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Note on faithful modular representations of a firtite group.

By Tadasi NAKAYAMA..
(Received Oct. 25, 1947.)

In a recent note]) the writer has studied the structure of finite groups
possessing a faithful irreducible representation (i.r.), directly indecomposable
representation (d.i. $r.$ ), $O1^{\cdot}$ a faithful directly indecomposable compollent (d.i.c.)
of the $regu^{\backslash }1ar$ representation (r.r.) in a modular field of characteristic $p\neq 0$

( $p$-modular field). The result is similar’ to the case of groups with faithful
non-modular i.r.2) Namely: Let $\mathfrak{M}$ be the product of the totality of mini-
mal abelian invariant $sub_{8}\circ\tau Qups$ of order prime to 2 jn a finite group $\mathfrak{G}$ ,
and le, $t\mathfrak{M}=\mathfrak{L}_{1}\times \mathfrak{L}_{2}\times\cdots\cdots\times \mathfrak{L}_{g}$ be its decomposition into $/subgroups$ of prime
power orders with $diffe\iota ent$ primes $l(\neq p)$ . $\mathfrak{G}$ possesses a faitkful p-modular
$i_{*}r.$ , if and only if $\mathfrak{G}$ lias no invariant $su\delta group\neq 1$ whose order is $apa\iota ver$

of $l$ and $mor\ell ov\ell rt_{J}^{r_{l}}e$ follot$\zeta/ing$ condition is $satisfi6d$ :
$(^{*})\mathcal{E}ver_{J^{!\mathfrak{L}_{i}}}$ possesses an in $’\angle^{\prime}ariantsu\delta group$ with $c$yclic factor group $ w/\iota ic/\iota$

contains no invaf iant $su\delta group\neq 1$ of $\mathfrak{G}$

$rg$ has a $ fait/lfnld.i.\ell$ . of $p$-modular $r.r$. (or a faithful $p$-modular ‘ d.i.r.
$wh$atsoever), if and only if $t/\iota e$ condition $(^{*})$ is satisfied

$(Furt/lermore, (^{*})^{-}is$ eqnivafent to that
$(\uparrow)$ eaclt $\mathfrak{L}=\mathfrak{L}_{i}$ is a product of $c$ , say, $ mutual_{l}^{\prime}\gamma$ $\mathfrak{G}$ -isomorphic minimal

$i_{7^{\prime}l^{\prime}}ariantsu\delta groups$ of $\cdot \mathfrak{G}$ and the inequality $ c<m=/\lambda$ is satisfed, wliere $l^{m}$

$is$ the $0\gamma der$ of. $t/le$ minimal factor and $l^{\lambda}$ is the number of elements in $t/le$

G-automorpliism $qnasifie[d$ of $th_{6}$ minimal $facJor$ )
As a corollary of the result we have: 1) If $\mathfrak{G}$ lias a $fait/lful$ non-

modular $i.r$. then it $/\iota as$ a faitkful $d.i.c$ . of p-modular $r.r$. (for any p) ;’ 2)

If $\mathfrak{G}$ possesses $fait/\iota fulp$-modular and $q$-modular $d.i.r$ . $ wit/\iota$ distinct $p,$ $q$ , then
$it$ lias a $fait/\iota ful$ non-modular $i.’’$.

The present note is to supplement these by giving mutual relations
between such modular and non-modular representations. We prove $namely^{8)}$ ;

I. If a $gro?tp^{1)}\mathfrak{G}$ possesses a $fait/\iota fi_{1}l$

. non-modular $i.r^{5)}M(\mathfrak{G})$ , then
any d.i.c. $T^{\nearrow}(\mathfrak{G})$ of $\iota im^{py}dularr.’\cdot.$ containing $\cdot$

$1\Psi(\mathfrak{G})$ , in the $s$ense of R. 6rauer-
C. $\Lambda^{\gamma}es\delta itt^{6)}$ , is $fait/\prime fnl$.

II. If $\mathfrak{G}p$ossesses a $fait/tfnlnou\cdot modul_{t}xri.r$. ) $t/l\ell n$ an arbitrary fait/c-
$ful$ d.i.c. of a modtlar $r.r$. contains a faithful non-modular $i.r$.
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As $tq$ I $we$ { have somewhat stronger
I’. If $M(\mathfrak{G})$ is a non-modular $i.r$ . of a group $\mathfrak{G}$ , and $lf\nabla(\mathfrak{G})$ is a

d.i.c. of a modular $r.r$ . of $\mathfrak{G}$ comaining $M(\mathfrak{G}),$ $tk\overline{e}nt/l\mathcal{E}$ kernel of na(G) $con-$

tains tiiat of $\nabla(\mathfrak{G})$ .
Proof is immediate, though the fact ig not perfectly trivial, as it seems

to the writer. Let namely se be the kernel of $\nabla(\mathfrak{G})$ . The restricted re-
presentation $\nabla(R)$ is decomposed, directly, into a nilmber of d.i. $c$ . of r.r.
of $R$ , as it is the case with any subgroup. These d.i. $c$ . are of course all
l-representation ( $=unit$ representation of degree 1). On the other hand,
we may see easily that each irreducible constituents of the restriction. .Zlf(A)

$\sqrt{}$

is contained in some d.i. $c$ . of $V(\theta)^{S)}$ . So the (non-modular) irreducible con-
stituents of $M(\Re)$ are all l-representation, and the completely reducible
representation $M(\ell i)$ itself is a unit representation. This shows that the
kernel of $M_{(}\mathfrak{G}$ ) contains St.

(We may also argue in the following manner by showing first that the
kernel $R$ of $l^{\nearrow}(\mathfrak{G})$ , a d.i.c. of $l$-modular $r.r^{l}..1_{l}as$ an order primc to $l$ , which
is perhaps of interest by itself. Namely, $R$ has a d.i. $c$ . of $p$-modular r.r.
which is l-representation, as was seen by restricting $V(\mathfrak{G})$ on St. Such a
group has an order prime to $l$ , in virtue of.a theorem of Brauer-Nesbitt
concerning the first Cartan invariant9). Now the modular irreducible con-
stituents of $M(R)$ are all l-representation. Since $f\partial$ has an order prime to
$l$ , also the non-modular irreducible constituents of $\lrcorner M(f\partial)$ are l-representa-
tion, and $M(l\partial)$ is a unit representation.)

$\theta$

Now $we^{-}$ turn to II. Let $\mathfrak{R}$ be the product of all the minimal invariant
subgroups of $\mathfrak{G}$ , which is well known to be completely reducible by itself,
and let

$\mathfrak{R}=\mathfrak{H}_{1}\times \mathfrak{H}_{2}\times\ldots\ldots\times \mathfrak{H}_{n}\times \mathfrak{P}$

where $\mathfrak{H}_{1},$ $\mathfrak{H}_{2}$ , .... .., $\mathfrak{H}_{n}ar\overline{e}$ ideal factors with respect to $\mathfrak{G}$ and are not $p_{-}^{I}$

group, while $\mathfrak{P}$ is a such. We assume that $\mathfrak{G}$ possesses a faithful d.i.c,

$V(\mathfrak{G})$ of $l$-modular r.r. Then each $\mathfrak{H}_{i}$ ha\S an invariant subgroup $\mathfrak{X}_{i}$ with
simple factor group and containing no invariant subgroup $\neq 1$ of $\mathfrak{G}^{10)}$ . Let
$\mathfrak{H}_{i}=\Re_{i}\times- \mathfrak{S}_{i}$ . The restricted representation $l^{\nearrow}(\mathfrak{R})$ is decomposed into a certain
number of ci. $i.c$ . $v^{(\mathcal{V})}(\mathfrak{R})$ of r.r. of $\mathfrak{R}$ . At ieast one of $v^{(\mathcal{V})}$ is faithful on (the
simple group) $\mathfrak{S}_{i}$ . Since $v^{(v)}’ s$ are $\mathfrak{G}- ccnjugate^{11)}$ , we may assume, perhaps
by taking suitable G-conjugates of $\mathfrak{S}_{i},$ $\theta_{i}$ , that $v(\mathfrak{S}_{i})=v^{(1)}(\mathfrak{S}_{i}),is$ faithful. Let
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$\sim\alpha_{i}^{\backslash }(\mathfrak{S}_{i}),$

$w_{i}(\mathfrak{S}_{i})$ be respectively the $\mathfrak{S}_{i^{-}},$ $9_{i}$-component of $v(\mathfrak{R})$ with respect
to the decomposition

$\mathfrak{R}=\mathfrak{S}_{1}\times R_{1}\times\cdots\cdots\times \mathfrak{S}_{n}\times\prime S\partial_{n}\times \mathfrak{P}$ .
They are d.i. $c$ . of $p$-modular r.r. of $\mathfrak{S}_{i},$ $R_{i}$ respectively. We assert that at
least one non-modular irreducible constituent $of\approx_{i}(\mathfrak{S}_{i})$ is $no\dot{t}$ l-representa-
tion (whence faithful). For, otherwise all the modular irreducible con-
stituents are also l-representation, and therefore $\mathfrak{S}_{i}$ has an invariant sub-
group whose order is prime to $p$ and whose index is a power of $p$, by a
known result concerning primary deComposable group $ringsl2$) which follows
again from the theorem on the first Cartan invariant. Since $\mathfrak{S}_{i}$ is simple
and is not a $p$-group, it has then $necessarily$ an order prime to $l$ . But
then $\triangleleft\sim_{i}(\mathfrak{S}_{i})$ itself is irreducible, and its unique non-modular component can-
not be l-represel:tation. The contradiction proves our assertion. Let $s_{i}(\mathfrak{S}_{i})$

be, for each $i$, such a faithful non-modular irreducible constituent of $z_{i}(\mathfrak{S}_{i})$ .
We assume now that $\mathfrak{G}$ has a faithful non-modular i.r. Then $\mathfrak{P}$ has

$a.$ non-modulai i.r. $s(\mathfrak{P})$ whose kernel contains no invariant subgroup $\neq 1$

of $\mathfrak{G}$ . On taking for each $i$ an arbitrary non-modular irreducibl constituent
$r_{i}(R_{i})$ of $w(B_{i})$ , we construct, the, Kronecker product

$m(\mathfrak{R})=s_{1}(\mathfrak{S}_{1})\times r_{1}(R_{1})\times\ldots\ldots\times s_{n}(\mathfrak{S}_{n})\times r_{n}(R_{n})\times s(\mathfrak{P})$ .
It is of course irreducible, and its kernel cortains no invariant subgroup
$\neq 1$ of $Q$, since this is contained in $R_{1}\times\cdots\cdots\times R_{n}\times$ (kernel of $s(\mathfrak{P})$ ).
Moreover, it is contained in the d.i. $c$ . $v(\mathfrak{R})$ , because $s_{i}(\mathfrak{S}),$ $r_{i}(R)$ are con-
tained respectively $in\approx_{i}(\mathfrak{S}_{i}),$ $w_{i}(R_{i})$ and $s(\mathfrak{P})$ is contained in the $\mathfrak{P}$ -component
of $v(\mathfrak{R})$ which is nothing but the $p$-modular r.r. of $\mathfrak{P}$ .

Let $f_{(}\mathfrak{R}$ ), $F(\mathfrak{G})$ be the modular i.r. belonging to $v(\mathfrak{R}),$ $V(\mathfrak{G})$ respectively.
By a special case of the theorem of induced representations13), the repre-
sentation of $\mathfrak{G}$ induced by $f(\mathfrak{R})$ contains $F(\mathfrak{G})$ as an irreducible constituent.
On the other hand, $f(\mathfrak{R})$ is contained in $m(\backslash Ji)$ , in virtue of the main theorem
of modular representations. Hence $F(\mathfrak{G})$ is contained in some (non-modular)
irreducible constituent $M_{(}^{\prime}\mathfrak{G}$ ) of the rep.resentation of $\mathfrak{G}$ induced by $m(\mathfrak{R})$ .
Then $\lrcorner^{\prime}M(\mathfrak{G})$ is contained in $\iota\nearrow(\mathfrak{G})^{14)}$ .

The restriction $M(\mathfrak{R})$ is decomposed into a number of mutnally $\mathfrak{G}-$

conjugate i.r., one of which is $m(\mathfrak{R})$ . Because of our property of $m(\mathfrak{R})$ ,
$M(\mathfrak{R})$ is faithful. Since $\mathfrak{R}$ contains all the minimal invariant subgroups of
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$\mathfrak{G},$ $M\mathfrak{G}$) itsclf is then so too, and II is settled. .
(To modify II in a similar manner as I’ is rather meaningless. For,

if an invariant subgroup $\mathfrak{U}i_{S}$ contained in the kernel of a d.i. $c$ . $t^{r}(\mathfrak{G})$ of
r.r., then $V(\mathfrak{G})$ is essential a d.i. $c$ . of the r.r. of the factor group $\mathfrak{G}/\mathfrak{A}$ , as

we may see leadily again by the theorem of $i\grave{n}$ duced representations for .
instance.)

A similar study concerning representafions with a certain number of

direct components16) is $i^{r}q1med_{1}^{\alpha}ate$ , and in fact can easiiy be reduced to the

above.
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14) The present consideration remadns valicl in the case of an arbitrary subgroup, not

necessarily invariant, and we have: Let $V(\mathfrak{G})$ be a d.i.c. of modular r.r. of $\mathfrak{G}$, and $v(\mathfrak{H})$ a d.i.c.

of its restriction on a subgroup $\mathfrak{H}$ . If a non-modular i.r. $m(\mathfrak{H})$ is contained in $v(\mathfrak{H})$, then some
irredulcibIe constihtent of the representation of $\mathfrak{G}$ induccd by $m(\mathfrak{H})$ is contained in $V(\mathfrak{G})$ . More
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15) M. Tazawa, Uber die isomorphe Darstellung der endlichen Gruppe, Tohoku Math. J.
47 (1940); Nakayama, 1.c. 1).
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