhoods is equivalent to the weakest additive topology \tilde{M} .

But when the topology of R^* is only monotonic, and not additive, then the set of subsets

$$U_1 \cap \dots \cap U_n: \begin{cases} U_i = U_i^{x(i)} \times P' \{ R^v \mid X - x(i) \} \\ \overline{U_i^{x(i)'}} & p^{x(i)} \\ x(i) \neq x(j), & \text{if } i \neq j \end{cases}$$

does not form a neighborhood system of p in \tilde{M} . For in the formula (5) when x(1)=x(2)=x,

$$(U_1^x \times P'\{R^y\}) \cap (U_2^x \times P'\{R^y\}) = (U_1^x \cap U_2^x) \times P'\{R^y\},$$

$$\overline{U_i^{x'}} \not p^x$$

is surely a neighborhood of p, i.e.

$$(U_1^x \cap U_2^x)' \times P'\{R^y\} \not p.$$

But $U_1^x \cap U_2^x$ is not necessarily a neighborhood of p^x in R^x . For example, consider two spaces R^1 , R^2 defined as follows:

$$R^{1} = \{a, b, c\}.$$

topology: $\overline{a} = b, \ \overline{b} = a, \ \overline{c} = c, \ \overline{a \cup b} = a \cup b, \ \overline{b \cup c} = a \cup c,$
 $\overline{a \cup c} = a \cup b \cup c, \ \overline{a \cup b \cup c} = a \cup b \cup c.$

R²=segment I (0 ≤ t ≤ 1) with the usual topology of real numbers. In R¹ the neighborhoods of a are b∪c, a∪b, a∪b∪c, and in R=R¹×R²
two subsets (a∪b)×I, (b∪c)×I are neighborhoods of a point p=(a×t) in the weakest additive topology. Hence the meet ((a∪b)×I) ∪ (b∪c) × I) = (b×I) is a neighborhood of p. But b is never a neighborhood of a in R¹.

A final remark. Let X be a partially ordered set, and suppose that if and only if x > y, a continuous mapping f_{xy} of R^x in R^y exists, where $\{f_{xy}\}$ satisfies the transitive law. Then an infinite product Pr $\{R^x\}$ with relations is a space of points \cdot

61

A. Komatu

 $p = \{p^x \mid x \in X\}, x > y \rightarrow f_{xy}(p^x) = p^y.$

Then the weak additive topology of $P_r\{R^x\}$ is defined by means of relative topology, for $P_r\{R^x \mid X\}$ is a subset of $P\{R^x \mid X\}$. This topology, for instance, agrees with the one of the projections nets of a compact metric space in the sence of Mr. H. Freudenthal.

Mathematical Institute, Osaka University.

\$