
Journal of the Mathematical Society of Japan Vol. 1, No. 1, Sept., 1948.
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1. Introduction. We shall define a monotonic topology of a space
$R$ as a closure operator which assigns to $each4$ subset $M$ of $R$ a closure
$\overline{M}_{-}^{-}R$ with following properties

$\overline{0}_{1}=0$ , $M_{\hat{d}}N\rightarrow\overline{M}\supset 1\overline{V}$. $\iota$

If we assume furthermore
$\overline{M\cup N}\subset\overline{M}\cup 1\overline{V}$,

then we say $t1_{1}at$ the topology is additive.
In tliis note we define a weak monotonic topology and from it a weak

additive topology of an infinite product space by means of $\dot{t}hecl6sure$

operator, and show that these topologies are the weakest respectively in

all allowable topologies.
2. Let $R=P\{R^{\iota}|X_{I}^{1}$ be the $X=\{x\}$ product space of $R^{t}$ whose

points are $p=\{p^{\chi}|p^{x}\epsilon R^{\chi}, xcX\}$ . Ubually the topology of $R$ is necessarily

to satisfy the condition that the projection $\pi^{x}$ : $R\rightarrow R^{t}$ is continuous. This

condition is expressed by the closure.operator as folloWs:

$\pi^{x}(\overline{M})\subset\overline{\pi^{x}(M})=\overline{M^{x}}$ for any $M\subset R$ , (1)

where the left side closure means that in $A^{\supset}$ , and the right side closure in
$R^{X}$ .

/

If we define
$m_{1}\overline{\psi}=P\{\overline{M^{x}}|x\mathfrak{c}X\}$ for any $M_{-}^{-}R$ ,

this closure $detel\cdot lnines$ a $monot_{o1}uic$ topology of $A^{\supset}$ , for it follows that

$M\supset\Lambda^{\gamma}\rightarrow \mathscr{N}I^{x}\supset N^{x}\rightarrow\overline{\parallel 1^{x}}\supset j\overline{^{x}}\rightarrow P\{\overline{M^{x}}|X\}\supset P_{t^{1}}\overline{\Lambda^{7x}}|X\}$ .

Clearly this topology $ll\overline{M}$ is the weakest in all topologies of $R$ satisfy-

ing (1).
3. We shall define now the weakest additive topology ot $R$ . Let $\mu$

be a finite subdivision of $M(\subset R)$ ,

$\mu;M=M_{1}\cup\cdots\ldots\cup ffI_{n(\mu)}$ ,
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and let $\mathfrak{M}=\{\mu\}$ be the set of all finite coverings of $M$.
If we take as a new closure nt7 of $M$ the set

$\tilde{M}=\cap(M_{1}^{-}\cup\ldots\ldots\cup\overline{M_{n(\mu)}})\mathfrak{M}mm$

then the topology given by the. closure i7 is weaker than any additive
$a_{\lrcorner}\overline{\psi}$ of $R$ . For an additive topology is monotonic, therefore $cIearly$

$M^{-}\subset a\overline{M}m$

also for any $\mu\epsilon \mathfrak{M}$

$\overline{M}=M_{1}^{-}aa\cup\ldots\ldots\cup^{a}M_{n(\mu)}^{-}\subset M_{1}^{-}m\cup\cdots\cdot\cdot- UM_{n(\mu)}^{-}m$ i.e. $M^{-}a\subset\tilde{M}$.
We prove next the additivity of $\tilde{M}$.

$Le^{\prime}t$ a binary covering of $M\acute{b}eM=A\cup B$ , and the sets of all finite
coverings of $A,$ $B$ repectively $\mathfrak{A}=\{a\},$ $\mathfrak{B}=\{\beta\}$ , then the closure $\tilde{A}$ and $\tilde{B}$

are from definition

$\tilde{A}=\bigcap_{\mathfrak{A}}(A_{1}^{-}U\cdots\cdots iJA_{n(\alpha)}^{-})mm$

$\acute{\tilde{B}}=\bigcap_{\mathfrak{B}}(\acute{\acute{B}}_{1}^{-}\cup\ldots\ldots\cup’\grave{n}\iota B_{n(\beta)}^{-})$ ,

and

$\tilde{A}\cup\tilde{B}=\bigcap_{\mathfrak{A},\mathfrak{B}}(\bigcup_{:=1}^{n(\alpha)}A_{\iota}^{\iota-}7’\cup\bigcup_{i=1}^{}B_{i}^{-})n(8)m$

Any two elements $tJ$ and $\beta$ determine a finite covering $\mu:M=A_{1}U\cdots$

$...\cup\nearrow n(\alpha)\hat{L}JB_{1}$ U...... $\cup B_{n(l)}$ of $M$, but all pairs $(a, \beta)$ form a subset of
gDe. Hence it follows

$\tilde{A}\cup\tilde{B}\supset\lrcorner\tilde{\gamma 1}$. (2)

Conversely we reduce from a covering. $\mu$ of $M$ to a pair of coverings $a$

and $\beta$ respectively of $A$ and $B$ such that

$M=\cup \mathscr{N}I_{i}$ , $A=\cup(M_{i}\cap A)=\cup A_{i}$ , $B=\cup(M_{l}\cap B)=\cup B_{:}$ .

From monotonic property

$n\langle\mu)\cup\overline{M_{i}}m\supset\cup A_{i}\cup m-\cup B_{i}\supset\tilde{A}m-U\tilde{B}$,

it follows that
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$\bigcap_{\mathfrak{M}}(\bigcup_{n(\mu)}\lrcorner lt_{i})=\tilde{M}\supset\tilde{A}m-\cup\tilde{B}$. (3)

From (2) and (3) $\tilde{M}=\tilde{A}\cup\not\leq B\sim$ for every binary covering $M=A\cup B$ .

The continuity of the projection $\pi^{x}$ of $R$ with the topology $\tilde{M}$ on $R^{x}$

is clear from the fact

$\pi^{x}(\tilde{\mathscr{N}I})\subset\pi^{x}(M)=\overline{M}^{x}n-$.
4. We shall now consider the bases of neighborhood systems of these

weakest topologies.
$d$

Let $U^{x}$ be a neighborhood of a point $p^{x}$ in $R^{x}$ , and $U^{x^{\prime}}$ denote the
complement of $U^{x}$ in $R^{t}$ , then the subset

$U=U^{x}\times P^{\prime}\{R^{y}|y\epsilon X-x\}\backslash $ (4)

is a neighborhood of a point $p$ whose $\gamma$.-coordinate is $\pi^{x}(p)=p^{x}$ , for
$?n-mU^{\prime}=U^{\overline{x^{\prime}}}\times P\{R^{y}|y\epsilon X-x\}=\overline{U}^{x^{\prime}}\times P_{\iota}^{\prime 1}R^{y}\}$ and $\overline{U^{x^{\prime}}}$ I $p^{x}$ reduce to $U^{\prime}fpm-$

When $\chi$ and $U^{x}$ rnn respectively through all elements of $X$ and all neigh-
borhoods $U_{i}^{x}$ of $p^{x}$ , then the system $\{U\}$ defined by (4) is a neighborhood
system of $p$ of $R$ in the monotonic topology.

For let $N$ be a neighborhood of the point $p$ . This means $\Lambda^{m-}\gamma;$ \S p, i.e.
$P\{\overline{iV}^{\prime x}|x\epsilon X\};p$. Therefore for some $\chi$

$\lrcorner\overline{V_{\backslash }^{\prime x}}$ ; $p^{x}$ ,

also $N^{\prime x^{\prime}}$ is a $nei\grave{g}$hborhood $U^{x}$ of $p^{\chi}$ in $R^{x}$ , i.e. $\Lambda^{r\prime\chi}=U^{x^{\prime}}$ . Clearly from
$N^{\prime}\subset P\{\Lambda^{7^{\prime x}}|X\}\subset U^{x^{\prime}}\times P^{\prime}\{R^{y}|X-x\}=U^{\prime}$ the formula $\Lambda^{7}\supset U$ holds.

Hence $\Lambda^{r}$ must be included in the neighborhood svstem $\backslash ^{1}U$ }.
Next we consider the system of neighborhoods of the weakest additive

topology $\tilde{M}$ which is stronger than the monotonic topology $\acute{M}^{\iota-}’$. A neigh-

borhood $U=U^{x}\times P^{\prime}\{\dot{R}^{y}|y\epsilon X-x\}$ of $p=\{p^{t}\}$ in the $topo1^{}ogy$ $M^{m}$ therefore
must be a $neighbor1_{1}ood$ of $p$ in the additive topology $\tilde{M}$. If $U_{1},$ $\Gamma J_{2}$ are
two neighborhoods of $p$ thus defined, then from the additive, property of
the topology, $U_{J}1\urcorner U_{-}$, must be again a neighborhood Of $p$ . Hence the set
of all the neighborhoods of $p$

$U_{1}\Gamma 1\cdots\cdots\cap U_{n}$ ( $n$ : finite) : $\left\{\begin{array}{l}U_{i}=U_{i}^{x(i)}\times P^{\prime}\{R^{y}|\parallel \mathfrak{c}X-x(\iota)\},\\\overline{U_{i}^{x(i)^{;}}}il^{\chi(\grave{i})}\end{array}\right.$ (5)
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gives an additive topology, also the weakest additive. We conclude there-

fore that the neighborhoods $U=ff^{x}\times\Gamma^{\prime}\{R^{y}\}$ in $1\psi^{-}\prime n\backslash 11_{\backslash }e^{\sim}$ a subbase of the

neighborhood ’system in $\tilde{M}$. If the topologies of $R^{x}$ are all additive, then
the usual weak topology defined by means of neighborhoods is equivalent

to the weakest additive topology $\tilde{M}$.
But when the topology of $R^{r}$ is only monotonic, and not additive, then

the set of subsets

$U_{1}\cap\cdots\cdots\cap U_{n}$ : $\left\{\begin{array}{l}\frac{U=}{U_{t}^{x(i)\prime}}iU_{i}^{x(i)}\times P^{\prime}\{R^{\prime\prime}|X-x(i)\}5^{p^{x(i)}}\\x(i)\neq x(f), if i\neq J^{|}\end{array}\right.$

does not form a neighborhood system of $p$ in th For in the formula (5)

when $x(1)=x(2)=x$,

$(U_{1}^{x}\times P^{\prime}\{R^{y}\})\cap(U_{2}^{x}\times P^{\prime}\{R^{y}\})=(U^{x_{1}}|\urcorner U_{\sim}^{x_{)}})\times P^{\prime}\{R^{y}\}$ ,
$\overline{U_{i}^{x^{\prime}}}g_{l^{x}}$

is surely a neighborhood of $p$ , i.e.
$\sim_{2}(U_{1}^{x}\cap U^{x})^{\prime}\times P^{\prime}\{R^{y}\}f^{p}$ .

But $U_{1}^{x}\cap U_{2}^{x}$ is not necessarily a neighborhobd of $p^{x}$ in $R^{x}$ . For
example, consider two spaces $R^{1},$ $R^{2}$ defi,ned as follows:

$R^{1}=\{a, \delta, c\}$ .
topology : $\overline{a}=\delta,\overline{\delta}=a,\overline{c}=c,\overline{a\cup\delta}=aU\delta,\overline{\delta\cup c}=a\cup c$ ,

$-\overline{a\cup c}=aU\delta\cup c,\overline{a\cup b\cup c}=a\cup\delta\cup c$ .
$R^{2}=segmentI(0\leqq t\leqq 1)$ with the usual topology of real numbers.
In $R^{I}$ the neighborhoods of $a$ are $\delta\cup c,$ a $Ub,$ a\cup \’o $L1c$ , and in $R=R^{1}\times R^{2}$

two subsets (a $LI\delta$) $\times I,$ $(\delta Uc)\times I$ are neighborhoods of a point $p=(a\times t)$

in the weakest additive topology. Hence the meet (be $\cup\delta$) $\times I$) $\cup^{\prime}(b\cup c)$

xl) $=$ ( $\delta$ xl) is a neighborhood of $p$ . But $\delta$ is never a neighborhood of
$a$ in $R^{1}$ .

A final remark. Let $Xb^{\prime}e$ a partially ordered set, and suppose that
if and only if $\chi>y$ , a continuous mapping $f_{xy}$ of $R^{x}$ in $R^{v}$ exists, where
$\{f_{xy}\}$ satisfies the transitive law. Then an infinite product $ Pr\{R^{x}\}wit!\iota$

$- re\acute{l}ations$ is a space of points
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$\dot{p}=\{ff|x\epsilon X!,$ $x>y\rightarrow f_{xy}(p^{\chi})=p^{y}$ .
Then the weak additive topology of $P_{r}\{R^{x}\}$ is defined by means of relative
topology, for $P_{f}\{R^{x}|X\}$ is a subset of $P\{R^{\chi}|X\}$ . This topology, for
instance, agrees with the one of the projections nets of a compact metric
space in the sence of Mr. H. Freudenthal.

$Mathemat_{1}^{l}ca1$ Institute,
Osaka University.
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