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$i$

Introduction.

Recently C. Chevalley and H. F. Tuan obtained an interesting charac-
terization of the Lie algebras of algebraic Lie groups of matrices1). Using
the notion of replicas 2) of matrices, they introduced namely the concept
of algebraic Lie algebras of matrices; A Lie algebra $\mathfrak{L}$ of matrices over a
field $P$ is called linear algebraic (J-algebraic)3) if every replica of each $Ae_{\mathfrak{L}}$

belongs also $to_{\backslash }\mathfrak{L}$ . It was shown by them that, if $P$ is the field of complex
numbers, the l’-algebraicity is the characteristic property of the Lie algebras
of algebraic Lie groups of matrices. The notion has been extended recently
by M. Got\^o to general, not necessarily matric, Lie algebras4). Namely a
Lie algcbra is called algebraic if its adjoint representation is l-algebraic.
Then he proved that any algebraic Lie algebfa over a fiele of characterirtic
zero is isomorphic with an $i$-algebraic Lie algebra of matrices. In this note
we shall first prove some results on J-algebraic Lie algebras. Most of these
results $have_{l}$ been obtained by C. Chevalley and H. F. Tuan, but our methods
will be somewh\’at different from theirs. Then we shall characterize the Lie
groups of elgebraic Lie algebras. over the field of complex $n\iota_{1}\cdot mbers$ . We
show that the $integra\grave{t}ed$ groups of such Lie algebras are algebraic groups
in the sense that the functions which define the.multiplication of group
elements are algebraic functions of suitably chosen parameters of the group.
This result hllows also from the above mentioned result of M. Got\^o, but
our proof is a more direct one. The converse of this proposition has been
already proved by L. $Maurer^{\circ)}|$

,
and thus we obtain a characterization of the

$\bullet$

Lie groups of algebraic Lie algebras. The writer. is grateful to Mr. M.
Got6 for his friendly cooperation.

1. Let $P$ be a field of characteristic zero. For simplicity we call $a$ .
’nilpotent matrix an n-matrix, a matrix with simple elementary divisors an

$\backslash \sigma$-matrix, and an s-matrix whose characteristic roots are all rational numbers
an r-matrix. Let $A$ be a matrix with coefficients in $P$ and $P$ be algebrai-
cally closed. In a previous $note^{6)_{1}}$ we showed that we may represent $A$ in
the form
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$A=A^{0}+\lambda_{1}A^{1}+\ldots\ldots+J_{k}A^{k}$ , (1)

where $\lambda_{1}$ , .....,, $\lambda_{k}$ are the characteristic roots of A. which are linearly in-
dependent with respect to the field $R$ of rational numbers, $A^{0}$ is an n-matrix
and $A^{1}$ , ......, $A^{k}$ are $r$-matrices such that $A$ ‘ ($i=0,1$ , ......, k) are com-
mutative with each other and form a linear basis for replicas of $A$ . Now
let

$A=B^{0}+\xi_{l}B^{1}+\ldots\ldots+\xi_{j}B^{j}$ (2)

be any decomposition of $A$ into an n-matrix $B^{0}$ and $r$-tnatrices $B^{j}$ such that
$B^{l}$ $(l=0,1$ , ......, 7’ $)$ are commutative with each other and $\xi_{i}(i=1$ , ... ...,
f) are linearly independent over $R$ . Then $B^{i}$ ($i=0,1$ , ......, j) are replicas
of $A$ and any replica of $A$ is a linear combination of $B^{i7)}$ . For, we see
first from (1) and (2) that

$A^{0}=B^{0}$ , $\lambda_{l}A^{1}+\ldots\ldots+\lambda_{k}A^{k}=\xi_{1}B^{\acute{1}}+\ldots\ldots+\xi_{j}B^{j}$ . ,.

We may assume that $A^{i}$ and $B^{i}$ . $(i\neq 0)$ are all diagonal matrices8). Let

$A^{i}=\left\{\begin{array}{llll}r_{l}^{i} & & & \\ & \backslash \backslash \backslash _{\backslash } & & \\ & & \backslash \backslash \backslash & r_{n}^{i}\end{array}\right\}$

,
$B^{i}=\left\{\begin{array}{llll}s_{1}^{i} & & & \\ & \rangle\backslash \backslash & & \\ & & \backslash _{\backslash } & s_{n}^{i}\end{array}\right\}$

where $r_{j}^{i}$ and $s_{j}^{i}$ are rational numbers. Denote by $\mathfrak{M}$ a linear space spanned
by $\lambda_{l}$ , ....,., $\lambda_{k},$ $\xi_{l}$ , ......, $\xi_{j}$ over $R$ , Let $\mu l$ ......, $\mu_{m}$ be a basis of $\mathfrak{M}$

over $R$ such that $\mu_{i}=/^{\backslash }i$ for $i=1$ , ...... $*k$ . Let,

$\xi_{i}=\Sigma_{u=1}^{m}p_{i}^{u}\mu_{u}$ , $p_{i}^{n}\epsilon R(i=1$ , .,..,., $j)$

Then
$s$

$\sum_{j}^{J_{=^{\iota}0}}\xi_{i}s_{t}^{t}=\sum_{il}^{J_{=}}\sum_{u}^{m_{=J}}\dot{p}_{i}^{\tau\iota},u_{u}s_{t}^{i}=\sum_{u}^{m_{=l}}\mu_{u}\sum_{i}^{i_{=1}}p_{i}^{u_{S_{t}^{\ell}}}=\sum_{u=l}^{k}\mu_{u}r_{t}^{u}$ .
Hence

$r_{t}^{u}=\sum_{i}^{J_{=1}}p_{i}^{v}s_{t}^{i}$ ($u=1$ , ......, $k;t=1$ , ......, n)

Therefore
$A^{u}=\Sigma_{i=J}^{j}p_{i}^{u}B$ $(u=1, \ldots\ldots, k)$

We may prove by the same argument that $B^{i}$ are linear combinations of
$A^{i}$ and this proves our assertion. We call in the following $a^{1}$ decomposi-
tion (2) of a matrix $A$ a canonical decomposition.

$\bullet$
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We denotc by $\mathfrak{g}\mathfrak{l}(n, P)$ the Lie algebra of all matrices of degrcc $n$

with coefficients in the field $P$.
$J_{\rightarrow\vee}^{p}mm\angle lI$ . Let $A,$ $ X\epsilon$ ql $(’\vee’, P)$ . If $AX=XA$ , then every $re$}) $lica$ of $A$

commutes with X.,

Proof. We may assume that $P$ is $a1_{t>}\sigma ebraical1\}^{r}$ closed. Let (1) be
the cartonical decomposition of $A$ . Since $A$ commutes with $X$, every eigen-
space of $A$ is invariant under $X$. As each $A_{i}(i=1, \ldots\ldots, k)$ has only one
characteristic root and in fact represented by a scalar matrix in each of
these eigen-spaces of $A^{9)},$ $A^{i}$ commutes with $X$. Hence $A^{0}$ commutes also
with $X$, and so does every replica of $A$ , since it is a linear combination of
$A^{i}$ .

Lemma 2. Let $\mathfrak{L}$ be a Lie subalgebra of $\mathfrak{g}I(n, P^{\backslash })$ , where $P$ is of
$chara_{-}\prime teristic$ zero. Then the radical $\Re_{1}$ of the derived algebra $\sim^{\prime}\Omega$ of $\mathfrak{L}$ is
composed only of nilpotent matrices.

Proof Let $K$ be an algebraically closed field, containing $P$. We will
show.that every element of the radical $\Re l$ of the derived algebra $\mathfrak{L}^{\prime}$ of any
Lie algebra (not necessarily of matrices) $\mathfrak{L}$ over $P$ is represented by zero
matrix in any $(absolute_{1}1_{Y})$ irreducible representation of $\mathfrak{L}$ in $K$. Any irre-
ducible representation of $\mathfrak{L}$ in $K$ may be extended to the irreducible repre-
sentation $\mathfrak{D}$ of $\mathfrak{L}_{K^{10)}}$ .

Let $\mathfrak{A}$ be the kernel of this reprcsentation $\mathfrak{D}$ of $\mathfrak{L}_{K}$. As $\mathfrak{D}$ is absolutely
irreducible, $\mathfrak{D}$ is the direct sum of tlse semi-simple ideal $(=\mathfrak{D}’)\backslash $ and the
one-dimensional center’i).

Since
$\mathfrak{L}_{R}/\mathfrak{A}-=\mathfrak{D}$ ,

$\mathfrak{L}_{R}/\mathfrak{A}$ must have the same $structure\sim$ and we have
$\mathfrak{L}_{K}/\mathfrak{A}=(\mathfrak{L}_{J\iota}\sqrt \mathfrak{A})^{\prime}+(\mathfrak{Z}/\mathfrak{A})$ ,

where $(\mathfrak{L}_{Jf}/\mathfrak{A})^{\prime}$ is the derived algebra of $\mathfrak{L}_{Ii}/A$ which is semi-simple and
$\mathfrak{Z}/\mathfrak{A}$ is the one-dimensional center of $\mathfrak{L}_{X}J\mathfrak{A}$ . $\acute{S}ince$

$(\mathfrak{L}_{R}/\mathfrak{A})^{\prime}=(\mathfrak{L}_{X^{\prime}}, \mathfrak{A})/.\mathfrak{A}-=\mathfrak{L}_{\lambda^{-}}^{\prime}/\mathfrak{L}_{R^{\prime}}\cap \mathfrak{A}$ ,

$\mathfrak{L}_{K^{\prime}}/\mathfrak{L}_{R_{\backslash }^{\prime}}\cap \mathfrak{A}$ is semi-simple and $\mathfrak{L}_{R^{\prime}}\cap \mathfrak{A}$ must $\not\in ontain$ the radical of $\mathfrak{L}_{R^{\prime}}$ . But
since $\Re_{1K}$ is contained in the radical $6f\mathfrak{L}_{B^{\prime}};\Re_{1}$ is contained in $\mathfrak{A}$ . Thus
every element of $\Re l$ is represented by zero matrix in any absolutely irre-
ducible representation of $\mathfrak{L}$ . Now, let $\mathfrak{L}$ be a Lie algebra of matrices.

$\bullet$
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Then we may rcduce $\mathfrak{L}$ in $K$ to the form

$\mathfrak{L}=\left\{\begin{array}{llll}\mathfrak{L}_{l} & \mathfrak{L}_{2} & & \\ & * & \hslash^{\langle}\backslash \backslash \sim & \mathfrak{L}_{k}\end{array}\right\}$

,

where $\mathfrak{L}_{i}(i=1,2, \ldots\ldots, k)$ are absolutely irreducible. Hence we see from
the above consideration that every matrix of $R_{1}$ is nilpotent.

$Rem$ark. By. considering the adjoint representation, we may prove
that the radical of the derived algebra of any Lie algebra (not hecessarily
of matrices) over $P$ is nilpotentl2). $\backslash $

Le$mma_{3}$ . $I_{r}et- \mathfrak{L}$ be a Lie algebra of matrices composed only of
nilpotent matrices and $A$ be a matrix which admits as its invariants all the
tensor invariants of $\mathfrak{L}$ . Then $A$ belongs to $\mathfrak{L}$

This lemma was obtained by I. Ado, and M. Got\^oi3) gave an elementary
proof using the notion of $tlJe$ replicas of matrices.

Lemma $\#^{14)}$ . Let EM be a vector space over an algebraically closed
field $K$ and $A$ a linear transformation on M. Further let $\tilde{\mathfrak{M}}$ be the direct
sum of some tensor spaces and Sh a subspace of $\tilde{\mathfrak{M}}$ which is $i_{\backslash }n$variant
under $A$ . We denote by $\tilde{A}$ the matrix of linear transformation which is
induced $b\overline{y}$ $A$ irt $\tilde{\mathfrak{R}}$ . Then En is invariant under all reprlicas of $A$ and the
matrices of linear transformations which are induced by the replicas of $A$

in $\tilde{\mathfrak{R}}$ are replicas of the matrix $\tilde{A}$ . Further any replica of $\tilde{A}$ is induced
conversely by a replica of $A$ in $\tilde{\mathfrak{R}}$ .

$L\ell mma_{5}$ . Let $P$ be a field, $K$ an extension field of $P$ and $A$ a
matrix in $gI(n, F)$ . Then there exist replicas $A_{i}(i=1,2, \ldots\ldots, l^{2})$ of a in

, gl $(n, P)$ such that every replica of $A$ in gl $(n, K)$ is the form $ a_{1}A_{1}+\ldots\ldots$

$+a_{k}\Lambda_{k}$ with $a_{i_{\wedge}}\epsilon K$.
Proof Let, $\mathfrak{T}_{r,s}$ be the space of r-times contravariant and s-times

covariant tensors over $K$, and $\backslash y$},
$.,\epsilon$ the subspace of all tensor invariants of

$A$ in $\mathfrak{T}_{r,s}$ . Let $\mathfrak{L}_{p}$ be the set of all matrices in $g$ I $(n, K)$ which admit as
their invariants all tensors in $\mathfrak{R}_{r,s}$ with $r,$ $s\leqq p$ . Then $\mathfrak{L}_{p}$ form a mono-
tone decreasing series of linear spaces over $K$ whose intersection is the set
$\mathfrak{L}$ of all replicas of $A$ . Hence there exists an integer $m$ such that

$\mathfrak{L}_{m}=\mathfrak{L}_{m+1}=\ldots\ldots=\mathfrak{L}$ .
On assuming $ A\epsilon$ gl $(r\iota, P)$ , we see from $\backslash the$ theory of linear eqations that
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we $nlay$ take a basis $F_{r,\ell}^{(1)},$

$\ldots\ldots,$

$F_{s}^{\langle.k)}$ of $V\mathfrak{i}_{r,s}$ over $K$ such that all the com-
ponents of the tensors $F_{r.a}^{(i)}$ belong to $P$. We take such bases of $\mathfrak{R}_{r,s}$ for
$r,$ $s\leqq m$ . Then a matrix $ X\epsilon$ gl $(n, K)$ is .a replica of $A$ if and oniy if

$X_{r,\epsilon}F_{r}^{(\grave{\iota})_{S}}=0$ $(r., s\leqq,,\iota ; i=1 , 2, ......)$

$l^{\prime}$

But we may regard these equations as the linear equations with coefficients
in $P$ of indeterminates $X=(x_{ij})$ . Then there exists $A_{i}\epsilon g1(n, P)(i=1,$ $\ldots\ldots$ ,

k) such that every solution $ X\epsilon$ ql $(n, K)$ is a linear combination of $A_{\ell}$ with
coefficients in $K$.

Le $\prime lma6.$ . Let $\mathfrak{L}$ be a Lie subalgebra of $g1(n, J^{2})$ and $K$ an exten-
sion field of $P$. If $\mathfrak{L}_{R^{15)}}$ is l-algebraic over $K$, then $\mathfrak{L}$ is also l-algebraic.
$J^{\supset}roof$ Let $X_{1},$

$\ldots\ldots,$
$X_{r}$ be a basis of $\mathfrak{L}$ over $J$

) and $X(\mathfrak{L}$ Let $X^{\prime}$ be a
replica of $X$ in gl $(n, P)$ . Since $\mathfrak{L}_{R}$ is l-algebraic, $X^{\prime}$ is a linear combina-
tion of $X_{1},$

$\ldots\ldots,$
$X_{r}$ with coefficients in $K$. Then the same is the case with

coefficients in $J$
) in virtue of the same theorem of linear equations as above.

Definition $I$ . Let $\mathfrak{L}$ be a Lie subalgebra of gl $(n, P)$ . A basis {X,....... $X_{r}$ } of $\mathfrak{L}$ over $P$ is called algebraic if every replica of each $X_{i}$ in gl
$(n, I^{\supset})$ belongs to $\mathfrak{L}$ .

Now we may prove the following theorem.
Theorem 1. Let $P$ le a fcfd of $c$’ aracteristic $Z\mathcal{E}7^{\prime}0$ . A Lie subalgebra

$\mathfrak{L}$ of gl $(n, P)$ is l-algebraic if and only if $\mathfrak{L}/las$ an algebraic basis.
Proof. Assume that $\mathfrak{L}$ possesses an algebraic basis $X_{1},$

$\ldots\ldots,$
$X$ . Then

by Lemma 5, $X_{1}^{:},$

$\ldots..,$
$X_{r}$ is also an algebraic basis of $\mathfrak{L}_{K}$ over $K$, where

$K$ is an algebraically closed extension of $K$. Hence we see from Lemma
6 that we may assume that $P$ is algebraically closed. $l^{\wedge}\prec irst$ we prove the
theorem in the case when $\mathfrak{L}$ has the structure $\mathfrak{L}=\mathfrak{S}+\mathfrak{Z}$ , rvhere $\mathfrak{S}$

,
is a

semi-simple ideal and $\mathfrak{Z}$ is the center.

Let
$X_{i}=Y_{i}+Z_{i}$ , $Y_{i^{(}}\mathfrak{S}$ , $z(\mathfrak{Z}$

1

and
$Y_{\ell}=Y_{i}^{0}+\xi_{1}Y_{\ell}^{1}+\ldots\ldots+\xi_{k}Y_{i}^{k}$ , $Z_{i}=Z_{1}^{0}+\xi_{1}Z_{i}^{1}+\ldots\ldots+\xi_{l}Z_{i}^{k}$

be the canonical decompositions of $Y_{i}$ and $Z_{i}$ respectivelyi6). From $[Y_{i}Z_{i}]$

$=Y_{i}Z_{i}-Z_{i}Y_{i}=0$ we get by Lemma 1 $[ Y_{i}^{\epsilon}Z_{i}^{t}]=0$ for $s,$ $t=0,1,$ $\ldots\ldots,$
$k$.

Then we see that the decomposition
$X_{i}=J_{i}+’/-i=(I_{l}^{\prime}\urcorner\}+Z_{i}^{0})+\xi_{l}(I_{i}^{\eta}/+Z_{i}^{1})+.’\ldots..+\xi_{k}(Y_{i}^{k}+Z_{i}^{k})$
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is a canonical decomposition of $X_{i}$ . I.et Zl be a replica of Z. and
$z_{i}^{\prime}=/x_{0^{r}}/0+l\cdot k$

Then $Y_{i}^{\prime}=a_{0}Y_{i}^{0}+a_{1}Y_{i}^{1}+\ldots\ldots+/J_{k}Y_{i}^{k}$ and $ X_{i}^{\prime}=a_{0}(Y_{i}^{0}+Z_{i}^{0})+a_{1}(Y_{i}^{1}+Z_{i}^{1})+\ldots$

$...+a_{k}(Y_{i}^{k}+Z_{i}^{k})$ are replicas of $Y_{i}$ and $X_{i}$ respectively. Since $\mathfrak{S}$ is semi-
simple, $\mathfrak{S}i\grave{s}1- algebraic^{17)}$ , whence $1_{i}^{\nearrow\prime}\mathfrak{S}$ . But by assumption $X_{i}^{\prime}$ belongs
also to $\mathfrak{L}$ and so $Z_{i}^{\prime}=X_{i}^{\prime}-Y_{i}^{\prime}\in \mathfrak{L}$ . Thus every replica of $Z_{i}$ belongs to $\mathfrak{L}$ .
Now let $X=Y+Z\in \mathfrak{L}$ . Then from $[Y, Z]=0$ we see that every replica $X^{\prime}$

of $X$ is of the form $Y^{\prime}+Z^{\prime}$ , where $Y^{\prime}$ and $z^{r}$ ’ are replicas of $Y$ and. $Z$

respectively. Since $X$ is of the form $ X=\sum a_{i}X_{?}\cdot$ , it follows that $Z=\sum a_{i}\prime_{i}$ .
We see again from $t\grave{h}e$ commutativity of $Z_{i}’ s$ that $Z^{\prime}=\sum a_{i}Z_{i}^{\prime}$ , where. $Z_{i}^{\prime}$ is,
for each $i$ , a replica $of/_{i}^{\prime}\vee$ Therefore $Z^{\prime}\epsilon \mathfrak{L}$ . But since $\mathfrak{S}$ is l-algebraic,
$Y^{\prime}\epsilon \mathfrak{S}$ and hence $X^{\prime}=Y^{\prime}+Z^{\prime}\epsilon \mathfrak{L}$ . Thus $\mathfrak{L}$ is l-algebraic. Next let $\mathfrak{L}$ be
an arbitrary Lie algebra possessing an algcbraic basis. Let $\Re_{1}$ be the
radical of the derived algebra $\mathfrak{L}$

’ of $\mathfrak{L}$ . Then $\Re_{1}$ is composed only of
nilpotent matrices. Let $\mathfrak{T}_{r,\epsilon}$ be the space of r-times contravariant and s-
times covariant tensors and $\mathfrak{R}_{r_{\backslash }\epsilon}$ the totality of tensor invariants of $\Re l$ in
$\mathfrak{T}_{r,\iota}$ . Since $\Re_{1}$ is an ideal of $\mathfrak{L},$ $\mathfrak{R}_{r,s}$ is invariant under $\mathfrak{L}$ .

Let
$\mathfrak{B}=\sum \mathfrak{T}_{r,\epsilon}$ , $\mathfrak{Q}=\Sigma \mathfrak{R}_{r.s}$

where direct summations are extended to sufficiently high orders of $’,$

$.c^{\prime}$

$\mathfrak{Q}$ is an invariant space under $\mathfrak{L}$ and we denote by $(\mathfrak{L})$ the representation
of $\mathfrak{L}$ induced in Q. Then, by Lemma 3, $(A)=0$ if and only if At $\Re_{1}$ . If
$X_{1},$ , $X_{r}$

$|$

is an algebraic basis of $f\mathfrak{L}$ , then, by Lemma 4, linearly indepen-
dent.ones among (X), ......, $(X_{r})$ form an algebraic basis of $(\mathfrak{L})$ . So $(\mathfrak{L})$

has also an algebraic basis. On the other hand

$(\mathfrak{L})-=\mathfrak{L}/\Re_{J}$ , $\Re_{1}=\mathfrak{L}^{\prime}\cap\Re$ .
$\Re,/\Re_{1}$ is the center of $\mathfrak{L}/\Re_{1}$ , since $\lfloor X,$

$1^{\nearrow}$] $\not\in\Re_{1}$ for $X\epsilon \mathfrak{L},$ $ Y\epsilon\Re$ . Hence
$(\mathfrak{L})$ is the direct sum of a semi-simple ideal and its center, whence $-(\mathfrak{L})$ is
l-algebraic by the above consideration. Now let $Xe\mathfrak{L}$ and $X^{\prime}$ a replica of
X. Then, by Lemm 4, $\mathfrak{Q}$ is invariant under $X^{\prime}$ and (X’) is a replica of
(X). Since \langle $\mathfrak{L}$ ) is l-algebraic, there exists $Y\epsilon \mathfrak{L}$ such that $(X’)=(Y)$ .
Then $(X’-Y)=0$ , whence $X^{\prime\backslash }-Y\epsilon\Re_{\rceil}$ by Lemma 3. Hence $X^{\prime}t\mathfrak{L}$ and $\mathfrak{L}$

is l-algebraic. The converse proposition is obvious.
From Lemma $y5,6$ and The $0$rem 1 we get the following.
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Corollary. I.et $P$ be a field of characteristic zero, $\mathfrak{L}$ a I.ie subalgebra
of gl $(n, P)^{\backslash }$ and $K$ an extension field of $P$. Then $\mathfrak{L}$ is l-algebraic if and
only if $\mathfrak{L}_{R}$ is an l-algebraic subalgebra of ql $(n, K)$ .

Definition 2. A basis $\{X_{1}, \ldots.., X,.\}$ of a Lie subalgebra $\mathfrak{L}$ of ql $(n, P)$

is called rational $if$ each $X_{i}$ is an n-matrix or an ’-matrix.
Since every $re_{1)}1ica$ of n- or ’-matrix is a scalar. multiple of it, a

rational $basIs$ of $\mathfrak{L}$ is an algebraic basis.
Theorem 2. Let $\mathfrak{L}$ be a $Lic$ subalgebra of gl (iz, $l^{)}$ ) and $f^{\supset}an$ algebrai-

cally closed field of $cJ\iota aract\ell rlstic$ zero. $\mathcal{I}^{\backslash }/1Cl\mathfrak{L}$
‘ is l-alg4braic if $a;id$ only if

$\mathfrak{L}$ lias ational $\dot{0}asis$ .
Proof. If $\mathfrak{L}$ has a rational basis, then $\mathfrak{L}$ is l-algebraic by Theorem 1.

Let converselv $\mathfrak{L}$ be l-algebraic Lie algebra of $r$ dimensions and $X_{1},$ ,
$X_{m}(m>r)$ be linearly independent matrices of $\mathfrak{L}$ which are n- or r-matrices.
Let $A$ be a matrix of $\mathfrak{L}$ which is linearly $independe^{\backslash }nt$ of $X_{1},$ , $X_{m}$ and

$A=A^{0}+\xi 1A^{\prime}+\ldots\ldots+\xi_{k}A^{k}$

a canonical decomposition of $A$ . Since $\mathfrak{L}$ is l-algebraic, $A_{i}(t=0,1,$ $\ldots\ldots$ ,
k) belong to $\mathfrak{L}$ . As $A$ is linearly independent pf $X_{1},$

$\ldots..,$
$X_{m}$ , at $\backslash least$

one of them, say $A^{\ell}$ , must be linearly independent of $X_{1},$
$\ldots\ldots,$

$X_{m}$ . Putting
$A^{i}=X_{m+1}$ , we obtain $m+1$ linearly indedendent matrices, which are n- or
r-matrices. Repeating this process we conclude that $\mathfrak{L}$ has a rational basis.

2. Theorem 3. A $Lic$ subalgebra $\mathfrak{L}$ of ql $(n, P)\iota s$ l-algebraic if and
only $lfi/s$ radical R. is l-alge.braic.

$\dot{P}roof$ Let $\Re$ be l-algebraic. By Levi’s theorem there exists. a semi-
simple subalgebra $\mathfrak{S}$ of $\mathfrak{L}$ such that $\mathfrak{L}=\mathfrak{S}+\Re,$ $\mathfrak{S}$

’ $\Re=0$ . Then from the
l-algebraicity of $\mathfrak{S}$ and $\Re$ we see that $\mathfrak{L}$ has an algebraic basis. Therefore
$\mathfrak{L}$ is \"also, l-algebraic by Theorem 1. Let, conversely, $\mathfrak{L}$ be l-algebraic. We
may assume that $P$ is algebraically closed. Let $\Re_{I},$ $\mathfrak{P},$

$\mathfrak{Q}$ and $(\mathfrak{L})$ have
the same meanings as in the proof of Theorem 1. Then

$(\mathfrak{L})=-\mathfrak{L}^{\prime}/\Re_{1}+\Re/\Re_{1}$

where $\mathfrak{L}^{\prime}/^{\prime}\Re_{1}$ is semi-simple and $\Re/\Re l$ is the center. Hence

$(\mathfrak{L})=(\mathfrak{L}^{\prime})+(\Re)$ ,

where $(\mathfrak{L}^{\prime})$ and (R) are the representations of $\mathfrak{L}^{\prime}$ and $\Re$ respectively and
$(\Re)$ is the center of $(\mathfrak{L})$ . By Lemma 4 $(\mathfrak{L})$ is l-algebraic, whence $(\Re)$



On algebraic Lie groups and algebras. 53

is l-algebraic by Lemma 1. Let $ Rc\Re$ and $S$ be a replica, of $R$ . Then
$(S)$ is a replica of $(R)$ . $Herlce(S)\epsilon(\Re)$ and so $S$ belongs to R. Thus
$\Re$ is l-algebraic,

Lemma 7. Let $\mathfrak{L}$ be a Lie subalgebra of gl $(n, P)$ and $D_{A}$ the inner
$derivatio\iota t$ of $\mathfrak{L}$ defined by an element $A\epsilon \mathfrak{L}$ , i.e. $D_{A}X=_{L}|^{-}AX$] for $X\epsilon \mathfrak{L}$ . $D_{A}$

is represented by u-matrix or s-matrix according as $A$ is n-matrix or s-
matrix.

We omit the proof.
$L^{\ell}mma8$ . Let $A\epsilon \mathfrak{g}((n, P)$ . Then there exists an n-matrix $A^{0}$ and

an s-matrix $A^{8}$ in gt $(n, P)$ such that $[A^{0}A^{s}]=0$ and $A=A^{0}+A^{t}$ . More-
over they are replicas of $A^{18)}$ .

Proof. Let $K$ be the $spli\vee tting$ field of the characteristic equation of $A$ .
Then, as we may $eas^{\rightarrow}11y.verify,$ $A$ is decomposed $ uniqu^{\rho}[\parallel$ in $g((n, K)$ into
the form $A=A^{0}+A^{s}$ . whqre $A_{0}$ and $A^{s}$ are n- and s-matrix $respective_{\{}1y$

such that $[A^{0}A^{\epsilon}]=0$ . Now let $\sigma$ be any substitution of the Galois group
of $K/P$. Then

$A=\sigma A=\sigma A^{0}+\sigma A^{s}$ ,

where $\sigma A^{0}$ and $\sigma A^{s}$ are also n- and s-matrix respectively and $\lceil.\sigma A^{0},$ $\sigma A^{\iota}$] $=0$ .
Hence, by the uniqueness of such decomposition, we get

$\sigma A^{0}=A^{0}$, $\sigma A^{s}=A^{s}$ .
This shows thar $A^{0}$ and $A^{s}$ belong to $\mathfrak{g}1(n, P)$ .

Theorem 419) Let 2 [$?ear\iota$ l-rtlgebraic $Lfe$ subalgebra of $\mathfrak{g}I(n, P)$ and
$\Re$ its radical. $L_{\vee}^{\rho}t\mathfrak{L}=\mathfrak{S}+\Re(\mathfrak{S}|^{\prime}1.\Re=0)$ be a $Le^{\prime}\prime l$ decomposition of $\mathfrak{L}$ ; $\mathfrak{S}$

$\delta\ell in_{\delta}\sigma$ a $s\ell mi$-simple subalgebra of L. Denole $\delta y\mathfrak{R}j/l\mathcal{E}$ ideal $co$inposed of all
nifpoten’ matrices of $\Re$ . $f^{\prime}1\iota en$ tkere exists an l-algelraic alelian subalgebra
$\mathfrak{A}$ of $\Re cor\phi os’\ell f$ only of $s$-matrices sucfi tizal

$[\mathfrak{S}, \mathfrak{A}]=0$ , $\Re=\mathfrak{A}+\backslash Jl$ $\mathfrak{A}n\backslash $)$l=0$ .

Proof. If we regard $\Re$ as an $\backslash \mathfrak{S}$ -module, then $\backslash y$} is an S-submodule.
By the well

1
known completely reducibility of the representations of semi-

simple Lie algebras we have $\Re=\mathfrak{M}+\mathfrak{R}$ , where $\mathfrak{M}$ is an S-submodule. But
by I.emma 2 $[\mathfrak{S}, \Re]=\subset \mathfrak{L}^{\prime}|\Re\subset=$ En, whence $[\mathfrak{S}, \mathfrak{M}]=0$ . Let $A$ be a regular
element of $\Re,$ i.e. an element which has as many different characteristic
roots as a general element of $\Re$ , and let $A=M^{1}+1V,$ $M\mathfrak{M},$ $\Lambda^{\gamma_{(}}\mathfrak{R}$ . Then
$M$ is also regular. Further let $M=\lrcorner W+M^{\delta}$ be the decompositioe of $M$ as
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in Lenima 8. Since $\Re$ is J-algebraic, $ M^{s}\epsilon\Re$ and it is also regular. More-
over [ $\mathfrak{S}$ , .Zlf] $=0$ implies $[\mathfrak{S}, ]\nu l^{s}]=0$ by Lemma 1. Thus there exists a
regular element $A$ of $\Re$ such that $A$ is s-matrix and $[\mathfrak{S}, A]--0$ . Now we
decompose $\Re$ by $D_{A}$ :

$\Re=\Re_{0}+\Re_{1}$ ,

where $\Re_{0}$ is composed of all $ Xe\Re$ such that $D_{A}^{m}X=0$ for a sufficiently
large integer $m$ and $D_{A}\Re_{1}=\Re l$ . As is well known, $\Re_{0}$ is a nilpotent sub-
algebra. Since $A$ is s-matrix, $D_{A}$ has simple elementary $divisor_{5}$ by Lemma
7, whence $D_{A}X=[AX]=0$ for $ Xc\Re$

). Then by I.emma 1 $\Re_{0}$ is l-algebraic.
Denote by $\mathfrak{A}tlle$ set of all.$\sigma$-matrices in $\Re_{0}$ and by $9l_{0}$ the ideal of all n-
matrices in $\Re_{0}$ . $Since_{\backslash }\Re_{0}$ is nilpotent, we have by Lemma 7 $[BX]=0$ for
$B\iota \mathfrak{A},$ $X^{(}\Re_{0}$ . Hence $\mathfrak{A}$ is an abelian ideal of $\Re_{0}$ and, as we may easily
see, Z-algebraic. Let $Xc\Re_{0}$ and $X=X^{0}+X^{s}$ as in Lemma 8. Since $\Re_{0}$ is
l-algebraic, $X^{0}$ and $X^{s}$ belong to $\Re_{t}$

) and in fact $X^{l}c\mathfrak{A},$ $X^{0_{(}}\mathfrak{R}_{0}$ . Hence
$\Re_{0}=\mathfrak{A}+\mathfrak{R}_{0}$ . . As we may readily verify $\lfloor \mathfrak{S},$ $A$ ] $=0$ implies $[\mathfrak{S}, \Re_{0}]=\subset\Re_{0}$ .
Since $\backslash $)$l_{0}=\Re_{0}$ $\mathfrak{R}$ is an $\mathfrak{S}$ -submodule of $\Re_{0},$ $\Re_{0}=\mathfrak{T}+\mathfrak{R}_{0}$ , where $\mathfrak{T}$ is an $\mathfrak{S}-$

module such that [ $\mathfrak{S},$ $\mathfrak{T}\rfloor=0$ . Let $A_{1},$
$\ldots\ldots,$

$A_{m}$ be a basis of $\mathfrak{A}$ . Then we
may find $\Lambda^{7_{i}}\epsilon?\}_{0}$ such that $A_{1}+\Lambda^{\Gamma_{l}},$

$\ldots\ldots,$
$A_{m}+N_{\iota}$ is a basis of $\mathfrak{T}$ . But since

[ $A_{i},$ $1V_{i}|=0$ and $A_{i},$ $1V_{i}$ are respectively s- and n-matrices, $A_{\ell}$ and $N_{i}$ are
replicas of $A_{i}+1V_{i}$ . Hence, by Lemma 1, $[\mathfrak{S}, A_{i}+N_{i}]=0$ impiies $[\mathfrak{S}, A_{\ell}]$

$=0$ . Thus $[\mathfrak{S}, \mathfrak{A}]=0$ . Moreover $\mathfrak{R}_{1}=[A, \Re_{1}]\leqq[\Re, \Re]=c\mathfrak{R}$ . Therefore
$\mathfrak{R}_{0}+\Re_{1}=J\mathfrak{i}$ and $\Re=\mathfrak{A}+^{\backslash }Jl$ .

Remark. Any subalgebra $\mathfrak{L}$ of $\mathfrak{g}1(rl, P)$ which has the structure as in

the Theorem 4 has an algebraic basis and thereforc l-algebraic.
3. Definition 3. A $I_{\lrcorner}ie$ algcbra is called algebraic, if its adjoint repre-

sentation is $l-*lgebraic$ . A complex I.ie group is called algebraic, if para-
nteters of the group can be so chosen that the functions which define the

multiplication of group elements are algebraic functions.
$L_{\vee}^{\rho}mma9$ . The intcgrated group $\mathfrak{G}$ of any J-algebraic Lie subalgebra

$\mathfrak{L}$ of $\mathfrak{g}\mathfrak{l}(n, C)$ is algebraic, where $C$ denotes the field of complex numbers.

Proof. By Theorem 3, $\mathfrak{L}$ has a rational basis $X_{1},$ $.b\cdots!,$ $X_{r}$ . Then the
matrix $G\epsilon \mathfrak{G}$ which is sufficiently near the unit matrix may be represented
uniquely in the form

$G=\exp\sim\iota\wedge X_{1}\ldots..\exp\approx_{r}X_{r}$ ,

where $Z_{1},$
$\ldots\ldots,$

$\vee\gamma\sim$ are tlxe complex parameters. If $X_{i}$ is u-matrix, then we
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see easily that the coefficients of $\exp\sim_{i}x_{i}$ are polynomials of $\sim_{i}$

$\ddagger n$ case
$X_{i}$ is r-matrix, we may assume without loss of generality that its charac-
teristic roots are all rational $i^{\backslash }ntegers$ . Then the coefficients of $exp$ . $\sim_{i}X_{i}$

are rational functions of $\exp\sim\sigma_{i}$ If we change the paramster $\sim\prime\prime i$ into $’\iota\iota!$ by
the equation

$\exp 4^{\sim_{i}=\perp+\iota C!_{i}}$’

then the coefficients of $\exp z_{i}X_{i}$ are rational functions of $’\iota\ell!_{i}$ . Hence the
coefficients of $G$ are rational functions of the sultably chosen parameters.
From this we may easily verify that $\mathfrak{G}$ is an algebraic group.

Since any semi-simple Lie algebra is isomorphic with an l-algebraic Lie
algebra, we see that any complex semi-simp. $e$ Lie group is algebraic.

Le $mmaxo^{\underline{9}0)}$ . I.,et $\mathfrak{L}$ be algebraic and $\Re$ its radical. By Levi’s theorem
$\mathfrak{L}=\mathfrak{S}+\Re,$ $\mathfrak{S}\cap\Re=0$ , where $\mathfrak{S}$ is a semi-simple subalgebra of $\mathfrak{L}$ . Denote .

by $\mathfrak{R}$ the largest nilpotent ideal. Then there exists an abelian subalgebra
$\mathfrak{A}$ of $\Re$ such that

$[\mathfrak{S}, \mathfrak{A}]=0$ , $\Re=\mathfrak{A}+\mathfrak{R}$ ,
$\mathfrak{A}\cap \mathfrak{R}=_{1}0$

and $\mathfrak{A}$ is represented faithfully in the adjoint representation of $\mathfrak{L}$ by. l-
algebraic Lie algebra composed of $\backslash s$-matrices.

Theorem 5. Tlie Lie gronp $\mathfrak{G}$ of aay $alge\delta raic$ Lie algebra $\mathfrak{L}$ ouer tlte
complex number feld $C$ is algebraic.

Proof. Let $\mathfrak{L}=\mathfrak{S}+\mathfrak{A}+\mathfrak{R}$ be the direct decomposition of $\mathfrak{L}$ as in the
above lemma and put $\mathfrak{T}=\mathfrak{S}+\mathfrak{A}$ . Then $\mathfrak{T}$ is a subalgebra of $\mathfrak{L}$ and $\mathfrak{A}$ is

‘ its center. We denote by $\mathfrak{T}_{0}$ the set of all elements $X(\mathfrak{T}$ such that $[X^{\backslash }J\mathfrak{i}]$

$=0$ . Tben as we may easily see, $\mathfrak{T}_{0}$ is an ideal of $\mathfrak{L}$ and is a direct
’

factor $of\sim\grave{\tau}$ , since $\mathfrak{T}$ is completely reducible. Let $\mathfrak{T}=\mathfrak{T}_{0}+\mathfrak{T}_{1}$ . Then $\mathfrak{L}=\dot{\mathfrak{T}}_{0}$

$+\mathfrak{T}_{1}+\mathfrak{R}$ and $\mathfrak{T}_{1}+\mathfrak{R}$ is obviously an ideal of $\mathfrak{L}$ . $\mathfrak{T}_{0}$ is, $j$ ust as $\mathfrak{T}$ , direct
sum of a semi-simple ideal and its center. But since $\mathfrak{T}_{0}$ is a direct factor
of $\mathfrak{L}$ , its center must be contained in the $c\dot{e}nte^{t}r\mathfrak{Z}$ of $\mathfrak{L}$ . As $\mathfrak{Z}\subset \mathfrak{R},$

$\backslash $]} $\cap \mathfrak{T}_{0}$

$=0,$ $\mathfrak{T}_{0}$ must be semi-simple. We see readily that $\mathfrak{L}_{1}=\mathfrak{T}1+\mathfrak{R}$ is also
algebraic and $\mathfrak{L}=\mathfrak{T}_{0}+\mathfrak{L}_{1}$ . Since the Lie group of $\mathfrak{L}$ is the direct product
of the Lie groups of $\mathfrak{T}_{0}$ and $\mathfrak{L}_{1}$ and any complex semi-simple group is
algebraic, it is sufficient to prove the theorem in the case $\mathfrak{T}_{0}=0$ . $\mathfrak{R}$ may
be regarded as a representation module of $\mathfrak{T}$ and this representation $\mathfrak{D}$ of
$\mathfrak{T}$ is, by our assumption, faithful and [-algebraic, We denote by $\mathfrak{H}$ and St
the (local) subgroups of $\mathfrak{G}$ whose Lie algebras are $\mathfrak{R}$ and $\mathfrak{T}$ respectively.

$-$
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Then $\mathfrak{H}$ is a nilpotent invariant subgroup of G. Every element of $\mathfrak{G}$ which
is sufficiently near the unit element may be represented uniquely in the
form $\sigma_{a}\tau_{b}$ , where $\sigma_{\iota}\{\mathfrak{H},\iota\sim_{b}eR$ and $(a),$ $(b)$ denote the parameters of the groups
$\mathfrak{H}$ and St respectively. Then

$(\sigma_{a}\tau_{b})^{\prime}(\sigma_{x}\tau_{y})=\sigma_{x^{\prime}}\tau_{y^{\prime}}$ ,

where
$\sigma_{x^{\prime}}=\sigma_{a}(\tau_{l)}\sigma_{x}\tau_{b}^{-1})$ , $\tau_{y^{\prime}}=\tau_{t_{J}}\tau_{y}$ . (3)

We $11^{\urcorner}ay$ take canonical parameters $(x)$ .of the nilpotent group $\mathfrak{H}$ such that
$\chi^{\prime}$ are polynomials of $(a)$ and $(x),$ $\iota vhere\sigma_{\chi},=\sigma_{a}\sigma_{x}^{9_{\sim}1)}$ . Let $\sigma_{f(x)}=\sigma_{b}\tau_{x}\sigma_{b}^{-1}$ .
Then, as the parameters $(x)$ are canonical,

$f_{i}(x)=\Sigma_{k}\subset x_{k}(\delta)x_{k}$ .

Since the matrix $(t1_{9k}(\delta))$ may be represented in the form $\exp D,$ $D\epsilon \mathfrak{D}$

and $\mathfrak{D}$ is l-algebraic faithful representation of $\mathfrak{T},$ $//ik(b)$ are ‘rational func-
tions of (b) if the parameters (b) are chosen suitably. Hence $\iota_{\acute{i}}^{-}$ , which are
determined by (:3), depend algebraically on $(a),$ $(x)$ and $(\delta)$ . On the $other\backslash $

hand, since we have chosen the parameters $(b)$ of 9 as above, $y_{i}^{\prime}$ which
are also $de\mathfrak{h}ned$ by (3), depend algebraically on $(b)$ and $(y)$ . Therefore $\mathfrak{G}$

is an algebraic group.
Let, conveIsely, $\mathfrak{G}$ be an algebraic Lie $gr6up$ and $\mathfrak{L}$ its Lie algebra.

It has been proved by L. $Maurer^{2)}-$) that the adjoint representation of $\mathfrak{L}$ has
a rational basis. Hence $\mathfrak{L}$ is algebraic. Thus we obtain the following
results: A complcx $L^{J}\dot{e}$ group $\mathfrak{G}$ is $alge\delta ra’ c$ if $a\prime\prime d$ on $\prime y$ . only if its Lie
algebra $\mathfrak{L}$ is $a4^{r}e\delta raic$ .

$--$

Bibliography.

E. Cartan;

[1] Th\‘ese, Paris (1894). ,

[2] Les groupes de transformations, continus, infinis, simples, Ann. Ec. Norm. Sup. t. 26
(1909).

[3] Les representations lin\’eaires des groupes de Lie, Jour. de Math. pures et appliqu\’ees,
t. 17 (1938).

C. Lhevalley :
[1] A new kind of relationship between matrices, Amer. J. math. 65 (1943).

C. Chevalley and IL F. Tuan:
[1] On algebraic Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 31 (1945).



On algebraic Lie groups and $alge\delta ras$ . 57

$M.\downarrow$ Goi\^o:
[1] On the replicas of nilpotent matrices, forthcoming in Proc. Imp. Acad. Tokyo.
[2] On algebraic Lie algebras, forthcoming in this journal.

S. Lie and F. Engel:
[1] Theorie der Transformationsgruppen Bd. III (1893).

Y. $Matsushi_{\mathfrak{l}}na$ :
[1] Note on the replicas of matrices, forthcoming in Proc. Imp. Acad. Tokyo.

L. Maurer:
[1] \"Uber kontinuierliche Transformationsgruppen, Math. Ann. 39 (1891).

Mathemathical Institute
Revised December 11, 1947. Nagoya University.

References.

1) C. Chevalley and H. F. Tuan [1].
2) For the notion of replicas, see C. Chevalley [1], Cf. M. Got\^o [1], Y. Matsushima [1].
3) Our $l$-algebraicity is the same as the algebraicity in Chevally and Tuan’s sense.
4) M. Got\^o [2]. M. Got\^o proved also our Theorem 3 and 4 in a different way.
5) L. Maurer [1], S. Lie and F. Engel [1] p. 800-807.
6) Y. Matsushima [1].
7) I owe this remark to M. Got\^o.
8) $A^{t}$ and $B^{s}$ are commutative ($t=1,\cdots,k $; $s=1,\cdots,j$). Cf. the proof of Lemma 1

below.
9) See. Y. Matsushima [1].

10) As usual $\mathfrak{P}_{K}$ is a Lie algebra over $K$ whose elements are all linear combinations
$a=\lambda_{1}e_{1}+\cdots+\lambda_{r}e_{r}$ where $\lambda_{i}\epsilon K$ and $e_{1},\cdots,e_{r}$ is a basis of $\mathfrak{P}$ over $P$.

11) E. Cartan [2].
12) E. Cartan [1] p. 108.
13) M. Got\^o [1].
14) Y. Matsushima [1].
15) If $X_{1},\cdots,X_{r}$ is a basis of $\mathfrak{P}$ \^over $P$, then $X_{1},\cdots,X_{r}$ are also linearly independent

over $K$.
16) Some of $Y_{i}j$ and $Z_{\ell}j$ may be zero matrices.
17) C. Chevalley and H. F. Tuan [1], M. Got\^o [2].

$\sim$

18) Cf. Y. Matsushima [1].
19) C. Chevalley and H. F. Tuan [1], M. Got\^o [2].
20) M. Got\^o [2].
21) E. Cartan [3].
22) L. Maurer [1], S. Lie and F. Engel [1] p. 800-807

$\backslash $


	On algebraic Lie groups ...
	Introduction.
	1.
	2. Theorem 3.
	3. Definition 3.
	Bibliography.
	References.


